
16. Hamiltonian Systems in R2n

Let H : R2n → R be a Ck function, k ≥ 1. Write coordinates
(q, p) = (q1, . . . , qn, p1, . . . , pn) on R2n.

A system of differential equations of the form

(16.1) q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n

is called a Hamiltonian system with n degrees of freedom and Hamilton-
ian function H. We also write XH for the vector field defined by (16.1).

Sometimes we write the shortened form of (16.1) as

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

where q = (q1, . . . , qn), p = (p1, . . . , pn). If we define z = (q, p) =
(q1, . . . , qn, p1, . . . , pn),

∇H =
(∂H
∂q1

, . . . ,
∂H

∂qn
,
∂H

∂p1
, . . . ,

∂H

∂pn

)
and

J =

[
0 I

−I 0

]
,

where I is the n× n identity matrix, then (16.1) has the form

(16.2) ż = J∇H(z).

The matrix J above is called the standard symplectic matrix. It is
one of the normal forms of a non-degenerate alternating bilinear form
on R2n. Because of equation (16.2), one sometimes refers to a Hamil-
tonian system as a symplectic gradient. However, the orbit structure of
a Hamiltonian system is vastly different from that of a gradient system.

Proposition 16.1. If XH is a Hamiltonian system with Hamiltonian
H, then H is constant on orbits.

Proof. For any solution curve γ(t) = (q(t), p(t)) we have

dH(q(t), p(t))

dt
=

n∑
i=1

∂H

∂qi
q̇i +

∂H

∂pi
ṗi

=
n∑

i=1

∂H

∂qi

∂H

∂pi
+

∂H

∂pi

(
−∂H

∂qi

)
= 0.

�
Definition 16.1. A C1 (nonconstant) function Φ : Rn → R is a first
integral for a differential equation ẋ = f(x) defined on Rn if Φ is
constant on any orbits.
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The above proposition says that the Hamiltonian function is a first
integral of the corresponding Hamiltonian system.

Definition 16.2. A map ϕ : Rn → Rn is volume preserving if for
any measurable set E ⊂ Rn, ϕ−1(E) and E have the same Lebesgue
measure.

Proposition 16.2. A C1 diffeomorphism ϕ : Rn → Rn is volume
preserving if and only if the Jacobian is ±1 everywhere.

Proof. Recall the formula of change of variable∫
E

f(y)dy =

∫
ϕ−1(E)

f(ϕ(x))
∣∣∣det ∂y

∂x

∣∣∣dx,
where f : Rn → R is a continuous function. In particular, if we take
f = 1, then we have∫

E

dy =

∫
ϕ−1(E)

∣∣∣det ∂y
∂x

∣∣∣dx,
So if det

∂y

∂x
= ±1, then we have m(E) = m(ϕ−1(E)) for any measur-

able set E, wherem denotes the Lebesgue measure. On the other hand,

for example, if det
∂y

∂x
(x) > 1 at some point x, then by continuity we

have that det
∂y

∂x
> 1 in a neighborhood U of x. Hence we get that

m(ϕ(U)) =

∫
ϕ(U)

dy =

∫
U

∣∣∣det ∂y
∂x

∣∣∣dx >

∫
U

dx = m(U),

that is, ϕ cannot be measure preserving. �

Proposition 16.3. Suppose ϕ(t, x) is a solution of the initial value
problem

ẋ = f(x), x(0) = x,

where f : Rn → Rn is a C1 vector field. Then ϕ(t, ·) : Rn → Rn is
volume preserving if and only if div f = 0 everywhere.

Proof. Recall that
∂

∂x
ϕ(t, x) satisfies the initial value problem

Ż =
∂

∂x
f(ϕ(t, x)) · Z, ∂

∂x
ϕ(t, x)|t=t0 = id .

This is a linear equation with respect to Z(t) and of
∂

∂x
ϕ(t, x) is in

fact a fundamental matrix, and the Wronskian is W (t) = W (t, x) =
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det
∂

∂x
ϕ(t, x), which is the Jacobian of ϕ(t, ·). Note that for any t0, t ∈

R,

W (t) = W (t0) exp

∫ t

t0

tr
∂

∂x
f(ϕ(s, x))ds,

and tr
∂

∂x
f(x) = div f(x). So we get that for any t, ϕ(t, ·) is measure

preserving if and only if W (t, x) = 1 and if and only if div f(x) = 0
everywhere. �
Proposition 16.4. If XH is a Hamiltonian system with Hamiltonian
H, and ϕ(t, x) be the solution satisfying ϕ(0, x) = x. Then the map
ϕ(t, ·) : R2n → R2n is volume preserving.

Proof. Since

XH =
(∂H
∂p1

, . . .
∂H

∂pn
,
∂H

∂q1
, . . .− ∂H

∂qn

)
We have

trDXH =
n∑

i=1

( ∂2H

∂qi∂pi
− ∂2H

∂pi∂qi
,
)
= 0

That is, divXH = 0. �

Classical Mechanical Systems in Rn.

Let x = (x1, . . . , xn) denote points in Rn, and let U : Rn → R be a
C1 function. Let mi > 0, i = 1, . . . , n be n positive real constants.

The system

(16.3) miẍi = −∂U

∂xi

, i = 1, . . . , n

is called a conservative mechanical system with potential function U
in Rn. The constants represent the masses of the system, and the
function U plays the role of potential energy. The system (16.3) is a
formulation of Newton’s law of motion which, in words, says that mass
times acceleration equals force and the force is the negative gradient
of the potential energy function. Note that the potential function is
a function of position alone (not velocity) and can be an arbitrary C1

function.
Let ci > 0, i = 1, . . . , n , denote some other constants.
The system

(16.4) miẍi + ciẋi = −∂U

∂xi

, i = 1, . . . , n,
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is called a dissipative mechanical system with potential function U and
frictional constants ci.

Given (16.3) or (16.4), we set v = (v1, . . . , vn) = (ẋ1, . . . , ẋn) and
form the function

T (x, v) =
1

2

n∑
i=1

miv
2
i + U(x).

This is called the total energy function, or simply the energy function,

of the system. The function K(v) =
1

2

n∑
i=1

miv
2
i is called the Kinetic

Energy of the system. It is a function of velocity alone.
The equations (16.3), (16.4) are second order systems. We can form

the associated first order systems

ẋi = vi,

miv̇i =− ∂U

∂xi

;
(16.5)

and

ẋi =vi,

miv̇i =− civi −
∂U

∂xi

.
(16.6)

Proposition 16.5. There is a coordinate system on R2n in which the
conservative system (16.3) becomes a Hamiltonian system.

Proof. Let qi = xi, pi = mivi. Then,

H(q, p) = T (x, v) =
1

2

n∑
i=1

p2i
mi

+ U(q1, . . . , qn)

and (16.3) becomes

q̇i =
pi
mi

=
∂H

∂pi
,

ṗi = miv̇i = − ∂H

∂qi
.

�
Fact 16.6. (1) The critical points of a classical mechanical system are
the points (x, v) with x a critical point of U and v = 0.

(2) The total energy function T (x, v) is a Lyapunov function for a
conservative mechanical system and a strict Lyapunov function for a
dissipative mechanical system.
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(3) If x0 is a strict relative minimum of the potential function U , then
(x0, 0) is a stable equilibrium of the system (16.5) and an asymptotically
stable equilibrium of the system (16.6).

The fact that the energy function T (x, v) is a Lyapunov function
for a mechanical system frequently helps us to get a picture of the the
solutions without solving the equation.

To illustrate this phenomenon, let us consider systems with one de-
gree of freedom. These have the form

ẍ+ f(x) = 0,

where f : R → R is a real-valued function of one real variable.
Writing U(x) =

∫ x

0
f(s)ds, we get a total energy function of the form

T (x, v) =
1

2
v2 + U(x).

Let us consider some examples.

Examples.

1. (Harmonic oscillator)

T (x, v) =
v2

2
+

x2

2
.

The orbits are circles around the origin (0, 0) which is a single stable
equilibrium.

2. (Pendulum)

T (x, v) =
v2

2
+ k(1− cos(x))

for some constant k > 0.
The critical points are (±nπ, 0). The stable ones are (2πn, 0) and

the saddles are (π(2n+ 1), 0).

3. (Duffing equation)

T (x, v) =
v2

2
+

x4

4
− x2

2
.

There are three critical points at (0, 0), (−1, 0), (1, 0). The origin is
a saddle and the others are centers

When one adds friction to each of the above equations, the orbits
cross the level sets of T instead of lying in them.
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Hamiltonian Systems and Variational Problems.

We have seen that Hamiltonian systems arise naturally in Classical
Mechanics. Now we will see that they also arise in general problems in
the Calculus of Variations.

Consider a real-valued function L(q, q̇, t) of the variables (q, q̇, t) ∈
R2n+1. Let t1 < t2 be real numbers, a, b be two fixed elements in Rn,
and suppose we seek to find conditions on C2 curves γ : q = q(t) defined
on the interval [t1, t2] such that

q(t1) = a, q(t2) = b

and

(16.7) I(γ) =

∫ t2

t1

L(q(t), q̇(t), t)dt

is stationary for nearby curves η with the same boundary conditions
(??) and q̇(t) is the derivative dq

dt
(t).

This means that we consider one-parameter families q(t, α) of C2

curves with q(t, 0) = γ(t) such that

(16.8) q(t1, α) = a, q(t2, α) = b

for all α and

(16.9)
dI

dα

∣∣∣
α=0

= 0

for

I(α) =

∫ t2

t1

L(q(t, α), q̇(t, α), t)dt.

One sometimes writes the condition (16.9) as

δ

∫ t2

t1

L(q(t), q̇(t), t)dt = 0.

The operator δ is used to denote the fact that we are not considering
an ordinary derivative, but rather, a stationary value of the integral as
a family of curves changes.

Note that if γ were a curve for which the integral (16.7) assumed
a minimum for all nearby curves with the given boundary conditions,
then it would be stationary in the sense of condition (16.9).

To express the derivative
dI

dα
more conveniently, we introduce some

notation. Write q = (q1, . . . , qn), q̇ = (q̇1, . . . , q̇n), Lqk for the partial
derivative of L with respect to qk, Lq̇k for the partial derivative of L
with respect to q̇k with 1 ≤ k ≤ n. Also, we denote differentiation with
respect to t by “dot” and that with respect to α by “prime”.



December 4, 2014 16-7

Consider the condition
dI

dα

∣∣∣
α=0

= 0. We have

(16.10) 0 = I ′(α) =

∫ t2

t1

Lq · q′ + Lq̇ · q̇′dt

where Lq · q′, Lq̇ · q̇′ respectively stand for
n∑

k=1

Lqkq
′
k and

n∑
k=1

Lq̇k q̇
′
k.

By (16.8) we have q′(t1, α) = q′(t1, α) = 0. Hence Lq̇ · q′|t2t1 = 0.
Integrating by parts we have∫ t2

t1

Lq̇ · q̇′dt = Lq̇ · q′|t2t1 −
∫ t2

t1

dLq̇

dt
· q′dt = −

∫ t2

t1

dLq̇

dt
· q′dt.

Hence, (16.10) becomes

0 =
dI

dα

∣∣∣
α=0

=

∫ t2

t1

(Lq −
d

dt
Lq̇)q

′dt.

Now, the “prime” derivatives q′ can be made arbitrary, so the equa-
tion implies

(16.11) Lq −
d

dt
Lq̇ = 0,

or, written out completely,

(16.12)
d

dt
Lq̇k = Lqk , k = 1, . . . , n.

The equations (16.12) are called the Euler-Lagrange equations.
At a curve (q(t), q̇(t), t) which makes the integral (16.7) stationary,

we have that (q(t), q̇(t)) satisfies

d

dt
Lq̇k(q(t), q̇(t), t) = Lqk(q(t), q̇(t), t), ∀k = 1, . . . , n.

Note that these are second order differential equations.

Lemma 16.7. The Euler-Lagrange equations have a first integral

L− q̇Lq̇.

Proof. This is because

d

dt
(L− q̇Lq̇) =Lq q̇ + Lq̇ q̈ − q̈Lq̇ − q̇

dLq̇

dt

=q̇
(
Lq −

dLq̇

dt

)
.

�
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We now show that if in an open set G in R2n+1 the matrix function

(16.13) Lq̇k,q̇ℓ(q, q̇, t)

is non-singular, then we can choose coordinates in which the Euler-
Lagrange equations become a Hamiltonian system. This is one of the
main reasons that Hamiltonian systems are important.

So, assume that we have the independent coordinates (q, q̇, t) in an
open set G in R2n+1, that L(q, q̇, t) is a C2 real-valued function in G,
and that the matrix function (16.13) is non-singular in G.

Consider the set of equations

(16.14) pk = Lq̇k(q, q̇, t), k = 1, . . . , n.

Because of the assumption that (16.13) is non-singular, the Implicit
Function Theorem gives us a set of C2 functions Sk(q, p, t) for k =
1, . . . , n, such that (16.14) holds if and only if

(16.15) q̇k = Sk(q, p, t), k = 1, . . . , n.

Let

H(q, p, t) =
∑
k

pkq̇k − L(q, q̇, t)

=
∑
k

pkSk(q, p, t)− L(q, S(q, p, t), t).

Then, for ℓ = 1, . . . , n,

∂H

∂pℓ
= Sℓ(q, p, t) +

∑
k

pk
∂Sk(q, p, t)

∂pℓ
−
∑
k

Lq̇k

∂Sk

∂pℓ

= Sℓ(q, p, t) = q̇ℓ

since pk = Lq̇k(q, q̇, t). Also,

−∂H

∂qℓ
= −

∑
k

pk
∂Sk(q, p, t)

∂qℓ
+ Lqℓ +

∑
k

Lq̇k

∂Sk

∂qℓ

= Lqℓ

=
d

dt
Lq̇ℓ (by Euler-Lagrange)

=
d

dt
pℓ (by definition of pℓ).

In the (q, p, t), coordinates, we therefore have a Hamiltonian system
with Hamiltonian function H. If L(q, q̇, t) = L(q, q̇) is independent of
time t, then so is H. However, in the general case, both L and H are
time dependent. Note that if H is time-dependent, then the function
H is not constant on solutions to the Hamiltonian system.
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Let us now return to the Conservative Mechanical system with po-
tential energy U we studied previously.

Using, position q and momentum p as coordinates, we saw that the
equations of motion were a (time-independent) Hamiltonian system
with Hamiltonian function

H(q, p) =
1

2

∑
k

p2k
mk

+ U(q1, . . . , qn)

and the velocity q̇ satisfied q̇k =
pk
mk

.

If we assume that this Hamiltonian system comes from a variational
problem as above, we are led to write

H =
∑
k

pkq̇k − L(q, p),

or

L =
∑
k

pkq̇k −H =
∑
k

pkq̇k −
1

2

∑
k

p2k
mk

− U

=
∑
k

pk
pk
mk

− 1

2

∑
k

p2k
mk

− U =
1

2

∑
k

p2k
mk

− U = K − U,

where K denotes the kinetic energy. The function L = K −U is called
the Lagrangian function or action function, as opposed to the function
T = K + U , which was called the Energy function.

From the above, we are led to guess that conservative mechanical
systems would satisfy the Euler-Lagrange equations for the function
L = K − U . This is indeed the case as can be easily verified. In this
case, it can be verified that the integral∫

L(q, q̇)dt

is actually minimized by the solution curves (q, q̇), not just made sta-
tionary. This is known as Hamilton’s Principal of Least Action.

Examples.

1. (Shortest curve) Suppose that we consider the problem of finding
the curve γ of shortest length shortest joining two points a, b ∈ R2.

Writing γ(t) = (x(t), y(t)), t1 ≤ t ≤ t2, we seek to minimize the
function

I(γ) =

∫ t2

t1

√
ẋ2 + ẏ2dt

over all such curves.
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Let L(x, y, ẋ, ẏ, t) =
√
ẋ2 + ẏ2. The Euler-Lagrange equations be-

come
d

dt
Lẋ = Lx,

d

dt
Lẏ = Ly.

Since, L is independent of x, y, t, we get

d

dt
Lẋ = 0,

d

dt
Lẏ = 0, Lt = 0.

These equations become

d

dt
Lẋ =

d

dt

ẋ

L
=

Lẍ− ẋLt

L2
=

ẍ

L
= 0,

and

d

dt
Lẏ =

d

dt

ẏ

L
=

Lÿ − ẏLt

L2
=

ÿ

L
= 0.

Using that L is never zero, we see that the only solutions are those
(x(t), y(t)) for which ẍ = 0, ÿ = 0. That is, the only solutions are
straight lines. With the above boundary condition, we get a unique
line segment joining a to b.

2. (Minimal surface of revolution) We consider the problem of finding
the curve γ joint two points a, b ∈ R2 that has minimal surface of
revolution about the x-axis.

Writing γ(t) = (x(t), y(t)), t1 ≤ t ≤ t2, we seek to minimize the
function

S(γ) = 2π

∫ t2

t1

y
√

1 + ẏ2dx

over all such curves.
Replacing t and q by x and y respectively, we get

L(x, y, ẏ) = L(y, ẏ) = y
√
1 + ẏ2.

The Euler-Lagrange equation is

Ly =
dLẏ

dx
,

and by Lemma 16.7 it has a first integral

y
√

1 + ẏ2 − ẏ · y ẏ√
1 + ẏ2

= c1,

or
y√

1 + ẏ2
= c1
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for some constant c1. Let ẏ = sinh τ , then the equation gives y =
c1 cosh τ . Hence

dx =
dy

ẏ
=

c1 sinh τdτ

sinh τ
= c1dτ,

and we get x = c1τ + c2. So

y = c1 cosh
x− c2
c1

.

The is chain curve, and the constants c1 and c2 can be determined by
using the fact that the curve passing through points a, b ∈ R2.

This curve is also known as a chain curve or catenary.

3. (Brachistochrone curve, or curve of fastest descent) We consider the
problem of finding the curve γ joint two points a, b ∈ R2 such that a
particle will slide from a to b in the least amount of time.

Take coordinate system such that a is at the origin, and the y-axis
is oriented downwards, and the x-axis is oriented in the direction that
makes the point b in the first quadrant.

For a curve joint points a and b, we take the arc length s as a
parameter. Since the kinetic energy of the particle is equal to the

change of the potential energy, mgy =
1

2
mv2, that is, v =

√
2gy. So

we get
ds

dt
= v =

√
2gy,

or

dt =
ds

v
=

√
1 + ẏ2dx√
2gy

.

Hence, the time needed for the particle travelling from point a to point
b along a curve γ is given by

T (γ) =
1√
2g

∫ xb

0

√
1 + ẏ2
√
y

dx,

where xb is the x-coordinate of b. We will minimize the function over
curves from a to b.

Replacing t and q by x and y respectively, we get

L(x, y, ẏ) = L(y, ẏ) =

√
1 + ẏ2
√
y

.

By Lemma 16.7 a first integral of the Euler-Lagrange equation is√
1 + ẏ2
√
y

− ẏ · ẏ
√
y
√
1 + ẏ2

=
√
c,



16-12 December 4, 2014

or
1

√
y
√
1 + ẏ2

=
√
c

for some constant c > 0. We can write the equation as

c = y(1 + ẏ2).

Let ẏ = cot τ , then

y =
c

1 + ẏ2
=

c

1 + cot2 τ
= c sin2 τ =

c

2
(1− cos 2τ).

Also, since

dx =
dy

ẏ
=

2c sin τ cos τdτ

cot τ
= 2c sin2 τdτ = c(1− cos 2τ)dτ,

we have

x = c
(
τ − 1

2
sin 2τ

)
+ c′ =

c

2
(2τ − sin 2τ) + c′.

Since we assume that a is at the origin, x = 0 at τ = 0. So c′ = 0.
Replace 2τ by θ and c by 2A, we have

x =A(θ − sin θ)

y =A(1− cos θ).
(16.16)

This curve is also known as a cycloid.


