
The Grobman-Hartman theorem

Now that we have studied the structure of solutions to linear differ-
ential equations in general, we wish to use that theory to study the
local structure of the solutions to non-linear systems.

If X is a Cr vector field, r ≥ 1, defined in an open set U ⊂ Rn, and
x0 ∈ U is a non-singular point (i.e., X(x0) 6= 0), then we have seen that
there is a Cr change of coordinates which takes solutions near x0 to
straight lines. Thus, it remains to describe the solutions near a critical
point. If the derivative A = DXx0 of X at x0 has eigenvalues with real
parts different from zero, we will see, that after a continuous change of
coordinates, the structure of solutions of X near x0 is the same as that
of the linear system ẏ = Ay near 0.

14.1. Definitions and Statements of the Theorems. We now make
the relevant definitions.

Let X be a Cr vector field as above with r ≥ 1 with a critical point
at x0 (i.e., X(x0) = 0). Let A be the derivative of X at x0. Thus,
A : Rn → Rn is a linear map whose matrix in the standard coordinates
on Rn is the Jacobian matrix of X at x0.

Definition 14.1. The critical point x0 of X is called hyperbolic if the
eigenvalues of A = DXx0 all have non-zero real parts.

Recall that the local flow of of a Cr, r ≥ 1, vector field X near x0

is the function η(t, x) defined in a neighborhood V of (0, x0) in Rn+1

such that

(1) η(0, x) = x for (0, x) ∈ V ;
(2) t → η(t, x) is a solution to the differential equation ẋ = X(x)

defined in a neighborhood of t = 0.

We also use the notation ηt for the local flow η(t, x). We sometimes
call ηt the local flow of the differential equation ẋ = X(x) as well. We
will also use the term integral curve of the vector field X for a solution
curve.

Definition 14.2. A linear map L : Rn → Rn is called hyperbolic if its
(possibly complex) eigenvalues have norm different from one.

Example. (1) The map L induced by the 2× 2 matrix

[
2 1
1 1

]
.

(2) L = eA, where A is a linear map whose eigenvalues have non-
zero real parts.

If L is a hyperbolic linear map of Rn, then there is a direct sum
decomposition Rn = Es ⊕ Eu such that
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(1) L(Es) = Es and L(Eu) = Eu;
(2) the eigenvalues of L|Es have norm less than 1 and those of L|Eu

have norm greater than 1.

In fact, we can take Es = ⊕|λi|<1Vi and Eu = ⊕|λi|>1Vi, where Vi be the
general eigenspace corresponding eigenvalue λi, i.e. Vi = ker(L−λiI)mi

and mi is the algebraic multiplicity of λi.

Definition 14.3. Let X be a Cr vector field defined in a neighborhood
of x0 in Rn having x0 as a critical point. Let DXx0 be the derivative of
X at x0. A C0 linearization of X near x0 is a homeomorphism h from
a neighborhood U of x0 in Rn to a neighborhood of 0 such that if ηt is
the local flow of X near x0, then hηth

−1 is the local flow of the linear
differential equation ẏ = DXx0 · y near 0.

One may similarly define Ck linearizations of a Cr vector field X
for 1 ≤ k ≤ r by requiring that h be a Ck diffeomorphism from a
neighborhood of x0 to a neighborhood of 0.

Theorem 14.1. [Grobman-Hartman] Suppose x0 is a hyperbolic criti-
cal point of the C1 vector field X. Then X has a C0 linearization near
x0.

For smooth linearizations, one has the following result.

Theorem. Suppose that L is linear map on Rn. Let λ1, λ2, . . . , λn

be the eigenvalues of L. For each positive integer k, there is a positive
integer N(k) with the following property. Suppose that for each 1 ≤ i ≤
n and each n-tuple (m1,m2, . . . , mn) of non-negative integers satisfying
2 ≤ ∑

1≤j≤n mj ≤ N(k), we have λi 6=
∑

1≤j≤n mjλj.

Then, any CN(k) vector field X with X(x0) = 0 and DXx0 = L has
a local Ck linearization near x0.

Note that as a corollary of the Grobman-Hartman theorem, we can
get that for a hyperbolic critical point x0 of a C1 vector field X in Rn,
if all the eigenvalues of the derivative L = DXx0 have negative real
parts, then x0 is asymptotically stable. If L has at least one eigenvalue
with positive real part, then x0 is unstable. The statement and the
meaning of stablility are in the next section.

We will proceed toward the proof of Theorem14.1. Note that we may
assume that both X and L have local flows defined for | t |≤ 1.

In the course of the proof, it will be necessary to first linearize the
time-one map η1 of X near x0. So, we first study the relevant lineariza-
tion theorem for local diffeomorphisms.

Definition 14.4. Let f be a C1 diffeomorphism from a neighborhood
U of x0 in Rn into Rn with f(x0) = x0. The fixed point x0 is called
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hyperbolic if all the eigenvalues of Dfx0 have absolute values with norm
different from one; i.e, Df0 is a hyperbolic linear map.

Fact. If a critical point x0 of a vecter field f is hyperbolic, and φt is
the local flow, then Dφt(x0) is hyperbolic for any t ∈ R \ {0}.
Theorem 14.2. [Grobman-Hartman theorem for local diffeomorphisms]
Suppose x0 is a hyperbolic fixed point of the local C1 diffeomorphism f
defined on a neighborhood U of x0 in Rn. Let L = Dfx0. There is a
neighborhood U1 ⊆ U of x0 and a homeomorphism h from U1 into Rn

such that h(x0) = 0 and hf(x) = Lh(x) for x ∈ U1

⋂
f−1U1.

Note that an equivalent formulation of

hf(x) = Lh(x) for x ∈ U1

⋂
f−1U1

is
hfh−1(y) = L(y) for h−1(y) ∈ U1

⋂
f−1U1

so the formulas in both theorems are analogous.

Remark. (1) The proofs we will give of the above theorems are
valid if Rn is replaced by a Banach space.

(2) A map h as in Theorem 2 is called a C0 linearization of f . One
may define Ck linearizations analogously for k ≥ 1.

Let U be an open subset of Rn and let g : U → Rn be a mapping.
Recal that g is Lipschitz (or Lipschitz continuous) if there is a constant
K > 0 such that

sup
x 6=y

| g(x)− g(y) |
| x− y | ≤ K < ∞.

When g is Lipschitz, the Lipschitz constant of g is given by Lip(g) =

sup
x 6=y

| g(x)− g(y) |
| x− y | .

Note that if g is C1 and M = supx | Dxg |, then g is Lipschitz and
Lip(g) = M . That is, the maximum of the norms of the derivatives of
a C1 map g equals the Lipschitz constant of g.

We will develop some machinery to prove Theorem 14.2. Then we
will give a proof of Theorem 14.1.

Let us first note that, replacing f(x) by f(x + x0) − x0, we may
assume x0 = 0.

Proposition 14.3. Suppose L : Rn → Rn is a hyperbolic linear map.
There is an ε > 0 depending on L such that the following holds.

If φ1, φ2 : Rn → Rn are Lipschitz maps such that

(14.1) || φi ||0 ≤ ε, Lip(φi) < ε,
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then there is a unique continuous map h = hφ1φ2
: Rn → Rn such that

h− id is a bounded continuous map and

(L + φ1) ◦ h = h ◦ (L + φ2).

Let us first assume the proposition and prove Theorems 14.2 and 14.1.

Proof of Theorems 14.2. Take L = D0f , and then take ε > 0 as in
Proposition 14.3. Then take δ > 0 as in Propostion 14.10, and suppose
f itself satisfies the conclusion (1)-(3) in the propostion. Denote φ =
f−L. Then φ satisfies (14.1). Let ζ denote the zero map, i.e. ζ(x) = 0
for all x.

By Propostion 14.3, there is a unique map h = h
ζφ of bounded

distance from the identity such that

Lh = hf.

To prove that h is a homeomorphism, we apply Propostion 14.3 again
to get a unique map h′ = hφζ

of bounded distance from the identity

such that
fh′ = h′L.

This gives us fh′h = h′Lh = h′hf . So, h′h is a continuous map and
h′h− id is bounded. By uniqueness of the solution to fh = hf , we have
h′h = id. Similarly, hh′L = Lh′h, and by uniqueness of the solutions
to hL = Lh, we have hh′ = id.

Thus, h is a homeomorphism and Theorem 14.2 is proved with the
neighborhood U1 = Bδ/2(x0). ¤
Proof of Theorems 14.1. (It is left as an exercise.) ¤
14.2. Norms for Linear Maps. Before we prove Proposition 14.3,
we introduce some lemmas concerning properties of linear maps.

Lemma 14.4. Suppose H : V → V is a bounded linear self-map of the
Banach space V with | H |< 1. Let I denote the identity map, Ix = x.
Then, I −H is an isomorphism and

(14.2) | (I −H)−1 |≤ 1

1− | H |
Proof. Let T =

∑∞
i=0 H i. Then, T is a bounded linear operator, and

(I −H)T = T (I −H) = I.

Therefore, I −H is an isomorphism with inverse T .
Moreover,

| (I −H)−1 | = | T | ≤
∞∑
i=0

| H |i =
1

1− | H | .
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This is what we need. ¤
Lemma 14.5. If V = V1 ⊕ V2 is a direct sum decomposition of the
Banach space V , and H : V → V is an isomorphism such that H(Vi) =
Vi for i = 1, 2, || H | V1 || < 1, and || H−1 | V2 || < 1, then I −H is an
isomorphism.

If V is given the maximum norm, then

(14.3) | (I −H)−1 |≤ max

(
1

1− |H|V1| ,
|H−1|V2|

1− |H−1|V2|
)

.

Proof. For u = u1 + u2 with ui ∈ Vi, define

T (u) = T (u1 + u2) =
∞∑
i=0

H i(u1) +
(
−

∞∑
i=1

H−i(u2)
)
.

Then, (I −H)T = T (I −H) = I. ¤
Lemma 14.6. Suppose L : Rn → Rn is a linear map all of whose eigen-
values have norm less than one. Let τ1 = sup{| λ |: λ is an eigenvalue of L}.
Let τ ∈ (τ1, 1). Then there is a new norm || · || on Rn such that
|| L(v) || ≤ τ || v || for all v ∈ Rn. That is, with respect to the norm
|| · || on L induced by the norm || · || on Rn, we have || L || < τ .

Proof. Using the fact that L = S +N where S is semi-simple (complex
diagonalizable) and N is nilpotent, one sees that there is a constant
C > 0 such that m ≥ 0 implies that | Lmv |≤ Cτm | v | for all v ∈ Rn.
Thus, for each v, the quantity α(v) = sup{|Lmv|τ−m : m ≥ 0} is finite.
Set ‖v‖ = α(v). Then it is easy to see that || · || is a norm on Rn.

On the other hand,

|| Lv || = sup(| LmLv | τ−m : m ≥ 0)

=ττ−1 sup(| LmLv | τ−m : m ≥ 0})
=τ sup({| LmLv | τ−m−1 : m ≥ 0})
=τ sup({| Lm+1v | τ−m−1 : m ≥ 0})
=τ sup({| Lmv | τ−m : m ≥ 1}) ≤ τ || v ||.

This gives || L || < τ . ¤
Remark. If we were dealing with a Banach space E instead of Rn, we
would just let τ1 be the spectral radius of the operator L above.

Lemma 14.7. Suppose L : Rn → Rn is a linear hyperbolic isomor-
phism. That is, no eigenvalues of L have norm 1. Let τ ∈ (0, 1) be
such that the eigenvalues of L inside the unit circle have norm less
than τ , and those outside the unit circle have norm great then τ−1.
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Then, there is a direct sum decomposition Rn = V1 ⊕ V2 and a new
norm || · || on Rn such that

(14.4) L(V1) = V1, L(V2) = V2,

and the norm induces a norm || · || such that

(14.5) ‖L | V1‖ < τ, ‖L−1 | V2‖ < τ.

Proof. Let Rn = V1 ⊕ V2 be the direct sum decomposition such that
L|V1 has eigenvalues less than τ in norm, and L|V2 has eigenvalues
greater than τ−1 in norm. Note that L−1|V2 has eigenvalues of norm
less than τ . By Lemma 3, there are norms || · ||1 and || · ||2 on V1 and
V2, respectively, such that (14.5) holds. For v = (v1, v2) with vi ∈ Vi,
let || v || = max(|| v1 ||, || v2 ||). ¤

14.3. Proof of the Main Proposition.

Proof of Proposition 14.3. We consider that h has the form h = id +u.
For φ1, φ2 : Rn → Rn with Lip(φi) < ε, we show that the equation

(14.6) (L + φ1) ◦ (id +u) = (id +u) ◦ (L + φ2)

has a unique solution u ∈ C0
b (Rn,Rn):={u ∈ C0(Rn,Rn): u is bounded}

Equation (14.6) is equivalent to

L ◦ id +L ◦ u + φ1 ◦ (id +u) = L + φ2 + u1 ◦ (L + φ2)

or

(14.7) u− L−1u ◦ (L + φ2) = L−1φ2 − L−1φ1 ◦ (id +u).

Let H : C0
b (Rn,Rn) → C0

b (Rn,Rn) be defined by

H(v) = L−1 ◦ v ◦ (L + φ2),

and let H1 = I −H with I the identity transformation of C0(Rn,Rn).
Then, both H and H1 are bounded linear maps, and equation (14.7)
becomes

(14.8) H1(u) = L−1φ2 − L−1φ1 ◦ (id +u1).

By Lemma 14.8 below, we can write (14.7) as

u =H−1
1 (L−1φ2 − L−1φ1 ◦ (id +u))

=H−1
1 (L−1φ2)−H−1

1 (L−1φ1 ◦ (id +u))

which means we want a fixed point in C0
b (Rn,Rn) of the map

T : v → H−1
1 (L−1φ2)−H−1

1 (L−1φ1 ◦ (id +v))
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We show that T is a contraction if ε is small. In fact,

|| Tu− Tv ||0 =|| H−1
1 (L−1φ1 ◦ (id +v))−H−1

1 (L−1φ1 ◦ (id +u)) ||0
≤|| H−1

1 |||| L−1 |||| φ1 ◦ (id +u)− φ1 ◦ (id +v) ||0
≤|| H−1

1 |||| L−1 ||(Lip(φ1))|| u− v ||0.
So, if

Lip(φ1)|| L−1 || 1

1− τ
< 1,

then T is a contraction.
This completes the proof of Proposition 14.3. ¤

Lemma 14.8. H1 is an isomorphism and || H−1
1 || ≤ 1

(1− τ)
.

Proof. Note that by the Lipschitz Inverse Function Theorem below, for
ε small, (L + φ2)

−1 exists and is Lipschitz. This gives that H is an
isomorphism with inverse v → L ◦ v ◦ (L + φ2)

−1.
Let V̄i = C0

b (Rn, Vi) for i = 1, 2. Then we have C0
b (Rn,Rn) = V̄1⊕ V̄2,

H(V̄i) = V̄i, i = 1, 2, ‖H|V̄2‖ < τ , and ‖H−1|V̄1‖ < τ . Thus, H
is hyperbolic on C0

b (Rn,Rn). By Lemma 14.5 we have that H1 is an

isomorphism and || H1 || ≤ 1

1− τ
. ¤

Theorem (Lipschitz Inverse Function Theorem). Let (V, | · |) be a Ba-
nach space, and suppose f : V → V is 1-1, onto, and Lipschitz with
Lipschitz inverse. There is an ε > 0 such that if g = f + φ where φ
is Lipschitz with || φ ||0 < ε and Lip(φ) < ε, then g is 1-1, onto, and
Lipschitz with Lipschitz inverse.

Proof. (It is left as an exercise.) ¤
14.4. Appendix: Bump Functions.

Lemma 14.9. There is a C∞ function α : R→ [0, 1] such that

(1) α(u) = 1 for u ≤ 1

2
;

(2) α(u) = 0 for u ≥ 1.

Proof. Let

φ(u) =

{
exp(− 1

( 1
2
−u)(u−1)

) for 1
2

< u < 1;

0 otherwise.

Then φ is C∞.
Let

ψ(u) =

∫ u

−∞ φ(s) ds
∫ 1

−∞ φ(s) ds
.
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Then ψ is C∞, and

ψ(u) =

{
0 for u ≤ 1

2
;

1 for u ≥ 1,

and ψ(u) ∈ [0, 1] for all u.
Let α(u) = 1− ψ(u). Then, α has the required properties. (Details

left as an exercise.) ¤

Let f be as in the statement of Theorem14.2. Our next lemma will
show that we may assume there is a δ > 0 such that f is defined on all
of Rn, f(x) = L(x) for | x |≥ δ and Lip(f − L) (on all of Rn) is small.

Proposition 14.10. Suppose x0 is a fixed point of the local C1 diffeo-
morphism f defined on a neighborhood U of x0 in Rn with L = Dfx0.
For any ε > 0, there are a δ > 0 and a C1 diffeomorphism f1 : Rn → Rn

such that

(1) f1(x) = L(x) for | x |≥ δ

(2) f1(x) = f(x) for | x |≤ δ
2

(3) Lip(f1 − L) < ε and || f1 − L ||0 < ε.

Here, || f1 − L ||0 = supx∈Rn | f1(x)− L(x) |.
Proof. Let ε1 ∈ (0, 1), and let δ1 ∈ (0, 1) be small enough so that

(a) f is defined for | x |≤ δ1;
(b) || Dx(f − L) || < ε1; and
(c) | f(x)− L(x) |< ε1δ1 for | x |≤ δ1.

Let α be as in Lemma 14.9, and let K = supu∈R | α′(u) |.
Let γ(x) = α( |x|

δ1
). Note that | Dxγ |≤ K

δ1
for all x.

Now,

γ(x) =





1 for | x |≤ δ1

2
;

0 for | x |≥ δ1.

Let

f1(x) = γ(x)f(x) + (1− γ(x))L(x)

= L(x) + γ(x)(f(x)− L(x)).

Note that f1 is the γ-average of f and L.
Now, (f1 − L)(x) = γ(x)(f(x)− L(x)), so

|| f1 − L ||0 = sup
x
| γ(x)(f(x)− L(x)) |

≤ sup
|x|≤δ1

| f(x)− L(x) |≤ ε1
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Also,

|| Dx(f1 − L) || = | Dxγ · (f(x)− L(x)) + γ(x)(Dxf − L) |
≤ || Dxγ || | f(x)− L(x) | +|| Dxf − L ||0
≤ K

δ1

ε1δ1 + ε1

Note that we use the notation Dxγ · (f(x)− L(x)) for the map v →
Dxγ(v)(f(x)− L(x)).

Now, given ε ∈ (0, 1), choose ε1 ∈ (0, 1) small enough so that
max(ε1, Kε1 + ε1) < ε. ¤


