
3. Limit Sets and Topological Conjugacy

Let X be a compact metric space with metric d and let f : X → X
be a homeomorphism.

For any subset Λ ⊂ X and n ∈ Z, denote fn(Λ) = {fn(x) : x ∈ Λ}.

Definition 2.1. A subset Λ ⊂ X is invariant for f if f(Λ) = Λ.

The orbit O(x) of x is the set {fn(x) : n ∈ Z}. The forward orbit
O+(x) is the set {fn(x) : n ∈ Z+}, and the backward orbit O−(x) is the
set {fn(x) : n ∈ Z−}. We say that x is periodic if there is a positive
integer τ such that f τ (x) = x. The least such τ is called the period of
x.

Clearly O(x) is an invariant set.

Definition 2.2. Let x ∈ X.
The ω-limit set of x, denoted by ω(x), is the set of points y such that

there is a sequence n1 < n2 < . . . with ni → +∞ and fni(x) → y as
i → ∞.

The α-limit set of x, denoted by α(x), is the set of points y such that
there is a sequence n1 > n2 > . . . with ni → −∞ and fni(x) → y as
i → ∞.

Lemma 2.3. For any x ∈ X, ω(x) and α(x) are closed invariant
subsets.

Proof. (Invariance) We prove f(ω(x)) = ω(x). Let y ∈ ω(x). We can
take n1 < n2 < . . . such that ni → ∞ and fni(x) → y as i → ∞. Hence,
by continuity we have n1 ± 1 < n2 ± 1 < . . . such that ni +1 → ∞ and
fni±1(x) = f±1(fni(x)) → f±1(y) as i → ∞. So f±1(y) ∈ ω(x). Since
y ∈ ω(x) is arbitrary, we get f±1(ω(x)) ⊆ ω(x). That is, f(ω(x)) ⊆
ω(x) and f−1(ω(x)) ⊆ ω(x), while the latter implies ω(x) ⊆ f(ω(x)).

(Closeness) Suppose {yk} ⊂ ω(x) such that yk → y0 as k → ∞.
For each k > 0, we can choose nk > 0 inductively such that nk >
min{nk−1, k} and d(fnk(x), yk) ≤ d(yk, y0). We get a sequence n1 <
n2 < . . . with nk → ∞. Since

d(fnk(x), y0) ≤ d(fnk(x), yk) + d(yk, y0) ≤ 2d(yk, y0) → 0,

we have fnk(x) → y0 as k → ∞. So y0 ∈ ω(x), and therefore ω(x) is a
closed subset. �

Let P (f) denote the set of periodic points of f .
Define the negative and positive limit sets of f by

L−(f) =
∪
x∈X

α(x), L+(f) =
∪
x∈X

ω(x),
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where S meanse the closure of a subset S. Then define the limit set of
f by L(f) := L−(f) ∪ L+(f).

Definition 2.4. A point x ∈ X is a nonwandering point of f if for
any neighborhood U of x and any N > 0, there exists n > N such that

fn(U) ∩ U ̸= ∅.
The set of all nonwandering points is called the nonwandering set and
is denoted by Ω(f) or NW(f).

It can be proved that a point x ∈ X is a nonwandering point if for
any neighborhood U of x, there exists n > 1 such that fn(U)∩U ̸= ∅.

By the definition, x ∈ X is a nonwandering point if for any neigh-
borhood U of x, there exists y ∈ U such that fn(y) ∈ U for some
n > 1. Hence, any point y ∈ α(x) or ω(x) is a nonwandering point and
therefore L(f) ⊂ Ω(f) by the lemma below.

Lemma 2.5. A nonwandering set is a closed invariant set.

Proof. Invariance is clear.
Note that x ∈ X is a wandering point if there is a neighborhood U

of x such that for any N > 0, fn(U) ∩ U = ∅. It means that all points
in U are wandering point. So the set of wandering points are open,
and hence nonwandering set is closed. �
Definition 2.6. A subset Σ is called a minimal set of f if it is a
nonempty closed invariant set that does not contain any closed invari-
ant proper subset.

Denote by Min(f) the union of all minimal set of f .

Proposition 2.7. Any compact invariant set contains a minimal set.

Proof. Let K be a compact invariant set. Let S be the collection of all
nonempty invariant compact subset A of K. Define a partial order “≺”
in S by A ≺ B if A ⊂ B. Then by Zorn’s lemma, every linearly ordered
subsets · · · ≺ Ai ≺ Ai−1 ≺ . . . has a least element Σ. In fact, Σ is the
intersection of the set {Ai}, and is nonempty by Cantor intersection
theorem. Σ is a minimal set. �
Lemma 2.8. A compact subset Σ is minimal if and only if for any
x ∈ Σ, O(x) = Σ.

Proof. “=⇒”: SinceO(x) is a nonempty colsed invariant set andO(x) ⊆
Σ, minimality of Σ implies O(x) = Σ.

“⇐=”: If Σ is not a minimal set, then there is a nonempty closed
invariant subset Σ1 properly contained in Σ, then for any x ∈ Σ1,
O(x) ⊆ Σ1 $ Σ, a contradiction. �
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Definition 2.9. An ϵ-chain is a finite sequence x1, x2, . . . , xn in X
such that d(f(xi), xi+1) < ϵ for 1 ≤ i ≤ n− 1.

A point x is chain recurrent if for every ϵ > 0 there is an ϵ-chain
starting and ending at x.

The chain recurrent set of f , denoted by R(f) or Rec(f), is the set
of chain recurrent points.

Lemma 2.10. (1) A chain recurrent set is a closed invariant set.
(2) A nonwandering point is a chain recurrent point, and hence

R(f) ⊆ Ω(f).

Definition 2.11. A point x is forward recurrent if x ∈ ω(x), and
backward recurrent if x ∈ α(x). It is recurrent if it is both forward
and backward recurrent.

The Birkhoff Center, denoted by C(f) or BC(f), is the closure of
the set of recurrent points.

Lemma 2.12. (1) The Birkhoff Center C(f) is invariant.
(2) For a recurrent point x, x ∈ ω(x) ∩ α(x) ⊆ L(f), and hence

C(f) ⊆ L(f).

Summarizing the above relations we have

P (f) ⊆ Min(f) ⊆ BC(f) ⊆ L(f) ⊆ NW(f) ⊆ Rec(f).

Example 2.13. (1) Any fixed point or periodic orbit is a minimal
set by Lemma 2.8.

(2) Let f : S1 →= S1 be a homeomorphism that contains exact one
fixed point p as in Figure 1. Then Ω(f) = {p} and R(f) = S1.

x F Ff 10

Figure 1. Circle map with one fixed point

(3) Let Rα : S1 →= S1 be a circle rotation given by Rα(z) = eiαz,
where z ∈ S1.
If α is a rational number, then for any z, α(z) = ω(z) = O(z)

is a periodic orbit. Hence, P (Rα) = S1.
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If α is an irrational number, then for any z, O(z) is dense
on S1. Hence P (Rα) = ∅ and α(z) = ω(z) = Σ = S1 is α- and
ω-limit set and the minimal set containing z.

(4) (The Mathematical Pendulum) The phase portrait of a mathe-
matical pendulum is given in Figure 2, which is a continuous
dynamical system. The orbits connect critical points are called
the heteroclinic orbits. The heteroclinic orbits are not in the
limit set, but in the nonwandering set of the flow.

Figure 2. Phase portrait of the mathematical pendulum

Definition 2.14. Suppose f : X → X and g : Y → Y are two home-
omorphisms of metric spaces X and Y respectively. We say that f is
topologically conjugate to g if there is a homeomorphism h : X → Y
such that hf = gh. Any such h is called a topological conjugacy.

We say that f is topologically semiconjugate to g, or g is a factor
of f , if there is a continuous map h : X → Y such that hf = gh.

Lemma 2.15. The topological conjugacy relation is an equivalence re-
lation on any given set of homeomorphisms of metric spaces, that is,

(1) f : X → X is topological conjugate to itself;
(2) If f : X → X is topological conjugate to g : Y → Y , then

g : Y → Y is topological conjugate to f : X → X;
(3) If f : X → X is topological conjugate to g : Y → Y , and g :

Y → Y is topological conjugate to k : Z → Z, then f : X → X
is topological conjugate to k : Z → Z.

Lemma 2.16. Suppose f : X → X is topologically conjugate g : Y →
Y with a topological conjugacy h : X → Y . Then

(1) for any x ∈ X, h(Of (x)) = Og(h(x));
(2) h(RS(f)) = RS(g), where RS = P,Min,BC, L,NW or Rec.

Proof. The proof is based on the facts that hfn = gnh for any n ∈ Z
and continuity of h. �


