4. CIRCLE HOMEOMORPHISMS

4.1. Rotation numbers. Let f : S' — S! be
an orientation preserving homeomorphism. Let 7 :
R — S! be the map 7(t) = exp(2mit).

Lemma 4.1. There is a continuous map F' : R —
R such that

(i) mF = fm;

(ii) F' is monotone increasing;

(ii) F' —id is periodic with period 1.
Moreover, any two such maps differ by an integer
translation.

Proof. Define F'(0) to be any number in the set 7! f(7(0)).
Let U and V' be neighborhoods of 0 and F(0) re-
spectively that have length less than 1. Note that
mly V. — @w(V) is a homeomorphism. For any
t € U, define F(t) = (w|y)~' o f(m(t)) whenever it
is defined. Then F' is extended to a neighborhoods
U’ C U. Using the same way we can extend the
definition of F' to R. It is easy to check (i)-(iii).
Suppose G : R — R is also a such map. Then by
(i) we have that for any t € R, 7(G(t)) = f(n(t)) =
m(F(t)). That is, there exists an integer n = ny
such that G(t) = F(t) + ns. Since both F' and G
are continuous, and n; must be a integer, it must be
independent of ¢. [

Note that (i) implies that F is a homeomorphism.
We call such an F a lift of f.
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Proposition 4.2. Given F' as above, the limit

7(F) = lim Fz)

n—o0 mn

exists for each x € R, and and 1s independent of
x.

Proof. (1) Independence of z:

Since F(x+1) = F(x)+ 1 for all z, it follows that
F'(x+1) = F"(x)+1 for all z and n. Now, suppose
that t <y <x+1<y+ 1. Since I is monotone
increasing, using F"(z + 1) = F"(x) + 1, we have

F"(x) < F"(y) < Frx+1) < F (y+1).

n n n o n

Fn
This implies that if the limit lim @)

n—oo n
F’ﬂ
so does lim )
n—oo mn

(2) Existence if f has a periodic point:

Let x be a periodic point of period m, and let y € R
be such that 7(y) = x. Then there is an integer p
such that F™(y) =y + p. Then, F""(y) = y + np.
S0

exists, then

. and they are equal.

lim = lim
n—oo nm n—oo nmn m
Now, for any integer k, let £k = rm+q with 0 < ¢ <
m. Then,

FHy) _ F*y) — F™(y) + F™(y)
k k

y+np _p
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and
|Fk(y) —F””(y)‘ M
k ~ k
where M = maxo<,<m ‘Fq(y) — y‘ Thus,
lim F() = lim (@) = lim Fy) .
k—oo  k k—o0 r—oo M m

Thus, the limit exists if f has a periodic point.

(3) Existence if f has no periodic points:

This implies that F(x) — x is not an integer for
any m > 0 and any x € R. Let p,, be an integer
such that

(4.1) P < F™(0) < p + 1

Therefore, for all x € R, p,, < F"(x) —x < pp +1,
since if otherwise, then by the Intermediate Value
Theorem, we have F"(y) —y = pp, or F™(y) —y =
pm + 1 for some gy, which is a contradiction. Hence,
for 1 <i<mn, pn < F™0) — F=Um(0) < p,, + 1.
Adding together these inequalities for ¢+ = 1,...,n,
the middle terms telescope, and we get

(4.2) npm, < F"(0) < n(pp, + 1)

Dividing (4.1) by m and (4.1) by mn, we get that
Fm (0 F™(0 m Pm + 1
0) 40 p7p+).
mn m m’m
S0
£mo) - Fm(0)

mn m

are both in the interval (

1
<o
m
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Interchanging the roles of m and n, we get

‘F”m(O) B F”(O)‘ o1

9

mn n n
and, hence,
‘F (0) F (O)‘ < i+l
m n m n
F™(0
Hence, the sequence { ( )} is a Cauchy sequence,
n
and thus has a limit. ]

Lemma 4.3. Let F' and G are both lift of f, then
there exists p € Z such that 7(G) = 7(F) + p.

Proof. Since F' and G are both lift of f, then there
exists p € Z such that G(z) = F(x) + p for any
r € R. So we have G*(z) = G(G(x)) = F(F(z) +
p)+p = F(z)+ 2p, and for each n > 0, G"(z) =
F"(z) + np. Hence,

The above lemma says that 7(f) is independent of
the choice of the lift F'.

Definition 4.1. The number 7(f) = n7(F) is
called the rotation number of f.

We say that 7(f) is rational if for any lift F of f,
7(F') is rational.
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4.2. Dynamical properties.

Proposition 4.4. Let f be an orientation pre-
serving homeomorphism of S'. Then, 7(f) is ra-
tional if and only if f has a periodic point.

Proof. We have already proved that if f has a peri-
odic point, and F' is any lift of f as above, then 7(F')
is rational. So we must prove the converse.

Let F' be a lift of f.

Note that for any integers m and k, we have 7( F"™+
k) = m7(F)+ k where (F™ 4+ k)(z) is defined to be
F™(x) + k for all x.

Assume that 7(F) = 2 for some integers p and q #

0. Then, g7(F) —p = %, so that map G := F? —p
has rotation number 0.

If G(z)—x = 0 for some x € R, then G has a fixed
point z. Hence f has a periodic point (of period gq).

Now we suppose that GG has no fixed point. Then
either G(x) — x > 0 for all x or G(x) — x < 0 for
all z. By translating by the lift F' by an integer, we
may assume that G(z) — x > 0. Consider {G"(0)}
for n > 0. By Claim 4.5 below {G"(0)} is bounded
above by 1. Clearly the sequence is monotone. So
{G"(0)} must converge to some y. It follows that

- : n T n T n+1 .

Gly) = G(lim G"(0)) = lim G(G"(0)) = Tim G"7(0) =y,
contradicting the supposition that G has no fixed
point. [
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Claim 4.5. If G(x) —x > 0 for all x, then the
sequence {G"(0)} is bounded above by 1.

Proof. Suppose there exists a number k& such that

G*(0) > 1. Then
G?*(0) = GM(G*(0)) > G*(1) = G*(0+1) = G*(0)+1 > 2.
Similarly, G™(0) > n for all n > 0. Hence

G (0) _ 1
Ii >
oo nk — &
which would contradict 7(G) = 0. O

Suppose the rotation number of f is rational, say
T(f) = P Then f? has rotation number 0, and
q

therefore has fixed points. In this case, P(f) =
Q(f) = Fix(f%), and for any z € S*, a(z) Uw(z) C
Fix(f?), where Fix(f) denote the set of fixed points
of f.

Now we consider the case that the rotation number
of f is irrational.

Lemma 4.6. Suppose the rotation number of f
is irrational. For any v € St and m,n € Z with
m #n, let I = [f"(x), f"(x)]. Then any forward
orbit intersects I, i.e., for each z € S', there is a
k > 0 such that f*(z) e I.

Proof. The intervals f=*m=n] and f-k-Dim-ny
have one boundary point in common. So either { f=*m=m)1}
converge monotonically to a point on St or some fi-
nite union of them covers S!. Since the former case
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implies that f™~" has a fixed point, contradiciting
the fact that 7(f) is irrational, the latter must occur
and the lemma is proved. ]

Proposition 4.7. Suppose the rotation number
of f 1s irrational. Then

(1) w(z) is independent of x; and
(2) w(x) is a perfect invariant set which is either
nowhere dense or the whole circle S*.

Proof. (1) Let z,y € St Let zg € w(z). By def-
inition, there is a sequence n; < ny < ... such
that f"(x) — x9. Take my = 0. We define an
increasing squence {m;} inductively as follows. Sup-
pose m;_1 is taken. We apply the the above lemma
with I = [f"i(x), f"+(x)] and z = f™i-1(y) to
get k; > 0 such that fri(fm-1(y)) = fri(z) €
[f"i(x), fri+t(x)]. Then we let m; = m;_1 + k;.
Clearly f™i(y) — xg, and therefore xy € w(y).
Thus, w(x) C w(y). Interchanging x and y, gives
w(y) C w(x).

(2) Let E = w(x) which we have seen is indepen-
dent of x. Since w(x) is f-invariant, we only need
to show that E is perfect. Take any z € E. Since
FE = w(r) = w(z), we have z € w(z). Then there
is a sequence ny < ng < ... such that f"(z) — z.
Since f(E) = E, f"(z) € E. Also, since f has no
periodic points, f"i(x) # f"+1(z). So z is a limit
point of E, and F is perfect.
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Since each orbit has the same w-limit set £/, it fol-
lows that E is the unique minimal set of f. Note that
the boundary of E is a closed subset of F/ which is
also invariant. The boundary of E' is either equal to
E itself, or an empty set, which means that either E
is nowhere dense, or E = S'. [

Corollary 4.8. Let R, : S' — S! be a circle ro-
tation with an rrational angle. Then every orbit
is dense in £ = S!

Proof. Observe that if xy € w(x), then for any a # 0,
ro+a € w(x+a) = w(x) by the fact that the map is
a rotation, and by part (1) of the proposition. Hence

we must have w(z) = S!, and therefore O(z) is dense
in St. [

Note that in the case w(x) # S!, the complement
of w(x) is a open set. Hence it consists of infinitely
many pairwise disjoint subintervals {;}, and f maps
each interval to another. For any j, f"(1;) # f"(I;)
whenever n # m, since if otherwise there will be
a periodic interval I; and the rotation number will
become rational. It follow that the intervals are wan-
dering sets, which is called wandering intervals. In
this case, Q(f) = w(x) for any x € S!.

A homeomorphism is topologically transitive if it
has a dense orbit.

It is clear that if w(z) = S! for some x € S, then
f is topologically transitive.
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Theorem 4.9 (Poitcaré Classification). Let f :
S! — S! be an orientation preserving homeomor-
phism with irrational rotation number T.
(1) If f is topologically transitive, then f is topo-
logically conjugate to the rotation R..
(2) If f is not topologically transitive, then R, is
a factor of f, and the factor map h : S — S*
can be chosen to be monotone.

These two cases corresponding to the cases stated
in Proposition 4.7. In the second case, h is constant
on each wandering interval.

The next result shows that 7(f) is a topological
conjugacy invariant.

Proposition 4.10. Suppose f and h are order
preserving circle homeomorphisms and g = hfh™!.

Then, 7(f) = 7(g).

Proof. Let F' be a monotone lift of f such that F'—id
is periodic of period 1, and let H be a monotone lift
of h such that H — id is periodic of period 1. Then,
one can check that 7H ' = h~l7r, and H~ ' —id is

periodic of period 1. Further G := HFH ™! is a lift
of g such that G — id is periodic of period 1. Now,

n HFnH—l
lim G"(0) = lim (O)

n—oo N n—00 n

Since H — id has period 1, we have that there
is a real number M > 0 such that |H(z) — x|
M for all x € R. Thus, |G"(0) — F"H1(0)|

A
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|[HF"H~(0) — F"H*(0)| < M independent of n,
and

n FnH—l
(6) = tim Y O p)
n—oo M n—00 n
This gives that 7(f) = 7(g). O]

4.3. Continuity of 7(f) and Cantor phenom-
ena. We shall next show that the rotation number
7(f) depends continuously on f in CY topology.

We consider the set Homeo(S?) of orientation pre-
serving homeomorphisms of the circle St. Let d de-
note the metric on S'. Define the C? distance d
between two continuous maps f : S! — S and
g:S' = S! to be

do(f,9) = sup d(f(x), 9(x)),
HAS

and then define
d(f) g) = nmax {dO(f7 g)a dO(f_lag_l)}'

It is easy to see that this is a metric on Homeo(S?).
The topology induced by d is called the C° topology.

Proposition 4.11. The rotation number map [ —
7(f) is a continuous map from Homeo(S!) to S*.

Proof. Let 1 > ¢ > 0. We show that if f,g €
Homeo(S!) are close then |7(f) — 7(g)| < e.

1
Let N > 0 be such that N < €. If f is close

enough to g, there will be lifts F' of f and G of g such
that | (z) — G (2)] < € for all z € [0, 1]. Hence,
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IFY ()= GV (@) = |(FY(2)—2)— (G~ (2)—2)| < e
for all x € R since F'(x) — x and GV (x) — x are
periodic of period 1.

By the claim below we have that for any k£ € N,
F*N(0) < G"(0)+k—1+c¢. Dividing the inequality
by kN, and letting k — oo, we get 7(F) < 7(G) +

1
N < 7(G) + €. Interchange F and G to get 7(G) <

7(F) + €, proving the proposition. [
Claim 4.12. for any k € N, FF¥(0) < G (0) +
k—1+e.

Proof. Using the facts that 'Y and G are mono-
tonic, FV(0) < GN(0)+e¢, and G (x) — x is periodic
of period 1, we have

F2N0) =FN(FY(0)) < FYGYN(0) +€) < GN(GN(0) +€) + €
<GNGN(0)+ 1) +e=G*(0)+ 1 +e

This proves the claim for £ = 2. For kK = 1 it is clear.
Assume, inductively, that it is true for k. Then,

FRON )y = FN(FEN(0)) < FN(GFN(0) + k — 1+ €)
NGO )+ )+ k-1 <GYGC™N0)+€)+e+k—1
<GNG"™O)+ 1) +e+k—1<GFINO)+ &k +e

which is the claim for k£ 4+ 1. So, by induction, the
claim is proved. [

Define “<” on St by [z] < [y] if y — 2 € (0,1/2)
(mod 1) and define a partial ordering “<” on the
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collection of orientation-preserving circle homeomor-
phisms by fo < f1 if fo(x) < fi(z) for all z € St
Notice that neither of these orderings is transitive.
Indeed, [0] < [1/3] < [2/3] < [0] and correspond-
ingly Ry < Ry;3 < Ry3 < Ry, where R, is the
rotation.
It is easy to see that if f; < fo, then 7(f1) < 7(f2).

Proposition 4.13. Let f: S — S! be an orientation-
preserving homeomorphism with rational rotation
number 7(f).

6 I (/) ¢ Q, then f < fy implies 7(f) <
T(f1).

(i) If 7(f) = p/q € Q and f has some non-
pertodic points, then all sufficiently nearby
perturbations f with f < f or f < f (or
both) have the same rotation number p/q.

(iii) If 7(f) € Q and all points of a map f are
periodic, then the rotation number is strictly
increasing at f.

Definition 4.2. A monotone continuous func-
tion ¢: [0,1] — R (or ¢: [0,1] — S!) is called
a devil’s staircase if there ewists a family {I,}aca
of disjoint closed subintervals of [0,1] of nonzero
length with dense union such that ¢ takes distinct
constant values on these subintervals.

Based on Proposition 4.13 we have the following.

Proposition 4.14. Suppose that ( f;)ic(0.1) 7 a mono-
tone continuous family of orientation-preserving
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circle homeomorphisms, each of which has some
nonperiodic points. Then T :t — 7(f;) is a devil’s
staircase.

4.4. Circle diffeomorphisms. A partition on the
interval [0,1] is given by 0 = g < 11 < 29 < ... <
T,_1 < T, = 1. A partition on the unit circle S! can
be regarded as a partition on the interval [0, 1], wirh
0 and 1 being identified.

For a function ¢ : [0, 1] — R, the total variation is
given by

Var(¢) = sup Z = 1"|p(zr) — P(z1—1)],
K

where supremum is taken over all partitions.

Theorem 4.15 (Denjoy). Let f be an orientation
preserving C! diffeomorphism of the circle with
irretional rotation number T = T(f). If f' has
bounded vartation, then f is topologically conju-
gate to the rotation R,.

Theorem 4.16 (Denjoy Example). For any ir-
retional rotation number T € (0,1), there exists
a nontransitive C! orientation preserving diffeo-
morphism f :S' — S!.



