6. General Properties of Autonomous Systems

Consider an autonomous system

$$
\begin{equation*}
\dot{x}=f(x) \tag{6.1}
\end{equation*}
$$

with $f: D \rightarrow \mathbb{R}^{n}$ a locally Lipschitz map from an open set $D \subset \mathbb{R}^{n}$ into \mathbb{R}^{n}.

We also say that such a function f is a vector field in D. Thus, being given a vector field in D is the same as being given an autonomous differential equation in D.

According to the existence and uniqueness theorem, for each point $x \in D$, there is a unique solution $\phi(t)$ with $\phi(0)=x$ defined in an interval I about 0 in \mathbb{R}. Let us denote this function by $\phi(t, x)$. We claim

$$
\phi(t+s, x)=\phi(t, \phi(s, x))
$$

for $t, s, t+s \in I$.
Indeed, the function $t \rightarrow \phi(t+s, x)$ is a solution to the differential equation $\dot{x}=f(x)$ and $\phi(0+s, x)=\phi(s, x)$. By uniqueness of solutions, $\phi(t+s, x)=\phi(t, \phi(s, x))$.

This property is called the local flow property of autonomous systems. The map $t \rightarrow \phi(t, x), t \in I$ then defines a C^{1} curve in D.

If, in addition, for each $x \in D$, the solution $\phi(t, x)$ is defined for all time, it is called a flow in D. We then have $\phi(t+s, x)=\phi(t, \phi(s, x))$ for all $s, t \in \mathbb{R}$ and $x \in D$. Writing ϕ_{t} for the mapping $\phi(t, \cdot)$, we can write this last property as

$$
\phi_{t+s}=\phi_{t} \circ \phi_{s} .
$$

Definition 6.1. Let D_{1}, D_{2} be two non-empty open sets in \mathbb{R}^{n}. Let r be a positive integer. A C^{r} map $g: D_{1} \rightarrow D_{2}$ is called a C^{r} diffeomorphism if g is one-to-one, onto, and its inverse mapping $g^{-1}: D_{2} \rightarrow D_{1}$, is also C^{r}.

By the inverse function theorem, a C^{r} map $g: D_{1} \rightarrow D_{2}$ is a C^{r} diffeomorphism if and only if it is 1-1, onto, and, for each $x \in D_{1}$, the derivative of g at x is a linear isomorphism of \mathbb{R}^{n}.

The set $\operatorname{Diff}^{r}(D)$ of C^{r} diffeomorphisms from D to itself is a noncommutative group with the composition operation as group product

$$
g_{1} \cdot g_{2}=g_{1} \circ g_{2}
$$

The identity of this group is simply the identity transformation.
A flow $\left\{\phi_{t}\right\}_{t \in \mathbb{R}}$ form a one parameter commutative group. The group is isomorphic to the group $(\mathbb{R},+)$. Sinmlarly, for any diffoemorphism
g of an open set D, the set $\left\{g^{n}: n \in \mathbf{Z}\right\}$ ia also a commutative group isomorphic to ($\mathbf{Z},+$).

Exercise. Recall that a topological group is a triple ($G, \mathcal{T}, \cdot)$ in which (G, \mathcal{T}) is a topological space, (G, \cdot) is a group (i.e., \cdot is an associative operation with an identity and each element h has an inverse h^{-1}), and the mapping $(g, h) \rightarrow g \cdot h^{-1}$ from the product space $G \times G$ to G is continuous. Sometimes we say that the group G is a topological group and we suppress writing the explicit topology and group operation. Given the set $\operatorname{Diff}^{r}(D)$ the topology of uniform C^{r} convergence on compact subsets of D, this topology makes the group ($\operatorname{Diff}^{r}(D), \circ$) into a topological group, where "o" is composition of maps in $\operatorname{Diff}^{r}(D)$.

Given a vector field (4), and a point $x \in D$, we call the maximal soltution curve $t \rightarrow \phi(t, x)$ the orbit or path through x. Sometimes we also call the image set $\{\phi(t, x)\}$ of a maximal solution through x, the orbit through x.

We also denote by $\mathcal{O}(x)$ the orbit through x, that is,

$$
\mathcal{O}(x)=\{\phi(t, x): t \in \mathbb{R}\}
$$

Lemma 6.1. Any two orbits are distinct or identical.
Proof. Suppose $y \in \mathcal{O}(x)$ and we show that $\mathcal{O}(y)=\mathcal{O}(x)$.
We have $y=\phi(t, x)$ for some $t \in \mathbb{R}$. Hence for any $s \in \mathbb{R}, \phi(s, y)=$ $\phi(t+s, x) \in \mathcal{O}(x)$. So $\mathcal{O}(y) \subset \mathcal{O}(x)$. Similarly by that fact $x=\phi(-t, y)$ we have $\mathcal{O}(x) \subset \mathcal{O}(y)$.
Lemma 6.2. Any orbit is a point, a circle, or a 1-1 continuous image of an open interval (including the whole line).
Proof. Consider an orbit $\{\phi(t, x): t \in I\}$, where I is an open interval.
If for any $s, t \in I$ with $s \neq t, \phi(s, x) \neq \phi(t, x)$, then the orbit is a 1-1 continuous image of I.

Suppose $\phi(s, x)=\phi(t, x)$ for some $s, t \in I$ with $s<t$. Then for any $r \in[0, t-s], \phi(s-r, x)=\phi(t-r, x)$ and $\phi(t+r, x)=\phi(s+r, x)$ are well defined and therefore $\phi(\cdot, x)$ is defined on the whole real line by induction. Moreover, for any $r \in \mathbb{R}$, we have $\phi(s+r, x)=\phi(t+r, x)$. In particular, $x=\phi(0, x)=\phi(t-s, x)=\phi(\tau, x)$, where $\tau=t-s$.

If τ is the smallest positive number such that $\phi(\tau, x)=x$, then the orbit through x is a circle.

If there is sequence of positive number $\left\{t_{n}\right\}$ with $t_{n} \rightarrow 0$ such that $\phi\left(t_{n}, x\right)=x$, then we have $\phi\left(k t_{n}, x\right)=x$ for any $k \in \mathbb{Z}$. It means that there is a dense subset $S, S=\left\{k t_{n}: k \in \mathbb{Z}, n \in \mathbb{N}\right\}$, in \mathbb{R} such that $\phi(s, x)=x$ for any $s \in S$. By continuity we get that $\phi(t, x)=x$ for any $t \in \mathbb{R}$. So the orbit is a point.

The solution whose orbit is a topological circle is called a periodic solution. From that proof above we see that a periodic solution $\phi(t, x)$ is one for which there is a real $\tau>0$ such that $\phi(\tau, x)=x$ and $\phi(s, x) \neq x$ for $0<s<\tau$. The number τ is called the period of the periodic solution. Sometimes periodic solutions are called periodic orbits or closed orbits.

The solution whose orbit is a point is called a critical solution, or a critical point of $\dot{x}=f(x)$. Sometimes it is called an equilibrium or a stationary point.

It is easy to see the following.
Lemma 6.3. A point $x_{0} \in D$ is a critical point of a vector field f if and only if $f\left(x_{0}\right)=0$.

Since any solution may be extended to a maximal solution, from now on, unless explicitly stated otherwise, every solution will be assumed to be maximal.

