
2. Linear Transformations and Fixed Point Theorems

2.1. Linear Transformations.

Definition 2.1. Let X ,Y be Banach spaces. A mapping f : X → Y is
linear if it satisfies the following two properties:

(1) f(x + y) = f(x) + f(y) for all x, y ∈ X
(2) f(αx) = αf(x) for all x ∈ X , α ∈ R.

A linear map is also called a linear transformation.

Definition 2.2. A linear map f : X → Y is called bounded if there is
a constant C > 0 such that |f(x)| ≤ C|x| for all x ∈ X .

Fact 2.1. Linear maps have the following properties.

(1) A linear map is bounded if and only if it is continuous.
(2) The linear map f is bounded if and only if sup

|x|≤1

|f(x)| is finite.

(3) The quantity sup
|x|≤1

|f(x)| is also equal to sup
|x|=1

|f(x)|.
(4) Every linear map whose domain is finitely dimensional linear

space is bounded (hence continuous).

If f is a bounded linear map (transformation), we set |f | = sup
|x|=1

|f(x)|.
This defines a norm in the space L(X ,Y) of bounded linear maps from
X to Y , making it into a Banach space also.

bigskip

2.2. Fixed Point Theorems. Many existence theorems for differen-
tial equations can be reduced to fixed point theorems in appropriate
function spaces. Here we will discuss a few relevant results.

Let X be a metric space and let T : X → X be a mapping. A fixed
point of T is a point x ∈ X such that T (x) = x.

A self-map T of a metric space X is called a contraction (or contrac-
tion map) if there is a constant 0 < λ < 1 such that

d(Tx, Ty) ≤ λd(x, y) ∀x, y ∈ X .

Thus, T : X → X is a contraction if and only it is Lipschitz with
Lipschitz constant less than 1.

Theorem 2.2 (Contraction Mapping Theorem). Suppose X is a com-
plete metric space and T : X → X is a contraction map. Then, T has
a unique fixed point x̄ in X .

Moreover, if x is any point in F , then the sequence of iterates x, Tx,
T 2x, . . . converges to x̄ exponentially fast.
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Proof. (Uniqueness) If 0 < λ < 1 is the contraction constant for T and
Tx = x, Ty = y, then

d(x, y) = d(Tx, Ty) ≤ λd(x, y)

which implies that d(x, y) = 0. This in turn implies that x = y.
(Existence) Take any x ∈ X and let x0 = x, xi = T ix for i > 0.

Then,

d(xn+1, xn) ≤ λd(xn, xn−1) ≤ . . . ≤ λnd(x1, x0) ∀n ≥ 1.

Thus, for m > n,

d(xm, xn) ≤d(xm, xm−1) + d(xm−1, xm−2) + . . . + d(xn+1, xn)

≤(λm−1 + λm−2 + . . . + λn)d(x1, x0)

=
λn(1− λm−n)

1− λ
d(x1, x0)

≤Cλnd(x1, x0),

(2.1)

where C = 1/(1− λ).
This implies that the sequence {xi}i=1,2,... is a Cauchy sequence. By

completeness of X , it converges, say to an element x̄ of X . But, since
T is continuous,

T (x̄) = T ( lim
n→∞

xn) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x̄,

so, T (x̄) = x̄. This proves the existence.
Since (2.1) holds for any m ≥ n, let m →∞ we get

d(x̄, xn) ≤ Cλnd(x1, x0).

The fact λ ∈ (0, 1) gives that the convergence is exponential. ¤
The preceding theorem gives a useful sufficient condition for the ex-

istence of fixed points in a wide variety of situations. It is frequently
useful to know when such fixed points depend continuously on param-
eters. This leads us to the next result.

Definition 2.3. Let Λ be a topological space (e.g. a metric space), and
let X be a complete metric space. A map T from Λ into the space of
maps M(X ,X ) is called a continuous family of self-maps of X if the
map T̄ (λ, x) = T (λ)(x) is continuous as a map from the product space
Λ×X to X .

The map T is called a uniform family of contractions on X if it is a
continuous family of self-maps of X and there is a constant 0 < α < 1
such that

d(T̄ (λ, x), T̄ (λ, y)) ≤ αd(x, y)

for all x, y ∈ X , λ ∈ Λ.



September 9, 2013 2-3

Thus, the continuous family is a uniform family of contractions if and
only if all the maps in the family have the same upper bound α < 1
for their Lipschitz constants.

Given the family T as above, we define the map Tλ : X → X by

Tλ(x) = T (λ)(x) = T̄ (λ, x)

Theorem 2.3. If T : Λ → M(X ,X ) is a uniform family of con-
tractions on X , then each map Tλ has a unique fixed point xλ which
depends continuously on λ. That is, the map λ → xλ is a continuous
map from Λ into X .

Proof. Let g(λ) be the fixed point of the map Tλ which exists since the
map Tλ is a contraction.

For λ1, λ2 ∈ Λ, we have

d(g(λ1), g(λ2)) =d(Tλ1
g(λ1), Tλ2

g(λ2))

≤d(Tλ1
g(λ1), Tλ1

g(λ2)) + d(Tλ1
g(λ2), Tλ2

g(λ2))

≤αd(g(λ1), g(λ2)) + d(Tλ1
g(λ2), Tλ2

g(λ2)).

This implies that

d(g(λ1), g(λ2)) ≤ (1− α)−1d(Tλ1
g(λ2), Tλ2

g(λ2)).

Since the map λ → Tλg(λ2) is continuous for fixed λ2, we see that
λ → g(λ) is continuous. ¤

There is another useful criterion for the existence of fixed points of
transformations in Banach spaces.

Let X be a Banach space. Let x, y ∈ X. The line segment in X
from x to y is the set of points {(1− t)x + ty : 0 ≤ t ≤ 1}. A subset F
of X is called convex if for any two points x, y ∈ F , each point in the
line segment from x to y is contained in F .

Examples.

(1) Linear subspaces are convex.
(2) Open and closed balls are convex.

The following are three remarkable theorems.

Theorem 2.4 (Brouwer Fixed Point Theorem). Every continuous map
T of the closed unit ball in Rn to itself has a fixed point.

Theorem 2.5 (Schauder Fixed Point Theorem). Every continuous
self-map of a compact convex subset of a Banach space has a fixed
point.
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Theorem 2.6 (Schauder-Tychonov Fixed Point Theorem). Every con-
tinuous self-map of a compact convex subset of a locally convex linear
topological space to itself has a fixed point.

Theorem 2.8 below is a generalization of the Schauder Fixed Point
Theorem.

Definition 2.4. Let E be a subset of a Banach space X. The closed
convex hull of E, co(E), is the intersection of all closed convex sets
which contain E.

Clearly, co(E) is the smallest closed convex set containing E.

Theorem 2.7 (Mazur). The closed convex hull of a compact subset E
of a Banach space is itself compact.

Theorem 2.8 (Extended Schauder Fixed Point Theorem). Suppose A
is a closed bounded convex subset of a Banach space and T : A → A is
a continuous map such that the image TA of A has compact closure.
Then, T has a fixed point in A.

Proof. Let B = TA. The closure of B is compact, so, by Mazur’s
theorem, co(B) = co(closure(B)) =: B1 is also compact.

Since B ⊆ A, we have closure(B) ⊂ A since A is closed, and B1 ⊆ A
since A is convex. Thus, TB1 ⊆ TA = B ⊆ B1, so we may apply the
Schauder Fixed Point Theorem to T on B1 to conclude that T has a
fixed point in B1 which is, of course, also in A. ¤


