
10. Umlaufsatz

Let Ω be an open connected subset of the plane R2, and let η =
(η1, η2) be a C0 non-vanishing vector field defined in Ω. For z ∈ Ω,, we
wish to define a real number ζη(z) which represents the angle between
η(z) and the positive x-direction.

A convenient way to do this uses complex variables. We represent the
positive x-direction by the complex number 1 (or the real vector (1, 0)),

and we let ηu(z) =
η(z)

| η(z) | denote the unit vector in the direction of

η(z). Let t ∈ R be any real number such that eit = ηu(z). We say that
t is an angle between η(z) and the positive x-direction. This is also an
angle between η(z) and (1, 0). Note that any other real number θ such
that θ− t = 2πn for some integer n also gives us an angle between η(z)
and the positive x-direction. Thus, this angle really is an element in
the circle R/2πZ; i.e., it is well-defined up to an integral multiple of
2π.

Also, we may define a continuous function ζη : B → R from a small
open ball B about z in Ω into R so that for each w ∈ B, ζη(w) is an
angle between η(w) and the positive x-direction as follows. The map
ψ(t) = exp(it) from R onto the unit circle S1 = {z ∈ C :| z |2= 1} has
the property that for each interval U in S1 of length less than 2π, the
inverse image ψ−1(U) is a countable disjoint union of open intervals Vj

such that ψ : Vj → U is a homeomorphism. Pick a small open ball
Bε(z) about z so that for w ∈ Bε(z), the vector ηu(w) lies in a small
open interval U in S1. Then, take any of the open intervals V in R
such that ψ maps V homeomorphically onto U . Let ψ1 be the inverse
map for ψ | V , and define ζη(w) = ψ1(ηu(w)).

From the definition, we have

exp(ζη(w)i) = ηu(w).

Remark. A continuous map ψ : X → Y between topological spaces X
and Y with the property that each point y ∈ Y has an open neighborhood
U so that ψ−1U is a countable disjoint union of open sets in X each
of which is mapped homeomorphically by ψ onto U is called a covering
map. The study of such maps is an important part of the subject of
Algebraic Topology. We will not discuss this in detail here, but will
only extract the relevant methods.

If γ : [0, 1] → Ω is a continuous curve in Ω, we may find a continuous
function ζη,γ(t), 0 ≤ t ≤ 1 from [0, 1] to R so that ζη,γ(t) is the angle
from η(γ(t)) to the positive x-direction as follows. We pick a sequence
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0 = t0 < t1 < . . . < tn = 1 such that, for tj ≤ s ≤ tj+1 the unit vector
ηu(γ(s)) lies in an arc of length less than 2π in S1. Using the previous
construction, we can pick continuous maps ψj : [tj, tj+1] → R such that
exp(ψj(s)i) = ηu(γ(s)) for all s ∈ [tj, tj+1]. At given boundary point tj
with 0 < j < n we have that exp(ψj(tj)i) = exp(ψj+1(tj)i) = ηu(tj) so
the real numbers ψj(tj) and ψj+1(tj) differ by a multiple of 2π. At t1
we add a multiple of 2π to ψ1 so that the maps ψ0 and ψ1 agree at t1.
Then do this at each j = 2, . . . , n − 1 so that we have a well-defined
continuous map on the whole interval [0, 1].

Given a continuous curve γ : [0, 1] → Ω in Ω and a non-vanishing
vector field η in Ω, we define the angular variation of η along γ to be

jη(γ) =
1

2π
(ζη,γ(1)− ζη,γ(0))

for any such continuous function ζη,γ . This is well-defined (i.e., inde-
pendent of the choice of continuous angle function ζη,γ) for the following
reason.

Suppose ζη,γ and ζ ′η,γ are two such functions. Since exp(ζη,γ(t)i) =

exp(ζ ′η,γ(t)i) have the common value ηu(γ(t)), there is an integer n(t)
such that

ζη,γ(t) = ζ ′η,γ(t) + 2πn(t).

But, the function 2πn(t) is then continuous (it is the difference of two
continuous functions) and has values in the discrete set {2πm : m ∈ Z}.
So, the function 2πn(t) must be constant. That is, there is a constant
c such that

ζη,γ(t) = ζ ′η,γ(t) + c

for all t ∈ [0, 1]. It follows that the differences ζη,γ(1) − ζη,γ(0) and
ζ ′η,γ(1) − ζ ′η,γ(0) are equal. Hence, indeed, jη,γ is independent of the
choice of ζη,γ .

Fact 10.1. If η1 and η2 are C1, we can define ζη,γ by the formula

jη,γ =
1

2π

∫

γ

η1dη2 − η2dη1

η2
1 + η2

2

.

In any region in Ω in which η1 is non-zero, the above line integral is

the integral over γ of the 1-form α where α =
1

2π
d arctan(

η2

η1

). Analo-

gously, in a region in which η2 is non-zero, the line integral is that of

the 1-form α with α =
1

2π
darccot(

η1

η2

) over γ. Thus, the line integral

is the integral of a closed 1-form over γ.
If γ is a Jordan curve and η is a vector field which does not vanish

on γ, then jη(γ) is called the index of η with respect to γ.
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Definition 10.2. A C1 positively oriented Jordan curve in R2 is a C1

map γ : [a, b] → R2 from a closed real interval [a, b] such that

(1) γ(a) = γ(b), γ′(a) = γ′(b)
(2) γ(t) 6= γ(s) for a ≤ s < t ≤ b.

(3) If γ(t) = (x(t), y(t)), then x′(t)2 + y′(t)2 6= 0 for all t ∈ [a, b]
(4) There is an ε > 0 such that, for 0 < s < ε, and any t ∈ [a, b],

we have (x(t), y(t)) + s(−y′(t), x′(t)) lies in the bounded region
of the complement of the image of γ.

The interpretation of the last condition is that the normal vector to
γ at γ(t) points into the interior of γ.

Proposition 10.3. Let γ(t) : a ≤ t ≤ b be a Jordan curve in the
plane, and let ξ(t), η(t) be two continuous vector fields on γ which can
be deformed into one another without vanishing. Then, jξ(γ) = jη(γ).

Proof. To say that ξ(t) can be deformed into η(t) without vanishing
means that there is a continuous function ρ(t, s) defined for a ≤ t ≤
b, 0 ≤ s ≤ 1 such that ρ(t, 0) = ξ(t), ρ(t, 1) = η(t),∀t and ρ(s, t) 6= 0
for all (s, t), and ρ(a, s) = ρ(b, s) for all s. For instance, we can use
ρ(t, s) = (1 − s)ξ(t) + sη(t) if ξ(t) and η(t) never point in opposite
directions on γ.

Let φ(s) = jρ(·,s)(γ) for fixed s. then, φ is a continuous function of s.
Since it is integer valued, it must be constant. But, φ(1) = jη(γ) and
φ(0) = jξ(γ). ¤

Definition 10.4. Let γ1 and γ2 be two continuous closed curves in
R2, say γ1 : [0, 1] → R2, γ2 : [0, 1] → R2 are continuous maps with
γ1(0) = γ1(1), γ2(0) = γ2(1). We say γ1 is homotopic to γ2 if there is
a continuous function F : [0, 1]× [0, 1] → R2 such that F (t, 0) = γ1(t)
and F (t, 1) = γ2(t).

When γ1 is homotopic to γ2 we also say that γ1 can be continuously
deformed into γ2.

Definition 10.5. A region Ω is simply connected if every closed curve
in Ω is homotopic to a constant curve.

Thus, the region Ω is simply connected if and only if, for every
continuous function γ : [0, 1] → Ω such that γ(1) = γ(0), there is a
continuous function F : [0, 1]× [0, 1] → Ω such that F (t, 0) = γ(t) and
F (t, 1) = γ(0) = γ(1) for all t ∈ [0, 1].

There is another useful criterion for simply connectivity. A region Ω
is simply connected if and only if every continuous function from the
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unit circle S1 ⊂ R2 to Ω extends to a continous function on the closed
unit disk D2 ⊂ R2 to Ω.

Proposition 10.6. Let γ1 and γ2 be two Jordan curves which can
be continuously deformed into one another without passing through a
singularity of the vector field f . Then, jf (γ1) = jf (γ2)

The proof is similar to that of the previous proposition.

Definition 10.7. Let x0 be an isolated critical point of a C1 vector
field f in the plane. Let γ be a small C1 positively oriented Jordan
curve whose interior contains x0. The index jf (γ) of f with respect to
the curve γ is called the index of the critical point x0 (with respect to
the vector field f). It is denoted by Ind(f, x0) or jf (x0).

Note that if γ1, γ2 are two positively oriented C1 curves whose inte-
riors contain x0 and γ1 can be continuously deformed into γ2 without
passing through a critical point of f , then jf (γ1) = jf (γ2).

Hence the index is independent of the small positively oriented Jor-
dan curve chosen to calculate it.

Example. Sources and sinks have index +1, saddles have index −1.

Lemma 10.8. Let f be a C1 vector field which does not vanish on the
closure of the interior of a Jordan curve γ. Then, jf (γ) = 0.

Proof. Let A be the interior of γ (i.e., the bounded component of R2 \
γ). The set A is simply connected. So the curve can be continously
deformed to a very small Jordan curve γ1 in A. Note that if f = (f1, f2)
does not vanish in A, then f ′1

2 + f ′2
2 ≥ c > 0 and f1, f2, f ′1 and f ′2 are

bounded. So if γ1 is small enough, index jf (γ1) must be zero. ¤
Theorem 10.9 (Umlaufsatz). Let γ be a C1 positvely oriented Jordan

curve in the plane and let γ′ be its tangent vector field. Then,

jγ′(γ) = 1

Proof. Note that by similar arguments as in the proof of Proposi-
tion 10.3 and 10.6, if we deform the Jordan curve continuously, the
index jγ′(γ) does not change. So we may assume that the curve is a

circle of radius a given by γ = {(x, y) : x2 + y2 = a2}. Let x = a cos t

and y = a sin t. then the tangent vectors η(x, y) = γ′ are gvien by
x = a sin t and y = −a cos t. Hence by Fact 10.1,

jγ′(γ) =
1

2π

∫ 2π

0

a sin t · a sin t− (−a cos t) · a cos t

(a sin t)2 + (a cos t)2
= 1

This is what we need. ¤
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Proposition 10.10. Let γ be a non-trivial periodic orbit of a C1 planar
vector field. Then, γ is a Jordan curve. Let A be its interior. Then, f
has a critical point in A.

Proof. By the Umlaufsatz, jf (γ) = ±1 depending on whether γ is
positively or negatively oriented as a solution of the vector field f .
(Strictly speaking, if γ is given some parametrization so that it is pos-
itively oriented, then with respect to that parametrization, jf (γ) = 1.
This is true whether the parametrization as a solution makes γ posi-
tively or negatively oriented). If f had no critical points in A, then by
Lemma 10.8 jf (γ) = 0, which is a contradiction. ¤
Proposition 10.11. Let f be a C1 vector field with only finitely many
critical points x1, x2, . . . , xn in the interior of a positively oriented Jor-
dan curve γ. Then,

jf (γ) = Ind(f, x1) + . . . + Ind(f, xn)

Proof. Consider small positively oriented Jordan curves γi about xi in
the interior of γ. Join γ to each γi by an arc ηi so that the η′is are
disjoint. We may split the curves ηi into small arcs going in opposite
directions ηi1, ηi2 and use pieces of γ, γi with these new curves to get
a simple closed positively oriented curve γ̃ whose interior contains no
critical points. Thus, jf (γ̃) = 0.

But jf (γ̃) is approximately

jf (γ)−
n∑

i=1

Ind(f, xi).

Passing to the limit as the curves ηij approach ±ηi, proves the result.
¤

Definition 10.12. The standard n-simplex is the set ∆n = {x ∈
Rn+1 : x = (x0, . . . , xn), xi ≥ 0 ∀i, ∑i xi = 1}. A topological n-
simplex in Rp is the homeomorphic image of ∆n (or a homeomorphism
σ from ∆n into Rp).

Thus, a 0-simplex is a point, a 1-simplex is a homeomorphically
embedded line segment, a 2-simplex is a homeomorphically embedded
triangle, etc.

Definition 10.13. Suppose ∆n is the standard n−simplex. Its interior
is the set {x ∈ ∆n : xi > 0 ∀i}.

For 1 ≤ k ≤ n + 1, let Ak be the set of k-tuples i1 < i2 < . . . < ik
of distinct integers in 0, . . . , n. The (k − 1)-face in ∆n determined by
a k−tuple in Ak is the set of points x = (x0, x1, . . . xn) ∈ ∆n such that∑

1≤j≤k xij = 1.
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A 0-face is called a vertex and a 1-face is called an edge. An open
k-face is a k-face minus all of its (k − 1)-subfaces.

Thus, a 0-face is one of the ei’s, an edge is the line segment joining
a pair of distinct vertices, etc. Note that there is an affine embedding
from Rk+1 to Rn+1 (linear embedding plus translation) carrying the
standard k-simplex onto any k-face of ∆n.

If σ : ∆n → S is a representation of the topological n−simplex S,
then a k-face of S is the image by σ of a k−face of ∆n. Vertices of S
are images of vertices of ∆n, edges of S are images of edges of ∆n, etc.

A triangulation of a subset K of Rp is a collection of topological
simplexes T such that

(1)
⋃

σ∈T σ = K
(2) If σ ∈ T and τ is a face of σ, then τ ∈ T .
(3) If σ ∈ T and τ ∈ T , then σ

⋂
τ is a common face of both σ

and τ .

The dimension of an n-simplex is n. A triangulatable set is a set
which has some triangulation. If K can be triangulated by finitely
many simplexes, and the largest dimension of one of those simplexes is
n, we call K an n-complex.

Theorem 10.14. Let K be an n-complex. Let T1 and T2 be two finite
triangulations of K. For i = 1, 2, 0 ≤ j ≤ n, let bij be the number of
j−simplexes in Ti. Then,

χ(T1) ≡
n∑

j=0

(−1)jb1j =
n∑

j=0

(−1)jb2j ≡ χ(T2)

The number χ(Tj) is called the Euler characteristic of the triangu-
lation. From the theorem one can define the Euler characteristic of a
finite complex using the Euler characteristic of any of its triangulations.

This theorem will not be proved here. We only mention that a proof
can be given using the concept of homology. With this concept one
defines another number and shows that the Euler characteristic of any
triangulation equals this number, so any two must be equal.

We will be interested in 2-complexes. Then, we call the 2-faces sim-
ply faces, and we only have vertices, edges and faces among the sim-
plexes involved.

Example. The Euler characteristic of circles and annuluses are 1, and
Euler characteristic of disks and tori are 0.

Theorem 10.15. Suppose Ω is a bounded region in the plane bounded
by finitely many positively oriented Jordan curves γ1, . . . , γn. (such a
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region is called a multiply connected domain). Let Ω̄ = Ω
⋃

i γi be the
closure of Ω. Let f be a C1 vector field such that each boundary curve γi

is a periodic solution of f and the parametrizations by solutions make
γi positively oriented. Suppose in addition that f has only finitely many
critical points x1, . . . , xk in Ω. Then,

∑
i

Ind(f, xi) = χ(Ω̄).

Proof. Using the standard little cuts joining boundary curves, we see
that the sum of the indices of f at the critical points equals 2 - (number
of boundary curves). But this last number is the Euler characteristic
of Ω̄.

Here is an alternate proof. There is a single curve among the γ′is
such that all the others are in the interior region of this curve. Call
this curve γ1.

Construct a new vector field f̃ on the closure of the interior of γ1

(the outer curve) which equals f in the closure of the region Ω and adds
a single critical point pi of index +1 in the interior of each γi, i > 1.

Then, f̃ has the critical points xi, i ≥ 1, pj, j > 1 inside γ1. By a
previous theorem,

∑
i

Ind(f̃ , xi) +
∑

j

I(f̃ , pj) = jf̃ (γ1) = 1.

Hence,
∑

i

Ind(f, xi) = 1− (number of internal boundary curves)

= 2− (number of boundary curves).

¤

For a Jordan curve γ, let us write int γ for the bounded interior
region of the complement of γ.

Let f be a planar C1 vector field with an isolated critical point x0

and γ be a positively oriented C1 Jordan curve so that the only critical
point of f in (int γ)

⋃
γ is x0.

Let φ(t, x) be the local flow of f . A point y ∈ γ at which f is
tangent to γ is called an exterior tangency if there is an ε > 0 such that
φ(t, x) /∈ int γ for t ∈ (−ε, ε) \ {0}. Similarly, the point y of tangency
is an interior tangency if there is an ε > 0 such that φ(t, x) ∈ int γ for
t ∈ (−ε, ε) \ {0}.

In general, a tangency may be neither exterior nor interior.
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Suppose f has only finitely many tangencies with γ and they are all
interior or exterior. An interval I in γ between two such tangencies
will be called

(1) interior if its boundary points are both interior points
(2) exterior if its boundary points are both exterior points
(3) neutral if its boundary points consist of one interior and one

exterior tangency.

Theorem 10.16. Suppose that f and γ are as above and there are only
finitely many points of tangency of f and γ and all of these tangencies
are exterior or interior. Let Ni be the number of interior tangencies
and Ne be the number of exterior tangencies. Then,

(10.1) Ind(x0, f) = 1 +
1

2
(Ni −Ne).

Also, if Ñi is the number of interior intervals, and Ñe is the number
of exterior intervals, then

(10.2) Ind(x0, f) = 1 +
1

2
(Ñi − Ñe).

Proof. Let’s prove the second statement first.
Let y0, y1, . . . , yn be the tangencies of f at the curve γ, where γ is as

in the statement of the theorem and y0 = yn.
For 1 ≤ m ≤ n, let var(y0, ym, γ) be the angular variation of the

tangent vector to γ from y0 to ym, and let var(y0, ym, f) be the angular
variation of f from y0 to ym. Let

β(m) = var(y0, ym, f)− var(y0, ym, γ).

Note that if the interval [ym, ym+1] is

• interior: then β(m + 1)− β(m) = π,
• exterior: then β(m + 1)− β(m) = −π,
• neutral: then β(m + 1)− β(m) = 0.

Hence, if γ′ denotes the tangent vector field on γ, then

2π Ind(f, γ) = 2π Ind(γ′, γ) + β(n)

= 2π Ind(γ′, γ) +
n−1∑
i=0

β(i + 1)− β(i)

= 2π Ind(γ′, γ) + π(Ñi − Ñe).

Dividing both sides by 2π gives (10.2).
Now we turn to (10.1).
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First observe that if f has only internal or external tangencies, then,
Ni = Ñi and Ne = Ñe, so the result holds by (10.2).

So, we may assume that there are tangencies of both types, and
hence at least one neutral interval.

We say that f is internal on an open interval Ii = (yi, yi+1) if it
points into the interior of γ and otherwise we say that f is exterior on
Ii.

Note that in going across a tangency from one interval Ii to Ii+1, f
alternates from interior to exterior or vice-versa.

We want to prove (10.1) by induction on the number of tangencies.
Note that the statement only depends on the structure of f on the

curve γ, and not on how f behaves at points off γ.
Let Ii = (yi, yi+1) be a neutral interval. We squeeze Ii to a point

bringing its boundary points together, say to a point p. Doing this we
change f , say to f1 and γ, say to γ1. We can do this so that we reduce
the number of tangencies by one and create a tangency at p which
looks topologically like a point of “cubic contact.” After that we can
turn f1 slightly near p and remove the tangency at p entirely without
introducing any new tangencies. This entire procedure can be done
without changing the index of f and without changing the difference
Ñi − Ñe. Thus we will have produced a new vector field f2 on a new
curve γ1 such that

(a) f2 has only interior and exterior tangencies with γ1,
(b) jf1(γ1) = jf (γ), and

(c) Ñi(f2)− Ñe(f2) = Ñi(f)− Ñe(f).

By induction, we get our result.
Note also that we could continue this procedure and remove all neu-

tral intervals without changing either side of (10.1). ¤


