3. General Properties of Differential Equations

Let \mathbb{R}^{n+1} be the $(n+1)$-dimensional Euclidean space and let (t, x) denote coordinates in \mathbb{R}^{n+1} with $t \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$. Write $\dot{x}=\frac{d x}{d t}$.

A first order ordinary differential equation in \mathbb{R}^{n} is an expression of the form

$$
\begin{equation*}
\dot{x}=f(t, x), \tag{3.1}
\end{equation*}
$$

where f is a function from an open set $D \subseteq \mathbb{R}^{n+1}$ to \mathbb{R}^{n}. When f depends explicitly on t, the equation (3.1) is called nonautonomous or time dependent. If f is independent of t, it is called autonomous or time independent.

A solution to (3.1) is a differentiable function $x(t)$ from a real interval I into \mathbb{R}^{n} so that
(1) $\{(t, x(t)): t \in I\} \subseteq D$,
(2) For $t \in I, \dot{x}(t)=f(t, x(t))$.

If we fix a point $\left(t_{0}, x_{0}\right) \in D$, we are sometimes interested in solutions $x(\cdot)$ of (3.1) for which $x\left(t_{0}\right)=x_{0}$.

This leads us to the system of equations

$$
\begin{equation*}
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}, \tag{3.2}
\end{equation*}
$$

which we will call the initial value problem of the differential equation (3.1) with initial value $\left(t_{0}, x_{0}\right)$, or simply the initial value problem.

Remarks.

(1) The n-th order scalar differential equation

$$
\frac{d^{n} x}{d t^{n}}=g\left(t, x, \dot{x}, \frac{d^{2} x}{d t^{2}}, \ldots, \frac{d^{n-1} x}{d t^{n-1}}\right)
$$

can be written as the vector system

$$
\begin{aligned}
\dot{x} & =x_{1} \\
\frac{d x_{1}}{d t} & =x_{2} \\
\vdots & \\
\frac{d x_{n-1}}{d t} & =g\left(t, x, x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

using the vector, $\left(t, x, x_{1}, \ldots, x_{n-1}\right)$ with $x_{i}=\frac{d^{i} x}{d t^{i}}$ so it is usually not necessary to consider higher order differential equations for general properties.
(2) In issues in which $f(t, x)$ is very smooth, e.g. C^{∞}, it is frequently useful to replace the non-autonomous equation (3.1) by the system $\dot{t}=1, \dot{x}=f(t, x)$ and obtain an autonomous equation in one higher dimension.

Examples.

(1) The first example shows that even if the right hand side of a differential equation is a polynomial, solutions to (3.1) may not be defined for all real time.

Let $D=\mathbb{R}^{2}, f(t, x)=x^{2}$. The initial value problem

$$
\dot{x}=x^{2}, \quad x(0)=x_{0}
$$

has the unique solution $\phi(t)=-\frac{1}{t-x_{0}^{-1}}$ for $x_{0} \neq 0$ and $\phi(t)=0 \forall t$ for $x_{0}=0$. For $x_{0} \neq 0$, these solutions blow up in finite time.
(2) The second example shows that the initial value problem of a continuous differential equation need not have a unique solution.

Let $D=\mathbb{R}^{2}$,

$$
f(t, x)= \begin{cases}\sqrt{x} & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

Fix a real number $c>0$, and define the function

$$
\phi_{c}(t)= \begin{cases}\frac{(t-c)^{2}}{4} & \text { for } t \geq c \\ 0 & \text { for } t<c\end{cases}
$$

Then, each $\phi_{c}(t)$ is a solution to $\dot{x}=f(t, x)$ with value 0 at $t_{0}=0$.
Lemma 3.1. Suppose that $f(t, x)$ is a continuous function on an open set D in \mathbb{R}^{n+1}. Let $\left(t_{0}, x_{0}\right) \in D$. Then, a continuous function $x(t)$ is a solution to the single integral equation

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s \tag{3.3}
\end{equation*}
$$

if and only if it is a solution to the initial value problem (3.2).
Proof. " \Longrightarrow " Suppose that $x(\cdot)$ is a continuous function which solves the integral equation. Then, $x\left(t_{0}\right)=x_{0}$, and since f is continuous, the Fundamental Theorem of Calculus gives that $x(t)$ is differentiable with

$$
\dot{x}=f(t, x(t))
$$

so that $x(\cdot)$ solves (3.2).
" \Longleftarrow " Conversely, suppose that the $x(\cdot)$ is a solution to the problem (3.2). Then, $x(\cdot)$ is differentiable, hence continuous, on an interval about t_{0}. Let $h(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s$.

Again the Fundamental Theorem of Calculus gives that h is differentiable with derivative $f(t, x(t))$ at t. Thus, both $x(t)$ and $h(t)$ are differentiable functions with the same derivative on an interval about t_{0}. Hence, they differ by a constant. But they both have the value x_{0} at t_{0}, so the constant is 0 , and $x(t)$ solves the integral equation.

We wish to show that differential equations with continuous right hand sides have solutions at least on small intervals.

Theorem 3.2 (Peano Existence Theorem). Suppose that $f(t, x)$ is continuous in the open set $D \subseteq \mathbb{R}^{1} \times \mathbb{R}^{n}$. Then, for $\left(t_{0}, x_{0}\right)$ in D, the initial value problem (3.2) has at least one solution.

We will give two proofs of this theorem. The first depends on a theorem in Functional Analysis.

Proof 1 of Peano Theorem. For $\alpha>0, \beta>0$ let

$$
\begin{gathered}
I_{\alpha}=I_{\alpha}\left(t_{0}\right)=\left\{t:\left|t-t_{0}\right| \leq \alpha\right\}, \\
B_{\beta}=B_{\beta}\left(x_{0}\right)=\left\{x:\left|x-x_{0}\right| \leq \beta\right\} .
\end{gathered}
$$

Choose α, β small enough so that $I_{\alpha} \times B_{\beta} \subseteq D$.
Since $I_{\alpha} \times B_{\beta}$ is compact and f is continuous on $I_{\alpha} \times B_{\beta}$, the quantity

$$
M=\sup \left\{|f(t, x)|:(t, x) \in I_{\alpha} \times B_{\beta}\right\}
$$

is finite.
Let α_{1} be positive and small enough so that $M \alpha_{1} \leq \beta$.
Let

$$
\mathcal{A}=\left\{\phi \in \mathcal{C}\left(I_{\alpha_{1}}, \mathbb{R}^{n}\right): \phi\left(t_{0}\right)=x_{0},\left|\phi(t)-x_{0}\right| \leq \beta \forall t \in I_{\alpha_{1}}\right\} .
$$

Clearly \mathcal{A} is a closed bounded convex subset of the Banach space $\mathcal{C}\left(I_{\alpha_{1}}, \mathbb{R}^{n}\right)$ with the sup norm. Let $T: \mathcal{C}\left(I_{\alpha_{1}}, \mathbb{R}^{n}\right) \rightarrow \mathcal{C}\left(I_{\alpha_{1}}, \mathbb{R}^{n}\right)$ be defined by

$$
(T \phi)(t)=x_{0}+\int_{t_{0}}^{t} f(s, \phi(s)) d s
$$

By the claims below, the Extended Schauder Fixed Point Theorem gives us a fixed point ψ of T in \mathcal{A}. This fixed point solves the integral equation (3.3), so it provides a solution to the IVP (3.2).

Claim 1. T maps \mathcal{A} into itself.
Claim 2. T is continuous
Claim 3. TA has compact closure.

Proof of Claim 1. Let $\phi \in \mathcal{A}$. Clearly, $I_{\alpha_{1}} \times \phi\left(I_{\alpha_{1}}\right) \subseteq D$ so T is welldefined. Also, $(T \phi)\left(t_{0}\right)=x_{0}$. Next, for $t \in I_{\alpha_{1}}$,

$$
\left|(T \phi)(t)-x_{0}\right| \leq\left|\int_{t_{0}}^{t} f(s, \phi(s)) d s\right| \leq M \alpha_{1} \leq \beta
$$

Hence, $T \phi \in \mathcal{A}$.
Proof of Claim 2. Let $\epsilon>0$. We know that f is uniformly continuous on $I_{\alpha_{1}} \times B_{\beta}$. Take $\delta>0$ such that if $|(t, x)-(s, y)|<\delta$ and $(t, x),(s, y) \in$ $I_{\alpha_{1}} \times B_{\beta}$, then, $|f(t, x)-f(s, y)|<\epsilon / \alpha_{1}$.

Suppose that $\phi, \psi \in \mathcal{A}$ are such that $\|\phi-\psi\|<\delta$. This means that, for each $t \in I_{\alpha_{1}},|\phi(t)-\psi(t)|<\delta$. Thus, for $t \in I_{\alpha_{1}}$,

$$
\begin{aligned}
|(T \phi)(t)-(T \psi)(t)| & \leq\left|\int_{t_{0}}^{t} f(s, \phi(s))-f(s, \psi(s)) d s\right| \\
& <\left(\epsilon / \alpha_{1}\right)\left|t-t_{0}\right| \leq\left(\epsilon / \alpha_{1}\right) \cdot \alpha_{1}=\epsilon
\end{aligned}
$$

Hence, $\|T \phi-T \psi\| \leq \epsilon$. So T is continuous on \mathcal{A}.
Proof of Claim 3. First, note that $T \mathcal{A}$ is equicontinuous. In fact, for any $\phi \in \mathcal{A}, t, u \in I_{\alpha_{1}}$,

$$
|(T \phi)(t)-(T \phi)(u)| \leq\left|\int_{u}^{t} f(s, \phi(s)) d s\right| \leq M|t-u|
$$

It follows that the closure of $T \mathcal{A}$ is also equicontinuous. Since it is also bounded, it will follow from the Arzela-Ascoli Theorem that $T \mathcal{A}$ has compact closure as required.

Proof 2 of Peano Theorem. Let $I_{\alpha}, I_{\alpha_{1}}, B_{\beta}$ be as in Proof 1 .
Take $n \geq 1$, and let $h=h_{n}=\frac{\alpha_{1}}{n}$.
We will consider the Euler polygonal approximations ϕ_{h} for solutions defined in the following way.

First, let $t_{1}=t_{0}+h$ and $x_{1}=x_{0}+f\left(t_{0}, x_{0}\right) h$. Then for $1 \leq i \leq n-1$, let

$$
\begin{equation*}
t_{i+1}=t_{i}+h=t_{0}+i h, \quad x_{i+1}=x_{i}+f\left(t_{i}, x_{i}\right) h . \tag{3.4}
\end{equation*}
$$

This is a discrete sequence of vectors. Interpolate linearly between $\left(t_{i}, x_{i}\right)$ and $\left(t_{i+1}, x_{i+1}\right)$ to form the function

$$
\begin{equation*}
\phi_{h}(t)=x_{i}+f\left(t_{i}, x_{i}\right)\left(t-t_{i}\right) \quad \text { for } t_{i} \leq t \leq t_{i+1} . \tag{3.5}
\end{equation*}
$$

By Claim 1 below, all x_{i} are in B_{β} and hence $\left|f\left(t_{i}, x_{i}\right)\right| \leq M$. By definition, ϕ_{h} is a linear function on each interval $\left[t_{i}, t_{i+1}\right]$ for $i=0, \ldots, n-1$ with slope $f\left(t_{i}, x_{i}\right)$. So ϕ_{h} is a Lipschitz function with Lipschitz constant less than or equal to M. Since this is true for any n, the sequence
$\left\{\phi_{h_{n}}\right\}$ is equicontinuous. Also, the fact that $x_{i} \in B_{\beta}$ and $\phi_{h_{n}}$ is piecewise linear for any n implies that $\left\{\phi_{h_{n}}\right\}$ are uniformly bounded.

Thus, by the Arzela-Ascoli theorem, there is a sequence $\phi_{h_{n_{j}}}$ which converges to a function ψ defined on $I_{\alpha_{1}}$. Claim 2 below gives that

$$
\left|\psi(t)-x_{0}-\int_{t_{0}}^{t} f(s, \psi(s)) d s\right|=0
$$

or equivalently,

$$
\psi(t)=x_{0}+\int_{t_{0}}^{t} f(s, \psi(s)) d s
$$

That is, ψ is a solution of (3.2).
Claim 1. $\left|x_{i}-x_{0}\right| \leq \beta$ for any $i=0,1, \ldots, n$.
Claim 2. As $h_{n} \rightarrow 0,\left|\phi_{h_{n}}(t)-x_{0}-\int_{t_{0}}^{t} f\left(s, \phi_{h_{n}}(s)\right) d s\right| \rightarrow 0$.

Proof of Claim 1. We prove it by induction.
Clearly it is true for $i=0$.
Suppose $\left|x_{j}-x_{0}\right| \leq \beta$ for all $j=0,1, \ldots, i$. Then $\left(t_{j}, x_{j}\right) \in I_{\alpha_{1}} \times B_{\beta}$ and therefore

$$
\left|f\left(t_{j}, x_{j}\right)\right| \leq M
$$

So

$$
\begin{aligned}
\left|x_{i+1}-x_{0}\right| & =\left|x_{i}+f\left(t_{i}, x_{i}\right) h-x_{0}\right| \\
& =\left|x_{0}+\sum_{j=0}^{i} f\left(t_{j}, x_{j}\right) h-x_{0}\right| \\
& \leq M \cdot(i+1) h \leq M \cdot \alpha_{1} \leq \beta,
\end{aligned}
$$

whenever $i<n$. Now the claim follows from induction.
Proof of Claim 2. We leave it as an exercise.

