
Existence and Uniqueness Theorem

4.1. Existence and Uniqueness Theorem. We will now see that
rather mild conditions on the right hand side of an ordinary di�erential
equation give us local existence and uniqueness of solutions.

De�nition 4.1. Let f : D ! R
n be a coninuous function de�ned in

the open set D � R�Rn. We say that f is locally Lipschitz in the Rn

variable if for each (t0; x0) 2 D, there is an open set U � D containing
(t0; x0) and a constant K > 0 such that if (t; x); (t; y) 2 U , then

jf(t; x)� f(t; y)j � Kjx� yj:

If we write f as f(t; x) with t 2 R and x 2 Rn, we also say that f is
locally Lipschitz in x.

Remark 4.1. If f(t; x) is C1 in x, with derivative depending continu-
ously on t, then it is locally Lipschitz in x.

Theorem 4.2 (Existence and Uniqueness Theorem for ODE). Suppose
f(t; x) is continuous in an open set D � R�Rn and is locally Lipschitz
in x in D. Let (t0; x0) 2 D. Then the initial value problem

(4.1) _x = f(t; x); x(t0) = x0

has a unique solution de�ned in a small interval I about t0 in R.

Proof. Let U be an open neighborhood about (t0; x0) in D so that

(i) f is continuous in U and Lipschitz in x in U with Lipschitz
constant no larger than K > 0.

(ii) jf(t; x)j �M for (t; x) 2 U .

Let I� = ft : jt � t0j � �g; B� = fx : jx � x0j � �g. Choose �; �
small enough so that I� �B� � U .
Let �0 be small enough so that

(4.2) �0M < �

and

(4.3) �0K < 1

Now, consider the set

(4.4) A = f� 2 C(I�0 ;R
n) : �(t0) = x0; j�(t)� x0j � � 8t 2 I�0g:

With the sup norm, A is a closed bounded subset of the Banach space
C(I�0 ;R

n) of continuous functions from I�0 into Rn. Thus, A is a
complete metric space with the metric d(�;  ) = supt2I�0 j�(t)�  (t)j.
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Consider again the integral operator T : C(I�0 ;R
n) ! C(I�0 ;R

n)
given by

(T�)(t) = x0 +

Z t

t0

f(s; �(s))ds

for any �(t) 2 C(I�0 ;R
n).

By the claims below we know that T has a unique �xed point in
A, that is, there is a function �� 2 C(I�0 ;R

n) such that (T �� )(t) =
�� (t). Hence, by Lemma 3.1, �� is the solution to the initial value
problem (4.1). This gives existence of the solution.
Now, if � and  are two solutions of (4.1), de�ned on any subintervals

J� and J about t0 respectively. Let I�0 ba the interval as above and
J = J� \ J \ I�0 . Then both � and  are �xed points of the operator
TJ corresponding to the interval J . But, the above argument shows
that TJ is a contraction as well, and hence has a unique �xed point in
AJ . Since TJ has a unique �xed point, we must have � =  on J . This
implies the uniqueness of the solution in I�0 . �

Claim 1. T maps A into itself.

Claim 2. T is a contraction mapping on A.

Proof of Claim 1. Let � 2 A. Then, clearly T� is a continuous map
de�ned on all of I�0 . Also, for t 2 I�0 ,

j(T�)(t)� x0j �M jt� t0j �M�0 < �;

so T� 2 A. �

Proof of Claim 2. Let �;  2 A. The continuous function j�(s)� (s)j
assumes its maximum at some point s0 in I�0 .
Let t � t0. Then,

j(T�)(t)� (T )(t)j =
���
Z t

t0

f(s; �(s))� f(s;  (s))ds
���

�

Z t

t0

Kj�(s)�  (s)jds

� Kj�(s0)�  (s0)j(t� t0)

� Kj��  j�0

The same inequality holds for t < t0, so,

jT�� T j � K�0j��  j

Since, K�0 < 1, this shows that T is a contraction as required. �
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4.2. Continuation of Solutions. Now we discuss continuation of
solutions.
Consider the di�erential equation

(4.5) _x = f(t; x):

De�nition 4.2. If � is a solution of (4:5) de�ned on an interval I,

we say that �̂ is a continuation of � or extension of � if �̂ is itself
a solution of (4.5) de�ned on an interval Î which properly contains I

and �̂ restricted to I equals �.
A solution is non-continuable or maximal if no such extension exists;

i.e., I is the maximal interval on which a solution to (4.5) exists.

Lemma 4.3. If D is an open subset of R�Rn, and f(t; x) is continuous
and bounded on D, then any solution � of (4.5) de�ned on an open
interval (a; b) is such that the left and right limits �(a+) and �(b�)
exist.

If f(b; �(b�)) is or can be de�ned so that f(t; x) is continuous at
(b; �(b�)), then � is a solution on the interval (a; b] in the sense that

the one-sided derivative lim
t!b

�

�(t)� �(b�)

t� b
exists and equals f(b; �(b�)).

A similar fact holds for the left endpoint a.

Proof. Let us �rst show that the left limit lim
t!b

�

�(t) exists.

Suppose that jf(t; x)j �M for all (t; x) 2 D.
For any t; t0 2 (a; b), we have

�(t) = �(t0) +

Z t

t0

f(s; �(s))ds:

Thus, for t1; t2 2 (a; b),

j�(t1)� �(t2)j �M jt2 � t1j:

which implies that as t1; t2 approach b from the left the norm j�(t1)�
�(t2)j approaches 0. This proves the existence of the desired left limit
lim
t!b

�

�(t). A similar argument works for the right limit limt!a+ �(t).

The last statement follows from the integral equation and the Fun-
damental Theorem of Calculus. �

De�nition 4.3. A maximal solution � to a di�erential equation _x =
f(t; x) is a solution de�ned on an interval I such that there is no solu-

tion de�ned on an interval Î which properly contains I.

Theorem 4.4. Suppose that f(t; x) is de�ned, continuous, and locally
Lipschitz in x in an open set D � R� Rn, and � is a solution de�ned
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on an interval I. Then, there is a maximal solution �̂ on an interval Î
which contains I. As t approaches the boundary of Î, either f(t; �̂ (t))

becomes unbounded or (t; �̂ (t)) approaches the boundary of D.

Proof. Let Î be the union of all intervals containining I on which a so-
lution exists. By uniqueness, they all patch together to give a maximal
soution. Suppose �̂ is this solution.
If Î has a right boundary point, say b, and f(t; �̂ (t)) remains bound-

ed as t ! b�, then by the previous lemma, lim
t!b

�

�̂ (t) = x0 exists. If

x0 is in the interior of D, then patching �̂ together with a solution
to the IVP _x = f(t; x), x(b) = x0, enables one to get a solution on

an interval strictly larger than Î which contradicts the de�ntion of Î.
Thus, x0 must be in the boundary of D. �


