
8. Structure of autonomous differential equations near
a non-critical point

8.1. Vector Fields as Differential operators. Recall that an
autonomous differential equation ẋ = f(x) is given by a function
f : D → Rn from a domain D in Rn. Suppose that f is Ck for k ≥ 1.
Let Ck(D,R) be the space of Ck real-valued functions defined on D.
We can use f to define an operator Lf from Ck+1(D,R) to Ck(D,R)
in the following way.

For x ∈ D, let φ(t, x) be the solution to ẋ = f(x), φ(0, x) = x. For,
ψ ∈ Ck+1(D,R), let

(8.1) (Lfψ)(x) =
d

dt
ψ(φ(t, x))

∣∣
t=0

.

Fact 8.1. L is a mapping from Ck+1(D,R) to Ck(D,R) satisfying the
following two properties.

(1) (Linearity). L is a linear mapping; i.e., for any ψ, η ∈ Ck+1(D,R),
scalars α, β

Lf (αψ + βη) = αLf (ψ) + βLf (η).

(2) (Derivation). For ψ, η ∈ Ck+1(D,R),

Lf (ψ · η) = Lf (ψ) · η + ψLf (η).

The operator Lf is called the Lie derivative operator. It maps Ck+1

functions to Ck functions.
Let πi : x → xi be the projection of a vector onto its i-th coordinate

as a function on Rn.

Fact 8.2. Denote f(x) = (f1(x), f2(x), . . . , fn(x)). Then

(1) The value of the function Lf (ψ) can be computed by the formula

(8.2) Lf (ψ)(x) =
n∑

i=1

∂ψ

∂xi

(x) · fi(x).

(2) Lf (πi) = fi.
(3) The function ψ is constant along solution curves of ẋ = f(x) if

and only if Lf (ψ) is the zero function in D.

Proof. (1) This is because by (8.1),

(Lfψ)(x) =
n∑

i=1

∂ψ

∂xi

(φ(t, x))
∣∣
t=0

d(πi ◦ φ)(t, x)

dt

∣∣
t=0

.
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Since φ(t, x)
∣∣
t=0

= x, πi ◦ φ = φi, and φ̇ i(t, x) = fi(φ(t, x)), we get
(8.2).

(2) It follow from the fact that
∂πj

∂xi

(x) = 1 if j = i and 0 otherwise.

(3) It follows directly from the definiton of Lf given in (8.1). ¤
By part (2), the operator Lf and the vector field f completely de-

termine each other, and we can think of vector fields as differential
operators on real-valued functions or as assignments of vectors at each
point in a domain D. Hence, we will often identify an autonomous
differential equation ẋ = f(x) with the vector field f and with the
operator Lf .

Let ei be the unit vector in Rn whose i-th coordinate is 1 and whose
other coordinates are 0. It is common to write ∂

∂xi
for the operator Lf

where f(x) = ei is the constant vector field whose value at each x is ei.
In this sense, we can write

f(x) =
n∑

i=1

fi(x)
∂

∂xi

.

This means that given a function f : D → Rn, with f = (f1, . . . , fn),
we get any one of three objects: the system of differential equations

ẋi = fi(x), i = 1, . . . , n,

the vector field
x → f(x), x ∈ D,

and the operator
ψ → Lf (ψ).

8.2. The flow-box theorem.

Definition 8.1. Suppose f is a vector field in the domain D ⊂ Rn. Let
ρ : D → D′ be a smooth change of coordinates from D to the domain
D′. Then, ρ maps the vector field f to the new vector field ρ?f defined
by

ρ?(f)(y) = Dρρ−1y(f(ρ−1y)).

Thus, we can write ρ? = Dρ ◦ f ◦ ρ−1 as vector valued funtions.

Theorem 8.3 (Flow-box theorem, path-cylinder theorem). Let k ≥ 1.
Suppose f is a Ck vector field in a domain D and x0 is a point in D
such that f(x0) 6= 0. Then there is a Ck change of coordinates ρ from a
neighborhood U of 0 in Rn to a neighborhood V of x0 such that ρ carries

solutions of the constant vector field
∂

∂x1

onto those of ẋ = f(x).
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Proof. Since f(x0) 6= 0, we may consider f(x0) as a vector attached to
the origin 0 in Rn and pick non-zero unit vectors ξ2, ξ3, . . . ξn so that
the vectors f(x0), ξ2, ξ3, . . . , ξn are linearly independent. Let H̃ be the
subspace of Rn spanned by the vectors ξi, i ≥ 2. The affine subspace
H = x0 + H̃ is then transverse to the vector field f(x0) at x0.

By the local continuity of solutions to ẋ = f(x) on initial conditions
and the continuity of f , there are a neighborhood V1 of x0 in H and an
interval I about 0 in R such that for any x ∈ V1, (i) φ(t, x) is defined
on all of I and (ii) φ(t, x) meets H only for t = 0.

We define a mapping ρ : H̃ → H by η(ỹ) = x0 +
∑

j yjξj if ỹ =

(y2, . . . , yn) =
∑

j yjξj ∈ H̃. Let U1 = ρ−1(V1), and U0 = I × U1. Then
we extend the mapping ρ to U0 by

(8.3) ρ(y) = ρ(y1, ỹ) = φ(y1, ρ(ỹ)),

if y = (y1, ỹ) ∈ U0. We claim that this transformation ρ give the
required change of coordinates.

First, it is obvious that ρ is a one to one map. Also, ρ is a Ck

mapping of the variables (y1, ỹ).
To prove that ρ is a change of coordinates, it suffices to show that its

Jacobian determinant at 0 is not zero so that we can use the implicit
function theorem to get that ρ−1 is also a Ck mapping.

Note that at (y1, ỹ) = 0, the first column of the Jacobian matrix of ρ,
∂ρ

∂y1

is just f(x0). Since φ(0, η(ỹ)) = η(ỹ), it follows
∂ρ

∂yj

=
∂η

∂yj

= ξj

at 0 for j = 2, . . . , n. By the choice of the ξ′js, f(x0), ξ2, ξ3, . . . , ξn

are linearly independent. Thus, the required Jacobian determinant is
not zero. By continuity, the Jacobian determinant is not zero in a
neighborhood U ⊂ U0. Denote V = ρ(U). By the Inverse Function
Theorem we get that the inverse ρ−1 is defined and is Ck.

Finally, we have to show that the mapping ρ carries solutions to
∂

∂x1

to those of f . Denote the solution of the vector fild
∂

∂x1

by ψ(t, x).

Then for any y = (y1, ỹ),

ψ(t, y) = ψ(t, (y1, ỹ)) = (t + y1, ỹ).

Hence, for any t ∈ I and y = (y1, ỹ) ∈ U such that (t + y1, ỹ) ∈ U , by
(8.3) we have

ρ(ψ(t, y)) = ρ(t+y1, ỹ) = φ(t+y1, ρ(ỹ)) = φ(t, φ(y1, ρ(ỹ))) = φ(t, ρ(y))

This is what we need to show. ¤
We end the section by a proposition in analysis.
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Proposition 8.4. Suppose f is a C1 vector field in an open set D ⊂ Rn

and there is a closed nonempty ball B ⊂ D such that f is nonzero on
and nowhere tangent to the boundary of B. Then, f possesses a critical
point in B.

Proof. Let φ(t, x) be the local flow of f . Since, f is non-zero on and
not tangent to the boundary of B, orbits at the boundary either flow
into or out of B. We suppose they flow into B. In the other case, we
can replace f by −f .

For x ∈ B, the solution φ(t, x) is defined and remains in B for all
t > 0. Let m > 0 be a positive integer, and consider the mapping
x → φ 1

m
(x). This is a continuous self-map of the closed ball B to

itself. By the Brouwer fixed point theorem, it has a fixed point, say
xm. Since B is compact, the sequence {xm} has a subsequence xmk

which converges, say to the point y as k →∞.
Let us show that f(y) = 0. If not, then by the flow box theorem,

there are a neighborhood V of y in D and an interval Iε = [−ε, ε] about
0 in R such that,

(i) for z ∈ V , the solution φ(t, z) is defined for all t ∈ [−ε, ε];
(ii) φ(t1, z) 6= φ(t2, z) for t1 6= t2 ∈ Iε.

But, if k is large enough, then xmk
∈ V , and 1

mk
< ε. Then, φ 1

m
(xmk

) 6=
xmk

by (ii), which contradicts the definition of xmk
. ¤


