1. Construct an autonomous polynomial vector field X(x,y) = (f(x,y), g(x,y))(i.e., f(x,y), g(x,y) are polynomials) in the plane such that X has a critical point at $p_0 = (0,0)$ and $p_1 = (1,0)$, a separatrix γ which coincides the unit circle $\mathbb{S}^1 \setminus p_1$, and for each $z = (x,y) \neq (0,0)$, the ω -limit set $\omega(z)$ equals $\gamma \cup p_1$. (**Hint**: you may use the result in Problem 3 of Homework 3, and the fact that $\dot{x} = f(x)$ and $\dot{x} = \alpha(x)f(x)$ have the same solution curves whenever $\alpha(x) \neq 0$ on the curves, where $\alpha : \mathbb{R}^2 \to \mathbb{R}$ is a local Lipschitz function.)

2. Let f = (P,Q) be a C¹ vector field from R² to R².
(a) Prove that along any solution curve γ, the line integral

$$\int_{\gamma} P dy - Q dx = 0.$$

(b) Recall that $\operatorname{div}(f)(x)$ is the divergence of f at the point x; i.e., $\operatorname{div}(f)(x) = \frac{\partial P}{\partial x_1}(x) + \frac{\partial Q}{\partial x_2}(x)$. Prove the following Bendixson theorem: Suppose $\operatorname{div}(f) \ge 0$ on a simply connected region G, and $\operatorname{div}(f) \not\equiv 0$ on any simply connected subregion of G, then there is no closed orbit or separatrix cycle contained in G.

3. Show that according as ad - bc > 0 or ad - bc < 0, the index of the origin with respect to the linear vector field $f_0(x, y) = (ax + by, cx + dy)$ is ± 1 .

4. Suppose that $f(x, y) = (f_1(x, y), f_2(x, y))$ is a C^1 vector field with an isolated critical point at $0 \in \mathbb{R}^2$ and the derivative of f at 0 is the linear map f_0 in Exercise 3. Show that if ad - bc > 0, then the index of f at 0 is +1 while if ad - bc < 0, then the index at 0 of f is -1.

5. Suppose that $\rho: U \to V$ is a C^1 diffeomorphism from an open set $U \subset \mathbb{R}^2$ to $V \subset \mathbb{R}^2$. Let f and $g = \rho_*(f)$, defined by $g(y) = D\rho_x(f(x)), y = \rho(x)$, be the vector fields on U and V respectively.

(a) Prove that if $x_0 \in U$ is an isolated critical point of f, then $y_0 = \rho(x_0)$ is an isolated critical point of g.

- (b) Prove $\operatorname{Ind}(f, x_0) = \operatorname{Ind}(g, y_0)$ is $\det Df(x_0) \neq 0$.
- (c) Is $\operatorname{Ind}(f, x_0) = \operatorname{Ind}(g, y_0)$ still true without the condition $\det Df(x_0) \neq 0$?

6. (a) Let $f(z) = z^k$ where z = x + iy and z^k means the complex number z is multiplied by itself k-times. Consider f as a vector field in \mathbb{R}^2 . Show that the index of f at 0 is k.

(b) Let $f(z) = \overline{z}^k$ where z = x + iy and \overline{z}^k means the complex conjugate of z multiplied by itself k times. Consider f as a vector field in \mathbb{R}^2 . Show that the index of f at 0 is -k.

7. Show that the vector fields $f(z) = z^3$ and $g(z) = z^3 + z^4$ in \mathbb{R}^2 have the same index at z = 0.

8. Consider a differential equation of the form

$$\dot{x} = A(t)x + h(t)$$

where A(t) is a continuous real $n \times n$ matrix valued function and h(t) is a continuous real *n*-vector valued function. Assume that $h \neq 0$.

(a) Show that the equation has n + 1 independent solutions.

(b) Show that if $x_0(t), x_1(t), \dots, x_n(t)$ are any n+1 independent solutions of the equation, then the solution set of the equation is

$$S = \left\{ \sum_{i=0}^{n} c_i x_i(t) : c_i \in \mathbb{R}, \sum_{i=0}^{n} c_i = 1 \right\}.$$

9. Show that if the linear differential equations

$$\dot{x} = A(t)x$$
 and $\dot{x} = B(t)x$

have the same fundamental matrix, then A(t) = B(t).

10. Suppose that $\Phi(t)$ is a fundamental matrix of the linear differential equation $\dot{x} = A(t)x$. Show that a matrix $\Psi(t)$ is also a fundamental matrix of the equation if and only if there is a nonsingular constant matrix C such that $\Psi(t) = \Phi(t)C$.