
11. Linear Differential Equations

Consider a differential equation of the form

(11.1) ẋ = A(t)x+ h(t)

where A(t) is a continuous real or complex n×n matrix valued function
and h(t) is a continuous n vector valued function. We assume that
A(t), h(t) are defined for all t ∈ (−∞,∞). Let V = Rn or Cn. We
assume both A(·), h(t) are V-valued.

Given an equation (11.1), the associated homogeneous equation is
the equation

(11.2) ẋ = A(t)x

It can be proved that every initial value problem for (11.1) has so-
lutions defined for all t.

Fact 11.1. (1) If x(t), y(t) are solutions of (11.1) with x(t0) =
y(t0), then z(t) = y(t)−x(t) is a solution of (11.2) with z(t0) =
0.

(2) If x(t) is a solution of (11.1) with x(t0) = x0, and z(t) is a
solution of (11.2) with z(t0) = 0, then y(t) = x(t) + z(t) is a
solution of (11.2) with y(t0) = x0.

Thus, if one knows all solutions of (11.2), and a particular solution
of (11.1), then one can get all solutions of (11.1).

The general solution of (11.1) is a vector valued expression

(11.3) ϕ(t, c)

involving a vector c = (c1, . . . , cn) of constants so that every solution
can be represented as (11.3) for a unique choice of the vector c.

We now study the general properties of equation (11.2).

Proposition 11.2. The set of solutions to (11.2) form an n-dimensional
linear subspace of the vector space of C1 dunctions from R to V.

Proof. Let S be the set of solutions. Clearly, S ⊂ C1(R,V).
(a) S is a linear subspace: Suppose x(t), y(t) are in S, and a, b are

scalars.
Then, z(t) = ax(t) + by(t) satisfies

ż(t) = aẋ(t) + bẏ(t) = aA(t)x(t) + bA(t)y(t) = A(t)z(t),

so, z(t) ∈ S.
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(b) S is n-dimensional: We need to find n solutions x1(t), . . . , xn(t)
such that every solutions can be uniquely expressed as

x(t) =
n∑

i=1

αixi(t),

where αi are scalars.
Let xi(t) be the unique solution such that xi(0) = ei where ei is the

i-th standard basis vector of V.
Let x(t) be an arbitrary solution of (11.2). Then, there are scalars

αi such that x(0) =
∑

i αiei. Consider y(t) =
∑

i αixi(t).
Then, both x(·), y(·) are solutions and they agree at t = 0. By

uniqueness of solutions, we have x(t) = y(t) for all t.
Now, if x(t) =

∑
i αixi(t) =

∑
i βixi(t) for all t, then this is true for

t = 0, so αi = βi ∀i since {ei} is a basis for V. �

A set {y1(t), . . . , yℓ(t)} of solutions to (11.2) is called linearly inde-
pendent if it is a linearly independent subset of C1(R,V). That is,
whenever

ℓ∑
i=1

αiyi(t) = 0 ∀t,

we have αi = 0 ∀i.
Since the set of solutions to (11.2) form an n-dimensional linear

subspace of the vector space of C1(R,V), there are at most n linearly
independent solutions.

Definition 11.1. A set of n solutions {y1, . . . , yn} to (11.2) is called
a fundamental set of solutions if it is a linearly independent set. The
matrix Φ(t) = (y1, . . . , yn), whose columns are the y′is, is called a funda-
mental matrix for the equation (11.2) if {y1, . . . , yn} is a fundamental
set of solutions.

Thus, a set {y1(t), . . . , yn(t)} is a fundamental set of solutions if and
only if the set form a basis for the subspace S of C1(R,V).

We now want a criterion for a set {y1(t), . . . , yn(t)} of solutions to
be a fundamental set.

For a set {v1, . . . , vn} of n vectors in a linear space V to be linearly
independent it is necessary and sufficient that

det(v1, . . . , vn) ̸= 0

But linear independence of functions is a slightly different condition.
The values of a set of vector valued functions {z1(t), . . . , zn(t)} might
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be a linearly independent set of vectors for some t′s and be a linearly
dependent set for other t′s. Thus, if we form the function

W (t) = W (z1(t), . . . , zn(t)) = det(z1(t), . . . , zn(t)),

we may have W (t) = 0 for some t′s and not zero for other t′s. It turns
out that this cannot happen if the zi(t) are all solutions of the same
homogeneous linear differential equation (11.2).

Definition 11.2. The determinant W (t) = W (y1(t), . . . , yn(t)) of the
set of solutions {y1, . . . , yn} is called the Wronskian of this set of solu-
tions.

Recall that the trace of an n× n matrix A = (aij) is

(11.4) trA = a11 + a22 + · · ·+ ann =
n∑

i=1

aii.

Proposition 11.3. Suppose {y1(t), . . . , yn(t)} are n solutions to (11.2),
and let W (t) = det(y1(t), . . . , yn(t)). Then, for any real number t0,

W (t) = W (t0) exp

(∫ t

t0

trA(s)ds

)
,

where trA(t) denotes the trace of the matrix A(t).

Corollary 11.4. Under the hypotheses of the proposition, if W (t) = 0
at a single t = t0, then W (t) is identically equal to zero.

We will give two diferent proofs. To proceed to the proofs of the
proposition, we need to use some facts about determinants, which are
stated in Appendix in the end of this section.

For a matrix valued funtion A(t) = (aij(x)), we denote by A′
k(t) the

matrix valued funtion obtaained from A(t) with the kth row differen-
tiated.

Proof 1 of Propostion 11.3. Let Φ(t) = (y1(t), . . . , yn(t)) be the ma-
trix whose column vectors are y1(t), . . . , yn(t). Note that if yi(t) =



11-4 October 26, 2014y1i(t). . .
yni(t)

 is a solution of (11.2), then ẏi(t) =

∑n
ℓ=1 a1ℓ(t)yℓi(t)
. . . . . .∑n

ℓ=1 anℓ(t)yℓi(t)

. So

detΦ′
1(t) = det


ẏ11(t) . . . ẏ1n(t)
y21(t) . . . y2n(t)
. . . . . . . . . . . . . . .
yn1(t) . . . ynn(t)



=det


∑n

ℓ=1 a1ℓ(t)yℓ1(t) . . .
∑n

ℓ=1 a1ℓ(t)yℓn(t)
y21(t) . . . y2n(t)
. . . . . .
yn1(t) . . . ynn(t)

 = a11(t)W (t),

where we use the properties of determinants stated in Lemma 11.7.
Similarly we can get the equality for detΦ′

i(t), i = 2, . . . , n,

detΦ′
i(t) = aii(t)W (t).

Hence by Lemma 11.8 in Appendix, we can get

d

dt
detW (t) =

( n∑
i=1

aii(t)
)
W (t) = tr(A(t))W (t).

Now it follows that W (t) = W (t0) exp

{∫ t

t0

trA(s)ds

}
. �

Proof 2 of Propostion 11.3. Let Φ(t) be the matrix whose columns are
the solutions y1(t), . . . , yn(t), so that we have the matrix equation

Φ′(t) = A(t)Φ(t).

Now, we have

Φ(t+ h) = Φ(t) + Φ′(t)h+ r(t, h)

=Φ(t) + A(t)Φ(t)h+ r(t, h) = (I + A(t)h)Φ(t) + r(t, h),

where r(t, h) is a matrix valued funtion satisfying

(11.5) lim
h→0

1

h
r(t, h) = 0.

Hence, we have

W (t+ h) = det
(
(I + A(t)h)Φ(t) + r(t, h)

)
.

Applying Corollary 11.11 for the matrices (I +A(t)h)Φ(t) and r(t, h),
we get

det
(
(I + A(t)h)Φ(t) + r(t, h)

)
= det

(
(I + A(t)h)Φ(t)

)
+ r1(t, h),
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where r1(t, h) is a real function satisfying |r1(t, h)| ≤ K|r(t, h)|. Hence
we have limh→0 r1(t, h)/h = 0 because of (11.5).

Using the fact that det(AB) = det(A) det(B) for all matrices A,B,
Lemma 11.9 gives

W (t+ h) = W (t)(1 + h trA(t) +O(h2)) + r1(t, h)

So if W (t) ̸= 0, then

W (t+ h)−W (t)

h
= W (t) trA(t) +

O(h2)

h
+
r1(t, h)

hW (t)
,

which implies W ′(t) = (trA(t))W (t). If W (t) = 0, then we have
W (t+ h) = r1(t, h), and

W (t+ h)−W (t)

h
=
r1(t, h)

h
,

which also gives W ′(t) = 0 = (trA(t))W (t). This is what we need. �

The above proposition gives that if the Wronskian is not zero for
some t, then it is not zero for any t.

Since the solution set of equation (11.2) is of n dimensional, a fun-
damental set of solutions determines all solutions of (11.2). In fact, the
general solution to (11.2) has the form

x(t) = Φ(t)c,

where Φ(t) is any fundamnental matrix for (11.2) and c is a constant
vector.

By the following theorem, the general solution of (11.1) can also
be obtained form a fundamental set of solutions of the corresponding
homogeneous equation (11.2).

Theorem 11.5. Suppose Φ(t) is a fundamental matrix for (11.2).
Then any particular solution x(t) for (11.1) has the form

x(t) = Φ(t)c+ Φ(t)

∫ t

t0

Φ(s)−1h(s)ds,

where c ∈ Rn is a vector satisfying x(t0) = Φ(t0)c.

Proof. We look for solution of the form

xp(t) = Φ(t)v(t),

where v(t) is some non-constant vector-valued function of t.
Then,

x′p = Φ′v + Φv′ = AΦv + Φv′.
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On the other hand,

x′p = Axp + h = AΦv + h.

So we should have
Φv′ = h.

Since Φ is invertible, we can write the equation as

v′ = Φ(t)−1h(t).

Integrating, gives

v(t) = c+

∫ t

t0

Φ(s)−1h(s)ds,

where c is chosen such that x(t0) = Φ(t0)c.
Now, take v(t) in this equation and reverse the steps. This gives us

x(t) = Φ(t)c+ Φ(t)

∫ t

t0

Φ(s)−1h(s)ds

�
This last formula is known as the variation of constants formula or

the variation of parameters formula.

Appendix

For a matrix valued funtion A(t) = (aij(x)), we denote by A′
k(t) the

matrix valued funtion obtaained from A(t) with the kth row differen-
tiated.

Let A = (aij) be an n×n matrix. LetMij denote the (n−1)×(n−1)
matrix obtained by deleting the ith row and jth column of A. The
minor of aij is the determinant of Mij, detMij, and the cofactor of aij
is Aij = (−1)i+j detMij.

The Laplace expansion, or cofactor expansion of the determinant of
a matrix is given by the following theorem.

Theorem 11.6. Suppose A = (aij) is an n × n matrix. Then its
determinant detA is given by

detA =ai1Ai1 + ai2Ai2 + · · ·+ ainAin

=a1jA1j + a2jA2j + · · ·+ anjAnj

=
n∑

k=1

aikAik =
n∑

k=1

akjAkj.

The following properties for determinants are well known.
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Lemma 11.7. Let A be a matrix.

(1) If a matrix B is obtained from A by multiplying a single row or
column of A by a constant c, then

det(B) = c det(A).

(2) If a matrix B is obtained from A by adding a multiple of one
row or column to another row or column, respectively, then

det(B) = det(A).

For a matrix valued funtion A(t) = (aij(t)), we denote by A′
k(t) the

matrix valued funtion obtaained from A(t) with the kth row differen-
tiated.

Lemma 11.8. Let A(t) = (aij(t)) be an n × n matrix valued funtion.
Then

d

dt
detA(t) = detA′

1(t) + detA′
2(t) + · · ·+ detA′

n(t) =
n∑

k=1

detA′
k(t).

Proof. If n = 2 and A(t) =

(
a11(t) a12(t)
a21(t) a22(t)

)
. Then

d

dt
detA(t) =

d

dt
(a11(t)a22(t)− a12(t)a21(t))

=(ȧ11(t)a22(t)− ȧ12(t)a21(t)) + (a11(t)ȧ22(t)− a12(t)ȧ21(t))

=

∣∣∣∣ȧ11(t) ȧ12(t)
a21(t) a22(t)

∣∣∣∣+ ∣∣∣∣a11(t) a12(t)
ȧ21(t) ȧ22(t)

∣∣∣∣ = detA′
1(t) + detA′

2(t)

For n > 2, we can use Laplace expansion for determinant

detA(t) = a11(t)A11(t) + · · ·+ a1n(t)A1n(t),

where A1j(t) is the cofactor of a1j(t), and then use induction. �

Recall that the trace of an n× n matrix A = (aij) is given in 11.4.
Let In denote the n× n identity matrix.
Let O(x) denote any function R(x) such that there is a constant

C > 0 such that

lim sup
x→0

R(x)

x
< C.

Lemma 11.9. Let A = (aij) by an n×n matrix, and let h > 0. Then,

det(In + hA) = 1 + h trA+O(h2).
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Proof. We use induction of n.
It is trivial for n = 1 since we can use the zero function for O(h2).
Assume the Lemma is true for n− 1.
Let B = In + Ah.
Using cofactor expansion down the first column of B gives

det(In + Ah) = (1 + a11(t)h)B11 +
n∑

i=2

(−1)1+jhai1Bi1,

where Bij is the cofactor of bij for matrix B, and has the form Bi1 =
(−1)i+1Mi1(B), where Mi1(B) is obtained by deleting the ith row and
the first column of B.

It is clear that

M11(B) = In−1 + hM11(A).

So, by induction, we have the first entry on the right side of () equals

(1 + ha11(t))(1 + h trM11(A) +O(h2))

=1 + ha11(t) + h trM11(A) +O(h2)

=1 + h trA+O(h2).

On the other hand, each entry in the sum in the second term in
equation () has an h in its first column. So, this whole sum is O(h2). �

We need a standard result from the calculus of maps from Rn to R.

Lemma 11.10. Let ψ : D → R be a C1 function defined on an open set
D ⊂ Rn, and let u be vectors in D. Then for any bounded neighborhood
U of u such that U ⊂ D, there is a constant K > 0 such that for any
v ∈ D with {u+ tv : 0 ≤ t ≤ 1} ⊂ U ,

| ψ(u+ v)− ψ(u) |≤ K | v | .

Proof. Let

K = max{∥Dψw∥ : w ∈ U}.
By continuity of Dψ and compactness of U , K <∞. Now we have

ψ(u+ v)− ψ(u) =

∫ 1

0

d

dt
ψ(u+ tv)dt =

∫ 1

0

Dψu+tv · vdt,

and therefore

∥ψ(u+ v)− ψ(u)∥ ≤
∫ 1

0

∥Dψu+tv∥dt · ∥v∥ ≤ K∥v∥

by the choice of K. �
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We now apply this to the determinant function, det(·), on n × n

matrices. We can think that matrices are elements of Rn2
, and define

the norm of an matrix by

| A |=| A |2= (
∑
i,j

a2ij)
1
2 .

Corollary 11.11. Let A be an n × n matrices. Then for any ϵ > 0,
there exist a constant K > 0 such that for any matrix B with | B |2< ϵ,

| det(A+B)− det(A) |≤ K | B |2
Proof. This is because the function det : Rn2 → R1 is a C1 function.
Then we use the above lemma. �


