
5. Topological Properties

5.1. Topological transitivity. LetX be a compact topological space.

Definition 5.1. A homeomorphism T : X → X is called topologically
transitive if there is some x ∈ X such that O(x) is dense in X.

Remark. If T : X → X is continuous, topological transitivity is
defined as O+(x) is dense in X for some x ∈ X. Sometimes it is also
called one-sided topological transitivity

A set which is the intersection of a countable collection of open sets
is called a Gδ.

Theorem 5.1. The following are equivalent for a homeomorphism T :
X → X of a compact topological space.

(i) T is topologically transitive.
(ii) Whenever E is a closed subset of X and TE = E then either

E = X ,or E is nowheere dense (or, equivalently, whenever U
is an open subset of X with TU = U then U = ∅ or U is dense).

(iii) Whenever U, V are non-empty open sets then there exists n ∈ Z
with

T n(U) ∩ V ̸= ∅.
(iv) {x ∈ X : O(x) = X} is a dense Gδ.

Proof. (i) ⇒ (ii) Suppose O(x0) = X and let E ̸= ∅ be a closed subset
with TE = E.

If there is an open set U ⊂ E, U ̸= ∅, then there exists p ∈ Z such
that T p(x0) ∈ U ⊂ E, so that O(x0) ⊂ E and therefore X ⊂ E. We
get E = X.

If otherwise there is not open set U ⊂ E, then E is a nowhere dense
set.

(ii) ⇒ (iii). Suppose U, V ̸= ∅ are open sets. Then ∪∞
n=−∞T nU is a

T -invariant open set, so it is necessarily dense by condition (ii), Thus
∪∞

n=−∞T nU ∩ V ̸= ∅.
(iii) ⇒ (iv). Let U1, U2, . . . , Un, . . . , be a countable base for X. It

is easy to verify {x ∈ X : O(x) = X} = ∩∞
n=1 ∪∞

m=−∞ TmUn is clearly
dense by condition (iii). Hence the result follows.

(iv) ⇒ (i). This is clear. �
The noninvertibale version of the theorem is the following.

Theorem 5.2. The following are equivalent for a continuous map T :
X → X of a compact topological space with TX = X.

(i) T is one sided topologically transitive.
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(ii) Whenever E is a closed subset of X and E ⊂ T−1E then either
E = X ,or E is nowheere dense (or, equivalently, whenever U
is an open subset of X with T−1U ⊂ U then U = ∅ or U is
dense).

(iii) Whenever U, V are nonempty open sets then there exists n ∈ Z
with

T−n(U) ∩ V ̸= ∅.
(iv) {x ∈ X : O+(x) = X} is a dense Gδ.

Remark. The difference between the theorems is that TE = E, TU =
U , T n(U)∩V ̸= ∅, and {x ∈ X : O(x) = X} are replaced by E ⊂ T−1E,

T−1U ⊂ U , T−n(U) ∩ V ̸= ∅, and {x ∈ X : O+(x) = X} respectively.

Theorem 5.3. Let T : X → X be a homeomorphism. Then T is
one-sided topologically transitive iff T is topologically transitive and
Ω(T ) = X.

Proof. “⇒” Suppose {T n(x0) : n ≥ 0} is dense in X. Clearly T is
topologically transitive.

Suppose Ω(T ) ̸= X. Then there is a nonempty open set U such
that {T nU : n ≥ 0} are pairwise disjoint sets. Hence {T nU : n ∈ Z}
are pairwise disjoint sets. On the other hand, there exists n0 > 0
such that T n0(x0) ∈ U . Hence, T n+n0(x0) ∈ fnU for any n > 0. So
only {x0, . . . , f

n0−1(x)} can belong to ∪∞
i=1T

−iU . Since {T−iU : i > 0
are pairwise disjoint, {T n(x0) : n ≥ 0} does not intersect some T−iU ,
contradictiong topological transitivity.

“⇐” Now suppose T is topologically transitive and Ω(T ) ̸= X. Let
U, V be nonempty open sets. By (iii) of Theorem 5.1 we know there
is some N ∈ Z with W := TNU ∩ V ̸= ∅ so we may as well suppose
N ≥ 0. Since Ω(T ) ̸= X, there exists n ≥ N +1 with T−nW ∩W ̸= ∅.
Then T−(n−N)U ∩ V ⊃ T−nW ∩ W ̸= ∅. By (iii) of Theorem 5.2, we
get that T is one-sided topologically transitive, �
Example 5.4. Let X = {exp(2i tan−1 n) : n ∈ Z} ∪ {exp(πi)} ⊂
S1. Clearly X is a compact metric space with a limit point exp(πi).
Define T : X → X by T (exp(πi)) = exp(πi), and T (exp(2i tan−1 n)) =
exp(2i tan−1(n + 1)) for n ∈ Z. Then T is topologically transitive, but
is not one-sided topologically transitive.

A function f is invariant if f(Tx) = f(x) for every x ∈ X.

Theorem 5.5. If T is a topologically transitive homeomorphism or a
one- sided topologically transitive continuous map then T has no non-
constant invariant cominuous function.
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Proof. If f ◦ T = f , then f ◦ T n = f . So f is constant on orbits of
points. The rcsult then follows. �

5.2. Topological mixing.

Definition 5.6. A continuous map T : X → X is topologically mixing
if for any nonempty open sets U and V , there exists N ∈ Z such that
for any n > N ,

T−n(U) ∩ V ̸= ∅.

Recall that by part (iii) in Theorem 5.1 or 5.2, T : X → X is
topologically transitive iff there exists n ∈ N such that T−n(U)∩V ̸= ∅.
So topological mixing implies topological transitivity. But the inverse
is not true. For example, an irrational circle rotation is topologically
transitive but not topologically mixing.

5.3. Expansiveness. In the next definition we require that X is a
metric space.

Definition 5.7. A homeomorphism T of a compact metric space X
is said to be expansive if ∃δ > 0 with the property that if x ̸= y then
∃n ∈ Z with d(T nx, T ny) > δ. We call δ an expansive constant for T .

Remark. A continuous map T on X is said to be positively expan-
sive if ∃δ > 0 with the property that if x ̸= y then ∃n ∈ N with
d(T nx, T ny) > δ.

For a topological space X, an open cover is a collection of open sets
α = {Ai}i∈I , where I is an index set, such that X = ∪i∈IAi.

If α = {Ai}i∈I and β = {Bj}j∈J are covers of X, denote by α ∨ β
the open cover whose elemtnts have the form {A ∩B : A ∈ α,B ∈ β}.
If T : X → X be a homeomorphism, denote by T−1α the cover whose
elemtnts has the form {T−1A : A ∈ α}.

For a metric space X, if α is a finite open cover, then there exists
number δ > 0 such that each subset of X of diameter less than or
equal to δ lies ill some member of α. Such a number δ > 0 is called a
Lebesgue number for α.

Definition 5.8. Let X be a compact topological space and T : X → X
a homeomorphism. A finite open cover α of X is a generator for T
if for every bisequence {An}n∈Z of members of α the set ∩n∈ZT

−nĀn

contains at most one point of X.

Theorem 5.9. Let T be a homeomorphism of a compact metric space
X. Then T is expansive iff T has a generator.
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Proof. “⇒” Let δ be an expansive constant for T . Take any finite cover
α consisting of open balls of radius δ/2. Suppose x, y ∈ ∩n∈ZT

−nĀn,
where An ∈ α. Then d(T nx, T ny) ≤ δ for all n ∈ Z so x = y by
expansiveness. Therefore α is a generator.

“⇒” Conversely, suppose α a is a generator. Let δ be a Lebesgue
number for α. If d(T nx, T ny) ≤ δ for all n ∈ Z, then ∀n ∈ Z, there
exists An ∈ α with T nx, T ny ∈ An and so,

x, y ∈ ∩n∈ZT
−nAn

Since this intersection contains at most one point we have x = y. Hence
T is expansive. �
Corollary 5.10. (i) Expansiveness is independent of the mefric as

long as the metric gives the topology of X. (However the ex-
pansive constant does change.)

(ii) If k ̸= 0, then T is expansive iff T k is expansive.
(ii) Expansiveness is topological conjugacy invariant, i.e. if, for

i = 1, 2, Ti : Xi → Xi is a homeomorphism of a compact metric
space and if ϕ : X1 → X2 is a homeomorphism with ϕT1 = T2ϕ,
then T1 is expansive iff T2 is expansive.

Proof. (i) This is because the concept of generator does not depend on
the metric.

(ii) If α is a generator for T , then α ∨ T−1α ∨ . . . ∨ T−(k−1)α is a
generator for T k. Also any generator for T k is a generator for T .

(iii) A cover α is a generator for T2 iff ϕ−1α is a generator for T1 �
Remark. Note that toplogical transitivity for T does not imply toplog-
ical transitivity of T k.


