
5. Continuous Dependence of Solutions to Differential
Equations on Parameters

We now want to investigate the dependence of solutions to differen-
tial equations on parameters.

Lemma 5.1 (Gronwall inequality). Suppose f(t), a ≤ t ≤ b, is a
continuous non-negative real-valued function on the closed real interval
[a, b] such that there are positive constants K1, K2 such that for all
t ∈ [a, b],

f(t) ≤ K1 +K2

∫ t

a

f(s)ds.

Then, for all t ∈ [a, b],

f(t) ≤ K1 exp[K2(t− a)] ≤ K1 exp[K2(b− a)]

Proof. Let U(t) = K1 + K2

∫ t

a

f(s)ds. Then, U is a strictly positive

continuously differentiable function on [a, b] with

U ′(t) = K2f(t) ≤ K2U(t)

for all t. Thus,
U ′(t)
U(t)

≤ K2. Integrating this inequality over the interval

[a, t] gives
logU(t)− logU(a) ≤ K2(t− a),

or
logU(t) ≤ logU(a) +K2(t− a),

and

f(t) ≤ U(t) ≤ U(a) exp[K2(t− a)] = K1 exp[K2(t− a)].

�
LocCont Theorem 5.2 (Local continuity of solutions on parameters). Suppose

f(t, x, λ) is a continuous function defined in an open set D ⊆ R×Rn×
Rk. Suppose there are constants M > 0, K > 0 such that

(1) | f(t, x, λ) |≤M for all (t, x, λ) ∈ D,
(2) | f(t, x, λ)−f(t, y, λ) |≤ K | x−y | for all (t, x, λ), (t, y, λ) ∈ D.

Let (t0, x0, λ0) ∈ D. Then, there are a positive number α > 0 and a
neighborhood V of (t0, x0, λ0) such that for each (u, y, λ) ∈ V , the IVP

S5.IVP.uyS5.IVP.uy (5.1) ẋ = f(t, x, λ), x(u) = y

has a unique solution ϕ(t, u, y, λ) defined on the interval [u− α, u+ α]
and the function ϕ(t, u, y, λ) is a continuous function of the variables
(t, u, y, λ) in [t0 − α, t0 + α]× V .
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Remark. This result says that for all (u, y, λ) near (t0, x0, λ0), the
solution to the IVP (

S5.IVP.uy
5.1) is defined on the same sized interval (of length

2α) about the initial time u and the solution depends continuously on
the initial time, value, and parameter.

Proof. For any (u, y, λ) ∈ R× Rn × Rk, α, β, γ > 0, denote

Iα(u) =[u− α, u+ α],

Bβ(y) ={x ∈ Rn : |x− y| ≤ α},
Cγ(τ) ={γ ∈ Rn : |γ − τ | ≤ γ}.

Take α0, β0, γ0 > 0 such that

V0 := Iα0(t0)×Bβ0(x0)× Cγ0
(λ0) ⊂ D.

Take β = β0/3, and λ = λ0. Then take α ∈ (0, α0/2) such that

αM ≤ β, αK < 1.

Then we let

V = Iα(t0)×B2β(x0)× Cγ(λ0).

Clearly for any (u, y, τ) ∈ V , we have that

Iα(u)×Bβ(y)× Cγ(τ) ⊂ V0.

By the E-U Theorem, we can prove that for (u, y, λ) ∈ V ′, the IVP (
S5.IVP.uy
5.1)

has a unique solution ϕ(t, u, y, λ) defined on the interval [u− α, u+ α]
with ϕ(t, u, y, λ) ∈ Bβ(y). Then we take

V = Iα(t0)×Bβ(x0)× Cγ(λ0) ⊂ V ′.

It is easy to see that for any (u, y, λ) ∈ V , the solution of IVP (
S5.IVP.uy
5.1)

can be extended to the interval [t0 − α, t0 + α]. The details will be left
as an exercise.

Now we prove that the solution ϕ(t, u, y, λ) is a continuous function
on Iα(t0)× V .

Let ϵ > 0 be given. We want to find δ > 0 such that for any
(t, u, y, λ), (t̄, ū, ȳ, λ̄) ∈ Iα(t0)× V , if |(t, u, y, λ)− t̄, ū, ȳ, λ̄)| < δ, then

|ϕ(t, u, y, λ)− ϕ(t̄, ū, ȳ, λ̄)| < ϵ.

Take σ > 0 such that

2ασ · e2αK <
ϵ

2
,

then take δ > 0 such that

(M + 2)δ · e2αK <
ϵ

2
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and for any (u, y, λ), (u, y, λ̄) ∈ V with |λ− λ̄| < δ,

flambdaflambda (5.2) | f(u, y, λ)− f(u, y, λ̄) |< ϵ

2
.

Now we take (t, u, y, λ), (t̄, ū, ȳ, λ̄) ∈ Iα(t0) × V with |(t, u, y, λ) −
(t̄, ū, ȳ, λ̄)| < δ.

Note that ϕ(t, u, y, λ) satisfy the integral equation

ϕ(t, u, y, λ) = y +

∫ y

u

f(s, ϕ(s, u, y, λ), λ)ds.

Hence we have∣∣ϕ(t, ū, ȳ, λ̄)− ϕ(t̄, ū, ȳ, λ̄)
∣∣

=
∣∣∣∫ t

t̄u

f(s, ϕ(s, u, y, λ), λ)ds
∣∣∣ ≤M |t− t̄| < Mδ.

fcont1fcont1 (5.3)

Also, we have

|ϕ(t, u, y, λ)− ϕ(t, ū, ȳ, λ̄)|

=
∣∣∣y + ∫ t

u

f(s, ϕ(s, u, y, λ), λ)ds− ȳ −
∫ t

ū

f(s, ϕ(s, ū, ȳ, λ̄), λ̄)ds
∣∣∣

≤ | y − ȳ | +
∣∣∣∫ ū

u

f(s, ϕ(s, ū, ȳ, λ̄), λ̄)ds
∣∣∣

+
∣∣∣∫ t

u

f(s, ϕ(s, u, y, λ), λ)− f(s, ϕ(s, ū, ȳ, λ̄), λ̄)ds
∣∣∣

fcont2fcont2 (5.4)

Obviously,

fcont3fcont3 (5.5) | y − ȳ |≤ δ.

fcont4fcont4 (5.6)
∣∣∣∫ ū

u

f(s, ϕ(s, ū, ȳ, λ̄), λ̄)ds
∣∣∣ ≤M |ū− u| < Mδ.

Now we estimate the last integral in (
fcont2
5.4). Note that t, u ∈ Iα(t0),

we have |t − u| ≤ 2α. Without loss generality we may assume that
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t > u. Hence, by (
flambda
5.2) and the assumption that f is Lipschitz in Rn,∣∣∣∫ t

u

f(s, ϕ(s, u, y, λ), λ)− f(s, ϕ(s, ū, ȳ, λ̄), λ̄)ds
∣∣∣

≤
∫ t

u

| f(s, ϕ(s, u, y, λ), λ)− f(s, ϕ(s, u, y, λ), λ̄) | ds

+

∫ t

u

| f(s, ϕ(s, u, y, λ), λ̄)− f(s, ϕ(s, ū, ȳ, λ̄), λ̄) | ds

≤2ασ +

∫ t

u

K | ϕ(s, u, y, λ)− ϕ(s, ū, ȳ, λ̄) | ds.

fcont5fcont5 (5.7)

By (
fcont2
5.4)-(

fcont5
5.7), we get

| ϕ(t, u, y, λ)− ϕ(t, ū, ȳ, λ̄) |

≤((M + 1)δ + 2ασ) +

∫ t

u

K | ϕ(s, u, y, λ)− ϕ(s, ū, ȳ, λ̄) | ds.

By the Gronwall inequality, we get

| ϕ(t, u, y, λ)− ϕ(t, ū, ȳ, λ̄) |≤ [(M + 1)δ + 2ασ] exp[K · 2α].

So by (
fcont1
5.3), and the choice of σ and δ,

| ϕ(t, u, y, λ)− ϕ(t̄, ū, ȳ, λ̄) |
≤[(M + 1)δ + 2ασ] exp[K · 2α] +Mδ

≤(M + 2)δe2αK + 2ασe2αK <
ϵ

2
+
ϵ

2
= ϵ.

This gives the desired continuity statement. �

Recall that ϕ(t, u, y, λ) is the solution of the IVP

ẋ = f(t, x, λ), x(u) = y.

LGlCont1 Lemma 5.3. Suppose ϕ(t, u, y, λ) and ϕ(t, ū, ȳ, λ) are defined on in-
tervals I and Ī respectively. If there exists c ∈ I ∩ Ī such that

ϕ(c, u, y, λ) = ϕ(c, ū, ȳ, λ),

then ϕ(t, u, y, λ) can be extended to I ∪ Ī such that

ϕ(t, u, y, λ) = ϕ(t, ū, ȳ, λ)

for all t ∈ Ī.

Proof. It is directly from uniqueness. �
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Let t ∈ R. Suppose ϕ(s, u, y, λ) is defined for any s ∈ [u, u + t] if
t ≥ 0 and s ∈ [u+ t, u] if t < 0. Denote

Φt(u, y, λ) = (u+ t, ϕ(u+ t, u, y, λ), λ).

If Φt is defined for any element (u, y, λ) in a set V ⊂ R×Rn×Rk, then
we denote

Φt(u, y, λ) = {Φt(u, y, λ) : (u, y, λ) ∈ V }.

LGlCont2 Lemma 5.4. (i) For any r, s ∈ R, Φr ◦ Φs = Φr+s, whenever they are
defined.

(ii) Suppose Φt is defined on an set V . Then Φt is a homeomorphism
fron V to its image.

Proof. (i) Applying Lemma
LGlCont1
5.3 with ū = u+ s and ȳ = ϕ(u+ s, u, y, λ)

we have

ϕ(u+ r + s, u+ s, ϕ(u+ s, u, y, λ), λ) = ϕ(u+ r + s, u, y, λ),

because the equation holds for c = u+ s. Hence,

Φr ◦ Φs(u, y, λ) =Φr(u+ s, ϕ(u+ s, u, y, λ), λ)

=(u+ r + s, ϕ(u+ r + s, u, y, λ), λ) = Φr+s(u, y, λ).

(ii) This is from part (ii) and the local continuity of solutions on
parameters. �

GlCont Theorem 5.5 (Global continuity of solutions on parameters). Suppose
f(t, x, λ) is continuous and locally Lipschitz in x in an open set D ⊆
R× Rn × Rk. If ϕ(t, a, x0, λ0) is a solution of the IVP

S5.IVP.axS5.IVP.ax (5.8) ẋ = f(t, x, λ0), x(a) = x0,

which is defined on the closed interval [a, b] and (t, ϕ(t, a, x0, λ0), λ0) ∈
D for t ∈ [a, b], then there is a neighborhood V of (a, x0, λ0) in R ×
Rn × Rk such that, for (u, y, λ) ∈ V , the IVP

S5.IVP.uy2S5.IVP.uy2 (5.9) ẋ = f(t, x, λ), x(u) = y

also has a solution defined on the interval [u, b].
Moreover, the function ϕ(t, u, y, λ) is continuous on [u, b]× V .

Proof. Since [a, b] is a compact set and ϕ(t, a, x0, λ0) is continuous, the
set

A = {(t, ϕ(t, a, x0, λ0), λ0) : t ∈ [a, b]}
is a compact subset of D. Therefore, there are constantsM > 0, K > 0
for which the conditions on boundedness and Lipschitzness of Theo-
rem

LocCont
5.2 hold with these constants throughout a neighborhood D′ ⊂ D
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of A. Hence, by Theorem
LocCont
5.2, for each s ∈ [a, b], there exists a con-

stance αs > 0 and a neighborhood Vs of (s, ϕ(s, a, x0, λ0), λ0) such that
for any (u, y, λ) ∈ V ∗, the IVP (

S5.IVP.uy2
5.9) has a solution ϕ(t, u, y, λ) defined

and continuous on [s− αs, s+ αs]× Vs.
For any β > 0, set

Uβ = {(u, y, λ) ∈ Va : (
S5.IVP.uy2
5.9) has a solution defined on [u, β]}

Clearly, (a, x0, λ0) ∈ Ub, and if β ≤ α, then Uβ ⊃ Ua. Also, by Theo-
rem

LocCont
5.2, there is α > 0 and a neighborhood V of (a, x0, λ0) such that

V ⊂ Vα.
Take

β∗ = sup{β : Uβ contains a neighborhood of (a, x0, λ0)}.
If β∗ > b, then we get that Ub contains a neighborhood of (a, x0, λ0)
and this is what we need.

Suppose β∗ ≤ b.
Denote β′ = β∗ − αβ∗/2, and then let x′ = ϕ(β′, a, x0, λ0), and x

∗ =
ϕ(β∗, a, x0, λ0).

Since Vβ∗ is a neighborhood of (β∗, x∗, λ0), Φ
−α∗/2(Vβ∗) is a neigh-

borhood of (β′, x′, λ0).
Since Uβ′ is a neighborhood of (a, x0, λ0), Φ

β′−a(Uβ′) is a neighbor-
hood of (β′, x′, λ0).

Take V ′ = Φ−α∗/2(Vβ∗) ∩ Φβ′−a(U ′), then V ′ is a neighborhood of
(β′, x′, λ0). Let V = Φ−β′+a(V ′).

By definition of Φt, for any (u′, y′, λ) ∈ V ′, there exists (u, y, λ) ∈
V ⊂ Uβ′ such that ϕ(u′, u, y, λ) = (u′, y′, λ′) and the solution is defined
on [u, u′]. Also, there exists (u∗, y∗, λ) ∈ Vβ∗ such that ϕ(u′u∗, y∗, λ) =
(u′, y′, λ′) and the solution is defined on [u′, u∗+α∗]. Since ϕ(u′, u, y, λ) =
ϕ(u′, u∗, y∗, λ), by Lemma

LGlCont1
5.3, ϕ(t, u, y, λ) is defined on [u, u∗ + α∗].

We may choose Vβ∗ small enough such that for all (u∗, y∗, λ) ∈ Vβ∗ ,
|u∗−β∗| ≤ α∗/2, and hence u∗+α∗ > β∗+α∗/2. So we conclude that for
any (u, y, λ) ∈ V , the solution ϕ(t, u, y, λ) is defined on [u, β∗ + α∗/2].
This is a contradiciton. Hence, we get β∗ > b.

Continuity of ϕ(t, u, y, λ) on [u, b]× V follows from local continuity.
�

We have proved that solutions to differential equations depend con-
tinuously on initial values and parameters.

Now we wish to investigate the smooth dependence of solutions in
systems which depend smoothly on initial values and parameters.

Lemma 5.6 (Hadamard’s Lemma). Suppose g : D → Rn is a C1

function, where D ⊂ Rm is an open set. For any points x, x0 ∈ D with
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tx + (1− t)x0 ∈ D for any t ∈ [0, 1], there is a function G(x, x0) such
that

g(x)− g(x0) = G(x, x0)(x− x0)

and

G(x0, x0) = lim
x→x0

G(x, x0) =
∂g

∂x
(x0).

Proof. Note that

g(x)−g(x0) =
∫ 1

0

∂g

∂s
(x0+s(x−x0))ds =

∫ 1

0

∂g

∂x
(x0+s(x−x0))·(x−x0)ds.

So we can take

G(x, x0) =

∫ 1

0

∂g

∂x
(x0 + s(x− x0))ds.

Since
∂g

∂x
is continuous, so is G(x, x0). Also, the second equality follows

from the definition of G(x, x0). �

Theorem 5.7 (Differentiability of solutions on parameters). Suppose
that f(t, x, λ) is a C1 function of the variables (t, x, λ) in an open set
D ∈ R×Rn×Rk. For (t0, x0, λ0) ∈ D, let ϕ(t, t0, x0, λ0) be the solution
of the initial value problem

S5.IVP.tx0S5.IVP.tx0 (5.10) ẋ = f(t, x, λ0), x(t0) = x0.

Then, the solution ϕ(t, t0, x0, λ0) is a C
1 function of the variables (t, t0, x0, λ0).

Moreover, the partial derivatives
∂ϕ

∂t0
(t, t0, x0, λ0) and

∂ϕ

∂x0
(t, t0, x0, λ0)

of the solution with respect to the initial time t0 and initial position x0
satisfies the initial value problem

ivp_3ivp_3 (5.11) Ż =
∂f

∂x0
(t, ϕ(t, t0, x0, λ0), λ0) · Z,

and

∂ϕ

∂t0
(t, t0, x0, λ0)

∣∣∣
t=t0

= −f(t0, x0, λ0)

∂ϕ

∂x0
(t, t0, x0, λ0)

∣∣∣
t=t0

= id

ivp_4ivp_4 (5.12)
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respectively, and the partial derivative
∂ϕ

∂λ
(t, t0, x0, λ0) of the solution

with respect to parameter λ0 satisfies the initial value problem

Ż =
∂f

∂x0
(t, ϕ(t, t0, x0, λ0), λ0) · Z +

∂f

∂λ0
(t, ϕ(t, t0, x0, λ0), λ0),

∂ϕ

∂λ0
(t, t0, x0, λ0)

∣∣∣
t=t0

= 0.

(5.13)

Proof. We only prove for
∂ϕ

∂x0
.

For the sake of simplifying the notation we drop λ0 in the formulas.
Assume x′ = x0 + rei, where ei is the unit vector in the ith direction

in Rn. Define

ψ(t, t0, x, x0) =
1

r

(
ϕ(t, t0, x)− ϕ(t, t0, x0)

)
.

By the Hadamard’s lemma, we get

ψ̇(t, t0, x, x0) =
1

r

(
f(t, ϕ(t, t0, x))− f(t, ϕ(t, t0, x0))

)
=
1

r
F (t, ϕ(t, t0, x), ϕ(t, t0, x0)

)(
ϕ(t, t0, x)− ϕ(t, t0, x0)

)
for some function F . It means that ψ satisfies the initial value problem

Ż = F (t, ϕ(t, t0, x), ϕ(t, t0, x0)
)
· Z, Z(t0) =

1

r
(x− x0) = ei.

Note that by the Hadamard’s lemma,

lim
x→x0

F (t, ϕ(t, t0, x), ϕ(t, t0, x0) =
∂f

∂x
(t, ϕ(t, t0, x0)).

Suppose ψ(t, t0, ei) is a solution of the initial value problem

Ż =
∂f

∂x
(t, ϕ(t, t0, x0)) · Z, Z(t0) = ei.

Then by continuity of solution of differential equation on parameters,

ψ(t, t0, ei) = lim
x→x0

ψ(t, t0, x, x0) =
∂ϕ

∂x0
(t, ϕ(t, t0, x0)),

which is what we need. �
Remark. The differential equation in (

ivp_3
5.11) and (

ivp_4
5.12) (without the

λ parameter) is usually called the variational equation of (
S5.IVP.tx0
5.10).


