
4. Circle Homeomorphisms

4.1. Rotation numbers. Let f : S1 → S1 be
an orientation preserving homeomorphism. Let π :
R → S1 be the map π(t) = exp(2πit).

Lemma 4.1. There is a continuous map F : R →
R such that

(i) πF = fπ;
(ii) F is monotone increasing;
(ii) F − id is periodic with period 1.

Moreover, any two such maps differ by an integer
translation.

Proof. Define F (0) to be any number in the set π−1f (π(0)).
Let U and V be neighborhoods of 0 and F (0) re-
spectively that have length less than 1. Note that
π|V : V → π(V ) is a homeomorphism. For any
t ∈ U , define F (t) = (π|V )−1 ◦ f (π(t)) whenever it
is defined. Then F is extended to a neighborhoods
U ′ ⊆ U . Using the same way we can extend the
definition of F to R. It is easy to check (i)-(iii).
Suppose G : R → R is also a such map. Then by

(i) we have that for any t ∈ R, π(G(t)) = f (π(t)) =
π(F (t)). That is, there exists an integer n = nt

such that G(t) = F (t) + nt. Since both F and G
are continuous, and nt must be a integer, it must be
independent of t. �
Note that (i) implies that F is a homeomorphism.

We call such an F a lift of f.
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Proposition 4.2. Given F as above, the limit

τ (F ) := lim
n→∞

F n(x)

n

exists for each x ∈ R, and and is independent of
x.

Proof. (1) Independence of x:
Since F (x+1) = F (x)+ 1 for all x, it follows that

F n(x+1) = F n(x)+1 for all x and n. Now, suppose
that x ≤ y ≤ x + 1 ≤ y + 1. Since F n is monotone
increasing, using F n(x + 1) = F n(x) + 1, we have

F n(x)

n
≤ F n(y)

n
≤ F n(x + 1)

n
≤ F n(y + 1)

n
.

This implies that if the limit lim
n→∞

F n(x)

n
exists, then

so does lim
n→∞

F n(y)

n
, and they are equal.

(2) Existence if f has a periodic point:
Let x be a periodic point of periodm, and let y ∈ R

be such that π(y) = x. Then there is an integer p
such that Fm(y) = y + p. Then, F nm(y) = y + np.
So

lim
n→∞

F nm(x)

nm
= lim

n→∞

y + np

nm
=

p

m
Now, for any integer k, let k = rm+q with 0 ≤ q <
m. Then,

F k(y)

k
=

F k(y)− F rm(y) + F rm(y)

k
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and ∣∣∣F k(y)− F rm(y)

k

∣∣∣ ≤ M

k

where M = max0≤q<m

∣∣F q(y)− y
∣∣. Thus,

lim
k→∞

F k(x)

k
= lim

k→∞

F rm(x)

k
= lim

r→∞

F rm(y)

rm
=

p

m
.

Thus, the limit exists if f has a periodic point.
(3) Existence if f has no periodic points:
This implies that Fm(x) − x is not an integer for

any m > 0 and any x ∈ R. Let pm be an integer
such that

(4.1) pm < Fm(0) < pm + 1

Therefore, for all x ∈ R, pm < Fm(x)−x < pm+1,
since if otherwise, then by the Intermediate Value
Theorem, we have Fm(y)− y = pm or Fm(y)− y =
pm + 1 for some y, which is a contradiction. Hence,
for 1 ≤ i ≤ n, pm < F im(0)− F (i−1)m(0) < pm + 1.
Adding together these inequalities for i = 1, . . . , n,
the middle terms telescope, and we get

(4.2) npm < F nm(0) < n(pm + 1)

Dividing (4.1) by m and (4.1) by mn, we get that
F nm(0)

mn
and

Fm(0)

m
are both in the interval

(pm
m

,
pm + 1

m

)
.

So ∣∣∣F nm(0)

mn
− Fm(0)

m

∣∣∣ ≤ 1

m
.
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Interchanging the roles of m and n, we get∣∣∣F nm(0)

mn
− F n(0)

n

∣∣∣ ≤ 1

n
,

and, hence, ∣∣∣Fm(0)

m
− F n(0)

n

∣∣∣ ≤ 1

m
+

1

n
.

Hence, the sequence
{F n(0)

n

}
is a Cauchy sequence,

and thus has a limit. �

Lemma 4.3. Let F and G are both lift of f , then
there exists p ∈ Z such that τ (G) = τ (F ) + p.

Proof. Since F and G are both lift of f , then there
exists p ∈ Z such that G(x) = F (x) + p for any
x ∈ R. So we have G2(x) = G(G(x)) = F (F (x) +
p) + p = F (x) + 2p, and for each n > 0, Gn(x) =
F n(x) + np. Hence,

τ (G) = lim
n→∞

Gn(x)

n
= lim

n→∞

F n(x) + np

n
= τ (F )+p.

�
The above lemma says that τ (f ) is independent of

the choice of the lift F .

Definition 4.1. The number τ (f ) := πτ (F ) is
called the rotation number of f .

We say that τ (f ) is rational if for any lift F of f ,
τ (F ) is rational.
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4.2. Dynamical properties.

Proposition 4.4. Let f be an orientation pre-
serving homeomorphism of S1. Then, τ (f ) is ra-
tional if and only if f has a periodic point.

Proof. We have already proved that if f has a peri-
odic point, and F is any lift of f as above, then τ (F )
is rational. So we must prove the converse.
Let F be a lift of f .
Note that for any integersm and k, we have τ (Fm+

k) = mτ (F ) + k where (Fm+ k)(x) is defined to be
Fm(x) + k for all x.

Assume that τ (F ) =
p

q
for some integers p and q ̸=

0. Then, qτ (F ) − p = 0, so that map G := F q − p
has rotation number 0.
If G(x)−x = 0 for some x ∈ R, then G has a fixed

point x. Hence f has a periodic point (of period q).
Now we suppose that G has no fixed point. Then

either G(x) − x > 0 for all x or G(x) − x < 0 for
all x. By translating by the lift F by an integer, we
may assume that G(x) − x > 0. Consider {Gn(0)}
for n > 0. By Claim 4.5 below {Gn(0)} is bounded
above by 1. Clearly the sequence is monotone. So
{Gn(0)} must converge to some y. It follows that

G(y) = G( lim
n→∞

Gn(0)) = lim
n→∞

G(Gn(0)) = lim
n→∞

Gn+1(0) = y,

contradicting the supposition that G has no fixed
point. �
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Claim 4.5. If G(x) − x > 0 for all x, then the
sequence {Gn(0)} is bounded above by 1.

Proof. Suppose there exists a number k such that
Gk(0) > 1. Then

G2k(0) = Gk(Gk(0)) > Gk(1) = Gk(0+1) = Gk(0)+1 > 2.

Similarly, Gnk(0) > n for all n > 0. Hence

lim
n→∞

Gnk(0)

nk
≥ 1

k
which would contradict τ (G) = 0. �
Suppose the rotation number of f is rational, say

τ (f ) =
p

q
. Then f q has rotation number 0, and

therefore has fixed points. In this case, P (f ) =
Ω(f ) = Fix(f q), and for any x ∈ S1, α(x) ∪ ω(x) ⊂
Fix(f q), where Fix(f ) denote the set of fixed points
of f .
Now we consider the case that the rotation number

of f is irrational.

Lemma 4.6. Suppose the rotation number of f
is irrational. For any x ∈ S1 and m,n ∈ Z with
m ̸= n, let I = [fm(x), fn(x)]. Then any forward
orbit intersects I, i.e., for each z ∈ S1, there is a
k > 0 such that f k(z) ∈ I.

Proof. The intervals f−k(m−n)I and f−(k−1)(m−n)I
have one boundary point in common. So either {f−k(m−n)I}
converge monotonically to a point on S1 or some fi-
nite union of them covers S1. Since the former case
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implies that fm−n has a fixed point, contradiciting
the fact that τ (f ) is irrational, the latter must occur
and the lemma is proved. �

Proposition 4.7. Suppose the rotation number
of f is irrational. Then

(1) ω(x) is independent of x; and
(2) ω(x) is a perfect invariant set which is either

nowhere dense or the whole circle S1.

Proof. (1) Let x, y ∈ S1. Let x0 ∈ ω(x). By def-
inition, there is a sequence n1 < n2 < . . . such
that fni(x) → x0. Take m0 = 0. We define an
increasing squence {mi} inductively as follows. Sup-
pose mi−1 is taken. We apply the the above lemma
with I = [fni(x), fni+1(x)] and z = fmi−1(y) to
get ki > 0 such that f ki(fmi−1(y)) = f ki(z) ∈
[fni(x), fni+1(x)]. Then we let mi = mi−1 + ki.
Clearly fmi(y) → x0, and therefore x0 ∈ ω(y).
Thus, ω(x) ⊂ ω(y). Interchanging x and y, gives
ω(y) ⊂ ω(x).
(2) Let E = ω(x) which we have seen is indepen-

dent of x. Since ω(x) is f -invariant, we only need
to show that E is perfect. Take any z ∈ E. Since
E = ω(x) = ω(z), we have z ∈ ω(z). Then there
is a sequence n1 < n2 < . . . such that fni(z) → z.
Since f (E) = E, fni(z) ∈ E. Also, since f has no
periodic points, fni(x) ̸= fni+1(z). So z is a limit
point of E, and E is perfect.
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Since each orbit has the same ω-limit set E, it fol-
lows that E is the unique minimal set of f . Note that
the boundary of E is a closed subset of E which is
also invariant. The boundary of E is either equal to
E itself, or an empty set, which means that either E
is nowhere dense, or E = S1. �

Corollary 4.8. Let Rα : S1 → S1 be a circle ro-
tation with an irrational angle. Then every orbit
is dense in E = S1

Proof. Observe that if x0 ∈ ω(x), then for any a ̸= 0,
x0+a ∈ ω(x+a) = ω(x) by the fact that the map is
a rotation, and by part (1) of the proposition. Hence
we must have ω(x) = S1, and thereforeO(x) is dense
in S1. �
Note that in the case ω(x) ̸= S1, the complement

of ω(x) is a open set. Hence it consists of infinitely
many pairwise disjoint subintervals {Ij}, and f maps
each interval to another. For any j, fn(Ij) ̸= fm(Ij)
whenever n ̸= m, since if otherwise there will be
a periodic interval Ij and the rotation number will
become rational. It follow that the intervals are wan-
dering sets, which is called wandering intervals. In
this case, Ω(f ) = ω(x) for any x ∈ S1.
A homeomorphism is topologically transitive if it

has a dense orbit.
It is clear that if ω(x) = S1 for some x ∈ S1, then

f is topologically transitive.
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Theorem 4.9 (Poitcaré Classification). Let f :
S1 → S1 be an orientation preserving homeomor-
phism with irrational rotation number τ .

(1) If f is topologically transitive, then f is topo-
logically conjugate to the rotation Rτ .

(2) If f is not topologically transitive, then Rτ is
a factor of f , and the factor map h : S1 → S1
can be chosen to be monotone.

These two cases corresponding to the cases stated
in Proposition 4.7. In the second case, h is constant
on each wandering interval.
The next result shows that τ (f ) is a topological

conjugacy invariant.

Proposition 4.10. Suppose f and h are order
preserving circle homeomorphisms and g = hfh−1.
Then, τ (f ) = τ (g).

Proof. Let F be a monotone lift of f such that F−id
is periodic of period 1, and let H be a monotone lift
of h such that H − id is periodic of period 1. Then,
one can check that πH−1 = h−1π, and H−1 − id is
periodic of period 1. Further G := HFH−1 is a lift
of g such that G− id is periodic of period 1. Now,

lim
n→∞

Gn(0)

n
= lim

n→∞

HF nH−1(0)

n
.

Since H − id has period 1, we have that there
is a real number M > 0 such that |H(x) − x| ≤
M for all x ∈ R. Thus, |Gn(0) − F nH−1(0)| =
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|HF nH−1(0)− F nH−1(0)| ≤ M independent of n,
and

τ (G) = lim
n→∞

Gn(0)

n
= lim

n→∞

F nH−1(0)

n
= τ (F ).

This gives that τ (f ) = τ (g). �
4.3. Continuity of τ (f ) and Cantor phenom-
ena. We shall next show that the rotation number
τ (f ) depends continuously on f in C0 topology.
We consider the set Homeo(S1) of orientation pre-

serving homeomorphisms of the circle S1. Let d de-
note the metric on S1. Define the C0 distance d0
between two continuous maps f : S1 → S1 and
g : S1 → S1 to be

d0(f, g) = sup
x∈S1

d(f (x), g(x)),

and then define

d(f, g) = max
{
d0(f, g), d0(f

−1, g−1)
}
.

It is easy to see that this is a metric on Homeo(S1).
The topology induced by d is called the C0 topology.

Proposition 4.11. The rotation number map f →
τ (f ) is a continuous map from Homeo(S1) to S1.

Proof. Let 1 > ϵ > 0. We show that if f, g ∈
Homeo(S1) are close then |τ (f )− τ (g)| < ϵ.

Let N > 0 be such that
1

N
< ϵ. If f is close

enough to g, there will be lifts F of f andG of g such
that |FN(x)−GN(x)| < ϵ for all x ∈ [0, 1]. Hence,
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|FN(x)−GN(x)| = |(FN(x)−x)−(GN(x)−x)| < ϵ
for all x ∈ R since FN(x) − x and GN(x) − x are
periodic of period 1.
By the claim below we have that for any k ∈ N,

F kN(0) < GkN(0)+k−1+ϵ. Dividing the inequality
by kN , and letting k → ∞, we get τ (F ) ≤ τ (G) +
1

N
< τ (G)+ ϵ. Interchange F and G to get τ (G) ≤

τ (F ) + ϵ, proving the proposition. �

Claim 4.12. for any k ∈ N, F kN(0) < GkN(0) +
k − 1 + ϵ.

Proof. Using the facts that FN and GN are mono-
tonic, FN(0) < GN(0)+ϵ, andGN(x)−x is periodic
of period 1, we have

F 2N(0) =FN(FN(0)) < FN(GN(0) + ϵ) < GN(GN(0) + ϵ) + ϵ

<GN(GN(0) + 1) + ϵ = G2N(0) + 1 + ϵ.

This proves the claim for k = 2. For k = 1 it is clear.
Assume, inductively, that it is true for k. Then,

F (k+1)N(0) = FN(F kN(0)) < FN(GkN(0) + k − 1 + ϵ)

=FN(GkN(0) + ϵ) + k − 1 < GN(GkN(0) + ϵ) + ϵ + k − 1

<GN(GkN(0) + 1) + ϵ + k − 1 < G(k+1)N(0) + k + ϵ

which is the claim for k + 1. So, by induction, the
claim is proved. �
Define “<” on S1 by [x] < [y] if y − x ∈ (0, 1/2)

(mod 1) and define a partial ordering “≺” on the



4-12 January 27, 2018

collection of orientation-preserving circle homeomor-
phisms by f0 ≺ f1 if f0(x) < f1(x) for all x ∈ S1.
Notice that neither of these orderings is transitive.

Indeed, [0] < [1/3] < [2/3] < [0] and correspond-
ingly R0 ≺ R1/3 ≺ R2/3 ≺ R0, where Rα is the
rotation.
It is easy to see that if f1 ≺ f2, then τ (f1) ≤ τ (f2).

Proposition 4.13. Let f : S1 → S1 be an orientation-
preserving homeomorphism with rational rotation
number τ (f ).

(i) If τ (f ) /∈ Q, then f ≺ f̄1 implies τ (f ) <
τ (f̄1).

(ii) If τ (f ) = p/q ∈ Q and f has some non-
periodic points, then all sufficiently nearby
perturbations f̄ with f̄ ≺ f or f ≺ f̄ (or
both) have the same rotation number p/q.

(iii) If τ (f ) ∈ Q and all points of a map f are
periodic, then the rotation number is strictly
increasing at f .

Definition 4.2. A monotone continuous func-
tion ϕ : [0, 1] → R (or ϕ : [0, 1] → S1) is called
a devil’s staircase if there exists a family {Iα}α∈A
of disjoint closed subintervals of [0,1] of nonzero
length with dense union such that ϕ takes distinct
constant values on these subintervals.

Based on Proposition 4.13 we have the following.

Proposition 4.14. Suppose that (ft)t∈[0,1] is a mono-
tone continuous family of orientation-preserving
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circle homeomorphisms, each of which has some
nonperiodic points. Then τ : t → τ (ft) is a devil’s
staircase.

4.4. Circle diffeomorphisms. A partition on the
interval [0, 1] is given by 0 = x0 < x1 < x2 < . . . <
xn−1 < xn = 1. A partition on the unit circle S1 can
be regarded as a partition on the interval [0, 1], wirh
0 and 1 being identified.
For a function ϕ : [0, 1] → R, the total variation is

given by

Var(ϕ) = sup
∑
k

= 1n|ϕ(xk)− ϕ(xk−1)|,

where supremum is taken over all partitions.

Theorem 4.15 (Denjoy). Let f be an orientation
preserving C1 diffeomorphism of the circle with
irretional rotation number τ = τ (f ). If f ′ has
bounded variation, then f is topologically conju-
gate to the rotation Rτ .

Theorem 4.16 (Denjoy Example). For any ir-
retional rotation number τ ∈ (0, 1), there exists
a nontransitive C1 orientation preserving diffeo-
morphism f : S1 → S1.


