1 INTRODUCTION

This course will cover basic material about ordinary differential equations. The main reference for the initial parts are the First 3 chapters of Hale, Ordinary Differential Equations, 2nd. ed.

Definition 1.1. A real normed linear (vector) space is an ordered pair $(\mathcal{X}, \|\cdot\|)$ where \mathcal{X} is a real vector space and $|\cdot|: \mathcal{X} \to \mathbb{R}$ is a real-valued function on \mathcal{X} such that

- (i) $||x|| \ge 0 \forall x \text{ and } ||x|| = 0 \text{ iff } x = 0 \text{ for } x \in \mathcal{X};$
- (ii) $\|\alpha x\| = \|\alpha\| \|x\|$ for $\alpha \in \mathbb{R}, x \in \mathcal{X}$;
- (iii) $||x + y|| \le ||x|| + ||y|| \ \forall x, y \in \mathcal{X}.$

If \mathcal{X} is a complex vector space and (ii) holds for all $\alpha \in \mathbf{C}$, then we call $(\mathcal{X}, \|\cdot\|)$ a complex normed linear space.

Sometimes we say simply that \mathcal{X} is a *normed linear space* where we understand that the norm $\|\cdot\|$ is given implicitly.

Definition 1.2. A metric space is an ordered pair (\mathcal{X}, d) , where \mathcal{X} is a set and d is a metric on \mathcal{X} . That is, $d : \mathcal{X} \times \mathcal{X}$ is a function such that for any $x, y, z \in \mathcal{X}$,

- (i) $d(x, y) \ge 0$ for all $x, y \in \mathcal{X}$, and d(x, y) = 0 iff x = y;
- (ii) d(x, y) = d(y, x);
- (iii) $d(x, z) \le d(x, y) + d(y, z)$.

The inequality in (iii) is called *triangle inequality*.

Fact. If $(\mathcal{X}, \|\cdot\|)$ is a normed linear space, then $d(x, y) = \|x - y\|$ induces a metric in \mathcal{X} .

We say that a sequence $(x_1, x_2, ...)$ in (\mathcal{X}, d) is a Cauchy sequence if, for every $\epsilon > 0$, there is an N > 0 such that

$$n, m \ge N \Longrightarrow d(x_n, x_m) < \epsilon$$

The metric space (\mathcal{X}, d) is *complete* if every Cauchy sequence in \mathcal{X} converges to a point of \mathcal{X} .

Fact. Every closed subset of a complete metric space is again complete.

Definition 1.3. A normed linear space $(\mathcal{X}, \|\cdot\|)$ is called a Banach space if it is a complete metric space with respect to the metric $d(x, y) = \|x - y\|$ induced by the norm.

In other words, a Banach space is a complete normed vector space with the metric induced by the norm.

Let us give some examples of normed linear spaces and Banach spaces.

Examples.

1. Let $\mathcal{X} = \mathbb{R}^n$ or $\mathcal{X} = \mathbb{C}^n$ denote the sets of *n*-tuples of real and complex numbers, respectively. Define the following norms $|\cdot|$ in \mathcal{X} .

(a) $|x|_p = (\sum_{1 \le i \le n} |x_i|^p)^{\frac{1}{p}};$ (b) $|x|_{\infty} = \max_{1 \le i \le n} |x_i|,$

where $x = (x_1, \ldots, x_n) \in \mathcal{X}$.

With any one of these norms, \mathcal{X} becomes a Banach space. The usual norm is $|\cdot|_2$ above.

It is instructive to consider the geometric pictures of the unit balls in each of the above Banach Spaces.

2. A linear subspace V of a Banach space \mathcal{X} is itself a Banach space if and only if it is closed.

3. Let D be a compact subset of \mathbb{R}^n . The set $\mathcal{C}(D, \mathbb{R}^n)$ of continuous functions from D to \mathbb{R}^n becomes a Banach Space with the norm

$$||f|| = \sup_{x \in D} |f(x)|.$$

4. Let X, Y be Banach spaces. Let B(X,Y) be the set of bounded functions from X to Y with the sup norm

$$\|f\| = \sup_{x \in X} |fx|.$$

Then, $(B(X, Y), \|\cdot\|)$ is itself a Banach space.

The set of bounded continuous functions BC(X, Y) with the sup norm is a closed subspace of B(X, Y).

A function $F: X \to Y$ between metric spaces is called *Lipschitz* if there is a constant L > 0 such that

$$d(Fx, Fy) \le Ld(x, y)$$

for all $x, y \in X$. The smallest such constant,

$$\sup_{x \neq y \in X} \frac{d(Fx, Fy)}{d(x, y)}$$

is called the *Lipschitz constant* of F.

Let X, Y be Banach spaces, let L > 0, and let $\mathcal{L}_L(X, Y)$ be the set of bounded functions from X to Y which are Lipschitz with Lipschitz constant less than or equal to L. Then, with the sup norm, $\mathcal{L}_L(X,Y)$ is a closed subset of BC(X, Y).

It can be proved that in Example 1, $|x|_{\infty} = \lim_{p \to \infty} |x|_p$ for any $x \in \mathcal{X}$.

The norm given by Example 3 and 4 are called uniform norm, or supremum norm, or infinity norm. It is called the uniform norm since

1 - 2

any sequence $\{f_n\} \subset \mathcal{C}(D, \mathbb{R}^n)$ converges to $f \in \mathcal{C}(D, \mathbb{R}^n)$ under the metric if and only if the convergence $f_n \to f$ is uniform. Exercises:

(1) Suppose that E is a finite dimensional linear vector space. Let $|\cdot|_1, |\cdot|_2$ be two norms on E. Show that there are constants $C_1, C_2 > 0$ such that, for all $x \in E$,

$$C_1|x|_1 \le |x|_2 \le C_2|x|_1$$

(2) Let I be the real unit interval, and let $\mathcal{C}(I, \mathbb{R})$ be the space of continuous real-valued functions on I with the L^1 norm

$$||f|| = \int_{I} |f(x)| \, dx$$

Show that this makes $(\mathcal{C}(I, \mathbb{R}), |\cdot|)$ a normed linear space, but that it is not complete. What is the completion of this space?

Note that for a metric space D, $\mathcal{C}(D, \mathbb{R}^n)$ denote the Banach space consisting of all continuous function from D to \mathbb{R}^n with the uniform norm.

Definition 1.4. Let D be a compact metric space, and $\mathcal{F} \subset \mathcal{C}(D, \mathbb{R}^n)$. We say that the family \mathcal{F} of functions is equicontinuous if for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$x, y \in D \text{ and } d(x, y) < \delta \longrightarrow ||fx - fy|| < \epsilon \ \forall f \in \mathcal{F}.$$

We say the family \mathcal{F} is uniformly bounded if there is a constant C > 0 such that ||fx|| < C for all $f \in \mathcal{F}, x \in \mathcal{X}$.

Theorem (Arzela-Ascoli Theorem). Let D be a compact metric space. A closed subset $\mathcal{F} \subset \mathcal{C}(D, \mathbb{R}^n)$ is compact in the uniform topology if and only if it is closed, bounded and equicontinuous.

Note that a subset S in a metric space is compact if and only if any sequence in S contains a convergent subsequence. So by the theorem, we see that

if a sequence $\{f_n\} \subset \mathcal{C}(D, \mathbb{R}^n)$ is uniformly bounded and equicontinuous, then it has a convergent subsequence.

Example. Let D be a compact metric space. For K, L > 0, let $\mathcal{L}_{L,K}(D, \mathbb{R}^n)$ be the space of Lipschitz functions from D to \mathbb{R}^n with norm less than or equal to K and Lipschitz constant less than or equal to L. Clearly, $\mathcal{C}(D, \mathbb{R}^n)$ is a closed subset of $\mathcal{C}(D, \mathbb{R}^n)$. By Arzela-Ascoli theorem, $\mathcal{L}_{L,K}(D, \mathbb{R}^n)$ is a compact. In particular, every sequence in $\mathcal{L}_{L,K}(D, \mathbb{R}^n)$ has a subsequence which converges to an element of $\mathcal{L}_{L,K}(D, \mathbb{R}^n)$.