
12. Linear Differential Equations with Constant
Coefficients

We now consider differential equations of the form

(12.1) ẋ = Ax

with A an n× n real or complex matrix.
If n = 1, then we know the general solution has the form

x(t) = eAtx0.

So, it is tempting to try to obtain a similar formula for the matrix case.
Consider the matrix power series

(12.2) I + A+
A2

2!
+

A3

3!
+ . . . .

The inequality | AB |≤| A || B | for n×nmatrices implies | Ak |≤| A |k.
Hence the series (12.2) converges to a unique matrix. We call this
matrix eA or exp(A).

It is easy to see that if A and B commute (i.e., AB = BA), then
eA+B = eA · eB.

Then, we can see that the matrix function etA defines a smooth
function of t and, for any constant vector x0, the function

(12.3) x(t) = etAx0

solves the initial value problem ẋ = Ax, x(0) = x0.
The matrix etA is a fundamental matrix for (12.1), since its columns

consist of solutions (with initial values ej, the standard unit vectors),
and its determinant is nowhere zero.

The form (12.3) of the solution to (12.1) is useful for many purposes,
but in some contexts it is useful to have other forms for the solutions
to (12.1).

Suppose that the matrix A is diagonalizable, that is, there exists a
nonsingular matrix X and n numbers λ1, . . . , λn such that

(12.4) D = X−1AX, or AX = XD,

where D = diag{λ1, . . . , λn} is a diagonal matrix.
Denote X = (x1, . . . , xn), where xj is the jth column vector of X.

The above equation gives that

A(x1, . . . , xn) = (x1, . . . , xn)D = (λ1x1, . . . , λnxn).

That is, the elements in the diagonal of D are the eigenvalues of A,
and the column vectors of X are the corresponding eigenvectors of A.

The first equation in (12.4) also gives

etD = X−1etAX, or etAX = XetD.
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Take the jth column of the last equality we have that

ϕj(t) := etAxj = eλjtxj

is a solutions of (12.1). Hence, (ϕ1(t), . . . , ϕn(t)) form a form a fun-
damental set of solutions since the eigenvectors x1, . . . , xn are linearly
independent. Thus, the general solution has the form

x(t) =
∑
j

αje
tλjxj.

Now we suppose that the eigenvalues of A are all real, but that they
are not necessarily distinct. Hence, A is not necessary diagonalizable.

Write the characteristic polynomial of A, p(λ) = det(λI − A) as

p(λ) = (λ− λ1)
m1 . . . (λ− λs)

ms

for somem1, . . . ,ms. The real numbers λ1, . . . , λs are the distinct eigen-
values of A, and

∑
j mj = n.

Denote
Vj = ker(A− λjI)

mj .

From linear algebra, we know that

p(A) = (A− λ1I)
m1 . . . (A− λsI)

ms = 0.

That is, for any vector v ∈ Rn, p(A)v = 0. Hence, there is a direct sum
decomposition

Rn = V1 ⊕ V2 ⊕ . . .⊕ Vs.

Also we have the following.

Fact 12.1. Vj have the following properties.

(1) A(Vj) ⊆ Vj, that is, Vj is invariant under A.
(2) dimVj = mj.
(3) For any 1 ≤ j ≤ s, there is an integer 0 < rj ≤ mj such that

for each v ∈ Vj, (A− λjI)
rj(v) = 0, and there is a v ∈ Vj such

that (A− λjI)
rj−1v ̸= 0.

(4) Vj consists of only eigenvalues if and only if rj = 1.

It is easy to see part (1), because if v ∈ Vj, then

(A− λjI)
mjAv = A(A− λjI)

mjv = A0 = 0,

hance Av ∈ Vj. Also, part (3) and (4) are obvious.
The subspace Vj is called the generalized eigenspace of A correspond-

ing to the eigenvalue λj.
In the case that the matrixA is diagonalizable, each Vj is the eigenspace

of λj and rj = 1. In particular, if all the eigenvalues are distinct, then
dimVj = 1 and rj = 1 for any 1 ≤ j ≤ n.
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To find the general solution of (12.1), it suffices to find n linearly
independent solutions. For this purpose, it suffices to work in each
generalized eigenspace Vj.

For each j, denote Nj = A−λjI. Then Vj is the set of vectors v such
that there is a positive integer 1 ≤ r = rj ≤ mj such that N r

j v = 0.
Note that Vj ) {0} since the eigenvectors corresponding to λj are in
Vj.

Lemma 12.2. For any v ∈ Vj with N rj−1v ̸= 0, v,Njv, . . . , N
rj−1v

are linearly independent.

Proof. Suppose

c0v + c1Njv + . . .+ crj−1N
rj−1
j v = 0.

Apply N
rj−1
j we get c0N

rj−1v = 0. Since N
rj−1
j v ̸= 0, we have c0 = 0.

Hence we have

c1Njv + . . .+ crj−1N
rj−1
j v = 0.

Apply N
rj−2
j , . . . , Nj, we get c1 = . . . = crj−2 = 0, and then crj−1. �

Definition 12.1. A subspace W of a vector space is called a cyclic
subspace for a linear transformation N if there are a vector w ∈ W
and a positive integer r such that N r−1w ̸= 0, N rw = 0, and W =
span(w,Nw,N2w, . . . , N r−1w).

In this case, w is called a cyclic generator of W of order a.

We also call W a cyclic subspace of order r.

Remark. (1) A cyclic subspace W is invariant under N . That is,
Nv ∈ W for any v ∈ W .

(2) If w is a cyclic generator of W of order r, then the vectors
w,Nw, . . . , N r−1w form a basis for W . This is because by
Lemma 12.2, the set of vectors form a linearly independent set.

Definition 12.2. An operator N is called nilpotent on a vector space
V , if Na = 0 for some integer r > 0. That is, there is a positive integer
m such that N rv = 0 for all v ∈ Vj.

We will use the following theorem in algebra.

Theorem 12.3. If N is a nilpotent operator on a finite dimensional
vector space V , then V is a direct sum of cyclic subspaces. More pre-
cisely, there are cyclic subspaces W1,W2, . . . ,Wk and positive integers
r1, . . . , rk such that Wi is cyclic of order ri and

V = W1 ⊕W2 ⊕ . . .⊕Wk.
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Let us apply this theorem to the subspaces Vj and operators Nj =
A− λjI above. The operator Nj is nilpotent on Vj. So we may write

Vj = Wj1 ⊕Wj2 ⊕ . . .⊕Wjk,

where each Wji is cyclic of order ri. Let wi be a generator for Nj on
Wji. Then, the set {N l

jwi : 0 ≤ l < ri, 1 ≤ i ≤ k} is a basis for Vj.
Next, let us indicate how we can obtain the general solution to (12.1)

in a single cyclic subspace Wji of Nj.
To simplify the notation, assume thatW = Wji, m = ri = dimW, λ =

λj, N = Nj|W . Then, A|W has only the eigenvalue λ, this eigenvalue
has multiplicity m, and N = A− λI. The vector w = wi is in W , and
the vectors w,Nw,N2w, . . . , Nm−1w form a basis for W .

Lemma 12.4. The functions

xm−j(t) = etλ

(
m−1∑

k=m−j

tk−m+j

(k −m+ j)!
Nkw

)
for j = 1, . . . ,m form a fundamental set of solutions of of ẋ = Ax on
W .

Before giving the proof, let us write the solutions

x0(t), x1(t), . . . , xm−1(t)

in a more extended form:

xm−1(t) = eλtNm−1w,

xm−2(t) = eλt
(
Nm−2w + tNm−1w

)
,

xm−3(t) = eλt
(
Nm−3w + tNm−2w +

t2

2!
Nm−1w

)
,

...

x0(t) = eλt
(
w + tNw + . . .+

tm−1

(m− 1)!
Nm−1w

)
.

Proof of Lemma 12.4. The vectors w,Nw, . . . , Nm−1w are linearly in-
dependent in W .

If we show the functions xm−j(t) are solutions, then it follows that
they are linearly independent since their values at t = 0 are the inde-
pendent vectors w,Nw, . . . , Nm−1w.

But, the function xm−j(t) has the form

xm−j(t) = et(λI+N)Nm−jw = etANm−jw,

which is a solution of (12.1). �



November 7, 2014 12-5

Remark 12.5. In general to apply the above results one needs to first
find a cyclic vector w of order r for the subspace W . If λ is an eigen-
value of multiplicity k of A, and ker(A− λI) is one dimensional, then
there is a simple procedure to find a cyclic vector for A − λI on W .
Let w0 be any eigenvector for A associated to λ which is in the image
of A − λI, and in general, if wi−1 is in ker(A − λI)i for some i < k,
let wi be such that (A − λI)wi = wi−1. Then, wk−1 is a cyclic vector
for A− λI on W , and {wk−1, . . . w1, w0} form a basis for W .

Now, suppose that A has some complex eigenvalues, but is a real
matrix.

If µ is a complex eigenvalue of A, and the corresponding eigenvector
is w, where w is a vector in Cn, then the equation ż = Az has complex
solutions

z(t) = eµtw and z(t) = eµtw.

Hence, the equation ẋ = Ax has solutions

Re(eµtw) and Im(eµtw).

In general, if µ is a complex eigenvalue of multiplicity k, then we
can decompose W = ker(A − µI)k into cyclic subspaces and get basis
(w,Nw, . . . N r−1w) for each cyclic subspace, where r is the dimension of
the cyclic subspace. Then we can get solutions zr−1(t), . . . , z1(t), z0(t).
The real parts and imaginary parts of the solutions are the solutions
to the equation ẋ = Ax.

Examples.

1. x′ = −2x

y′ = y

Here the matrix A is

(
−2 0
0 1

)
, the eigenvalues are −2, 1, and the

general solution is

x̄(t) = e−2t

(
c1
0

)
+ et

(
0
c2

)
.

The critical point 0 is called a saddle.

2. x′ = 2x− y

y′ = x+ y
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The matrix A is

(
2 −1
1 1

)
. The characteristic polynomial is λ2 −

3λ+ 3, and the eigenvalues are λ =
3

2
± i

√
3

2
.

Letting λ =
3

2
+ i

√
3

2
, we have the matrix equation

(A− λI)

(
v1
v2

)
=

(
0
0

)
.

This gives (2 − λ)v1 = v2, so that a complex eigenvalue is (v1, v2) =
(1, 2− λ).

We get a complex solution of the form

x̄c(t) =eλt
(

1
2− λ

)
= e(

3
2
+i

√
3

2
t)

(
1

1
2
− i

√
3
2

)
=e(

3
2
+i

√
3

2
t)

([
1
1
2

]
+ i

[
0

−
√
3
2

])
.

The real and imaginary parts of this are

Re =e
3
2
t

(
cos(

√
3

2
t)

[
1
1
2

]
− sin(

√
3

2
t)

[
0

−
√
3
2

])
,

Im =e
3
2
t

(
cos(

√
3

2
t)

[
0

−
√
3
2

]
+ sin(

√
3

2
t)

[
1
1
2

])
.

3.
x′ = 2x

y′ = 2y

The matrix A is

(
2 0
0 2

)
. The characteristic polynomial is (λ−2)2,

and the only eigenvalue is 2.
The general solution is

x(t) = c1e
2t

(
1
0

)
+ c2e

2t

(
0
1

)
.

4.
x′ = x+ y

y′ = y
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The matrix is A =

(
1 1
0 1

)
. We have

etA =

(
et 0
0 et

)[
I + t

(
0 1
0 0

)]
=

[
et tet

0 et

]
.

So the general solution is

x(t) = etA
(

c1
c2

)
=

[
c1e

t + c2te
t

c2e
t

]
.

5. x′ = 3x+ 11y + 5z

y′ = −x− y − z

z′ = 2x+ z

The matrix is A =

 3 11 5
−1 −1 −1
2 0 1

. The characteristic polyno-

mial is

p(λ) = λ3 − 3λ2 + 4 = (λ− 2)2(λ+ 1).

The eigenvalue λ = 2:

Let N = A − 2I. Then, N =

 1 11 5
−1 −3 −1
2 0 −1

 with rank(N) = 2,

and N2 =

 0 −22 −11
0 −2 −1
0 22 11

 with rank(N)2 = 1.

The vector v =

 1
−1
2

 is in ker(N). The vector w =

 1
0
0


satisfies Nw = v. We get two linearly independent solutions in ker(N2)
by

e2tv, e2t(w + tNw).

The eigenvalue λ = −1:

Let N = A + I. Then, N =

 4 11 5
−1 0 −1
2 0 2

, rank(N) = 2, and

ker(N) is one-dimensional.

The vector v =

 −1
− 1

11
1

 is in the kernel of N , so is an eigenvector

for A associated to λ = −1.
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A fundamental set of solutions, then, is the set

e2t

 1
−1
2

 , e2t(I + tN)

 1
0
0

 , e−t

 −1
− 1

11
1

 ,

where

N =

 1 11 5
−1 −3 −1
2 0 −1

 .

Appendix: Jordan canonical form

Recall that the characteristic polynomial of an n×nmatrix A, p(λ) =
det(λI − A), can be written as

p(λ) = (λ− λ1)
m1 . . . (λ− λs)

ms ,

for somem1, . . . ,ms with
∑

j mj = n, where the real numbers λ1, . . . , λs

are the distinct eigenvalues of A.
If we denote Vj = ker(A−λjI)

mj . then there is a direct sum decom-
position

Rn = V1 ⊕ V2 ⊕ . . .⊕ Vs,

where dimVj = mj. For each j, 1 ≤ j ≤ s, Vj is a direct sum of cyclic
subspace of Rn

Vj = Wj1 ⊕Wj2 ⊕ . . .⊕Wjtj ,

where each Wji is cyclic of order rji with respect to the operator Nj =
A− λjI, and

∑
i rji = mj.

Moreover, on each Wji, there exists a vector w = wji, a cyclic gen-
erator, such that the set

(12.5) {N rji−1
j w, . . . , Njw, w}

form a basis for Wji. Hence, if we take this basis, the matrix represen-
tation of the operator is a Jordan block

(12.6) Bji =


λj 1 0 . . . 0 0
0 λj 1 . . . 0 0
...
0 0 0 . . . λj 1
0 0 0 . . . 0 λj
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restricted to Wji. So if we take basis of the form (12.5) for each Wji,
then restricted to Vj, the matrix has the form

(12.7) Jj =


Bj1 0 . . . 0 0
0 Bj2 . . . 0 0
...
0 0 . . . 0 Bjtj

 .

A Jordan form of the matrix A is

J = diag(J1, . . . , Js).

If a matrix A has complex eigenvalues λj, then the Jordan form is
a complex matrix. Now we consider the case that A is an n × n real
matrix and it has complex eigenvalues λj.

The complex eigenvalues come in complex conjugate pairs

µ1, µ1, µ2, µ2, . . . , µk, µk,

where µj = λj + iκj, µj = λj − iκj, and i =
√
−1.

If µ = λ + iκ is a complex eigenvalue of A, with corresponding
eigenvector w = u + iv, then w = u− iv is a eigenvector of A belongs
to the eigenvalue µ = λ− iκ. That is,

A(u+ iv) = (λ+ iκ)(u+ iv), A(u− iv) = (λ− iκ)(u− iv).

Hence we get that

Au = ReA(u+ iv) = Re(λ+ iκ)(u+ iv) = λu− κv,

Av = ImA(u+ iv) = Im(λ+ iκ)(u+ iv) = κu+ λv.

So if we take (u, v) as a basis in the subspace W = span(v, u) spanned
by u and v, then restricted to W , A has the form

(12.8)

(
λ −κ
κ λ

)
.

In general, if W is a cyclic subspace for N = A − µI, where µ =
λ + iκ is a complex eigenvalue of A, then there is a cyclic subspace
W for N = A − µI with r = dimN = dimN . In this case, if w =
u + iv ∈ W is a cyclic generator of W for the nilpotent operator N ,
then w = u − iv ∈ W is a cyclic generator of W for N . Hence we
have A(Nkw) = µNkw + Nk+1w for k = 1, . . . r − 2 and A(N r−1w) =
µN r−1w +N rw = µN r−1w, and therefore

A(ReNkw) = ReA(Nkw) = λReNkw − κ ImNkw +ReNk+1w,

A(ImNkw) = ImA(Nkw) = κReNkw + κ ImNkw + ImNk+1w,
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for k = 1, . . . r − 2 and

A(ReN r−1w) = ReA(N r−1w) = λReN r−1w − κ ImN r−1w,

A(ImN r−1w) = ImA(N r−1w) = κReN r−1w + κ ImN r−1w.

So if we take

{ReN r−1w, ImN r−1w, . . . , ReNw, ImNw, Rew, Im v}
as a basis for W ⊕W , then restricted to W ⊕W , the Jordan block has
the form

(12.9) Bji =


M I 0 . . . 0 0
0 M I . . . 0 0
...
0 0 0 . . . M I
0 0 0 . . . 0 M

 ,

where M =

(
λ −κ
κ λ

)
and I =

(
λ 0
0 1

)
.


