4. CIRCLE HOMEOMORPHISMS

4.1. Rotation numbers. Let $f : \mathbb{S}^1 \to \mathbb{S}^1$ be an orientation preserving homeomorphism. Let $\pi : \mathbb{R} \to \mathbb{S}^1$ be the map $\pi(t) = \exp(2\pi i t)$.

Lemma 4.1. There is a continuous map $F : \mathbb{R} \to \mathbb{R}$ such that

- (i) $\pi F = f\pi;$
- (ii) F is monotone increasing;
- (ii) F id is periodic with period 1.

Moreover, any two such maps differ by an integer translation.

Proof. Define F(0) to be any number in the set $\pi^{-1}f(\pi(0))$. Let U and V be neighborhoods of 0 and F(0) respectively that have length less than 1. Note that $\pi|_V : V \to \pi(V)$ is a homeomorphism. For any $t \in U$, define $F(t) = (\pi|_V)^{-1} \circ f(\pi(t))$ whenever it is defined. Then F is extended to a neighborhoods $U' \subseteq U$. Using the same way we can extend the definition of F to \mathbb{R} . It is easy to check (i)-(iii).

Suppose $G : \mathbb{R} \to \mathbb{R}$ is also a such map. Then by (i) we have that for any $t \in \mathbb{R}$, $\pi(G(t)) = f(\pi(t)) = \pi(F(t))$. That is, there exists an integer $n = n_t$ such that $G(t) = F(t) + n_t$. Since both F and Gare continuous, and n_t must be a integer, it must be independent of t. \Box

Note that (i) implies that F is a homeomorphism. We call such an F a lift of f.

Proposition 4.2. Given F as above, the limit

$$\tau(F) := \lim_{n \to \infty} \frac{F^n(x)}{n}$$

exists for each $x \in \mathbb{R}$, and and is independent of x.

Proof. (1) Independence of x:

Since F(x+1) = F(x) + 1 for all x, it follows that $F^n(x+1) = F^n(x) + 1$ for all x and n. Now, suppose that $x \le y \le x + 1 \le y + 1$. Since F^n is monotone increasing, using $F^n(x+1) = F^n(x) + 1$, we have

$$\frac{F^{n}(x)}{n} \le \frac{F^{n}(y)}{n} \le \frac{F^{n}(x+1)}{n} \le \frac{F^{n}(y+1)}{n}.$$

This implies that if the limit $\lim_{n \to \infty} \frac{F^n(x)}{n}$ exists, then so does $\lim_{n \to \infty} \frac{F^n(y)}{n}$, and they are equal.

(2) Existence if f has a periodic point:

Let x be a periodic point of period m, and let $y \in \mathbb{R}$ be such that $\pi(y) = x$. Then there is an integer p such that $F^m(y) = y + p$. Then, $F^{nm}(y) = y + np$. So

$$\lim_{n \to \infty} \frac{F^{nm}(x)}{nm} = \lim_{n \to \infty} \frac{y + np}{nm} = \frac{p}{m}$$

Now, for any integer k, let k = rm + q with $0 \le q < m$. Then,

$$\frac{F^k(y)}{k} = \frac{F^k(y) - F^{rm}(y) + F^{rm}(y)}{k}$$

and

$$\frac{F^k(y) - F^{rm}(y)}{k} \Big| \le \frac{M}{k}$$

where $M = \max_{0 \le q < m} |F^q(y) - y|$. Thus,

$$\lim_{k \to \infty} \frac{F^k(x)}{k} = \lim_{k \to \infty} \frac{F^{rm}(x)}{k} = \lim_{r \to \infty} \frac{F^{rm}(y)}{rm} = \frac{p}{m}.$$

Thus, the limit exists if f has a periodic point.

(3) Existence if f has no periodic points:

This implies that $F^m(x) - x$ is not an integer for any m > 0 and any $x \in \mathbb{R}$. Let p_m be an integer such that

$$(4.1) p_m < F^m(0) < p_m + 1$$

Therefore, for all $x \in \mathbb{R}$, $p_m < F^m(x) - x < p_m + 1$, since if otherwise, then by the Intermediate Value Theorem, we have $F^m(y) - y = p_m$ or $F^m(y) - y =$ $p_m + 1$ for some y, which is a contradiction. Hence, for $1 \leq i \leq n$, $p_m < F^{im}(0) - F^{(i-1)m}(0) < p_m + 1$. Adding together these inequalities for $i = 1, \ldots, n$, the middle terms telescope, and we get

(4.2)
$$np_m < F^{nm}(0) < n(p_m + 1)$$

Dividing (4.1) by m and (4.1) by mn, we get that $\frac{F^{nm}(0)}{mn} \text{ and } \frac{F^m(0)}{m} \text{ are both in the interval } \left(\frac{p_m}{m}, \frac{p_m+1}{m}\right).$ $\left|\frac{F^{nm}(0)}{mn} - \frac{F^m(0)}{m}\right| \leq \frac{1}{m}.$

January 27, 2018

Interchanging the roles of m and n, we get

$$\left|\frac{F^{nm}(0)}{mn} - \frac{F^n(0)}{n}\right| \le \frac{1}{n},$$

and, hence,

$$\left|\frac{F^{m}(0)}{m} - \frac{F^{n}(0)}{n}\right| \le \frac{1}{m} + \frac{1}{n}.$$

Hence, the sequence $\left\{\frac{F^n(0)}{n}\right\}$ is a Cauchy sequence, and thus has a limit. \Box

Lemma 4.3. Let F and G are both lift of f, then there exists $p \in \mathbb{Z}$ such that $\tau(G) = \tau(F) + p$.

Proof. Since F and G are both lift of f, then there exists $p \in \mathbb{Z}$ such that G(x) = F(x) + p for any $x \in \mathbb{R}$. So we have $G^2(x) = G(G(x)) = F(F(x) + p) + p = F(x) + 2p$, and for each n > 0, $G^n(x) = F^n(x) + np$. Hence,

$$\tau(G) = \lim_{n \to \infty} \frac{G^n(x)}{n} = \lim_{n \to \infty} \frac{F^n(x) + np}{n} = \tau(F) + p.$$

The above lemma says that $\tau(f)$ is independent of the choice of the lift F.

Definition 4.1. The number $\tau(f) := \pi \tau(F)$ is called the rotation number of f.

We say that $\tau(f)$ is *rational* if for any lift F of f, $\tau(F)$ is rational.

4.2. Dynamical properties.

Proposition 4.4. Let f be an orientation preserving homeomorphism of \mathbb{S}^1 . Then, $\tau(f)$ is rational if and only if f has a periodic point.

Proof. We have already proved that if f has a periodic point, and F is any lift of f as above, then $\tau(F)$ is rational. So we must prove the converse.

Let F be a lift of f.

Note that for any integers m and k, we have $\tau(F^m + k) = m\tau(F) + k$ where $(F^m + k)(x)$ is defined to be $F^m(x) + k$ for all x.

Assume that $\tau(F) = \frac{p}{q}$ for some integers p and $q \neq 0$. Then, $q\tau(F) - p = 0$, so that map $G := F^q - p$ has rotation number 0.

If G(x) - x = 0 for some $x \in \mathbb{R}$, then G has a fixed point x. Hence f has a periodic point (of period q).

Now we suppose that G has no fixed point. Then either G(x) - x > 0 for all x or G(x) - x < 0 for all x. By translating by the lift F by an integer, we may assume that G(x) - x > 0. Consider $\{G^n(0)\}$ for n > 0. By Claim 4.5 below $\{G^n(0)\}$ is bounded above by 1. Clearly the sequence is monotone. So $\{G^n(0)\}$ must converge to some y. It follows that

$$G(y) = G(\lim_{n \to \infty} G^n(0)) = \lim_{n \to \infty} G(G^n(0)) = \lim_{n \to \infty} G^{n+1}(0) = y,$$

contradicting the supposition that G has no fixed

point.

 \square

Claim 4.5. If G(x) - x > 0 for all x, then the sequence $\{G^n(0)\}$ is bounded above by 1.

Proof. Suppose there exists a number k such that $G^k(0) > 1$. Then

$$G^{2k}(0) = G^k(G^k(0)) > G^k(1) = G^k(0+1) = G^k(0)+1 > 2.$$

Similarly, $G^{nk}(0) > n$ for all $n > 0$. Hence

$$\lim_{n \to \infty} \frac{G^{nk}(0)}{nk} \ge \frac{1}{k}$$

which would contradict $\tau(G) = 0$.

Suppose the rotation number of f is rational, say $\tau(f) = \frac{p}{q}$. Then f^q has rotation number 0, and therefore has fixed points. In this case, $P(f) = \Omega(f) = \operatorname{Fix}(f^q)$, and for any $x \in \mathbb{S}^1$, $\alpha(x) \cup \omega(x) \subset \operatorname{Fix}(f^q)$, where $\operatorname{Fix}(f)$ denote the set of fixed points of f.

Now we consider the case that the rotation number of f is irrational.

Lemma 4.6. Suppose the rotation number of f is irrational. For any $x \in \mathbb{S}^1$ and $m, n \in \mathbb{Z}$ with $m \neq n$, let $I = [f^m(x), f^n(x)]$. Then any forward orbit intersects I, i.e., for each $z \in \mathbb{S}^1$, there is a k > 0 such that $f^k(z) \in I$.

Proof. The intervals $f^{-k(m-n)}I$ and $f^{-(k-1)(m-n)}I$ have one boundary point in common. So either $\{f^{-k(m-n)}I\}$ converge monotonically to a point on \mathbb{S}^1 or some finite union of them covers \mathbb{S}^1 . Since the former case

implies that f^{m-n} has a fixed point, contradiciting the fact that $\tau(f)$ is irrational, the latter must occur and the lemma is proved.

Proposition 4.7. Suppose the rotation number of f is irrational. Then

- (1) $\omega(x)$ is independent of x; and
- (2) $\omega(x)$ is a perfect invariant set which is either nowhere dense or the whole circle \mathbb{S}^1 .

Proof. (1) Let $x, y \in \mathbb{S}^1$. Let $x_0 \in \omega(x)$. By definition, there is a sequence $n_1 < n_2 < \ldots$ such that $f^{n_i}(x) \to x_0$. Take $m_0 = 0$. We define an increasing squence $\{m_i\}$ inductively as follows. Suppose m_{i-1} is taken. We apply the the above lemma with $I = [f^{n_i}(x), f^{n_{i+1}}(x)]$ and $z = f^{m_{i-1}}(y)$ to get $k_i > 0$ such that $f^{k_i}(f^{m_{i-1}}(y)) = f^{k_i}(z) \in$ $[f^{n_i}(x), f^{n_{i+1}}(x)]$. Then we let $m_i = m_{i-1} + k_i$. Clearly $f^{m_i}(y) \to x_0$, and therefore $x_0 \in \omega(y)$. Thus, $\omega(x) \subset \omega(y)$. Interchanging x and y, gives $\omega(y) \subset \omega(x)$.

(2) Let $E = \omega(x)$ which we have seen is independent of x. Since $\omega(x)$ is f-invariant, we only need to show that E is perfect. Take any $z \in E$. Since $E = \omega(x) = \omega(z)$, we have $z \in \omega(z)$. Then there is a sequence $n_1 < n_2 < \ldots$ such that $f^{n_i}(z) \to z$. Since f(E) = E, $f^{n_i}(z) \in E$. Also, since f has no periodic points, $f^{n_i}(x) \neq f^{n_{i+1}}(z)$. So z is a limit point of E, and E is perfect. Since each orbit has the same ω -limit set E, it follows that E is the unique minimal set of f. Note that the boundary of E is a closed subset of E which is also invariant. The boundary of E is either equal to E itself, or an empty set, which means that either E is nowhere dense, or $E = \mathbb{S}^1$.

Corollary 4.8. Let $R_{\alpha} : \mathbb{S}^1 \to \mathbb{S}^1$ be a circle rotation with an irrational angle. Then every orbit is dense in $E = \mathbb{S}^1$

Proof. Observe that if $x_0 \in \omega(x)$, then for any $a \neq 0$, $x_0 + a \in \omega(x + a) = \omega(x)$ by the fact that the map is a rotation, and by part (1) of the proposition. Hence we must have $\omega(x) = \mathbb{S}^1$, and therefore O(x) is dense in \mathbb{S}^1 .

Note that in the case $\omega(x) \neq \mathbb{S}^1$, the complement of $\omega(x)$ is a open set. Hence it consists of infinitely many pairwise disjoint subintervals $\{I_j\}$, and f maps each interval to another. For any j, $f^n(I_j) \neq f^m(I_j)$ whenever $n \neq m$, since if otherwise there will be a periodic interval I_j and the rotation number will become rational. It follow that the intervals are wandering sets, which is called *wandering intervals*. In this case, $\Omega(f) = \omega(x)$ for any $x \in \mathbb{S}^1$.

A homeomorphism is *topologically transitive* if it has a dense orbit.

It is clear that if $\omega(x) = \mathbb{S}^1$ for some $x \in \mathbb{S}^1$, then f is topologically transitive.

Theorem 4.9 (Poitcaré Classification). Let f: $\mathbb{S}^1 \to \mathbb{S}^1$ be an orientation preserving homeomorphism with irrational rotation number τ .

- (1) If f is topologically transitive, then f is topologically conjugate to the rotation R_{τ} .
- (2) If f is not topologically transitive, then R_{τ} is a factor of f, and the factor map $h : \mathbb{S}^1 \to \mathbb{S}^1$ can be chosen to be monotone.

These two cases corresponding to the cases stated in Proposition 4.7. In the second case, h is constant on each wandering interval.

The next result shows that $\tau(f)$ is a topological conjugacy invariant.

Proposition 4.10. Suppose f and h are order preserving circle homeomorphisms and $g = hfh^{-1}$. Then, $\tau(f) = \tau(g)$.

Proof. Let F be a monotone lift of f such that F-id is periodic of period 1, and let H be a monotone lift of h such that H - id is periodic of period 1. Then, one can check that $\pi H^{-1} = h^{-1}\pi$, and H^{-1} - id is periodic of period 1. Further $G := HFH^{-1}$ is a lift of g such that G - id is periodic of period 1. Now,

$$\lim_{n \to \infty} \frac{G^n(0)}{n} = \lim_{n \to \infty} \frac{HF^n H^{-1}(0)}{n}.$$

Since H - id has period 1, we have that there is a real number M > 0 such that $|H(x) - x| \leq M$ for all $x \in \mathbb{R}$. Thus, $|G^n(0) - F^n H^{-1}(0)| =$ January 27, 2018

 $|HF^nH^{-1}(0) - F^nH^{-1}(0)| \leq M$ independent of n, and

$$\tau(G) = \lim_{n \to \infty} \frac{G^n(0)}{n} = \lim_{n \to \infty} \frac{F^n H^{-1}(0)}{n} = \tau(F).$$

his gives that $\tau(f) = \tau(q).$

This gives that $\tau(f) = \tau(g)$.

4.3. Continuity of $\tau(f)$ and Cantor phenomena. We shall next show that the rotation number $\tau(f)$ depends continuously on f in C^0 topology.

We consider the set $Homeo(\mathbb{S}^1)$ of orientation preserving homeomorphisms of the circle \mathbb{S}^1 . Let d denote the metric on \mathbb{S}^1 . Define the C^0 distance d_0 between two continuous maps $f : \mathbb{S}^1 \to \mathbb{S}^1$ and $q: \mathbb{S}^1 \to \mathbb{S}^1$ to be

$$d_0(f,g) = \sup_{x \in \mathbb{S}^1} d(f(x),g(x)),$$

and then define

$$d(f,g) = \max \left\{ d_0(f,g), d_0(f^{-1},g^{-1}) \right\}.$$

It is easy to see that this is a metric on $Homeo(\mathbb{S}^1)$. The topology induced by d is called the C^0 topology.

Proposition 4.11. The rotation number map $f \rightarrow$ $\tau(f)$ is a continuous map from Homeo(\mathbb{S}^1) to \mathbb{S}^1 .

Proof. Let $1 > \epsilon > 0$. We show that if $f, g \in$ Homeo(\mathbb{S}^1) are close then $|\tau(f) - \tau(g)| < \epsilon$.

Let N > 0 be such that $\frac{1}{N} < \epsilon$. If f is close enough to q, there will be lifts F of f and G of q such that $|F^N(x) - G^N(x)| < \epsilon$ for all $x \in [0, 1]$. Hence,

January 27, 2018

$$\begin{split} |F^N(x)-G^N(x)| &= |(F^N(x)-x)-(G^N(x)-x)| < \epsilon \\ \text{for all } x \in \mathbb{R} \text{ since } F^N(x)-x \text{ and } G^N(x)-x \text{ are } \\ \text{periodic of period 1.} \end{split}$$

By the claim below we have that for any $k \in \mathbb{N}$, $F^{kN}(0) < G^{kN}(0) + k - 1 + \epsilon$. Dividing the inequality by kN, and letting $k \to \infty$, we get $\tau(F) \leq \tau(G) + \frac{1}{N} < \tau(G) + \epsilon$. Interchange F and G to get $\tau(G) \leq \tau(F) + \epsilon$, proving the proposition. \Box

Claim 4.12. for any $k \in \mathbb{N}$, $F^{kN}(0) < G^{kN}(0) + k - 1 + \epsilon$.

Proof. Using the facts that F^N and G^N are monotonic, $F^N(0) < G^N(0) + \epsilon$, and $G^N(x) - x$ is periodic of period 1, we have

$$\begin{split} F^{2N}(0) = & F^N(F^N(0)) < F^N(G^N(0) + \epsilon) < G^N(G^N(0) + \epsilon) + \epsilon \\ < & G^N(G^N(0) + 1) + \epsilon = G^{2N}(0) + 1 + \epsilon. \end{split}$$

This proves the claim for k = 2. For k = 1 it is clear. Assume, inductively, that it is true for k. Then,

$$F^{(k+1)N}(0) = F^{N}(F^{kN}(0)) < F^{N}(G^{kN}(0) + k - 1 + \epsilon)$$

= $F^{N}(G^{kN}(0) + \epsilon) + k - 1 < G^{N}(G^{kN}(0) + \epsilon) + \epsilon + k - 1$
< $G^{N}(G^{kN}(0) + 1) + \epsilon + k - 1 < G^{(k+1)N}(0) + k + \epsilon$

which is the claim for k + 1. So, by induction, the claim is proved.

Define "<" on \mathbb{S}^1 by [x] < [y] if $y - x \in (0, 1/2)$ (mod 1) and define a partial ordering " \prec " on the collection of orientation-preserving circle homeomorphisms by $f_0 \prec f_1$ if $f_0(x) < f_1(x)$ for all $x \in \mathbb{S}^1$.

Notice that neither of these orderings is transitive. Indeed, [0] < [1/3] < [2/3] < [0] and correspondingly $R_0 \prec R_{1/3} \prec R_{2/3} \prec R_0$, where R_{α} is the rotation.

It is easy to see that if $f_1 \prec f_2$, then $\tau(f_1) \leq \tau(f_2)$.

Proposition 4.13. Let $f: \mathbb{S}^1 \to \mathbb{S}^1$ be an orientationpreserving homeomorphism with rational rotation number $\tau(f)$.

- (i) If $\tau(f) \notin \mathbb{Q}$, then $f \prec \overline{f}_1$ implies $\tau(f) < \tau(\overline{f}_1)$.
- (ii) If $\tau(f) = p/q \in \mathbb{Q}$ and f has some nonperiodic points, then all sufficiently nearby perturbations \overline{f} with $\overline{f} \prec f$ or $f \prec \overline{f}$ (or both) have the same rotation number p/q.
- (iii) If $\tau(f) \in \mathbb{Q}$ and all points of a map f are periodic, then the rotation number is strictly increasing at f.

Definition 4.2. A monotone continuous function $\phi: [0,1] \to \mathbb{R}$ (or $\phi: [0,1] \to \mathbb{S}^1$) is called a devil's staircase if there exists a family $\{I_{\alpha}\}_{\alpha \in A}$ of disjoint closed subintervals of [0,1] of nonzero length with dense union such that ϕ takes distinct constant values on these subintervals.

Based on Proposition 4.13 we have the following.

Proposition 4.14. Suppose that $(f_t)_{t \in [0,1]}$ is a monotone continuous family of orientation-preserving

circle homeomorphisms, each of which has some nonperiodic points. Then $\tau : t \to \tau(f_t)$ is a devil's staircase.

4.4. Circle diffeomorphisms. A partition on the interval [0, 1] is given by $0 = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = 1$. A partition on the unit circle \mathbb{S}^1 can be regarded as a partition on the interval [0, 1], with 0 and 1 being identified.

For a function $\phi : [0, 1] \to \mathbb{R}$, the total variation is given by

$$\operatorname{Var}(\phi) = \sup \sum_{k} = 1^{n} |\phi(x_{k}) - \phi(x_{k-1})|,$$

where supremum is taken over all partitions.

Theorem 4.15 (Denjoy). Let f be an orientation preserving C^1 diffeomorphism of the circle with irretional rotation number $\tau = \tau(f)$. If f' has bounded variation, then f is topologically conjugate to the rotation R_{τ} .

Theorem 4.16 (Denjoy Example). For any irretional rotation number $\tau \in (0, 1)$, there exists a nontransitive C^1 orientation preserving diffeomorphism $f : \mathbb{S}^1 \to \mathbb{S}^1$.