6. GENERAL PROPERTIES OF AUTONOMOUS SYSTEMS

Consider an autonomous system

(6.1) & = f(z)

with f : D — R" a locally Lipschitz map from an open set D C R”
into R"™.

We also say that such a function f is a vector field in D. Thus, being
given a vector field in D is the same as being given an autonomous
differential equation in D.

According to the existence and uniqueness theorem, for each point
x € D, there is a unique solution ¢(t) with ¢(0) = = defined in an
interval I about 0 in R. Let us denote this function by ¢(t,z). We
claim

¢(t + s, ‘/E) = ¢(ta QS(S, :E))
fort,s,t+s €l

Indeed, the function ¢ — ¢(t + s, ) is a solution to the differential
equation & = f(x) and ¢(0+s,z) = ¢(s,z). By uniqueness of solutions,
o(t +s,3) = (¢, (s, 2)).

This property is called the local flow property of autonomous systems.
The map t — @(t,z), t € I then defines a C! curve in D.

If, in addition, for each x € D, the solution ¢(t,x) is defined for all
time, it is called a flow in D. We then have ¢(t + s, ) = ¢(t, ¢(s, z))
for all s, € R and x € D. Writing ¢, for the mapping ¢(t, -), we can
write this last property as

¢t+s - ¢t © ¢s'

Definition 6.1. Let Dy, Dy be two non-empty open sets in R". Let r
be a positive integer. A C" map g : Dy — Dy is called a C" diffeomor-
phism if g is one-to-one, onto, and its inverse mapping g ' : Dy — Dy,
s also C.

By the inverse function theorem, a C™ map g : Dy — Dy is a C"
diffeomorphism if and only if it is 1-1, onto, and, for each x € Dy, the
derivative of g at x is a linear isomorphism of R".

The set Diff"(D) of C" diffeomorphisms from D to itself is a non-
commutative group with the composition operation as group product

g1:92 = g1 ©ga.

The identity of this group is simply the identity transformation.
A flow {¢, }1er form a one parameter commutative group. The group

is isomorphic to the group (R, +). Sinmlarly, for any diffoemorphism
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g of an open set D, the set {¢" : n € Z} ia also a commutative group
isomorphic to (Z, +).

Exercise. Recall that a topological group is a triple (G, T, -) in which
(G, T) is a topological space, (G,-) is a group (i.e., - is an associative
operation with an identity and each element h has an inverse A1), and
the mapping (g,h) — ¢ - h~! from the product space G x G to G is
continuous. Sometimes we say that the group G is a topological group
and we suppress writing the explicit topology and group operation.
Given the set Diff"(D) the topology of uniform C” convergence on
compact subsets of D, this topology makes the group (Diff" (D), o) into
a topological group, where “o” is composition of maps in Diff" (D).

Given a vector field (4), and a point € D, we call the maximal
soltution curve t — ¢(t, z) the orbit or path through x. Sometimes we
also call the image set {¢(t,2)} of a mazimal solution through z, the
orbit through x.

We also denote by O(z) the orbit through z, that is,

O(x) ={o(t,x) : t € R}.
Lemma 6.1. Any two orbits are distinct or identical.
Proof. Suppose y € O(x) and we show that O(y) = O(x).
We have y = ¢(t, x) for some ¢t € R. Hence for any s € R, ¢(s,y

s
o(t+s,x) € O(x). So O(y) C O(x). Similarly by that fact x = ¢(—,
we have O(z) C O(y).

Lemma 6.2. Any orbit is a point, a circle, or a 1-1 continuous image
of an open interval (including the whole line).

oS |l

Proof. Consider an orbit {¢(¢,z) : ¢t € I}, where I is an open interval.

If for any s,t € I with s # 1, ¢(s,z) # ¢(t,x), then the orbit is a 1-1
continuous image of 1.

Suppose ¢(s,z) = ¢(t,x) for some s,t € I with s < ¢. Then for any
re[0,t—s], ¢p(s —r,x) = ¢t —r,x) and ¢(t +r,x) = (s + r, z) are
well defined and therefore ¢(-,z) is defined on the whole real line by
induction. Moreover, for any r € R, we have ¢(s + r,z) = ¢(t + r, z).
In particular, r = ¢(0,z) = ¢(t — s,2) = ¢(1,z), where 7 =t — s.

If 7 is the smallest positive number such that ¢(r,z) = z, then the
orbit through x is a circle.

If there is sequence of positive number {t,} with ¢, — 0 such that
&(tn, x) = x, then we have ¢(kt,,x) = = for any k € Z. Tt means that
there is a dense subset S, S = {kt, : k € Z,n € N}, in R such that
&(s,x) = x for any s € S. By continuity we get that ¢(¢,z) = x for
any t € R. So the orbit is a point. O
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The solution whose orbit is a topological circle is called a periodic
solution. From that proof above we see that a periodic solution ¢(¢, x)
is one for which there is a real 7 > 0 such that ¢(7,2) = x and
o(s,x) # x for 0 < s < 7. The number 7 is called the period of
the periodic solution. Sometimes periodic solutions are called periodic
orbits or closed orbits.

The solution whose orbit is a point is called a critical solution, or a
critical point of & = f(z). Sometimes it is called an equilibrium or a
stationary point.

It is easy to see the following.

Lemma 6.3. A point xo € D s a critical point of a vector field f if
and only if f(zo) = 0.

Since any solution may be extended to a maximal solution, from now
on, unless explicitly stated otherwise, every solution will be assumed
to be maximal.



