13. Linear Periodic Systems

Consider the homogeneous linear periodic system

(13.1)
$$\dot{x} = A(t)x, \qquad A(t+T) = A(t), \qquad \forall t \in \mathbb{R},$$

where T > 0 and A(t) is a continuous $n \times n$ real or complex matrix which is periodic of period T in t.

We will prove that there is a nonsingular periodic transformation of variables of period T or 2T taking (??) into a linear differential equation with constant coefficients.

We begin with some properties of e^A for a matrix A. We assume that all matrices we mention below are $n \times n$ matrices.

Fact 13.1. (1) $e^a \cdot e^B = e^{A+B}$ if AB = BA. (2) $P^{-1}e^AP = e^{P^{-1}AP}$ for any nonsingular matrix P.

Proof. The proof can be obtained directly from the definition.

Recall that a matrix N is nilpotent if $N^k = 0$ for some $k \ge 1$.

Lemma 13.2. Suppose A = C + N for some nonsingular matrix C and nilpotent matrix N such that CN = NC. If there exists a matrix D such that $C = e^{D}$, then there exists a matrix B such that $A = e^{B}$.

Proof. Since C is nonsingular, we can write

(13.2)
$$A = C + N = C(I + C^{-1}N).$$

Since CN = NC, if $N^k = 0$, then $(C^{-1}N)^k = C^{-k}N^k = 0$.

Note that if $s = \log(1+a) = a - \frac{1}{2}a^2 + \frac{1}{3}a^3 + \dots$, then $1 + s = e^a$. So we take

(13.3)
$$S = C^{-1}N - \frac{1}{2}(C^{-1}N)^2 + \ldots + \frac{(-1)^{n-1}}{n-1}(C^{-1}N)^{(n-1)}.$$

Then it is easy to check

$$I + C^{-1}N = e^S.$$

Hence, by Fact 13.1(1), (13.2) implies

$$S = e^D \cdot e^S = e^{D+S}.$$

So the result follows with B = D + S.

Lemma 13.3. (a) If A is an $n \times n$ complex matrix with det $A \neq 0$, then there is a complex matrix B such that $A = e^{B}$.

(b) If A is an $n \times n$ real matrix, then there is a real matrix B such that $A = e^B$ if and only if det $A \neq 0$ and A is a square, that is, there is a real matrix C such that $A = C^2$.

Proof. By Fact 13.1 (2), we only need to consider the case that A is of a Jordan form J. This is because if $A = P^{-1}JP$ for some nonsingular matrix P, then $J = e^B$ implies $A = e^{P^{-1}BP}$.

(a) Let J be a complex Jordan form of A, and Λ be the diagonal matrix that has the same diagonal elements with J. Since A is nonsingular, so are J and Λ .

Let $N = J - \Lambda$. Clearly, N is a nilpotent matrix and $\Lambda N = N\Lambda$.

Since Λ is a nonsingular diagonal matrix, the elements on the diagonal are all nonzero. Hence, it is easy to see that there is a complex diagonal matrix D such that $\Lambda = e^{D}$. By the above lemma we get that $J = E^{B}$ for some matrix B.

(b) The necessity is easy since we simply take $C = e^{\frac{1}{2}B}$, and observe that $\det(e^B) \neq 0$ for any B if $A = e^B$.

For sufficiency, we take a real Jordan form of A, that is, if λ is a real eigenvalue of A, then the corresponding Jordan has the form as in (12.6) and (12.7), and if $\mu = \lambda + i\kappa$, $\lambda, \kappa \in \mathbb{R}$, is a complex eigenvalue of A, then the corresponding Jordan has the form as in (12.9) and (12.7).

Then we take Λ such that on each Jordan block Λ has the form λI if the block is corresponding a real eigenvalue λ of A, and the form diag (M, \ldots, M) if the block is corresponding to a complex eigenvalue $\mu = \lambda + i\kappa$ of A where M is a 2 × 2 matrix as in (12.8). Then denote $N = J - \Lambda$. Clearly N is a nilpotent matrix and $\Lambda N = N\Lambda$.

If $\lambda > 0$, then $\lambda I = e^{(\log \lambda)I}$.

If $\lambda < 0$, then restricted to the general eiganspace $V = \ker(J - \lambda I)^k$, where k is the algebraic multiplicity of λ . By abusing the notations we can regard a matrix as a linear transformation. We have det $J|_V =$ det $A|_V = \det C^2|_V > 0$. So the dimension of V must be even and λ has even multiplicity k = 2m. Note that there exists a 2 × 2 matrix D_1 such that $e^{D_1} = \lambda I_2$, where I_2 is a 2 × 2 matrix. Hence if we take the $k \times k$ matrix $B_1 = \operatorname{diag}\{D_1, \ldots, D_1\}$, we have $e^{B_1} = \lambda I_k$.

If $\lambda = \lambda + i\kappa$ is a complex number, then on the corresponding Jordan block, Λ has the form diag $\{M, \ldots, M\}$, where M is a 2×2 matrix given in (12.8). Since we can find a 2×2 matrix D_2 such that $e^{D_2} = M$, we have that $e^{B_2} = \text{diag}\{M, \ldots, M\}$, where $B_2 = \text{diag}\{D_2, \ldots, D_2\}$.

Hence we get that there is an $n \times n$ matrix D such that $e^D = \lambda$. By Lemma 13.2, we obtain the result.

Theorem 13.4 (Floquet). Every fundamental matrix $\Phi(t)$ for (13.1) has the form

(13.4)
$$\Phi(t) = P(t)e^{Bt}$$

13-2

where P(t) is a periodic matrix of period T and B is a constant matrix (which may by complex). We may always obtain (13.1) with a real matrix B where P(t) has period 2T.

Proof. Let $\Phi(t)$ be a fundamental matrix for (13.1).

Then, letting u = u(t) = t + T, and using A(t + T) = A(t), we get

$$\begin{aligned} \frac{d}{dt}\Phi(t+T) = & \frac{d}{du}\Phi(u) = A(u)\Phi(u) \\ = & A(t+T)\Phi(t+T) = A(t)\Phi(t+T). \end{aligned}$$

So, $\Phi(t+T)$ is also a solution matrix. Since it is nonsingular, it is a fundamental matrix. Thus, there is a nonsingular matrix A such that

(13.5)
$$\Phi(t+T) = \Phi(t)A,$$

and A is a real matrix if $\Phi(t)$ is real. By Lemma 13.3, there is a (possibly complex) matrix B such that $e^{BT} = A$.

Now, letting $P(t) = \Phi(t)e^{-Bt}$ we get $\Phi(t) = P(t)e^{Bt}$ and

$$P(t+T) = \Phi(t+T)e^{-B(t+T)} = \Phi(t)e^{-Bt} = P(t).$$

In order to choose B to be real, we simply need the matrix A to be a square of some real matrix. But by (13.5), we have

$$\Phi(t + 2T) = \Phi(t + T + T) = \Phi(t + T)A = \Phi(t)A^{2}.$$

Thus, replacing T by 2T in (13.5), we may obtain a real matrix B such that $e^{2TB} = A^2$. Repeating the above argument then gives the result.

Corollary 13.5. There is a nonsingular periodic transformation of variables of period T or 2T taking (13.1) into a linear differential equation with constant coefficients.

Proof. Let P(t), B be as above, and set x = P(t)y. We may choose P(t) to be of period T or 2T as above. Then,

 $\dot{x} = \dot{P}y + P\dot{y} = Ax = APy.$

So,

$$APy = \dot{P}y + P\dot{y}.$$

But, $P = \Phi e^{-Bt}$, or $Pe^{Bt} = \Phi$, so
 $\dot{P}e^{Bt} + PBe^{Bt} = APe^{Bt},$

or

$$\dot{P} + PB = AP$$
.

or

$$APy = (AP - PB)y + P\dot{y},$$

or

$$PBy = P\dot{y},$$

or $By = \dot{y}$ since P is non-singular.

13-4