
7. Limit Sets

Consider an autonomous system of the form ẋ = f(x) for which
solutions are defined for all time in an open set D.

Definition 7.1. Let x ∈ D.
The ω-limit set of x, denoted by ω(x), is the set of points y such that

there is a sequence t1 < t2 < . . . with ti → +∞ and φ(ti, x) → y as
i →∞.

The α-limit set of x, denoted by α(x), is the set of points y such that
there is a sequence t1 > t2 > . . . with ti → −∞ and φ(ti, x) → y as
i →∞.

For any subset Λ ⊂ D and t ∈ R, denote φ(t, Λ) = {φ(t, x) : x ∈ Λ}.
Definition 7.2. A subset Λ ⊂ D is invariant for the differential
equation ẋ = f(x) or for the vector field f in D if for any t ∈ R,
φ(t, Λ) ⊆ Λ, where φ(t, x) is a solution to ẋ = f(x) with φ(0, x) = x.

Note that if φ(t, Λ) ⊆ Λ for any t ∈ R, then we also have φ(−t, Λ) ⊆
Λ and therefore Λ = φ(t, φ(−t, Λ)) ⊆ φ(t, Λ). So we can replace “⊆”
by “=” in the definition.

Any orbit is an invariant set by the definition.

Lemma 7.1. For any x ∈ D, ω(x) and α(x) are closed invariant
subsets.

Proof. Invariance) We prove φ(t, ω(x)) ⊆ ω(x) for any t ∈ R. Let
y ∈ ω(x). Then we can take t1 < t2 < . . . such that ti → −∞ and
φ(ti, x) → y as i →∞. Hence, by continuity we have t1+t < t2+t < . . .
such that ti+t →∞ and φ(ti+t, x) = φ(t, φ(ti, x)) → φ(t, y) as i →∞.
So φ(t, y) ∈ ω(x), which implies φ(t, ω(x)) ⊆ ω(x).

(Closeness) Suppose {yk} ⊂ ω(x) such that yk → y0 as k →∞. For
each k > 0, we can choose tk > 0 inductively such that d(φ(tk, x), yk) ≤
d(yk, y0) and tk > min{tk−1, k}. We get a sequence t1 < t2 < . . . with
tk →∞. Since

d(φ(tk, x, ), y0) ≤ d(φ(tk, x, ), yk) + d(yk, y0) ≤ 2d(yk, y0) → 0,

we have φ(tk, x, ) → y0 as k →∞. So y0 ∈ ω(x), and therefore ω(x) is
a closed subset. ¤

Fact 7.2. Suppose f is a C1 vector field in D ⊂ Rn and x ∈ D has the
property that the orbit φ(t, x) of x remains in a compact subset f of D
for t ≥ 0. Then, ω(x) is a compact invariant connected subset of f .
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Definition 7.3. A point x ∈ D is a nonwandering point of the flow φt

if for any neighborhood U of x and any T > 0, there exists t > T such
that

φt(U) ∩ U 6= ∅.
The set of all nonwandering points is called the nonwandering set

It can be proved that a point x ∈ D is a nonwandering point if for
any neighborhood U of x, there exists t > 1 such that φt(U) ∩ U 6= ∅.

Clearly, for any x ∈ D, any point y ∈ D in an α-limit set α(x) or
ω-limit set ω(x) is nonwandering point.

Lemma 7.3. Nonwandering set is closed invariant set.

Proof. Invariance is clear. The set is closed because by definition its
complement is opan. ¤
Definition 7.4. A subset set is called a minimal set of a flow if it
is a nonempty closed invariant set that does not contain any closed
invariant proper subset.

Proposition 7.4. Any compact invariant set contains a minimal set.

Proof. Let K be a compact invariant set. Let S be the collection of all
nonempty invariant compact subset A of K. Define a partial order “≺”
in S by A ≺ B if A ⊂ B. Then by Zorn’s lemma, every linearly ordered
subsets · · · ≺ Ai ≺ Ai−1 ≺ . . . has a least element Σ. In fact, Σ is the
intersection of the set {Ai}, and is nonempty by Cantor intersection
theorem. Σ is a minimal set. ¤
Lemma 7.5. A compact set Σ is minimal if and only if for any x ∈ Σ,
O(x) = Σ.

Proof. “=⇒”: This is because O(x) is a nonempty colsed invariant set
contained in Σ.

“⇐=”: If Σ is not a minimal set, then there is a nonempty closed
invariant subset Σ1 properly contained in Σ, then for any x ∈ Σ1,
O(x) ⊂ Σ1 6= Σ. ¤
Example. A critical point or periodic orbit is a minimal set.

It is remarkable fact that in the plane for a C1 autonomous vector
field, there are no other minimal sets. On the other hand, in Rn, n > 2,
there are many examples of non-trivial minimal sets.


