2. Linear Transformations and Fixed Point Theorems

2.1. Linear Transformations.

Definition 2.1. Let \mathcal{X}, \mathcal{Y} be Banach spaces. A mapping $f : \mathcal{X} \to \mathcal{Y}$ is linear *if it satisfies the following two properties:*

- (1) f(x+y) = f(x) + f(y) for all $x, y \in \mathcal{X}$
- (2) $f(\alpha x) = \alpha f(x)$ for all $x \in \mathcal{X}, \alpha \in \mathbb{R}$.

A linear map is also called a *linear transformation*.

Definition 2.2. A linear map $f : \mathcal{X} \to \mathcal{Y}$ is called bounded if there is a constant C > 0 such that $|f(x)| \leq C|x|$ for all $x \in \mathcal{X}$.

Fact 2.1. Linear maps have the following properties.

- (1) A linear map is bounded if and only if it is continuous.
- (2) The linear map f is bounded if and only if $\sup_{|x| \le 1} |f(x)|$ is finite.
- (3) The quantity $\sup_{|x| \le 1} |f(x)|$ is also equal to $\sup_{|x|=1} |f(x)|$.
- (4) Every linear map whose domain is finitely dimensional linear space is bounded (hence continuous).

If f is a bounded linear map (transformation), we set $|f| = \sup_{|x|=1} |f(x)|$.

This defines a norm in the space $L(\mathcal{X}, \mathcal{Y})$ of bounded linear maps from \mathcal{X} to \mathcal{Y} , making it into a Banach space also.

bigskip

2.2. Fixed Point Theorems. Many existence theorems for differential equations can be reduced to fixed point theorems in appropriate function spaces. Here we will discuss a few relevant results.

Let \mathcal{X} be a metric space and let $T : \mathcal{X} \to \mathcal{X}$ be a mapping. A fixed point of T is a point $x \in \mathcal{X}$ such that T(x) = x.

A self-map T of a metric space \mathcal{X} is called a *contraction* (or *contrac-tion map*) if there is a constant $0 < \lambda < 1$ such that

$$d(Tx, Ty) \le \lambda d(x, y) \quad \forall x, y \in \mathcal{X}.$$

Thus, $T : \mathcal{X} \to \mathcal{X}$ is a contraction if and only it is Lipschitz with Lipschitz constant less than 1.

Theorem 2.2 (Contraction Mapping Theorem). Suppose \mathcal{X} is a complete metric space and $T : \mathcal{X} \to \mathcal{X}$ is a contraction map. Then, T has a unique fixed point \bar{x} in \mathcal{X} .

Moreover, if x is any point in \mathcal{F} , then the sequence of iterates x, Tx, T^2x, \ldots converges to \bar{x} exponentially fast.

Proof. (Uniqueness) If $0 < \lambda < 1$ is the contraction constant for T and Tx = x, Ty = y, then

$$d(x,y) = d(Tx,Ty) \le \lambda d(x,y)$$

which implies that d(x, y) = 0. This in turn implies that x = y.

(Existence) Take any $x \in \mathcal{X}$ and let $x_0 = x$, $x_i = T^i x$ for i > 0. Then,

$$d(x_{n+1}, x_n) \le \lambda d(x_n, x_{n-1}) \le \ldots \le \lambda^n d(x_1, x_0) \quad \forall n \ge 1.$$

Thus, for m > n,

(2.1)

$$d(x_{m}, x_{n}) \leq d(x_{m}, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \ldots + d(x_{n+1}, x_{n})$$

$$\leq (\lambda^{m-1} + \lambda^{m-2} + \ldots + \lambda^{n})d(x_{1}, x_{0})$$

$$= \frac{\lambda^{n}(1 - \lambda^{m-n})}{1 - \lambda}d(x_{1}, x_{0})$$

$$\leq C\lambda^{n}d(x_{1}, x_{0}),$$

where $C = 1/(1 - \lambda)$.

This implies that the sequence $\{x_i\}_{i=1,2,\ldots}$ is a Cauchy sequence. By completeness of \mathcal{X} , it converges, say to an element \bar{x} of \mathcal{X} . But, since T is continuous,

$$T(\bar{x}) = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_{n+1} = \bar{x},$$

so, $T(\bar{x}) = \bar{x}$. This proves the existence.

Since (2.1) holds for any $m \ge n$, let $m \to \infty$ we get

 $d(\bar{x}, x_n) \le C\lambda^n d(x_1, x_0).$

The fact $\lambda \in (0, 1)$ gives that the convergence is exponential.

The preceding theorem gives a useful sufficient condition for the existence of fixed points in a wide variety of situations. It is frequently useful to know when such fixed points depend continuously on parameters. This leads us to the next result.

Definition 2.3. Let Λ be a topological space (e.g. a metric space), and let \mathcal{X} be a complete metric space. A map T from Λ into the space of maps $\mathcal{M}(\mathcal{X}, \mathcal{X})$ is called a continuous family of self-maps of \mathcal{X} if the map $\overline{T}(\lambda, x) = T(\lambda)(x)$ is continuous as a map from the product space $\Lambda \times \mathcal{X}$ to \mathcal{X} .

The map T is called a uniform family of contractions on \mathcal{X} if it is a continuous family of self-maps of \mathcal{X} and there is a constant $0 < \alpha < 1$ such that

$$d(T(\lambda, x), T(\lambda, y)) \le \alpha d(x, y)$$

for all $x, y \in \mathcal{X}, \lambda \in \Lambda$.

2 - 2

Thus, the continuous family is a uniform family of contractions if and only if all the maps in the family have the same upper bound $\alpha < 1$ for their Lipschitz constants.

Given the family T as above, we define the map $T_{\lambda} : \mathcal{X} \to \mathcal{X}$ by

$$T_{\lambda}(x) = T(\lambda)(x) = \overline{T}(\lambda, x)$$

Theorem 2.3. If $T : \Lambda \to \mathcal{M}(\mathcal{X}, \mathcal{X})$ is a uniform family of contractions on \mathcal{X} , then each map T_{λ} has a unique fixed point x_{λ} which depends continuously on λ . That is, the map $\lambda \to x_{\lambda}$ is a continuous map from Λ into \mathcal{X} .

Proof. Let $g(\lambda)$ be the fixed point of the map T_{λ} which exists since the map T_{λ} is a contraction.

For $\lambda_1, \lambda_2 \in \Lambda$, we have

$$\begin{aligned} d(g(\lambda_1), g(\lambda_2)) =& d(T_{\lambda_1}g(\lambda_1), T_{\lambda_2}g(\lambda_2)) \\ \leq & d(T_{\lambda_1}g(\lambda_1), T_{\lambda_1}g(\lambda_2)) + d(T_{\lambda_1}g(\lambda_2), T_{\lambda_2}g(\lambda_2)) \\ \leq & \alpha d(g(\lambda_1), g(\lambda_2)) + d(T_{\lambda_1}g(\lambda_2), T_{\lambda_2}g(\lambda_2)). \end{aligned}$$

This implies that

$$d(g(\lambda_1), g(\lambda_2)) \le (1 - \alpha)^{-1} d(T_{\lambda_1} g(\lambda_2), T_{\lambda_2} g(\lambda_2)).$$

Since the map $\lambda \to T_{\lambda}g(\lambda_2)$ is continuous for fixed λ_2 , we see that $\lambda \to g(\lambda)$ is continuous.

There is another useful criterion for the existence of fixed points of transformations in Banach spaces.

Let X be a Banach space. Let $x, y \in X$. The line segment in X from x to y is the set of points $\{(1-t)x + ty : 0 \le t \le 1\}$. A subset F of X is called *convex* if for any two points $x, y \in F$, each point in the line segment from x to y is contained in F.

Examples.

- (1) Linear subspaces are convex.
- (2) Open and closed balls are convex.

The following are three remarkable theorems.

Theorem 2.4 (Brouwer Fixed Point Theorem). Every continuous map T of the closed unit ball in \mathbb{R}^n to itself has a fixed point.

Theorem 2.5 (Schauder Fixed Point Theorem). Every continuous self-map of a compact convex subset of a Banach space has a fixed point.

Theorem 2.6 (Schauder-Tychonov Fixed Point Theorem). Every continuous self-map of a compact convex subset of a locally convex linear topological space to itself has a fixed point.

Theorem 2.8 below is a generalization of the Schauder Fixed Point Theorem.

Definition 2.4. Let E be a subset of a Banach space X. The closed convex hull of E, $\overline{co}(E)$, is the intersection of all closed convex sets which contain E.

Clearly, $\overline{\operatorname{co}}(E)$ is the smallest closed convex set containing E.

Theorem 2.7 (Mazur). The closed convex hull of a compact subset E of a Banach space is itself compact.

Theorem 2.8 (Extended Schauder Fixed Point Theorem). Suppose \mathcal{A} is a closed bounded convex subset of a Banach space and $T : \mathcal{A} \to \mathcal{A}$ is a continuous map such that the image $T\mathcal{A}$ of \mathcal{A} has compact closure. Then, T has a fixed point in \mathcal{A} .

Proof. Let $\mathcal{B} = T\mathcal{A}$. The closure of \mathcal{B} is compact, so, by Mazur's theorem, $\overline{\operatorname{co}}(\mathcal{B}) = \overline{\operatorname{co}}(\operatorname{closure}(\mathcal{B})) =: \mathcal{B}_1$ is also compact.

Since $\mathcal{B} \subseteq \mathcal{A}$, we have $\operatorname{closure}(\mathcal{B}) \subset \mathcal{A}$ since \mathcal{A} is closed , and $\mathcal{B}_1 \subseteq \mathcal{A}$ since \mathcal{A} is convex . Thus, $T\mathcal{B}_1 \subseteq T\mathcal{A} = \mathcal{B} \subseteq \mathcal{B}_1$, so we may apply the Schauder Fixed Point Theorem to T on \mathcal{B}_1 to conclude that T has a fixed point in \mathcal{B}_1 which is, of course, also in \mathcal{A} .

2-4