13. Linear Periodic Systems

Consider the homogeneous linear periodic system

$$
\begin{equation*}
\dot{x}=A(t) x, \quad A(t+T)=A(t), \quad \forall t \in \mathbb{R}, \tag{13.1}
\end{equation*}
$$

where $T>0$ and $A(t)$ is a continuous $n \times n$ real or complex matrix which is periodic of period T in t.

We will prove that there is a nonsingular periodic transformation of variables of period T or $2 T$ taking (??) into a linear differential equation with constant coefficients.

We begin with some properties of e^{A} for a matrix A. We assume that all matrices we mention below are $n \times n$ matrices.

Fact 13.1. (1) $e^{a} \cdot e^{B}=e^{A+B}$ if $A B=B A$.
(2) $P^{-1} e^{A} P=e^{P^{-1} A P}$ for any nonsingular matrix P.

Proof. The proof can be obtained directly from the definition.
Recall that a matrix N is nilpotent if $N^{k}=0$ for some $k \geq 1$.
Lemma 13.2. Suppose $A=C+N$ for some nonsingular matrix C and nilpotent matrix N such that $C N=N C$. If there exists a matrix D such that $C=e^{D}$, then there exists a matrix B such that $A=e^{B}$.

Proof. Since C is nonsingular, we can write

$$
\begin{equation*}
A=C+N=C\left(I+C^{-1} N\right) . \tag{13.2}
\end{equation*}
$$

Since $C N=N C$, if $N^{k}=0$, then $\left(C^{-1} N\right)^{k}=C^{-k} N^{k}=0$.
Note that if $s=\log (1+a)=a-\frac{1}{2} a^{2}+\frac{1}{3} a^{3}+\ldots$, then $1+s=e^{a}$. So we take

$$
\begin{equation*}
S=C^{-1} N-\frac{1}{2}\left(C^{-1} N\right)^{2}+\ldots+\frac{(-1)^{n-1}}{n-1}\left(C^{-1} N\right)^{(n-1)} . \tag{13.3}
\end{equation*}
$$

Then it is easy to check

$$
I+C^{-1} N=e^{S} .
$$

Hence, by Fact 13.1 (1), (13.2) implies

$$
S=e^{D} \cdot e^{S}=e^{D+S} .
$$

So the result follows with $B=D+S$.
Lemma 13.3. (a) If A is an $n \times n$ complex matrix with $\operatorname{det} A \neq 0$, then there is a complex matrix B such that $A=e^{B}$.
(b) If A is an $n \times n$ real matrix, then there is a real matrix B such that $A=e^{B}$ if and only if $\operatorname{det} A \neq 0$ and A is a square, that is, there is a real matrix C such that $A=C^{2}$.

$$
13-1
$$

Proof. By Fact 13.1 (2), we only need to consider the case that A is of a Jordan form J. This is because if $A=P^{-1} J P$ for some nonsingular matrix P, then $J=e^{B}$ implies $A=e^{P^{-1} B P}$.
(a) Let J be a complex Jordan form of A, and Λ be the diagonal matrix that has the same diagonal elements with J. Since A is nonsingular, so are J and Λ.

Let $N=J-\Lambda$. Clearly, N is a nilpotent matrix and $\Lambda N=N \Lambda$.
Since Λ is a nonsingular diagonal matrix, the elements on the diagonal are all nonzero. Hence, it is easy to see that there is a complex diagonal matrix D such that $\Lambda=e^{D}$. By the above lemma we get that $J=E^{B}$ for some matrix B.
(b) The necessity is easy since we simply take $C=e^{\frac{1}{2} B}$, and observe that $\operatorname{det}\left(e^{B}\right) \neq 0$ for any B if $A=e^{B}$.

For sufficiency, we take a real Jordan form of A, that is, if λ is a real eigenvalue of A, then the corresponding Jordan has the form as in (12.6) and (12.7), and if $\mu=\lambda+i \kappa, \lambda, \kappa \in \mathbb{R}$, is a complex eigenvalue of A, then the corresponding Jordan has the form as in (12.9) and (12.7).

Then we take Λ such that on each Jordan block Λ has the form λI if the block is corresponding a real eigenvalue λ of A, and the form $\operatorname{diag}(M, \ldots, M)$ if the block is corresponding to a complex eigenvalue $\mu=\lambda+i \kappa$ of A where M is a 2×2 matrix as in (12.8). Then denote $N=J-\Lambda$. Clearly N is a nilpotent matrix and $\Lambda N=N \Lambda$.

If $\lambda>0$, then $\lambda I=e^{(\log \lambda) I}$.
If $\lambda<0$, then restricted to the general eiganspace $V=\operatorname{ker}(J-\lambda I)^{k}$, where k is the algebraic multiplicity of λ. By abusing the notations we can regard a matrix as a linear transformation. We have $\left.\operatorname{det} J\right|_{V}=$ $\left.\operatorname{det} A\right|_{V}=\left.\operatorname{det} C^{2}\right|_{V}>0$. So the dimension of V must be even and λ has even multiplicity $k=2 m$. Note that there exists a 2×2 matrix D_{1} such that $e^{D_{1}}=\lambda I_{2}$, where I_{2} is a 2×2 matrix. Hence if we take the $k \times k$ matrix $B_{1}=\operatorname{diag}\left\{D_{1}, \ldots, D_{1}\right\}$, we have $e^{B_{1}}=\lambda I_{k}$.

If $\lambda=\lambda+i \kappa$ is a complex number, then on the corresponding Jordan block, Λ has the form $\operatorname{diag}\{M, \ldots, M\}$, where M is a 2×2 matrix given in (12.8). Since we can find a 2×2 matrix D_{2} such that $e^{D_{2}}=M$, we have that $e^{B_{2}}=\operatorname{diag}\{M, \ldots, M\}$, where $B_{2}=\operatorname{diag}\left\{D_{2}, \ldots, D_{2}\right\}$.

Hence we get that there is an $n \times n$ matrix D such that $e^{D}=\lambda$. By Lemma 13.2, we obtain the result.

Theorem 13.4 (Floquet). Every fundamental matrix $\Phi(t)$ for (13.1) has the form

$$
\begin{equation*}
\Phi(t)=P(t) e^{B t} \tag{13.4}
\end{equation*}
$$

where $P(t)$ is a periodic matrix of period T and B is a constant matrix (which may by complex). We may always obtain (13.1) with a real matrix B where $P(t)$ has period $2 T$.
Proof. Let $\Phi(t)$ be a fundamental matrix for (13.1).
Then, letting $u=u(t)=t+T$, and using $A(t+T)=A(t)$, we get

$$
\begin{aligned}
\frac{d}{d t} \Phi(t+T) & =\frac{d}{d u} \Phi(u)=A(u) \Phi(u) \\
& =A(t+T) \Phi(t+T)=A(t) \Phi(t+T)
\end{aligned}
$$

So, $\Phi(t+T)$ is also a solution matrix. Since it is nonsingular, it is a fundamental matrix. Thus, there is a nonsingular matrix A such that

$$
\begin{equation*}
\Phi(t+T)=\Phi(t) A, \tag{13.5}
\end{equation*}
$$

and A is a real matrix if $\Phi(t)$ is real. By Lemma 13.3, there is a (possibly complex) matrix B such that $e^{B T}=A$.

Now, letting $P(t)=\Phi(t) e^{-B t}$ we get $\Phi(t)=P(t) e^{B t}$ and

$$
P(t+T)=\Phi(t+T) e^{-B(t+T)}=\Phi(t) e^{-B t}=P(t)
$$

In order to choose B to be real, we simply need the matrix A to be a square of some real matrix. But by (13.5), we have

$$
\Phi(t+2 T)=\Phi(t+T+T)=\Phi(t+T) A=\Phi(t) A^{2}
$$

Thus, replacing T by $2 T$ in (13.5), we may obtain a real matrix B such that $e^{2 T B}=A^{2}$. Repeating the above argument then gives the result.

Corollary 13.5. There is a nonsingular periodic transformation of variables of period T or $2 T$ taking (13.1) into a linear differential equation with constant coefficients.

Proof. Let $P(t), B$ be as above, and set $x=P(t) y$.
We may choose $P(t)$ to be of period T or $2 T$ as above.
Then,

$$
\dot{x}=\dot{P} y+P \dot{y}=A x=A P y .
$$

So,

$$
A P y=\dot{P} y+P \dot{y} .
$$

But, $P=\Phi e^{-B t}$, or $P e^{B t}=\Phi$, so

$$
\dot{P} e^{B t}+P B e^{B t}=A P e^{B t},
$$

or

$$
\dot{P}+P B=A P
$$

13-4
November 13, 2014
or

$$
A P y=(A P-P B) y+P \dot{y},
$$

or $P B y=P \dot{y}$,
or $B y=\dot{y}$ since P is non-singular.

