5. Topological Properties

5.1. **Topological transitivity.** Let X be a compact topological space.

Definition 5.1. A homeomorphism $T : X \to X$ is called topologically transitive if there is some $x \in X$ such that O(x) is dense in X.

Remark. If $T : X \to X$ is continuous, topological transitivity is defined as $O_+(x)$ is dense in X for some $x \in X$. Sometimes it is also called one-sided topological transitivity

A set which is the intersection of a countable collection of open sets is called a G_{δ} .

Theorem 5.1. The following are equivalent for a homeomorphism $T : X \to X$ of a compact topological space.

- (i) T is topologically transitive.
- (ii) Whenever E is a closed subset of X and TE = E then either E = X, or E is nowheere dense (or, equivalently, whenever U is an open subset of X with TU = U then $U = \emptyset$ or U is dense).
- (iii) Whenever U, V are non-empty open sets then there exists $n \in \mathbb{Z}$ with

$$T^n(U) \cap V \neq \emptyset.$$

(iv) $\{x \in X : \overline{O(x)} = X\}$ is a dense G_{δ} .

Proof. (i) \Rightarrow (ii) Suppose $O(x_0) = X$ and let $E \neq \emptyset$ be a closed subset with TE = E.

If there is an open set $U \subset E$, $U \neq \emptyset$, then there exists $p \in \mathbb{Z}$ such that $T^p(x_0) \in U \subset E$, so that $O(x_0) \subset E$ and therefore $X \subset E$. We get E = X.

If otherwise there is not open set $U \subset E$, then E is a nowhere dense set.

(ii) \Rightarrow (iii). Suppose $U, V \neq \emptyset$ are open sets. Then $\bigcup_{n=-\infty}^{\infty} T^n U$ is a T-invariant open set, so it is necessarily dense by condition (ii), Thus $\bigcup_{n=-\infty}^{\infty} T^n U \cap V \neq \emptyset$.

(iii) \Rightarrow (iv). Let $U_1, U_2, \ldots, U_n, \ldots$, be a countable base for X. It is easy to verify $\{x \in X : \overline{O(x)} = X\} = \bigcap_{n=1}^{\infty} \bigcup_{m=-\infty}^{\infty} T^m U_n$ is clearly dense by condition (iii). Hence the result follows.

 $(iv) \Rightarrow (i)$. This is clear.

The noninvertibale version of the theorem is the following.

Theorem 5.2. The following are equivalent for a continuous map $T : X \to X$ of a compact topological space with TX = X.

(i) T is one sided topologically transitive.

February 7, 2018

- (ii) Whenever E is a closed subset of X and E ⊂ T⁻¹E then either E = X, or E is nowheere dense (or, equivalently, whenever U is an open subset of X with T⁻¹U ⊂ U then U = Ø or U is dense).
- (iii) Whenever U, V are nonempty open sets then there exists $n \in \mathbb{Z}$ with

$$T^{-n}(U) \cap V \neq \emptyset.$$

(iv) $\{x \in X : \overline{O_+(x)} = X\}$ is a dense G_{δ} .

Remark. The difference between the theorems is that TE = E, TU = U, $T^n(U) \cap V \neq \emptyset$, and $\{x \in X : \overline{O(x)} = X\}$ are replaced by $E \subset T^{-1}E$, $T^{-1}U \subset U$, $T^{-n}(U) \cap V \neq \emptyset$, and $\{x \in X : \overline{O_+(x)} = X\}$ respectively.

Theorem 5.3. Let $T : X \to X$ be a homeomorphism. Then T is one-sided topologically transitive iff T is topologically transitive and $\Omega(T) = X$.

Proof. " \Rightarrow " Suppose $\{T^n(x_0) : n \ge 0\}$ is dense in X. Clearly T is topologically transitive.

Suppose $\Omega(T) \neq X$. Then there is a nonempty open set U such that $\{T^nU : n \geq 0\}$ are pairwise disjoint sets. Hence $\{T^nU : n \in \mathbb{Z}\}$ are pairwise disjoint sets. On the other hand, there exists $n_0 > 0$ such that $T^{n_0}(x_0) \in U$. Hence, $T^{n+n_0}(x_0) \in f^nU$ for any n > 0. So only $\{x_0, \ldots, f^{n_0-1}(x)\}$ can belong to $\bigcup_{i=1}^{\infty} T^{-i}U$. Since $\{T^{-i}U : i > 0$ are pairwise disjoint, $\{T^n(x_0) : n \geq 0\}$ does not intersect some $T^{-i}U$, contradictiong topological transitivity.

"⇐" Now suppose T is topologically transitive and $\Omega(T) \neq X$. Let U, V be nonempty open sets. By (iii) of Theorem 5.1 we know there is some $N \in \mathbb{Z}$ with $W := T^N U \cap V \neq \emptyset$ so we may as well suppose $N \geq 0$. Since $\Omega(T) \neq X$, there exists $n \geq N + 1$ with $T^{-n}W \cap W \neq \emptyset$. Then $T^{-(n-N)}U \cap V \supset T^{-n}W \cap W \neq \emptyset$. By (iii) of Theorem 5.2, we get that T is one-sided topologically transitive,

Example 5.4. Let $X = \{\exp(2i \tan^{-1} n) : n \in \mathbb{Z}\} \cup \{\exp(\pi i)\} \subset \mathbb{S}^1$. Clearly X is a compact metric space with a limit point $\exp(\pi i)$. Define $T : X \to X$ by $T(\exp(\pi i)) = \exp(\pi i)$, and $T(\exp(2i \tan^{-1} n)) = \exp(2i \tan^{-1}(n+1))$ for $n \in \mathbb{Z}$. Then T is topologically transitive, but is not one-sided topologically transitive.

A function f is invariant if f(Tx) = f(x) for every $x \in X$.

Theorem 5.5. If T is a topologically transitive homeomorphism or a one- sided topologically transitive continuous map then T has no non-constant invariant cominuous function.

5-2

Proof. If $f \circ T = f$, then $f \circ T^n = f$. So f is constant on orbits of points. The result then follows.

5.2. Topological mixing.

Definition 5.6. A continuous map $T : X \to X$ is topologically mixing if for any nonempty open sets U and V, there exists $N \in \mathbb{Z}$ such that for any n > N,

$$T^{-n}(U) \cap V \neq \emptyset.$$

Recall that by part (iii) in Theorem 5.1 or 5.2, $T : X \to X$ is topologically transitive iff there exists $n \in \mathbb{N}$ such that $T^{-n}(U) \cap V \neq \emptyset$. So topological mixing implies topological transitivity. But the inverse is not true. For example, an irrational circle rotation is topologically transitive but not topologically mixing.

5.3. **Expansiveness.** In the next definition we require that X is a metric space.

Definition 5.7. A homeomorphism T of a compact metric space X is said to be expansive if $\exists \delta > 0$ with the property that if $x \neq y$ then $\exists n \in \mathbb{Z}$ with $d(T^n x, T^n y) > \delta$. We call δ an expansive constant for T.

Remark. A continuous map T on X is said to be positively expansive if $\exists \delta > 0$ with the property that if $x \neq y$ then $\exists n \in \mathbb{N}$ with $d(T^n x, T^n y) > \delta$.

For a topological space X, an open cover is a collection of open sets $\alpha = \{A_i\}_{i \in I}$, where I is an index set, such that $X = \bigcup_{i \in I} A_i$.

If $\alpha = \{A_i\}_{i \in I}$ and $\beta = \{B_j\}_{j \in J}$ are covers of X, denote by $\alpha \lor \beta$ the open cover whose elements have the form $\{A \cap B : A \in \alpha, B \in \beta\}$. If $T : X \to X$ be a homeomorphism, denote by $T^{-1}\alpha$ the cover whose elements has the form $\{T^{-1}A : A \in \alpha\}$.

For a metric space X, if α is a finite open cover, then there exists number $\delta > 0$ such that each subset of X of diameter less than or equal to δ lies ill some member of α . Such a number $\delta > 0$ is called a *Lebesgue number* for α .

Definition 5.8. Let X be a compact topological space and $T: X \to X$ a homeomorphism. A finite open cover α of X is a generator for T if for every bisequence $\{A_n\}_{n\in\mathbb{Z}}$ of members of α the set $\bigcap_{n\in\mathbb{Z}}T^{-n}\bar{A}_n$ contains at most one point of X.

Theorem 5.9. Let T be a homeomorphism of a compact metric space X. Then T is expansive iff T has a generator.

Proof. " \Rightarrow " Let δ be an expansive constant for T. Take any finite cover α consisting of open balls of radius $\delta/2$. Suppose $x, y \in \bigcap_{n \in \mathbb{Z}} T^{-n} \overline{A}_n$, where $A_n \in \alpha$. Then $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$ so x = y by expansiveness. Therefore α is a generator.

" \Rightarrow " Conversely, suppose α a is a generator. Let δ be a Lebesgue number for α . If $d(T^n x, T^n y) \leq \delta$ for all $n \in \mathbb{Z}$, then $\forall n \in \mathbb{Z}$, there exists $A_n \in \alpha$ with $T^n x, T^n y \in A_n$ and so,

$$x, y \in \bigcap_{n \in \mathbb{Z}} T^{-n} A_n$$

Since this intersection contains at most one point we have x = y. Hence T is expansive.

- **Corollary 5.10.** (i) Expansiveness is independent of the mefric as long as the metric gives the topology of X. (However the expansive constant does change.)
 - (ii) If $k \neq 0$, then T is expansive iff T^k is expansive.
 - (ii) Expansiveness is topological conjugacy invariant, i.e. if, for i = 1, 2, T_i: X_i → X_i is a homeomorphism of a compact metric space and if φ : X₁ → X₂ is a homeomorphism with φT₁ = T₂φ, then T₁ is expansive iff T₂ is expansive.

Proof. (i) This is because the concept of generator does not depend on the metric.

(ii) If α is a generator for T, then $\alpha \vee T^{-1}\alpha \vee \ldots \vee T^{-(k-1)}\alpha$ is a generator for T^k . Also any generator for T^k is a generator for T.

(iii) A cover α is a generator for T_2 iff $\phi^{-1}\alpha$ is a generator for T_1

Remark. Note that toplogical transitivity for T does not imply toplogical transitivity of T^k .

5-4