1. Suppose that $f(t, x, \lambda)$ is a C^1 function of the variables (t, x, λ) in an open set $D \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^k$. For $(t_0, x_0, \lambda_0) \in D$, let $\phi(t, t_0, x_0, \lambda_0)$ be the solution of the initial value problem

$$\dot{x} = f(t, x, \lambda_0), \qquad x(t_0) = x_0.$$
 (1)

Prove that the partial derivatives $\frac{\partial}{\partial t_0}\phi(t,t_0,x_0,\lambda_0)$ and of the solution with respect to the initial time t_0 satisfies the initial value problem

$$\dot{Z} = \frac{\partial f}{\partial x_0}(t, \phi(t, t_0, x_0, \lambda_0), \lambda_0) \cdot Z, \qquad \frac{\partial \phi}{\partial t_0}(t, t_0, x_0, \lambda_0) \Big|_{t=t_0} = -f(t_0, x_0, \lambda_0).$$

2. Let ϕ be the solution of the initial value problem.

(a)
$$\dot{x} = x + x^2 + tx^3$$
, $x(2) = x_0$. Find $\frac{\partial}{\partial x_0} \phi(t, 2, x_0)|_{x_0 = 0}$

(a)
$$\dot{x} = x + x^2 + tx^3$$
, $x(2) = x_0$. Find $\frac{\partial}{\partial x_0} \phi(t, 2, x_0)|_{x_0 = 0}$.
(b) $\dot{x} = \frac{x}{t} + \lambda t e^{-x}$, $x(1) = 1$. Find $\frac{\partial}{\partial \lambda} \phi(t, 1, 1, \lambda)|_{\lambda = 0}$.

- **3.** Construct an autonomous polynomial vector field X(x,y) = (f(x,y),g(x,y))(i.e., f(x,y), g(x,y) are polynomials) in the plane such that X has a critical point at (0,0), a periodic orbit γ which coincides the unit circle, and for each $z=(x,y)\neq$ (0,0), the ω -limit set $\omega(z)$ equals γ . (Hint: Find a suitable vector field in polar coordinates, and then change to (x,y) variables to get the desired vector field X.)
- **4.** Consider the differential equation $\dot{x} = f(x)$ where f is C^1 on \mathbb{R}^n . Let $x \in \mathbb{R}^n$ and let $\phi(t,x)$ be the solution of $\dot{x}=f(x)$ such that $\phi(0,x)=x$. Prove that if $\phi(t,x)$ is defined and bounded for all $t\geq 0$, then the ω -limit set $\omega(x)$ of x is a compact, non-empty, connected set.
- 5. In the situation of the preceding exercise, give an example to show that if the boundedness assumption of $\phi(t,x)$ fails, then $\phi(t,x)$ may exist for all $t\geq 0$, but $\omega(x)$ may be disconnected.
- **6.** Recall that a point $x \in D$ is a nonwandering point for a flow ϕ_t defined on a region $D \subset \mathbb{R}^n$ if for any neighborhood U of x and any T > 0, there exists t > Tsuch that $\phi_t(U) \cap U \neq \emptyset$.

Prove that a point x is a nonwandering point for a flow ϕ_t if and only if for any neighborhood U of x, there exists $t \geq 1$ such that $\phi_t(U) \cap U \neq \emptyset$.

- **7.** Suppose that $\rho: U \to V$ is a C^1 diffeomorphism from an open set $U \subset \mathbb{R}^n$ to $V \subset \mathbb{R}^n$. Let f and $g = \rho_*(f)$, defined by $g(y) = D\rho_x(f(x))$, $y = \rho(x)$, be the vector fields that define a flow on U and V respectively. Show that ρ maps
 - (a) the orbits of f passing through x to the orbits of g passing through y;
 - (b) $\alpha(x)$ and $\omega(x)$ to $\alpha(y)$ and $\omega(y)$ respectively;
- (c) $\Omega(f)$ to $\Omega(g)$, where $\Omega(f)$ and $\Omega(g)$ are the nonwandering set of the flow of f and g respectively.
- **8.** Let $f: D \to \mathbb{R}$ be a C^2 real-valued function defined in the open set $D \subset \mathbb{R}^n$. Let $\operatorname{grad}(f)(x)$ be the gradient of f at the point $x \in D$; i.e., $\operatorname{grad}(f)(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$. The system

$$\dot{x} = \operatorname{grad}(f)(x) \tag{*}$$

is called a gradient system with potential funtion f. Let $\phi(t,x)$ be the local flow of the system (*).

- (a) Show that if x is not a critical point of (*), then the function $f(\phi(t,x))$ is strictly increasing for t near 0.
- (b) Suppose f is defined and C^2 on all of \mathbb{R}^n . Show that a solution $\phi(t,x)$ of (*) is bounded if and only if $\omega(x)$ consists of a bounded set of critical points of the function f.
- **9.** Determine, with justifiation, which of the following systems in \mathbb{R}^2 is a gradient system. If the system is a gradient system, determine the potential function f.

(a)
$$\dot{x} = y^2 - \sin(x)$$
, $\dot{y} = -y^2 + 2xy$

(b)
$$\dot{x} = y + \exp(x), \quad \dot{y} = x$$

(c)
$$\dot{x} = y^3 - \sin(x)$$
, $\dot{y} = -x^2 + y$

10. Suppose $\phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$ and $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$ are solutions of the initial value problem

$$\dot{x}_1 = x_2,
\dot{x}_2 = -x_1; \qquad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

respectively. Do not solve the equation and prove the following:

- (a) $\dot{\phi} = \psi$ and $\dot{\psi} = -\phi$;
- (b) $\|\phi(t)\| = \|\phi(t)\| = 1$ for any $t \in \mathbb{R}$, where $\|\cdot\|$ denotes the Euclidian norm;
- (c) both ϕ and ψ are periodic solutions with the same period;
- (d) $\phi(t+\alpha) = \psi(t)$ and $\psi(t+\alpha) = -\phi(t)$ for any t if 4α is the period of ϕ . (**Hint**: Take α as the first zero of ϕ_2 on the positive x-axis.)