1. Construct an autonomous polynomial vector field $X(x, y)=(f(x, y), g(x, y))$ (i.e., $f(x, y), g(x, y)$ are polynomials) in the plane such that X has a critical point at $p_{0}=(0,0)$ and $p_{1}=(1,0)$, a separatrix γ which coincides the unit circle $\mathbb{S}^{1} \backslash p_{1}$, and for each $z=(x, y) \neq(0,0)$, the ω-limit set $\omega(z)$ equals $\gamma \cup p_{1}$. (Hint: you may use the result in Problem 3 of Homework 3, and the fact that $\dot{x}=f(x)$ and $\dot{x}=\alpha(x) f(x)$ have the same solution curves whenever $\alpha(x) \neq 0$ on the curves, where $\alpha: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a local Lipschitz function.)
2. Let $f=(P, Q)$ be a C^{1} vector field from \mathbb{R}^{2} to \mathbb{R}^{2}.
(a) Prove that along any solution curve γ, the line integral

$$
\int_{\gamma} P d y-Q d x=0 .
$$

(b) Recall that $\operatorname{div}(f)(x)$ is the divergence of f at the point x; i.e., $\operatorname{div}(f)(x)=$ $\frac{\partial P}{\partial x_{1}}(x)+\frac{\partial Q}{\partial x_{2}}(x)$. Prove the following Bendixson theorem: Suppose $\operatorname{div}(f) \geq 0$ on a simply connected region G, and $\operatorname{div}(f) \not \equiv 0$ on any simply connected subregion of G, then there is no closed orbit or separatrix cycle contained in G.
3. Show that according as $a d-b c>0$ or $a d-b c<0$, the index of the origin with respect to the linear vector field $f_{0}(x, y)=(a x+b y, c x+d y)$ is ± 1.
4. Suppose that $f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$ is a C^{1} vector field with an isolated critical point at $0 \in \mathbb{R}^{2}$ and the derivative of f at 0 is the linear map f_{0} in Exercise 3. Show that if $a d-b c>0$, then the index of f at 0 is +1 while if $a d-b c<0$, then the index at 0 of f is -1 .
5. Suppose that $\rho: U \rightarrow V$ is a C^{1} diffeomorphism from an open set $U \subset \mathbb{R}^{2}$ to $V \subset \mathbb{R}^{2}$. Let f and $g=\rho_{*}(f)$, defined by $g(y)=D \rho_{x}(f(x)), y=\rho(x)$, be the vector fields on U and V respectively.
(a) Prove that if $x_{0} \in U$ is an isolated critical point of f, then $y_{0}=\rho\left(x_{0}\right)$ is an isolated critical point of g.
(b) Prove $\operatorname{Ind}\left(f, x_{0}\right)=\operatorname{Ind}\left(g, y_{0}\right)$ is $\operatorname{det} D f\left(x_{0}\right) \neq 0$.
(c) $\operatorname{Is} \operatorname{Ind}\left(f, x_{0}\right)=\operatorname{Ind}\left(g, y_{0}\right)$ still true without the condition $\operatorname{det} D f\left(x_{0}\right) \neq 0$?
6. (a) Let $f(z)=z^{k}$ where $z=x+i y$ and z^{k} means the complex number z is multiplied by itself k-times. Consider f as a vector field in \mathbb{R}^{2}. Show that the index of f at 0 is k.
(b) Let $f(z)=\bar{z}^{k}$ where $z=x+i y$ and \bar{z}^{k} means the complex conjugate of z multiplied by itself k times. Consider f as a vector field in \mathbb{R}^{2}. Show that the index of f at 0 is $-k$.
7. Show that the vector fields $f(z)=z^{3}$ and $g(z)=z^{3}+z^{4}$ in \mathbb{R}^{2} have the same index at $z=0$.
8. Consider a differential equation of the form

$$
\dot{x}=A(t) x+h(t)
$$

where $A(t)$ is a continuous real $n \times n$ matrix valued function and $h(t)$ is a continuous real n-vector valued function. Assume that $h \neq 0$.
(a) Show that the equation has $n+1$ independent solutions.
(b) Show that if $x_{0}(t), x_{1}(t), \cdots, x_{n}(t)$ are any $n+1$ independent solutions of the equation, then the solution set of the equation is

$$
\mathcal{S}=\left\{\sum_{i=0}^{n} c_{i} x_{i}(t): c_{i} \in \mathbb{R}, \sum_{i=0}^{n} c_{i}=1\right\}
$$

9. Show that if the linear differential equations

$$
\dot{x}=A(t) x \quad \text { and } \quad \dot{x}=B(t) x
$$

have the same fundamental matrix, then $A(t)=B(t)$.
10. Suppose that $\Phi(t)$ is a fundamental matrix of the linear differential equation $\dot{x}=A(t) x$. Show that a matrix $\Psi(t)$ is also a fundamental matrix of the equation if and only if there is a nonsingular constant matrix C such that $\Psi(t)=\Phi(t) C$.

