
3. General Properties of Differential Equations

Let Rn+1 be the (n + 1)-dimensional Euclidean space and let (t; x)

denote coordinates in Rn+1 with t 2 R and x 2 Rn. Write _x =
dx

dt
.

A �rst order ordinary di�erential equation in Rn is an expression of
the form

(3.1) _x = f(t; x);

where f is a function from an open set D � R
n+1 to Rn. When f

depends explicitly on t, the equation (3.1) is called nonautonomous or
time dependent. If f is independent of t, it is called autonomous or
time independent.
A solution to (3.1) is a di�erentiable function x(t) from a real interval

I into Rn so that

(1) f(t; x(t)) : t 2 Ig � D,
(2) For t 2 I; _x(t) = f(t; x(t)).

If we �x a point (t0; x0) 2 D, we are sometimes interested in solutions
x(�) of (3.1) for which x(t0) = x0.
This leads us to the system of equations

(3.2) _x = f(t; x); x(t0) = x0;

which we will call the initial value problem of the di�erential equa-
tion (3.1) with initial value (t0; x0), or simply the initial value problem.

Remarks.

(1) The n�th order scalar di�erential equation

dnx

dtn
= g(t; x; _x;

d2x

dt2
; : : : ;

dn�1x

dtn�1
)

can be written as the vector system

_x = x1
dx1
dt

= x2

...
dxn�1
dt

= g(t; x; x1; : : : ; xn�1)

using the vector, (t; x; x1; : : : ; xn�1) with xi =
dix

dti
so it is usual-

ly not necessary to consider higher order di�erential equations
for general properties.
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(2) In issues in which f(t; x) is very smooth, e.g. C1, it is frequent-
ly useful to replace the non-autonomous equation (3.1) by the
system _t = 1; _x = f(t; x) and obtain an autonomous equation
in one higher dimension.

Examples.
(1) The �rst example shows that even if the right hand side of a

di�erential equation is a polynomial, solutions to (3.1) may not be
de�ned for all real time.
Let D = R

2; f(t; x) = x2. The initial value problem

_x = x2; x(0) = x0

has the unique solution �(t) = � 1

t� x�10
for x0 6= 0 and �(t) = 0 8t

for x0 = 0. For x0 6= 0, these solutions blow up in �nite time.

(2) The second example shows that the initial value problem of a
continuous di�erential equation need not have a unique solution.
Let D = R

2,

f(t; x) =

(p
x for x � 0;

0 for x < 0:

Fix a real number c > 0, and de�ne the function

�c(t) =

(
(t�c)2

4
for t � c;

0 for t < c:

Then, each �c(t) is a solution to _x = f(t; x) with value 0 at t0 = 0:

Lemma 3.1. Suppose that f(t; x) is a continuous function on an open
set D in Rn+1. Let (t0; x0) 2 D. Then, a continuous function x(t) is a
solution to the single integral equation

(3.3) x(t) = x0 +

Z t

t0

f(s; x(s)) ds:

if and only if it is a solution to the initial value problem (3.2).

Proof. \=)" Suppose that x(�) is a continuous function which solves
the integral equation. Then, x(t0) = x0, and since f is continuous, the
Fundamental Theorem of Calculus gives that x(t) is di�erentiable with

_x = f(t; x(t))

so that x(�) solves (3.2).
\(=" Conversely, suppose that the x(�) is a solution to the problem

(3.2). Then, x(�) is di�erentiable, hence continuous, on an interval

about t0. Let h(t) = x0 +
R t

t0
f(s; x(s))ds.
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Again the Fundamental Theorem of Calculus gives that h is di�er-
entiable with derivative f(t; x(t)) at t. Thus, both x(t) and h(t) are
di�erentiable functions with the same derivative on an interval about
t0. Hence, they di�er by a constant. But they both have the value x0
at t0, so the constant is 0, and x(t) solves the integral equation. �

We wish to show that di�erential equations with continuous right
hand sides have solutions at least on small intervals.

Theorem 3.2 (Peano Existence Theorem). Suppose that f(t; x) is con-
tinuous in the open set D � R1�Rn. Then, for (t0; x0) in D, the initial
value problem (3.2) has at least one solution.

We will give two proofs of this theorem. The �rst depends on a
theorem in Functional Analysis.

Proof 1 of Peano Theorem. For � > 0; � > 0 let

I� = I�(t0) = ft : jt� t0j � �g;
B� = B�(x0) = fx : jx� x0j � �g:

Choose �; � small enough so that I� �B� � D.
Since I��B� is compact and f is continuous on I��B�, the quantity

M = supfjf(t; x)j : (t; x) 2 I� �B�g
is �nite.
Let �1 be positive and small enough so that M�1 � �:
Let

A = f� 2 C(I�1 ;Rn) : �(t0) = x0; j�(t)� x0j � � 8t 2 I�1g:
Clearly A is a closed bounded convex subset of the Banach space
C(I�1 ; Rn) with the sup norm. Let T : C(I�1 ; Rn) ! C(I�1 ; Rn)
be de�ned by

(T�)(t) = x0 +

Z t

t0

f(s; �(s))ds:

By the claims below, the Extended Schauder Fixed Point Theorem
gives us a �xed point  of T in A. This �xed point solves the integral
equation (3.3), so it provides a solution to the IVP (3.2). �

Claim 1. T maps A into itself.

Claim 2. T is continuous

Claim 3. TA has compact closure.



3-4 September 9, 2013

Proof of Claim 1. Let � 2 A. Clearly, I�1 � �(I�1) � D so T is well-
de�ned. Also, (T�)(t0) = x0. Next, for t 2 I�1 ,��(T�)(t)� x0

�� � ���Z t

t0

f(s; �(s))ds
��� �M�1 � �:

Hence, T� 2 A. �

Proof of Claim 2. Let � > 0. We know that f is uniformly continuous
on I�1�B�. Take � > 0 such that if j(t; x)�(s; y)j < � and (t; x); (s; y) 2
I�1 �B�, then, jf(t; x)� f(s; y)j < �=�1.
Suppose that �;  2 A are such that k�� k < �. This means that,

for each t 2 I�1 , j�(t)�  (t)j < �. Thus, for t 2 I�1 ,��(T�)(t)� (T )(t)
�� �

���Z t

t0

f(s; �(s))� f(s;  (s))ds
���

< (�=�1)jt� t0j � (�=�1) � �1 = �:

Hence, kT�� T k � �. So T is continuous on A. �

Proof of Claim 3. First, note that TA is equicontinuous. In fact, for
any � 2 A, t; u 2 I�1 ,��(T�)(t)� (T�)(u)

�� � ���Z t

u

f(s; �(s))ds
��� �M jt� uj:

It follows that the closure of TA is also equicontinuous. Since it is
also bounded, it will follow from the Arzela-Ascoli Theorem that TA
has compact closure as required. �

Proof 2 of Peano Theorem. Let I�; I�1 ; B� be as in Proof 1.

Take n � 1, and let h = hn =
�1
n
.

We will consider the Euler polygonal approximations �h for solutions
de�ned in the following way.
First, let t1 = t0+h and x1 = x0+f(t0; x0)h. Then for 1 � i � n�1,

let

(3.4) ti+1 = ti + h = t0 + ih; xi+1 = xi + f(ti; xi)h:

This is a discrete sequence of vectors. Interpolate linearly between
(ti; xi) and (ti+1; xi+1) to form the function

(3.5) �h(t) = xi + f(ti; xi)(t� ti) for ti � t � ti+1:

By Claim 1 below, all xi are in B� and hence jf(ti; xi)j �M . By de�-
nition, �h is a linear function on each interval [ti; ti+1] for i = 0; : : : ; n�1
with slope f(ti; xi). So �h is a Lipschitz function with Lipschitz con-
stant less than or equal toM . Since this is true for any n, the sequence
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f�hng is equicontinuous. Also, the fact that xi 2 B� and �hn is piece-
wise linear for any n implies that f�hng are uniformly bounded.
Thus, by the Arzela-Ascoli theorem, there is a sequence �hnj which

converges to a function  de�ned on I�1 . Claim 2 below gives that��� (t)� x0 �
Z t

t0

f(s;  (s))ds
��� = 0;

or equivalently,

 (t) = x0 +

Z t

t0

f(s;  (s))ds:

That is,  is a solution of (3.2). �

Claim 1. jxi � x0j � � for any i = 0; 1; : : : ; n.

Claim 2. As hn ! 0,
����hn(t)� x0 �

Z t

t0

f(s; �hn(s))ds
���! 0.

Proof of Claim 1. We prove it by induction.
Clearly it is true for i = 0.
Suppose jxj �x0j � � for all j = 0; 1; : : : ; i. Then (tj; xj) 2 I�1 �B�

and therefore
jf(tj; xj)j �M:

So
jxi+1 � x0j =jxi + f(ti; xi)h� x0j

=
���x0 + iX

j=0

f(tj; xj)h� x0

���
�M � (i+ 1)h �M � �1 � �;

whenever i < n. Now the claim follows from induction. �

Proof of Claim 2. We leave it as an exercise. �


