1. Consider a linear system $\dot{x}=A(t) x$, where $A(t)$ is an $n \times n$ matrix valued real function defined on \mathbb{R}. Denote by $\phi(t, x)$ the solution satisfying the initial condition $x(0)=x$. Assume that $\phi(t, x)$ is bounded for any $x \in \mathbb{R}^{n}$, there is a number $B=B(x)>0$ such that $|\phi(t, x)| \leq B \forall t \in[0, \infty)$. Prove that for any $x \in \mathbb{R}^{n}$, for any $\varepsilon>0$, there exist $\delta>0$, such that if $|x-y|<\delta$, then $|\phi(t, x)-\phi(t, y)|<\varepsilon$ for all $t \in[0, \infty)$. (Hint: Prove the result for the zero solution $\phi(t, 0)=0$ first.)
2. Let $A(t)$ and $B(t)$ be $n \times n$ matrix valued real functions defined on \mathbb{R}. Let $\Phi(t)$ be the fundamental matrix of the equation $\dot{x}=A(t) x$ satisfying $\Phi(0)=I_{n}$, where I_{n} is the $n \times n$ identity matrix.
(a) Suppose that if there exist constants $a>0$ and $\sigma>0$ such that $\|\Phi(t)\| \leq$ $a e^{-\sigma t}$. Prove that any solution $\phi(t)$ to the equation $\dot{x}=A(t) x$ satisfies $\lim _{t \rightarrow \infty} \phi(t)=$ 0 , and the convergence is exponentially fast.
(b) Suppose in addition that the matrix $B(t)$ satisfies $\int_{0}^{\infty}\|B(s)\| d s<\infty$. Prove that any solution $\psi(t)$ to the equation $\dot{x}=(A(t)+B(t)) x$ satisfies $\lim _{t \rightarrow \infty} \psi(t)=$ 0 , and the convergence is exponentially fast.
3. Show that $\operatorname{det} e^{A}=\operatorname{det} e^{B}$ for $A=\left(\begin{array}{rrr}1 & 0 & 3 \\ * & 2 & 0 \\ 0 & 1 & -1\end{array}\right)$ and $B=\left(\begin{array}{rrr}3 & 1 & * \\ 2 & 1 & 5 \\ 0 & 1 & -2\end{array}\right)$, where the numbers at the position with $*$ are missing.
4. Find the general real solution to the differential equation $\dot{x}=A x$ for each of the following matrices A. Sketch the orbits in two dimensional case.
(a) $A=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$
(b) $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
(c) $A=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
(d) $A=\left(\begin{array}{rrr}0 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & -1\end{array}\right)$
(e) $A=\left(\begin{array}{rrr}0 & 1 & 0 \\ 4 & 3 & -4 \\ 1 & 2 & -1\end{array}\right)$
5. Find a real-valued matrix C such that $A=C^{2}$, where A is the matrix
(a) $\left(\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$;
(b) $\left(\begin{array}{rr}-4 & 0 \\ 0 & -4\end{array}\right)$;
(c) $\left(\begin{array}{lll}4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4\end{array}\right)$.
6. Find a real-valued matrix B such that $A=e^{B}$, where A is the matrix
(a) $\left(\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$;
(b) $\left(\begin{array}{rr}-4 & 0 \\ 0 & -4\end{array}\right)$;
(c) $\left(\begin{array}{lll}4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4\end{array}\right)$.
7. Consider a differential equation of the form

$$
\dot{x}=A(t) x+h(t),
$$

where $A(t)$ is a continuous real $n \times n$ matrix valued function and $h(t)$ is a continuous real n-vector valued function, and satsify

$$
A(t+T)=A(t), \quad h(t+T)=h(t) .
$$

(a) Prove that a solution $\phi(t)$ to the equation is periodic with period T if and only if $\phi(T)=\phi(0)$.
(b) Prove that the equation has a unique periodic sulution with period T if and only if the matrix $Y(T)$ has no eigenvalue equal to 1 , where $Y(t)$ is the fundanmental matrix to the corresponding homogeneous equation such that $Y(0)=I$.
8. Let X be a C^{1} vector field of \mathbb{R}^{n}, and x_{0} a critical point of X. Let $\phi_{t}(x)$ be the flow of the vector field X. Show that the critical point x_{0} is hyperbolic if and only if the linear map $D \phi_{t}\left(x_{0}\right)$ is hyperbolic.
9. (Lipschitz Inverse Function Theorem). Let $(V,|\cdot|)$ be a Banach space, and suppose $f: V \rightarrow V$ is 1-1, onto, and Lipschitz with Lipschitz inverse. Prove that there is an $\epsilon>0$ such that if $g=f+\phi$ where ϕ is Lipschitz with $|\phi|_{0}<\epsilon$ and $\operatorname{Lip}(\phi)<\epsilon$, then g is 1-1, onto, and Lipschitz with Lipschitz inverse.
10. Let $U, V \subset \mathbb{R}^{n}$ be open sets, and ϕ_{t} and ϕ_{t} are flows on U and V, respectively, that are defined for all $t \in \mathbb{R}$. Suppose that for any $t \in \mathbb{R}$, there is a unique diffeomorphism $h_{t}: U \rightarrow V$ such that $\phi_{t} \circ h_{t}=h_{t} \circ \psi_{t}$. Prove that h is independet of t.

