
13. Linear Periodic Systems

Consider the homogeneous linear periodic system

(13.1) ẋ = A(t)x, A(t+ T ) = A(t), ∀t ∈ R,
where T > 0 and A(t) is a continuous n × n real or complex matrix
which is periodic of period T in t.

We will prove that there is a nonsingular periodic transformation
of variables of period T or 2T taking (??) into a linear differential
equation with constant coefficients.

We begin with some properties of eA for a matrix A. We assume
that all matrices we mention below are n× n matrices.

Fact 13.1. (1) ea · eB = eA+B if AB = BA.

(2) P−1eAP = eP
−1AP for any nonsingular matrix P .

Proof. The proof can be obtained directly from the definition. �
Recall that a matrix N is nilpotent if Nk = 0 for some k ≥ 1.

Lemma 13.2. Suppose A = C + N for some nonsingular matrix C
and nilpotent matrix N such that CN = NC. If there exists a matrix
D such that C = eD, then there exists a matrix B such that A = eB.

Proof. Since C is nonsingular, we can write

(13.2) A = C +N = C(I + C−1N).

Since CN = NC, if Nk = 0, then (C−1N)k = C−kNk = 0.

Note that if s = log(1 + a) = a− 1

2
a2 +

1

3
a3 + . . ., then 1 + s = ea.

So we take

(13.3) S = C−1N − 1

2
(C−1N)2 + . . .+

(−1)n−1

n− 1
(C−1N)(n−1).

Then it is easy to check

I + C−1N = eS.

Hence, by Fact 13.1 (1), (13.2) implies

S = eD · eS = eD+S.

So the result follows with B = D + S. �
Lemma 13.3. (a) If A is an n × n complex matrix with detA ̸= 0,
then there is a complex matrix B such that A = eB.

(b) If A is an n × n real matrix, then there is a real matrix B such
that A = eB if and only if detA ̸= 0 and A is a square, that is, there
is a real matrix C such that A = C2.
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Proof. By Fact 13.1 (2), we only need to consider the case that A is of
a Jordan form J . This is because if A = P−1JP for some nonsingular
matrix P , then J = eB implies A = eP

−1BP .
(a) Let J be a complex Jordan form of A, and Λ be the diagonal

matrix that has the same diagonal elements with J . Since A is nonsin-
gular, so are J and Λ.

Let N = J − Λ. Clearly, N is a nilpotent matrix and ΛN = NΛ.
Since Λ is a nonsingular diagonal matrix, the elements on the diag-

onal are all nonzero. Hence, it is easy to see that there is a complex
diagonal matrix D such that Λ = eD. By the above lemma we get that
J = EB for some matrix B.

(b) The necessity is easy since we simply take C = e
1
2
B, and observe

that det(eB) ̸= 0 for any B if A = eB.
For sufficiency, we take a real Jordan form of A, that is, if λ is a

real eigenvalue of A, then the corresponding Jordan has the form as in
(12.6) and (12.7), and if µ = λ+iκ, λ, κ ∈ R, is a complex eigenvalue of
A, then the corresponding Jordan has the form as in (12.9) and (12.7).

Then we take Λ such that on each Jordan block Λ has the form λI
if the block is corresponding a real eigenvalue λ of A, and the form
diag(M, . . . ,M) if the block is corresponding to a complex eigenvalue
µ = λ + iκ of A where M is a 2× 2 matrix as in (12.8). Then denote
N = J − Λ. Clearly N is a nilpotent matrix and ΛN = NΛ.

If λ > 0, then λI = e(log λ)I .
If λ < 0, then restricted to the general eiganspace V = ker(J −λI)k,

where k is the algebraic multiplicity of λ. By abusing the notations
we can regard a matrix as a linear transformation. We have det J |V =
detA|V = detC2|V > 0. So the dimension of V must be even and λ
has even multiplicity k = 2m. Note that there exists a 2 × 2 matrix
D1 such that eD1 = λI2, where I2 is a 2 × 2 matrix. Hence if we take
the k × k matrix B1 = diag{D1, . . . , D1}, we have eB1 = λIk.

If λ = λ+iκ is a complex number, then on the corresponding Jordan
block, Λ has the form diag{M, . . . ,M}, where M is a 2×2 matrix given
in (12.8). Since we can find a 2× 2 matrix D2 such that eD2 = M , we
have that eB2 = diag{M, . . . ,M}, where B2 = diag{D2, . . . , D2}.

Hence we get that there is an n× n matrix D such that eD = λ. By
Lemma 13.2, we obtain the result. �

Theorem 13.4 (Floquet). Every fundamental matrix Φ(t) for (13.1)
has the form

(13.4) Φ(t) = P (t)eBt
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where P (t) is a periodic matrix of period T and B is a constant matrix
(which may by complex). We may always obtain (13.1) with a real
matrix B where P (t) has period 2T .

Proof. Let Φ(t) be a fundamental matrix for (13.1).
Then, letting u = u(t) = t+ T , and using A(t+ T ) = A(t), we get

d

dt
Φ(t+ T ) =

d

du
Φ(u) = A(u)Φ(u)

=A(t+ T )Φ(t+ T ) = A(t)Φ(t+ T ).

So, Φ(t + T ) is also a solution matrix. Since it is nonsingular, it is a
fundamental matrix. Thus, there is a nonsingular matrix A such that

(13.5) Φ(t+ T ) = Φ(t)A,

and A is a real matrix if Φ(t) is real. By Lemma 13.3, there is a
(possibly complex) matrix B such that eBT = A.

Now, letting P (t) = Φ(t)e−Bt we get Φ(t) = P (t)eBt and

P (t+ T ) = Φ(t+ T )e−B(t+T ) = Φ(t)e−Bt = P (t).

In order to choose B to be real, we simply need the matrix A to be
a square of some real matrix. But by (13.5), we have

Φ(t+ 2T ) = Φ(t+ T + T ) = Φ(t+ T )A = Φ(t)A2.

Thus, replacing T by 2T in (13.5), we may obtain a real matrix B
such that e2TB = A2. Repeating the above argument then gives the
result. �
Corollary 13.5. There is a nonsingular periodic transformation of
variables of period T or 2T taking (13.1) into a linear differential equa-
tion with constant coefficients.

Proof. Let P (t), B be as above, and set x = P (t)y.
We may choose P (t) to be of period T or 2T as above.
Then,

ẋ = Ṗ y + P ẏ = Ax = APy.

So,

APy = Ṗ y + P ẏ.

But, P = Φe−Bt, or PeBt = Φ, so

Ṗ eBt + PBeBt = APeBt,

or

Ṗ + PB = AP,
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or
APy = (AP − PB)y + P ẏ,

or
PBy = P ẏ,

or By = ẏ since P is non-singular. �


