EXISTENCE AND UNIQUENESS THEOREM

4.1. Existence and Uniqueness Theorem. We will now see that
rather mild conditions on the right hand side of an ordinary differential
equation give us local existence and uniqueness of solutions.

Definition 4.1. Let f : D — R" be a coninuous function defined in
the open set D C R x R™. We say that f is locally Lipschitz in the R
variable if for each (to, xo) € D, there is an open set U C D containing
(to, o) and a constant K > 0 such that if (t,x),(t,y) € U, then

If we write f as f(t,z) witht € R and x € R™, we also say that f is
locally Lipschitz in x.

Remark 4.1. If f(t,z) is C' in x, with derivative depending continu-
ously on t, then it is locally Lipschilz in x.

Theorem 4.2 (Existence and Uniqueness Theorem for ODE). Suppose
f(t, x) is continuous in an open set D C R x R™ and is locally Lipschitz
in z in D. Let (ty,z9) € D. Then the initial value problem

(4.1) = f(t,z), x(to) =
has a unique solution defined in a small interval I about ty in R.

Proof. Let U be an open neighborhood about (¢y, o) in D so that

(i) f is continuous in U and Lipschitz in x in U with Lipschitz
constant no larger than K > 0.
(i) |f(t, )| < M for (t,x) € U.
Let I, = {t : |t —to| < a},Bs = {z : |t — x| < S}. Choose a,
small enough so that I, x Bg C U.
Let ap be small enough so that

(42) agM < ﬁ
and
(4.3) oK <1

Now, consider the set
(4.4) A={¢p e C(l,,R"): d(ty) = o, |0(t) — x| < BVEE I}

With the sup norm, A is a closed bounded subset of the Banach space

C(1,,,R™) of continuous functions from I,, into R™. Thus, A is a

complete metric space with the metric d(¢,v) = sup,¢,, [(t) —¢(1)].
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Consider again the integral operator T : C(1,,, R") — C(ly,,R")
given by

(T$)(t) = 20 + / F(s5,6(3))ds

for any ¢(t) € C(Iy,, R").

By the claims below we know that 7" has a unique fixed point in
A, that is, there is a function ¢ € C(l,,,R") such that (T'¢ )(¢) =
¢ (t). Hence, by Lemma 3.1, ¢ is the solution to the initial value
problem (4.1). This gives existence of the solution.

Now, if ¢ and 1 are two solutions of (4.1), defined on any subintervals
Jy and Jy about t, respectively. Let I,, ba the interval as above and
J =JyNJyN I, Then both ¢ and ¢ are fixed points of the operator
T’y corresponding to the interval .J. But, the above argument shows
that 7', is a contraction as well, and hence has a unique fixed point in
A;. Since T'; has a unique fixed point, we must have ¢ = ¢ on J. This
implies the uniqueness of the solution in /,,. O

Claim 1. T maps A into itself.
Claim 2. T is a contraction mapping on A.

Proof of Claim 1. Let ¢ € A. Then, clearly T'¢ is a continuous map
defined on all of I,,. Also, for ¢t € I,,,

[(T9)(t) — wo| < Mt —to| < May <,
so To € A. O

Proof of Claim 2. Let ¢, € A. The continuous function |¢(s) —1(s)|
assumes its maximum at some point sg in I,,.
Let t > ty. Then,

ttf(& 8(5)) — £(5,1(s))ds

K[p(s) — (s)lds

to

K|é(s0) — ¥ (s0)|(t — o)
KW—M@O

The same inequality holds for ¢ < t;, so,
T¢p — T < Kaglg — ¢

Since, Kag < 1, this shows that T' is a contraction as required. [

(T9)(t) — (T9)(1)]

IA

<
<
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4.2. Continuation of Solutions. Now we discuss continuation of
solutions.
Consider the differential equation

(4.5) &= f(t,x).
Definition 4.2. If ¢ is a solution of (4.5) defined on an interval I,
we say that ¢ is a continuation of ¢ or extension of ¢ if ¢ is itself

a solution of (4.5) defined on an interval I which properly contains I

and ¢ restricted to I equals ¢.
A solution is non-continuable or maximal if no such extension exists;
i.e., I is the mazimal interval on which a solution to (4.5) exists.

Lemma 4.3. If D is an open subset of RxR™, and f(t, ) is continuous
and bounded on D, then any solution ¢ of (4.5) defined on an open
interval (a,b) is such that the left and right limits ¢(ay) and ¢(b_)
exist.

If f(b,¢(b_)) is or can be defined so that f(t,z) is continuous at
(b, p(b_)), then ¢ is a solution on the interval (a,b] in the sense that

t) — o(b-
the one-sided derivative tlirgl % exists and equals f(b, p(b_)).
S _

A similar fact holds for the left endpoint a.
Proof. Let us first show that the left limit lim ¢(¢) exists.

t—b_
Suppose that |f(t,z)] < M for all (t,x) € D.
For any ¢,y € (a,b), we have

o(t) = d(to) + t f(s,¢(s))ds.
Thus, for 11,19 € ((I7 b),

[9(t1) — ¢(t2)| < Mty —t4].

which implies that as t1, ¢ty approach b from the left the norm |¢(t;) —
&(t2)| approaches 0. This proves the existence of the desired left limit
1tlirbn ¢(t). A similar argument works for the right limit lim,_,,, ¢(t).
—b_

The last statement follows from the integral equation and the Fun-
damental Theorem of Calculus. 0J

Definition 4.3. A maximal solution ¢ to a differential equation & =
f(t,x) is a solution defined on an interval I such that there is no solu-
tion defined on an interval I which properly contains I.

Theorem 4.4. Suppose that f(t,x) is defined, continuous, and locally
Lipschitz in x in an open set D C R X R", and ¢ is a solution defined
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on an interval I. Then, there is a mazrimal solution q; on an interpal I
which contains I. Ast approaches the boundary of I, either f(t,¢ (t))
becomes unbounded or (t, ¢ (t)) approaches the boundary of D.

Proof. Let I be the union of all intervals containining I on which a so-
lution exists. By uniqueness, they all patch together to give a maximal
soution. Suppose ng is this solution.

If T has a right boundary point, say b, and f(t, ® (t)) remains bound-

~

ed as t — b_, then by the previous lemma, tlirbn o (t) = zo exists. If
—b_

Zo is in the interior of D, then patching qz§ together with a solution
to the IVP & = f(t,z), x(b) = xg, enables one to get a solution on
an interval strictly larger than I which contradicts the defintion of 1.
Thus, x¢ must be in the boundary of D. O



