
MATH 848 Exercise Set 2 Fall, 2014

1. Show that the initial value problem ẋ = x/t, x(0) = 0, has infinitely many
solutions and the equation for the initial value x(0) = c, c ̸= 0, has no sulution.

2. Suppose that the function f(t, x) is bounded and continuous on R×Rn and has
continuous partial derivatives with respect to x. Prove that any solution x = ϕ(t)
of the equation ẋ = f(t, x) is defined for all t ∈ (−∞,∞).

3. Prove the following Comparison Theorem: Suppose f(t, x) and g(t, x) are
continuous functions defined on an open set D ⊂ R × R with f(t, x) < g(t, x)
for all (t, x) ∈ D, and ϕ(t) and ψ(t) are solutions of ẋ = f(t, x) and ẋ = g(t, x),
respectively, satisfying x(t0) = x0, where (t0, x0) ∈ D. Then

(a) ϕ(t) < ψ(t) if t > t0 and both ϕ(t) and ψ(t) are defined.
(b) ϕ(t) > ψ(t) if t < t0 and both ϕ(t) and ψ(t) are defined.

4. Proof Claim 2 in Proof 2 of the Peano’s Theorem. That is, on Iα1 × Bβ, if for
any n > 0 and i = 0, 1, · · · , n− 1, we define h = hn = α1/n and

ti+1 = t
(n)
i+1 = ti + h, xi+1 = x

(n)
i+1 = xi + f(ti, xi)h,

ϕn(t) = ϕhn(t) = xi + f(ti, xi)(t− ti) ∀ti ≤ t ≤ ti+1,

then as n→ ∞,∣∣∣ϕn(t)− x0 −
∫ t

t0

f(s, ϕn(s))ds
∣∣∣ → 0 ∀t ∈ [t0, t0 + α1].

5. Recall that C(I, Rn) is the Banach space of all continuous functions from I =
[0, 1] to Rn with the supremum norm. Prove that if the functions in a subset
E ⊂ C(I, Rn) are uniformly bounded and equicontinuous, then the closure of E is
compact.

6. Reall the Implicit Function Theorem: Suppose that F (x, y) is a continuously
differentiable function from an open set D ⊂ R × R to R such that F (x0, y0) =
0 and (∂F/∂y)(x0, y0) ̸= 0 for some (x0, y0) ∈ D. Then there is an open set
I ⊂ R containing x0 and a unique differentiable function ϕ : I → R such that
F (x, ϕ(x)) = 0 for all x ∈ I.

(i) Prove that under the condition of the theorem, the function ϕ is unique.
(ii) Use the Existence Theorem of ODE to prove such ϕ exists.
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7. Prove that any Lipschitz function ϕ from an open interval (a, b) to a Banach
space X can be continuously extended to the endpoints a and b of the interval.

8. Suppose f(t, x, λ) is a continuous function defined on an open set D ⊂ R ×
Rn × Rk, and there are constants M,K > 0 such that

1) |f(t, x, λ)| ≤M ∀(t, x, λ) ∈ D, and
2) |f(t, x1, λ)− f(t, x2, λ)| ≤ K|x1 − x2| ∀(t, x1, λ), (t, x2, λ) ∈ D.

Prove that for any (t0, x0, λ0) ∈ D, there exists a number α > 0 and a neighborhood
V of (t0, x0, λ0) such that ∀(u, y, λ) ∈ V , the initial value problem

ẋ = f(t, x, λ), x(u) = y,

has a unique solution ϕ(t, u, y, λ) defined on the interval [u− α, u+ α].

9. Let X be a Banach space, and let E ⊂ X. The convex hull of E, denoted by
co(E), is the intersection of all convex subsets of X which contain E.

(a) A convex combination of the points xi is a point x of the form

x =
n∑

i=1

tixi,

where each ti ∈ [0, 1] and
∑n

i=1 ti = 1. Show that co(E) coincides with the set of
all convex combinations of elements of E.

(b) A metric space (X, d) is totally bounded if, for each ε > 0, there is a finite
set of points x1, x2, . . . , xn in X such that

X =
n∪

i=1

Bε(xi),

where Bε(x) = {y ∈ X : d(x, y) < ε}. That is, for every ε > 0, X can be covered
by finitely many balls of radius ε. Show that if a subset E ⊂ X is totally bounded,
so are co(E) and the closure of co(E).

10. Recall that for a subset E of a Banach space X, its closed convex hull, denoted
by co(E), is the intersection of all closed convex subsets of X which contain E.

(a) Prove that the closure of a convex set is also convex.
(b) Prove that the closure of co(E) is co(E).
(c) Prove Mazur’s theorem: the closed convex hull of a compact subset E ⊂ X

is also compact. (Hint: Use the result in Exercise 9 and the fact that a subset in
X is compact if and only if it is complete and totally bounded.)
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