4. Circle Homeomorphisms

4.1. Rotation numbers. Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be an orientation preserving homeomorphism. Let π : $\mathbb{R} \rightarrow \mathbb{S}^{1}$ be the map $\pi(t)=\exp (2 \pi i t)$.

Lemma 4.1. There is a continuous map $F: \mathbb{R} \rightarrow$ \mathbb{R} such that
(i) $\pi F=f \pi$;
(ii) F is monotone increasing;
(ii) F - id is periodic with period 1 .

Moreover, any two such maps differ by an integer translation.

Proof. Define $F(0)$ to be any number in the set $\pi^{-1} f(\pi(0))$. Let U and V be neighborhoods of 0 and $F(0)$ respectively that have length less than 1 . Note that $\left.\pi\right|_{V}: V \rightarrow \pi(V)$ is a homeomorphism. For any $t \in U$, define $F(t)=\left(\left.\pi\right|_{V}\right)^{-1} \circ f(\pi(t))$ whenever it is defined. Then F is extended to a neighborhoods $U^{\prime} \subseteq U$. Using the same way we can extend the definition of F to \mathbb{R}. It is easy to check (i)-(iii).
Suppose $G: \mathbb{R} \rightarrow \mathbb{R}$ is also a such map. Then by (i) we have that for any $t \in \mathbb{R}, \pi(G(t))=f(\pi(t))=$ $\pi(F(t))$. That is, there exists an integer $n=n_{t}$ such that $G(t)=F(t)+n_{t}$. Since both F and G are continuous, and n_{t} must be a integer, it must be independent of t.

Note that (i) implies that F is a homeomorphism. We call such an F a lift of f .

Proposition 4.2. Given F as above, the limit

$$
\tau(F):=\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{n}
$$

exists for each $x \in \mathbb{R}$, and and is independent of x.

Proof. (1) Independence of x :
Since $F(x+1)=F(x)+1$ for all x, it follows that $F^{n}(x+1)=F^{n}(x)+1$ for all x and n. Now, suppose that $x \leq y \leq x+1 \leq y+1$. Since F^{n} is monotone increasing, using $F^{n}(x+1)=F^{n}(x)+1$, we have

$$
\frac{F^{n}(x)}{n} \leq \frac{F^{n}(y)}{n} \leq \frac{F^{n}(x+1)}{n} \leq \frac{F^{n}(y+1)}{n}
$$

This implies that if the limit $\lim _{n \rightarrow \infty} \frac{F^{n}(x)}{n}$ exists, then so does $\lim _{n \rightarrow \infty} \frac{F^{n}(y)}{n}$, and they are equal.
(2) Existence if f has a periodic point:

Let x be a periodic point of period m, and let $y \in \mathbb{R}$ be such that $\pi(y)=x$. Then there is an integer p such that $F^{m}(y)=y+p$. Then, $F^{n m}(y)=y+n p$. So

$$
\lim _{n \rightarrow \infty} \frac{F^{n m}(x)}{n m}=\lim _{n \rightarrow \infty} \frac{y+n p}{n m}=\frac{p}{m}
$$

Now, for any integer k, let $k=r m+q$ with $0 \leq q<$ m. Then,

$$
\frac{F^{k}(y)}{k}=\frac{F^{k}(y)-F^{r m}(y)+F^{r m}(y)}{k}
$$

and

$$
\left|\frac{F^{k}(y)-F^{r m}(y)}{k}\right| \leq \frac{M}{k}
$$

where $M=\max _{0 \leq q<m}\left|F^{q}(y)-y\right|$. Thus,

$$
\lim _{k \rightarrow \infty} \frac{F^{k}(x)}{k}=\lim _{k \rightarrow \infty} \frac{F^{r m}(x)}{k}=\lim _{r \rightarrow \infty} \frac{F^{r m}(y)}{r m}=\frac{p}{m}
$$

Thus, the limit exists if f has a periodic point.
(3) Existence if f has no periodic points:

This implies that $F^{m}(x)-x$ is not an integer for any $m>0$ and any $x \in \mathbb{R}$. Let p_{m} be an integer such that

$$
\begin{equation*}
p_{m}<F^{m}(0)<p_{m}+1 \tag{4.1}
\end{equation*}
$$

Therefore, for all $x \in \mathbb{R}, p_{m}<F^{m}(x)-x<p_{m}+1$, since if otherwise, then by the Intermediate Value Theorem, we have $F^{m}(y)-y=p_{m}$ or $F^{m}(y)-y=$ $p_{m}+1$ for some y, which is a contradiction. Hence, for $1 \leq i \leq n, p_{m}<F^{i m}(0)-F^{(i-1) m}(0)<p_{m}+1$. Adding together these inequalities for $i=1, \ldots, n$, the middle terms telescope, and we get

$$
\begin{equation*}
n p_{m}<F^{n m}(0)<n\left(p_{m}+1\right) \tag{4.2}
\end{equation*}
$$

Dividing (4.1) by m and (4.1) by $m n$, we get that $\frac{F^{n m}(0)}{m n}$ and $\frac{F^{m}(0)}{m}$ are both in the interval $\left(\frac{p_{m}}{m}, \frac{p_{m}+1}{m}\right)$. So

$$
\left|\frac{F^{n m}(0)}{m n}-\frac{F^{m}(0)}{m}\right| \leq \frac{1}{m}
$$

Interchanging the roles of m and n, we get

$$
\left|\frac{F^{n m}(0)}{m n}-\frac{F^{n}(0)}{n}\right| \leq \frac{1}{n}
$$

and, hence,

$$
\left|\frac{F^{m}(0)}{m}-\frac{F^{n}(0)}{n}\right| \leq \frac{1}{m}+\frac{1}{n}
$$

Hence, the sequence $\left\{\frac{F^{n}(0)}{n}\right\}$ is a Cauchy sequence, and thus has a limit.

Lemma 4.3. Let F and G are both lift of f, then there exists $p \in \mathbb{Z}$ such that $\tau(G)=\tau(F)+p$.

Proof. Since F and G are both lift of f, then there exists $p \in \mathbb{Z}$ such that $G(x)=F(x)+p$ for any $x \in \mathbb{R}$. So we have $G^{2}(x)=G(G(x))=F(F(x)+$ $p)+p=F(x)+2 p$, and for each $n>0, G^{n}(x)=$ $F^{n}(x)+n p$. Hence,
$\tau(G)=\lim _{n \rightarrow \infty} \frac{G^{n}(x)}{n}=\lim _{n \rightarrow \infty} \frac{F^{n}(x)+n p}{n}=\tau(F)+p$.

The above lemma says that $\tau(f)$ is independent of the choice of the lift F.

Definition 4.1. The number $\tau(f):=\pi \tau(F)$ is called the rotation number of f.

We say that $\tau(f)$ is rational if for any lift F of f, $\tau(F)$ is rational.

4.2. Dynamical properties.

Proposition 4.4. Let f be an orientation preserving homeomorphism of \mathbb{S}^{1}. Then, $\tau(f)$ is rational if and only if f has a periodic point.

Proof. We have already proved that if f has a periodic point, and F is any lift of f as above, then $\tau(F)$ is rational. So we must prove the converse.
Let F be a lift of f.
Note that for any integers m and k, we have $\tau\left(F^{m}+\right.$ $k)=m \tau(F)+k$ where $\left(F^{m}+k\right)(x)$ is defined to be $F^{m}(x)+k$ for all x.
Assume that $\tau(F)=\frac{p}{q}$ for some integers p and $q \neq$ 0 . Then, $q \tau(F)-p=0$, so that map $G:=F^{q}-p$ has rotation number 0 .
If $G(x)-x=0$ for some $x \in \mathbb{R}$, then G has a fixed point x. Hence f has a periodic point (of period q).
Now we suppose that G has no fixed point. Then either $G(x)-x>0$ for all x or $G(x)-x<0$ for all x. By translating by the lift F by an integer, we may assume that $G(x)-x>0$. Consider $\left\{G^{n}(0)\right\}$ for $n>0$. By Claim 4.5 below $\left\{G^{n}(0)\right\}$ is bounded above by 1 . Clearly the sequence is monotone. So $\left\{G^{n}(0)\right\}$ must converge to some y. It follows that

$$
G(y)=G\left(\lim _{n \rightarrow \infty} G^{n}(0)\right)=\lim _{n \rightarrow \infty} G\left(G^{n}(0)\right)=\lim _{n \rightarrow \infty} G^{n+1}(0)=y
$$

contradicting the supposition that G has no fixed point.

Claim 4.5. If $G(x)-x>0$ for all x, then the sequence $\left\{G^{n}(0)\right\}$ is bounded above by 1 .

Proof. Suppose there exists a number k such that $G^{k}(0)>1$. Then
$G^{2 k}(0)=G^{k}\left(G^{k}(0)\right)>G^{k}(1)=G^{k}(0+1)=G^{k}(0)+1>2$.
Similarly, $G^{n k}(0)>n$ for all $n>0$. Hence

$$
\lim _{n \rightarrow \infty} \frac{G^{n k}(0)}{n k} \geq \frac{1}{k}
$$

which would contradict $\tau(G)=0$.
Suppose the rotation number of f is rational, say $\tau(f)=\frac{p}{q}$. Then f^{q} has rotation number 0 , and therefore has fixed points. In this case, $P(f)=$ $\Omega(f)=\operatorname{Fix}\left(f^{q}\right)$, and for any $x \in \mathbb{S}^{1}, \alpha(x) \cup \omega(x) \subset$ $\operatorname{Fix}\left(f^{q}\right)$, where $\operatorname{Fix}(f)$ denote the set of fixed points of f.
Now we consider the case that the rotation number of f is irrational.

Lemma 4.6. Suppose the rotation number of f is irrational. For any $x \in \mathbb{S}^{1}$ and $m, n \in \mathbb{Z}$ with $m \neq n$, let $I=\left[f^{m}(x), f^{n}(x)\right]$. Then any forward orbit intersects I, i.e., for each $z \in \mathbb{S}^{1}$, there is a $k>0$ such that $f^{k}(z) \in I$.
Proof. The intervals $f^{-k(m-n)} I$ and $f^{-(k-1)(m-n)} I$ have one boundary point in common. So either $\left\{f^{-k(m-n)} I\right\}$ converge monotonically to a point on \mathbb{S}^{1} or some finite union of them covers \mathbb{S}^{1}. Since the former case
implies that f^{m-n} has a fixed point, contradiciting the fact that $\tau(f)$ is irrational, the latter must occur and the lemma is proved.

Proposition 4.7. Suppose the rotation number of f is irrational. Then
(1) $\omega(x)$ is independent of x; and
(2) $\omega(x)$ is a perfect invariant set which is either nowhere dense or the whole circle \mathbb{S}^{1}.

Proof. (1) Let $x, y \in \mathbb{S}^{1}$. Let $x_{0} \in \omega(x)$. By definition, there is a sequence $n_{1}<n_{2}<\ldots$ such that $f^{n_{i}}(x) \rightarrow x_{0}$. Take $m_{0}=0$. We define an increasing squence $\left\{m_{i}\right\}$ inductively as follows. Suppose m_{i-1} is taken. We apply the the above lemma with $I=\left[f^{n_{i}}(x), f^{n_{i+1}}(x)\right]$ and $z=f^{m_{i-1}}(y)$ to get $k_{i}>0$ such that $f^{k_{i}}\left(f^{m_{i-1}}(y)\right)=f^{k_{i}}(z) \in$ $\left[f^{n_{i}}(x), f^{n_{i+1}}(x)\right]$. Then we let $m_{i}=m_{i-1}+k_{i}$. Clearly $f^{m_{i}}(y) \rightarrow x_{0}$, and therefore $x_{0} \in \omega(y)$. Thus, $\omega(x) \subset \omega(y)$. Interchanging x and y, gives $\omega(y) \subset \omega(x)$.
(2) Let $E=\omega(x)$ which we have seen is independent of x. Since $\omega(x)$ is f-invariant, we only need to show that E is perfect. Take any $z \in E$. Since $E=\omega(x)=\omega(z)$, we have $z \in \omega(z)$. Then there is a sequence $n_{1}<n_{2}<\ldots$ such that $f^{n_{i}}(z) \rightarrow z$. Since $f(E)=E, f^{n_{i}}(z) \in E$. Also, since f has no periodic points, $f^{n_{i}}(x) \neq f^{n_{i+1}}(z)$. So z is a limit point of E, and E is perfect.

Since each orbit has the same ω-limit set E, it follows that E is the unique minimal set of f. Note that the boundary of E is a closed subset of E which is also invariant. The boundary of E is either equal to E itself, or an empty set, which means that either E is nowhere dense, or $E=\mathbb{S}^{1}$.

Corollary 4.8. Let $R_{\alpha}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a circle rotation with an irrational angle. Then every orbit is dense in $E=\mathbb{S}^{1}$

Proof. Observe that if $x_{0} \in \omega(x)$, then for any $a \neq 0$, $x_{0}+a \in \omega(x+a)=\omega(x)$ by the fact that the map is a rotation, and by part (1) of the proposition. Hence we must have $\omega(x)=\mathbb{S}^{1}$, and therefore $O(x)$ is dense in \mathbb{S}^{1}.

Note that in the case $\omega(x) \neq \mathbb{S}^{1}$, the complement of $\omega(x)$ is a open set. Hence it consists of infinitely many pairwise disjoint subintervals $\left\{I_{j}\right\}$, and f maps each interval to another. For any $j, f^{n}\left(I_{j}\right) \neq f^{m}\left(I_{j}\right)$ whenever $n \neq m$, since if otherwise there will be a periodic interval I_{j} and the rotation number will become rational. It follow that the intervals are wandering sets, which is called wandering intervals. In this case, $\Omega(f)=\omega(x)$ for any $x \in \mathbb{S}^{1}$.

A homeomorphism is topologically transitive if it has a dense orbit.
It is clear that if $\omega(x)=\mathbb{S}^{1}$ for some $x \in \mathbb{S}^{1}$, then f is topologically transitive.

Theorem 4.9 (Poitcaré Classification). Let f : $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be an orientation preserving homeomorphism with irrational rotation number τ.
(1) If f is topologically transitive, then f is topologically conjugate to the rotation R_{τ}.
(2) If f is not topologically transitive, then R_{τ} is a factor of f, and the factor map $h: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ can be chosen to be monotone.

These two cases corresponding to the cases stated in Proposition 4.7. In the second case, h is constant on each wandering interval.
The next result shows that $\tau(f)$ is a topological conjugacy invariant.

Proposition 4.10. Suppose f and h are order preserving circle homeomorphisms and $g=h f h^{-1}$. Then, $\tau(f)=\tau(g)$.

Proof. Let F be a monotone lift of f such that F-id is periodic of period 1, and let H be a monotone lift of h such that $H-$ id is periodic of period 1 . Then, one can check that $\pi H^{-1}=h^{-1} \pi$, and $H^{-1}-\mathrm{id}$ is periodic of period 1. Further $G:=H F H^{-1}$ is a lift of g such that G - id is periodic of period 1 . Now,

$$
\lim _{n \rightarrow \infty} \frac{G^{n}(0)}{n}=\lim _{n \rightarrow \infty} \frac{H F^{n} H^{-1}(0)}{n} .
$$

Since H - id has period 1, we have that there is a real number $M>0$ such that $|H(x)-x| \leq$ M for all $x \in \mathbb{R}$. Thus, $\left|G^{n}(0)-F^{n} H^{-1}(0)\right|=$
$\left|H F^{n} H^{-1}(0)-F^{n} H^{-1}(0)\right| \leq M$ independent of n, and

$$
\tau(G)=\lim _{n \rightarrow \infty} \frac{G^{n}(0)}{n}=\lim _{n \rightarrow \infty} \frac{F^{n} H^{-1}(0)}{n}=\tau(F)
$$

This gives that $\tau(f)=\tau(g)$.
4.3. Continuity of $\tau(f)$ and Cantor phenomena. We shall next show that the rotation number $\tau(f)$ depends continuously on f in C^{0} topology.

We consider the set Homeo $\left(\mathbb{S}^{1}\right)$ of orientation preserving homeomorphisms of the circle \mathbb{S}^{1}. Let d denote the metric on \mathbb{S}^{1}. Define the C^{0} distance d_{0} between two continuous maps $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ and $g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ to be

$$
d_{0}(f, g)=\sup _{x \in \mathbb{S}^{1}} d(f(x), g(x))
$$

and then define

$$
d(f, g)=\max \left\{d_{0}(f, g), d_{0}\left(f^{-1}, g^{-1}\right)\right\} .
$$

It is easy to see that this is a metric on $\operatorname{Homeo}\left(\mathbb{S}^{1}\right)$. The topology induced by d is called the C^{0} topology.

Proposition 4.11. The rotation number map $f \rightarrow$ $\tau(f)$ is a continuous map from Homeo($\left.\mathbb{S}^{1}\right)$ to \mathbb{S}^{1}.

Proof. Let $1>\epsilon>0$. We show that if $f, g \in$ Homeo $\left(\mathbb{S}^{1}\right)$ are close then $|\tau(f)-\tau(g)|<\epsilon$.
Let $N>0$ be such that $\frac{1}{N}<\epsilon$. If f is close enough to g, there will be lifts F of f and G of g such that $\left|F^{N}(x)-G^{N}(x)\right|<\epsilon$ for all $x \in[0,1]$. Hence,
$\left|F^{N}(x)-G^{N}(x)\right|=\left|\left(F^{N}(x)-x\right)-\left(G^{N}(x)-x\right)\right|<\epsilon$ for all $x \in \mathbb{R}$ since $F^{N}(x)-x$ and $G^{N}(x)-x$ are periodic of period 1.
By the claim below we have that for any $k \in \mathbb{N}$, $F^{k N}(0)<G^{k N}(0)+k-1+\epsilon$. Dividing the inequality by $k N$, and letting $k \rightarrow \infty$, we get $\tau(F) \leq \tau(G)+$ $\frac{1}{N}<\tau(G)+\epsilon$. Interchange F and G to get $\tau(G) \leq$ $\tau(F)+\epsilon$, proving the proposition.

Claim 4.12. for any $k \in \mathbb{N}, F^{k N}(0)<G^{k N}(0)+$ $k-1+\epsilon$.

Proof. Using the facts that F^{N} and G^{N} are monotonic, $F^{N}(0)<G^{N}(0)+\epsilon$, and $G^{N}(x)-x$ is periodic of period 1, we have

$$
\begin{aligned}
F^{2 N}(0) & =F^{N}\left(F^{N}(0)\right)<F^{N}\left(G^{N}(0)+\epsilon\right)<G^{N}\left(G^{N}(0)+\epsilon\right)+\epsilon \\
& <G^{N}\left(G^{N}(0)+1\right)+\epsilon=G^{2 N}(0)+1+\epsilon
\end{aligned}
$$

This proves the claim for $k=2$. For $k=1$ it is clear. Assume, inductively, that it is true for k. Then,

$$
\begin{aligned}
& F^{(k+1) N}(0)=F^{N}\left(F^{k N}(0)\right)<F^{N}\left(G^{k N}(0)+k-1+\epsilon\right) \\
= & F^{N}\left(G^{k N}(0)+\epsilon\right)+k-1<G^{N}\left(G^{k N}(0)+\epsilon\right)+\epsilon+k-1 \\
< & G^{N}\left(G^{k N}(0)+1\right)+\epsilon+k-1<G^{(k+1) N}(0)+k+\epsilon
\end{aligned}
$$

which is the claim for $k+1$. So, by induction, the claim is proved.
Define " $<$ " on \mathbb{S}^{1} by $[x]<[y]$ if $y-x \in(0,1 / 2)$ $(\bmod 1)$ and define a partial ordering " \prec " on the
collection of orientation-preserving circle homeomorphisms by $f_{0} \prec f_{1}$ if $f_{0}(x)<f_{1}(x)$ for all $x \in \mathbb{S}^{1}$.
Notice that neither of these orderings is transitive. Indeed, $[0]<[1 / 3]<[2 / 3]<[0]$ and correspondingly $R_{0} \prec R_{1 / 3} \prec R_{2 / 3} \prec R_{0}$, where R_{α} is the rotation.

It is easy to see that if $f_{1} \prec f_{2}$, then $\tau\left(f_{1}\right) \leq \tau\left(f_{2}\right)$.
Proposition 4.13. Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be an orientationpreserving homeomorphism with rational rotation number $\tau(f)$.
(i) If $\tau(f) \notin \mathbb{Q}$, then $f \prec \bar{f}_{1}$ implies $\tau(f)<$ $\tau\left(\bar{f}_{1}\right)$.
(ii) If $\tau(f)=p / q \in \mathbb{Q}$ and f has some nonperiodic points, then all sufficiently nearby perturbations \bar{f} with $\bar{f} \prec f$ or $f \prec \bar{f}$ (or both) have the same rotation number p / q.
(iii) If $\tau(f) \in \mathbb{Q}$ and all points of a map f are periodic, then the rotation number is strictly increasing at f.
Definition 4.2. A monotone continuous function $\phi:[0,1] \rightarrow \mathbb{R}\left(\right.$ or $\left.\phi:[0,1] \rightarrow \mathbb{S}^{1}\right)$ is called a devil's staircase if there exists a family $\left\{I_{\alpha}\right\}_{\alpha \in A}$ of disjoint closed subintervals of [0,1] of nonzero length with dense union such that ϕ takes distinct constant values on these subintervals.

Based on Proposition 4.13 we have the following.
Proposition 4.14. Suppose that $\left(f_{t}\right)_{t \in[0,1]}$ is a monotone continuous family of orientation-preserving
circle homeomorphisms, each of which has some nonperiodic points. Then $\tau: t \rightarrow \tau\left(f_{t}\right)$ is a devil's staircase.
4.4. Circle diffeomorphisms. A partition on the interval $[0,1]$ is given by $0=x_{0}<x_{1}<x_{2}<\ldots<$ $x_{n-1}<x_{n}=1$. A partition on the unit circle \mathbb{S}^{1} can be regarded as a partition on the interval $[0,1]$, wirh 0 and 1 being identified.
For a function $\phi:[0,1] \rightarrow \mathbb{R}$, the total variation is given by

$$
\operatorname{Var}(\phi)=\sup \sum_{k}=1^{n}\left|\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)\right|,
$$

where supremum is taken over all partitions.
Theorem 4.15 (Denjoy). Let f be an orientation preserving C^{1} diffeomorphism of the circle with irretional rotation number $\tau=\tau(f)$. If f^{\prime} has bounded variation, then f is topologically conjugate to the rotation R_{τ}.

Theorem 4.16 (Denjoy Example). For any irretional rotation number $\tau \in(0,1)$, there exists a nontransitive C^{1} orientation preserving diffeomorphism $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$.

