5. Continuous Dependence of Solutions to Differential Equations on Parameters

We now want to investigate the dependence of solutions to differential equations on parameters.

Lemma 5.1 (Gronwall inequality). Suppose $f(t)$, $a \leq t \leq b$, is a continuous non-negative real-valued function on the closed real interval $[a, b]$ such that there are positive constants K_{1}, K_{2} such that for all $t \in[a, b]$,

$$
f(t) \leq K_{1}+K_{2} \int_{a}^{t} f(s) d s
$$

Then, for all $t \in[a, b]$,

$$
f(t) \leq K_{1} \exp \left[K_{2}(t-a)\right] \leq K_{1} \exp \left[K_{2}(b-a)\right]
$$

Proof. Let $U(t)=K_{1}+K_{2} \int_{a}^{t} f(s) d s$. Then, U is a strictly positive continuously differentiable function on $[a, b]$ with

$$
U^{\prime}(t)=K_{2} f(t) \leq K_{2} U(t)
$$

for all t. Thus, $\frac{U^{\prime}(t)}{U(t)} \leq K_{2}$. Integrating this inequality over the interval $[a, t]$ gives

$$
\log U(t)-\log U(a) \leq K_{2}(t-a),
$$

or

$$
\log U(t) \leq \log U(a)+K_{2}(t-a)
$$

and

$$
f(t) \leq U(t) \leq U(a) \exp \left[K_{2}(t-a)\right]=K_{1} \exp \left[K_{2}(t-a)\right]
$$

LocCont Theorem 5.2 (Local continuity of solutions on parameters). Suppose $f(t, x, \lambda)$ is a continuous function defined in an open set $D \subseteq \mathbb{R} \times \mathbb{R}^{n} \times$ \mathbb{R}^{k}. Suppose there are constants $M>0, K>0$ such that
(1) $|f(t, x, \lambda)| \leq M$ for all $(t, x, \lambda) \in D$,
(2) $|f(t, x, \lambda)-f(t, y, \lambda)| \leq K|x-y|$ for all $(t, x, \lambda),(t, y, \lambda) \in D$. Let $\left(t_{0}, x_{0}, \lambda_{0}\right) \in D$. Then, there are a positive number $\alpha>0$ and a neighborhood V of $\left(t_{0}, x_{0}, \lambda_{0}\right)$ such that for each $(u, y, \lambda) \in V$, the IVP

S5.IVP.uy

$$
\begin{equation*}
\dot{x}=f(t, x, \lambda), \quad x(u)=y \tag{5.1}
\end{equation*}
$$

has a unique solution $\phi(t, u, y, \lambda)$ defined on the interval $[u-\alpha, u+\alpha]$ and the function $\phi(t, u, y, \lambda)$ is a continuous function of the variables (t, u, y, λ) in $\left[t_{0}-\alpha, t_{0}+\alpha\right] \times V$.

Remark. This result squs that for all (u, y, λ) near $\left(t_{0}, x_{0}, \lambda_{0}\right)$, the solution to the IVP (5.1) is defined on the same sized interval (of length 2α) about the initial time u and the solution depends continuously on the initial time, value, and parameter.

Proof. For any $(u, y, \lambda) \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{k}, \alpha, \beta, \gamma>0$, denote

$$
\begin{aligned}
I_{\alpha}(u) & =[u-\alpha, u+\alpha] \\
B_{\beta}(y) & =\left\{x \in \mathbb{R}^{n}:|x-y| \leq \alpha\right\}, \\
C_{\gamma}(\tau) & =\left\{\gamma \in \mathbb{R}^{n}:|\gamma-\tau| \leq \gamma\right\} .
\end{aligned}
$$

Take $\alpha_{0}, \beta_{0}, \gamma_{0}>0$ such that

$$
V_{0}:=I_{\alpha_{0}}\left(t_{0}\right) \times B_{\beta_{0}}\left(x_{0}\right) \times C \gamma_{0}\left(\lambda_{0}\right) \subset D .
$$

Take $\beta=\beta_{0} / 3$, and $\lambda=\lambda_{0}$. Then take $\alpha \in\left(0, \alpha_{0} / 2\right)$ such that

$$
\alpha M \leq \beta, \quad \alpha K<1
$$

Then we let

$$
V=I_{\alpha}\left(t_{0}\right) \times B_{2 \beta}\left(x_{0}\right) \times C_{\gamma}\left(\lambda_{0}\right) .
$$

Clearly for any $(u, y, \tau) \in V$, we have that

$$
I_{\alpha}(u) \times B_{\beta}(y) \times C_{\gamma}(\tau) \subset V_{0} .
$$

By the E-U Theorem, we can prove that for $(u, y, \lambda) \in V^{\prime}$, the IVP ($\left(\frac{\mathrm{S} 5 . \mathrm{I}}{\mathrm{I}}\right)^{\text {IVP. uy }}$ has a unique solution $\phi(t, u, y, \lambda)$ defined on the interval $[u-\alpha, u+\alpha]$ with $\phi(t, u, y, \lambda) \in B_{\beta}(y)$. Then we take

$$
V=I_{\alpha}\left(t_{0}\right) \times B_{\beta}\left(x_{0}\right) \times C_{\gamma}\left(\lambda_{0}\right) \subset V^{\prime}
$$

It is easy to see that for any $(u, y, \lambda) \in V$, the solution of IVP $\left(\frac{\text { S5.i) }}{5}\right.$ i) can be extended to the interval $\left[t_{0}-\alpha, t_{0}+\alpha\right]$. The details will be left as an exercise.

Now we prove that the solution $\phi(t, u, y, \lambda)$ is a continuous function on $I_{\alpha}\left(t_{0}\right) \times V$.

Let $\epsilon>0$ be given. We want to find $\delta>0$ such that for any $(t, u, y, \lambda),(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda}) \in I_{\alpha}\left(t_{0}\right) \times V$, if $\left.\mid(t, u, y, \lambda)-\bar{t}, \bar{u}, \bar{y}, \bar{\lambda}\right) \mid<\delta$, then

$$
|\phi(t, u, y, \lambda)-\phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})|<\epsilon .
$$

Take $\sigma>0$ such that

$$
2 \alpha \sigma \cdot e^{2 \alpha K}<\frac{\epsilon}{2}
$$

then take $\delta>0$ such that

$$
(M+2) \delta \cdot e^{2 \alpha K}<\frac{\epsilon}{2}
$$

and for any $(u, y, \lambda),(u, y, \bar{\lambda}) \in V$ with $|\lambda-\bar{\lambda}|<\delta$,

$$
\begin{equation*}
|f(u, y, \lambda)-f(u, y, \bar{\lambda})|<\frac{\epsilon}{2} \tag{5.2}
\end{equation*}
$$

Now we take $(t, u, y, \lambda),(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda}) \in I_{\alpha}\left(t_{0}\right) \times V$ with $\mid(t, u, y, \lambda)-$ $(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda}) \mid<\delta$.

Note that $\phi(t, u, y, \lambda)$ satisfy the integral equation

$$
\phi(t, u, y, \lambda)=y+\int_{u}^{y} f(s, \phi(s, u, y, \lambda), \lambda) d s
$$

Hence we have

fcont1

$$
|\phi(t, \bar{u}, \bar{y}, \bar{\lambda})-\phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})|
$$

$$
\begin{equation*}
=\left|\int_{\bar{t} u}^{t} f(s, \phi(s, u, y, \lambda), \lambda) d s\right| \leq M|t-\bar{t}|<M \delta \tag{5.3}
\end{equation*}
$$

Also, we have

fcont2 (5.4)

$$
\begin{aligned}
& \quad|\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})| \\
& =\left|y+\int_{u}^{t} f(s, \phi(s, u, y, \lambda), \lambda) d s-\bar{y}-\int_{\bar{u}}^{t} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s\right| \\
& \leq|y-\bar{y}|+\left|\int_{u}^{\bar{u}} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s\right| \\
& \quad \quad+\left|\int_{u}^{t} f(s, \phi(s, u, y, \lambda), \lambda)-f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s\right|
\end{aligned}
$$

Obviously,

> fcont3

$$
\begin{equation*}
|y-\bar{y}| \leq \delta \tag{5.5}
\end{equation*}
$$

fcont4

$$
\begin{equation*}
\left|\int_{u}^{\bar{u}} f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s\right| \leq M|\bar{u}-u|<M \delta . \tag{5.6}
\end{equation*}
$$

Now we estimate the last integral in $\left(\frac{f(50 \text { cont2 }}{5.4)}\right.$. Note that $t, u \in I_{\alpha}\left(t_{0}\right)$, we have $|t-u| \leq 2 \alpha$. Without loss generality we may assume that
$t>u$. Hence, by ($\left(\frac{f 12 \text { ambda }}{}\right.$) and the assumption that f is Lipschitz in \mathbb{R}^{n},

$$
\begin{aligned}
& \left|\int_{u}^{t} f(s, \phi(s, u, y, \lambda), \lambda)-f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda}) d s\right| \\
\leq & \int_{u}^{t}|f(s, \phi(s, u, y, \lambda), \lambda)-f(s, \phi(s, u, y, \lambda), \bar{\lambda})| d s \\
+ & \int_{u}^{t}|f(s, \phi(s, u, y, \lambda), \bar{\lambda})-f(s, \phi(s, \bar{u}, \bar{y}, \bar{\lambda}), \bar{\lambda})| d s \\
\leq & 2 \alpha \sigma+\int_{u}^{t} K|\phi(s, u, y, \lambda)-\phi(s, \bar{u}, \bar{y}, \bar{\lambda})| d s
\end{aligned}
$$

$$
\begin{aligned}
& |\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})| \\
\leq & ((M+1) \delta+2 \alpha \sigma)+\int_{u}^{t} K|\phi(s, u, y, \lambda)-\phi(s, \bar{u}, \bar{y}, \bar{\lambda})| d s .
\end{aligned}
$$

By the Gronwall inequality, we get

$$
|\phi(t, u, y, \lambda)-\phi(t, \bar{u}, \bar{y}, \bar{\lambda})| \leq[(M+1) \delta+2 \alpha \sigma] \exp [K \cdot 2 \alpha] .
$$

So by ($\left(\frac{f}{5}\right.$ cont 13$)$, and the choice of σ and δ,

$$
\begin{aligned}
& |\phi(t, u, y, \lambda)-\phi(\bar{t}, \bar{u}, \bar{y}, \bar{\lambda})| \\
\leq & {[(M+1) \delta+2 \alpha \sigma] \exp [K \cdot 2 \alpha]+M \delta } \\
\leq & (M+2) \delta e^{2 \alpha K}+2 \alpha \sigma e^{2 \alpha K}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

This gives the desired continuity statement.
Recall that $\phi(t, u, y, \lambda)$ is the solution of the IVP

$$
\dot{x}=f(t, x, \lambda), \quad x(u)=y .
$$

LGlCont1 Lemma 5.3. Suppose $\phi(t, u, y, \lambda)$ and $\phi(t, \bar{u}, \bar{y}, \lambda)$ are defined on intervals I and \bar{I} respectively. If there exists $c \in I \cap \bar{I}$ such that

$$
\phi(c, u, y, \lambda)=\phi(c, \bar{u}, \bar{y}, \lambda)
$$

then $\phi(t, u, y, \lambda)$ can be extended to $I \cup \bar{I}$ such that

$$
\phi(t, u, y, \lambda)=\phi(t, \bar{u}, \bar{y}, \lambda)
$$

for all $t \in \bar{I}$.
Proof. It is directly from uniqueness.

Let $t \in \mathbb{R}$. Suppose $\phi(s, u, y, \lambda)$ is defined for any $s \in[u, u+t]$ if $t \geq 0$ and $s \in[u+t, u]$ if $t<0$. Denote

$$
\Phi^{t}(u, y, \lambda)=(u+t, \phi(u+t, u, y, \lambda), \lambda) .
$$

If Φ^{t} is defined for any element (u, y, λ) in a set $V \subset \mathbb{R} \times \mathbb{R}^{n} \times R^{k}$, then we denote

$$
\Phi^{t}(u, y, \lambda)=\left\{\Phi^{t}(u, y, \lambda): \quad(u, y, \lambda) \in V\right\} .
$$

LGlCont2 Lemma 5.4. (i) For any $r, s \in \mathbb{R}, \Phi^{r} \circ \Phi^{s}=\Phi^{r+s}$, whenever they are defined.
(ii) Suppose Φ^{t} is defined on an set V. Then Φ^{t} is a homeomorphism fron V to its image.
Proof. (i) Applying Lemma ${ }^{\text {LG1Cont1 }}{ }^{\text {LGI }} \overline{\text { with }}=u+s$ and $\bar{y}=\phi(u+s, u, y, \lambda)$ we have

$$
\phi(u+r+s, u+s, \phi(u+s, u, y, \lambda), \lambda)=\phi(u+r+s, u, y, \lambda),
$$

because the equation holds for $c=u+s$. Hence,

$$
\begin{aligned}
\Phi^{r} \circ \Phi^{s}(u, y, \lambda) & =\Phi^{r}(u+s, \phi(u+s, u, y, \lambda), \lambda) \\
& =(u+r+s, \phi(u+r+s, u, y, \lambda), \lambda)=\Phi^{r+s}(u, y, \lambda) .
\end{aligned}
$$

(ii) This is from part (ii) and the local continuity of solutions on parameters.

GlCont Theorem 5.5 (Global continuity of solutions on parameters). Suppose $f(t, x, \lambda)$ is continuous and locally Lipschitz in x in an open set $D \subseteq$ $\mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{k}$. If $\phi\left(t, a, x_{0}, \lambda_{0}\right)$ is a solution of the IVP

$$
\begin{equation*}
\dot{x}=f\left(t, x, \lambda_{0}\right), \quad x(a)=x_{0}, \tag{5.8}
\end{equation*}
$$

which is defined on the closed interval $[a, b]$ and $\left(t, \phi\left(t, a, x_{0}, \lambda_{0}\right), \lambda_{0}\right) \in$ D for $t \in[a, b]$, then there is a neighborhood V of $\left(a, x_{0}, \lambda_{0}\right)$ in $\mathbb{R} \times$ $\mathbb{R}^{n} \times \mathbb{R}^{k}$ such that, for $(u, y, \lambda) \in V$, the IVP

$$
\begin{equation*}
\dot{x}=f(t, x, \lambda), \quad x(u)=y \tag{5.9}
\end{equation*}
$$

also has a solution defined on the interval $[u, b]$.
Moreover, the function $\phi(t, u, y, \lambda)$ is continuous on $[u, b] \times V$.
Proof. Since $[a, b]$ is a compact set and $\phi\left(t, a, x_{0}, \lambda_{0}\right)$ is continuous, the set

$$
A=\left\{\left(t, \phi\left(t, a, x_{0}, \lambda_{0}\right), \lambda_{0}\right): t \in[a, b]\right\}
$$

is a compact subset of D. Therefore, there are constants $M>0, K>0$ for which the conditions on boundedness and Lipschitzness of Theorem 5.2 hold with these constants throughout a neighborhood $D^{\prime} \subset D$
of A. Hence, by Theorem $\frac{\text { LocCont }}{5.2 \text {, for each } s \in[a, b] \text {, there exists a con- }}$ stance $\alpha_{s}>0$ and a neighborhoos $V_{\text {TVP }}$ of $\left.(s 2) \phi\left(s, a, x_{0}, \lambda_{0}\right), \lambda_{0}\right)$ such that for any $(u, y, \lambda) \in V^{*}$, the IVP (5.9) has a solution $\phi(t, u, y, \lambda)$ defined and continuous on $\left[s-\alpha_{s}, s+\alpha_{s}\right] \times V_{s}$.

For any $\beta>0$, set

$$
U_{\beta}=\left\{(u, y, \lambda) \in V_{a}:\left(\frac{\text { S5. IVP. .uy } 2}{5.9)} \text { has a solution defined on }[u, \beta]\right\}\right.
$$

Cleafly $\left(a_{a} x_{0}, \lambda_{0}\right) \in U_{b}$, and if $\beta \leq \alpha$, then $U_{\beta} \supset U_{a}$. Also, by Theorem 5.2, there is $\alpha>0$ and a neighborhood V of $\left(a, x_{0}, \lambda_{0}\right)$ such that $V \subset V_{\alpha}$.

Take

$$
\beta^{*}=\sup \left\{\beta: U_{\beta} \text { contains a neighborhood of }\left(a, x_{0}, \lambda_{0}\right)\right\} .
$$

If $\beta^{*}>b$, then we get that U_{b} contains a neighborhood of $\left(a, x_{0}, \lambda_{0}\right)$ and this is what we need.

Suppose $\beta^{*} \leq b$.
Denote $\beta^{\prime}=\beta^{*}-\alpha_{\beta^{*}} / 2$, and then let $x^{\prime}=\phi\left(\beta^{\prime}, a, x_{0}, \lambda_{0}\right)$, and $x^{*}=$ $\phi\left(\beta^{*}, a, x_{0}, \lambda_{0}\right)$.

Since $V_{\beta^{*}}$ is a neighborhood of $\left(\beta^{*}, x^{*}, \lambda_{0}\right), \Phi^{-\alpha^{*} / 2}\left(V_{\beta^{*}}\right)$ is a neighborhood of ($\beta^{\prime}, x^{\prime}, \lambda_{0}$).

Since $U_{\beta^{\prime}}$ is a neighborhood of $\left(a, x_{0}, \lambda_{0}\right), \Phi^{\beta^{\prime}-a}\left(U_{\beta^{\prime}}\right)$ is a neighborhood of ($\beta^{\prime}, x^{\prime}, \lambda_{0}$).

Take $V^{\prime}=\Phi^{-\alpha^{*} / 2}\left(V_{\beta^{*}}\right) \cap \Phi^{\beta^{\prime}-a}\left(U^{\prime}\right)$, then V^{\prime} is a neighborhood of $\left(\beta^{\prime}, x^{\prime}, \lambda_{0}\right)$. Let $V=\Phi^{-\beta^{\prime}+a}\left(V^{\prime}\right)$.

By definition of Φ^{t}, for any $\left(u^{\prime}, y^{\prime}, \lambda\right) \in V^{\prime}$, there exists $(u, y, \lambda) \in$ $V \subset U_{\beta^{\prime}}$ such that $\phi\left(u^{\prime}, u, y, \lambda\right)=\left(u^{\prime}, y^{\prime}, \lambda^{\prime}\right)$ and the solution is defined on $\left[u, u^{\prime}\right]$. Also, there exists $\left(u^{*}, y^{*}, \lambda\right) \in V_{\beta^{*}}$ such that $\phi\left(u^{\prime} u^{*}, y^{*}, \lambda\right)=$ $\left(u^{\prime}, y^{\prime}, \lambda^{\prime}\right)$ and the solution isdefined on $\left[u^{\prime}, u^{*}+\alpha *\right]$. Since $\phi\left(u^{\prime}, u, y, \lambda\right)=$ $\phi\left(u^{\prime}, u^{*}, y^{*}, \lambda\right)$, by Lemma 5.3, $\phi(t, u, y, \lambda)$ is defined on $\left[u, u^{*}+\alpha *\right]$.

We may choose $V_{\beta^{*}}$ small enough such that for all $\left(u^{*}, y^{*}, \lambda\right) \in V_{\beta^{*}}$, $\left|u^{*}-\beta^{*}\right| \leq \alpha^{*} / 2$, and hence $u^{*}+\alpha^{*}>\beta^{*}+\alpha^{*} / 2$. So we conclude that for any $(u, y, \lambda) \in V$, the solution $\phi(t, u, y, \lambda)$ is defined on $\left[u, \beta^{*}+\alpha^{*} / 2\right]$. This is a contradiciton. Hence, we get $\beta^{*}>b$.

Continuity of $\phi(t, u, y, \lambda)$ on $[u, b] \times V$ follows from local continuity.

We have proved that solutions to differential equations depend continuously on initial values and parameters.

Now we wish to investigate the smooth dependence of solutions in systems which depend smoothly on initial values and parameters.
Lemma 5.6 (Hadamard's Lemma). Suppose $g: D \rightarrow \mathbb{R}^{n}$ is a C^{1} function, where $D \subset \mathbb{R}^{m}$ is an open set. For any points $x, x_{0} \in D$ with
$t x+(1-t) x_{0} \in D$ for any $t \in[0,1]$, there is a function $G\left(x, x_{0}\right)$ such that

$$
g(x)-g\left(x_{0}\right)=G\left(x, x_{0}\right)\left(x-x_{0}\right)
$$

and

$$
G\left(x_{0}, x_{0}\right)=\lim _{x \rightarrow x_{0}} G\left(x, x_{0}\right)=\frac{\partial g}{\partial x}\left(x_{0}\right) .
$$

Proof. Note that
$g(x)-g\left(x_{0}\right)=\int_{0}^{1} \frac{\partial g}{\partial s}\left(x_{0}+s\left(x-x_{0}\right)\right) d s=\int_{0}^{1} \frac{\partial g}{\partial x}\left(x_{0}+s\left(x-x_{0}\right)\right) \cdot\left(x-x_{0}\right) d s$.
So we can take

$$
G\left(x, x_{0}\right)=\int_{0}^{1} \frac{\partial g}{\partial x}\left(x_{0}+s\left(x-x_{0}\right)\right) d s
$$

Since $\frac{\partial g}{\partial x}$ is continuous, so is $G\left(x, x_{0}\right)$. Also, the second equality follows from the definition of $G\left(x, x_{0}\right)$.

Theorem 5.7 (Differentiability of solutions on parameters). Suppose that $f(t, x, \lambda)$ is a C^{1} function of the variables (t, x, λ) in an open set $D \in \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{k}$. For $\left(t_{0}, x_{0}, \lambda_{0}\right) \in D$, let $\phi\left(t, t_{0}, x_{0}, \lambda_{0}\right)$ be the solution of the initial value problem

$$
\begin{equation*}
\dot{x}=f\left(t, x, \lambda_{0}\right), \quad x\left(t_{0}\right)=x_{0} . \tag{5.10}
\end{equation*}
$$

Then, the solution $\phi\left(t, t_{0}, x_{0}, \lambda_{0}\right)$ is a C^{1} function of the variables $\left(t, t_{0}, x_{0}, \lambda_{0}\right)$.
Moreover, the partial derivatives $\frac{\partial \phi}{\partial t_{0}}\left(t, t_{0}, x_{0}, \lambda_{0}\right)$ and $\frac{\partial \phi}{\partial x_{0}}\left(t, t_{0}, x_{0}, \lambda_{0}\right)$ of the solution with respect to the initial time t_{0} and initial position x_{0} satisfies the initial value problem

$$
\begin{equation*}
\dot{Z}=\frac{\partial f}{\partial x_{0}}\left(t, \phi\left(t, t_{0}, x_{0}, \lambda_{0}\right), \lambda_{0}\right) \cdot Z, \tag{5.11}
\end{equation*}
$$

and
ivp_4

$$
\begin{aligned}
& \left.\frac{\partial \phi}{\partial t_{0}}\left(t, t_{0}, x_{0}, \lambda_{0}\right)\right|_{t=t_{0}}=-f\left(t_{0}, x_{0}, \lambda_{0}\right) \\
& \left.\frac{\partial \phi}{\partial x_{0}}\left(t, t_{0}, x_{0}, \lambda_{0}\right)\right|_{t=t_{0}}=\mathrm{id}
\end{aligned}
$$

respectively, and the partial derivative $\frac{\partial \phi}{\partial \lambda}\left(t, t_{0}, x_{0}, \lambda_{0}\right)$ of the solution with respect to parameter λ_{0} satisfies the initial value problem

$$
\begin{align*}
& \dot{Z}=\frac{\partial f}{\partial x_{0}}\left(t, \phi\left(t, t_{0}, x_{0}, \lambda_{0}\right), \lambda_{0}\right) \cdot Z+\frac{\partial f}{\partial \lambda_{0}}\left(t, \phi\left(t, t_{0}, x_{0}, \lambda_{0}\right), \lambda_{0}\right) \tag{5.13}\\
& \left.\frac{\partial \phi}{\partial \lambda_{0}}\left(t, t_{0}, x_{0}, \lambda_{0}\right)\right|_{t=t_{0}}=0
\end{align*}
$$

Proof. We only prove for $\frac{\partial \phi}{\partial x_{0}}$.
For the sake of simplifying the notation we drop λ_{0} in the formulas.
Assume $x^{\prime}=x_{0}+r e_{i}$, where e_{i} is the unit vector in the ith direction in \mathbb{R}^{n}. Define

$$
\psi\left(t, t_{0}, x, x_{0}\right)=\frac{1}{r}\left(\phi\left(t, t_{0}, x\right)-\phi\left(t, t_{0}, x_{0}\right)\right) .
$$

By the Hadamard's lemma, we get

$$
\begin{aligned}
& \dot{\psi}\left(t, t_{0}, x, x_{0}\right)=\frac{1}{r}\left(f\left(t, \phi\left(t, t_{0}, x\right)\right)-f\left(t, \phi\left(t, t_{0}, x_{0}\right)\right)\right) \\
= & \frac{1}{r} F\left(t, \phi\left(t, t_{0}, x\right), \phi\left(t, t_{0}, x_{0}\right)\right)\left(\phi\left(t, t_{0}, x\right)-\phi\left(t, t_{0}, x_{0}\right)\right)
\end{aligned}
$$

for some function F. It means that ψ satisfies the initial value problem

$$
\dot{Z}=F\left(t, \phi\left(t, t_{0}, x\right), \phi\left(t, t_{0}, x_{0}\right)\right) \cdot Z, \quad Z\left(t_{0}\right)=\frac{1}{r}\left(x-x_{0}\right)=e_{i} .
$$

Note that by the Hadamard's lemma,

$$
\lim _{x \rightarrow x_{0}} F\left(t, \phi\left(t, t_{0}, x\right), \phi\left(t, t_{0}, x_{0}\right)=\frac{\partial f}{\partial x}\left(t, \phi\left(t, t_{0}, x_{0}\right)\right) .\right.
$$

Suppose $\psi\left(t, t_{0}, e_{i}\right)$ is a solution of the initial value problem

$$
\dot{Z}=\frac{\partial f}{\partial x}\left(t, \phi\left(t, t_{0}, x_{0}\right)\right) \cdot Z, \quad Z\left(t_{0}\right)=e_{i} .
$$

Then by continuity of solution of differential equation on parameters,

$$
\psi\left(t, t_{0}, e_{i}\right)=\lim _{x \rightarrow x_{0}} \psi\left(t, t_{0}, x, x_{0}\right)=\frac{\partial \phi}{\partial x_{0}}\left(t, \phi\left(t, t_{0}, x_{0}\right)\right),
$$

which is what we need.
 λ parameter) is usually called the variational equation of (5.10).

