8.1. Vector Fields as Differential operators. Recall that an autonomous differential equation $\dot{x}=f(x)$ is given by a function $f: D \rightarrow \mathbb{R}^{n}$ from a domain $D$ in $\mathbb{R}^{n}$. Suppose that $f$ is $C^{k}$ for $k \geq 1$. Let $C^{k}(D, \mathbb{R})$ be the space of $C^{k}$ real-valued functions defined on $D$. We can use $f$ to define an operator $\mathcal{L}_{f}$ from $C^{k+1}(D, \mathbb{R})$ to $C^{k}(D, \mathbb{R})$ in the following way.

For $x \in D$, let $\phi(t, x)$ be the solution to $\dot{x}=f(x), \phi(0, x)=x$. For, $\psi \in C^{k+1}(D, \mathbb{R})$, let

$$
\begin{equation*}
\left(\mathcal{L}_{f} \psi\right)(x)=\left.\frac{d}{d t} \psi(\phi(t, x))\right|_{t=0} . \tag{8.1}
\end{equation*}
$$

Fact 8.1. $\mathcal{L}$ is a mapping from $C^{k+1}(D, \mathbb{R})$ to $C^{k}(D, \mathbb{R})$ satisfying the following two properties.
(1) (Linearity). $\mathcal{L}$ is a linear mapping; i.e., for any $\psi, \eta \in C^{k+1}(D, \mathbb{R})$, scalars $\alpha, \beta$

$$
\mathcal{L}_{f}(\alpha \psi+\beta \eta)=\alpha \mathcal{L}_{f}(\psi)+\beta \mathcal{L}_{f}(\eta) .
$$

(2) (Derivation). For $\psi, \eta \in C^{k+1}(D, \mathbb{R})$,

$$
\mathcal{L}_{f}(\psi \cdot \eta)=\mathcal{L}_{f}(\psi) \cdot \eta+\psi \mathcal{L}_{f}(\eta) .
$$

The operator $\mathcal{L}_{f}$ is called the Lie derivative operator. It maps $C^{k+1}$ functions to $C^{k}$ functions.

Let $\pi_{i}: x \rightarrow x_{i}$ be the projection of a vector onto its $i$-th coordinate as a function on $\mathbb{R}^{n}$.

Fact 8.2. Denote $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$. Then
(1) The value of the function $\mathcal{L}_{f}(\psi)$ can be computed by the formula

$$
\begin{equation*}
\mathcal{L}_{f}(\psi)(x)=\sum_{i=1}^{n} \frac{\partial \psi}{\partial x_{i}}(x) \cdot f_{i}(x) . \tag{8.2}
\end{equation*}
$$

(2) $\mathcal{L}_{f}\left(\pi_{i}\right)=f_{i}$.
(3) The function $\psi$ is constant along solution curves of $\dot{x}=f(x)$ if and only if $\mathcal{L}_{f}(\psi)$ is the zero function in $D$.

Proof. (1) This is because by (8.1),

$$
\left(\mathcal{L}_{f} \psi\right)(x)=\left.\left.\sum_{i=1}^{n} \frac{\partial \psi}{\partial x_{i}}(\phi(t, x))\right|_{t=0} \frac{d\left(\pi_{i} \circ \phi\right)(t, x)}{d t}\right|_{t=0}
$$

Since $\left.\phi(t, x)\right|_{t=0}=x, \pi_{i} \circ \phi=\phi_{i}$, and $\dot{\phi}_{i}(t, x)=f_{i}(\phi(t, x))$, we get (8.2).
(2) It follow from the fact that $\frac{\partial \pi_{j}}{\partial x_{i}}(x)=1$ if $j=i$ and 0 otherwise.
(3) It follows directly from the definiton of $\mathcal{L}_{f}$ given in (8.1).

By part (2), the operator $\mathcal{L}_{f}$ and the vector field $f$ completely determine each other, and we can think of vector fields as differential operators on real-valued functions or as assignments of vectors at each point in a domain $D$. Hence, we will often identify an autonomous differential equation $\dot{x}=f(x)$ with the vector field $f$ and with the operator $\mathcal{L}_{f}$.

Let $e_{i}$ be the unit vector in $\mathbb{R}^{n}$ whose $i$-th coordinate is 1 and whose other coordinates are 0 . It is common to write $\frac{\partial}{\partial x_{i}}$ for the operator $\mathcal{L}_{f}$ where $f(x)=e_{i}$ is the constant vector field whose value at each $x$ is $e_{i}$. In this sense, we can write

$$
f(x)=\sum_{i=1}^{n} f_{i}(x) \frac{\partial}{\partial x_{i}} .
$$

This means that given a function $f: D \rightarrow \mathbb{R}^{n}$, with $f=\left(f_{1}, \ldots, f_{n}\right)$, we get any one of three objects: the system of differential equations

$$
\dot{x}_{i}=f_{i}(x), \quad i=1, \ldots, n,
$$

the vector field

$$
x \rightarrow f(x), \quad x \in D,
$$

and the operator

$$
\psi \rightarrow \mathcal{L}_{f}(\psi)
$$

### 8.2. The flow-box theorem.

Definition 8.1. Suppose $f$ is a vector field in the domain $D \subset \mathbb{R}^{n}$. Let $\rho: D \rightarrow D^{\prime}$ be a smooth change of coordinates from $D$ to the domain $D^{\prime}$. Then, $\rho$ maps the vector field $f$ to the new vector field $\rho_{\star} f$ defined by

$$
\rho_{\star}(f)(y)=D \rho_{\rho^{-1} y}\left(f\left(\rho^{-1} y\right)\right) .
$$

Thus, we can write $\rho_{\star}=D \rho \circ f \circ \rho^{-1}$ as vector valued funtions.
Theorem 8.3 (Flow-box theorem, path-cylinder theorem). Let $k \geq 1$. Suppose $f$ is a $C^{k}$ vector field in a domain $D$ and $x_{0}$ is a point in $D$ such that $f\left(x_{0}\right) \neq 0$. Then there is a $C^{k}$ change of coordinates $\rho$ from a neighborhood $U$ of 0 in $\mathbb{R}^{n}$ to a neighborhood $V$ of $x_{0}$ such that $\rho$ carries solutions of the constant vector field $\frac{\partial}{\partial x_{1}}$ onto those of $\dot{x}=f(x)$.

Proof. Since $f\left(x_{0}\right) \neq 0$, we may consider $f\left(x_{0}\right)$ as a vector attached to the origin 0 in $\mathbb{R}^{n}$ and pick non-zero unit vectors $\xi_{2}, \xi_{3}, \ldots \xi_{n}$ so that the vectors $f\left(x_{0}\right), \xi_{2}, \xi_{3}, \ldots, \xi_{n}$ are linearly independent. Let $\tilde{H}$ be the subspace of $\mathbb{R}^{n}$ spanned by the vectors $\xi_{i}, i \geq 2$. The affine subspace $H=x_{0}+\tilde{H}$ is then transverse to the vector field $f\left(x_{0}\right)$ at $x_{0}$.

By the local continuity of solutions to $\dot{x}=f(x)$ on initial conditions and the continuity of $f$, there are a neighborhood $V_{1}$ of $x_{0}$ in $H$ and an interval $I$ about 0 in $\mathbb{R}$ such that for any $x \in V_{1}$, (i) $\phi(t, x)$ is defined on all of $I$ and (ii) $\phi(t, x)$ meets $H$ only for $t=0$.

We define a mapping $\rho: \tilde{H} \rightarrow H$ by $\eta(\tilde{y})=x_{0}+\sum_{j} y_{j} \xi_{j}$ if $\tilde{y}=$ $\left(y_{2}, \ldots, y_{n}\right)=\sum_{j} y_{j} \xi_{j} \in \tilde{H}$. Let $U_{1}=\rho^{-1}\left(V_{1}\right)$, and $U_{0}=I \times U_{1}$. Then we extend the mapping $\rho$ to $U_{0}$ by

$$
\begin{equation*}
\rho(y)=\rho\left(y_{1}, \tilde{y}\right)=\phi\left(y_{1}, \rho(\tilde{y})\right), \tag{8.3}
\end{equation*}
$$

if $y=\left(y_{1}, \tilde{y}\right) \in U_{0}$. We claim that this transformation $\rho$ give the required change of coordinates.

First, it is obvious that $\rho$ is a one to one map. Also, $\rho$ is a $C^{k}$ mapping of the variables $\left(y_{1}, \tilde{y}\right)$.

To prove that $\rho$ is a change of coordinates, it suffices to show that its Jacobian determinant at 0 is not zero so that we can use the implicit function theorem to get that $\rho^{-1}$ is also a $C^{k}$ mapping.

Note that at $\left(y_{1}, \tilde{y}\right)=0$, the first column of the Jacobian matrix of $\rho$, $\frac{\partial \rho}{\partial y_{1}}$ is just $f\left(x_{0}\right)$. Since $\phi(0, \eta(\tilde{y}))=\eta(\tilde{y})$, it follows $\frac{\partial \rho}{\partial y_{j}}=\frac{\partial \eta}{\partial y_{j}}=\xi_{j}$ at 0 for $j=2, \ldots, n$. By the choice of the $\xi_{j}^{\prime} s, f\left(x_{0}\right), \xi_{2}, \xi_{3}, \ldots, \xi_{n}$ are linearly independent. Thus, the required Jacobian determinant is not zero. By continuity, the Jacobian determinant is not zero in a neighborhood $U \subset U_{0}$. Denote $V=\rho(U)$. By the Inverse Function Theorem we get that the inverse $\rho^{-1}$ is defined and is $C^{k}$.

Finally, we have to show that the mapping $\rho$ carries solutions to $\frac{\partial}{\partial x_{1}}$ to those of $f$. Denote the solution of the vector fild $\frac{\partial}{\partial x_{1}}$ by $\psi(t, x)$. Then for any $y=\left(y_{1}, \tilde{y}\right)$,

$$
\psi(t, y)=\psi\left(t,\left(y_{1}, \tilde{y}\right)\right)=\left(t+y_{1}, \tilde{y}\right) .
$$

Hence, for any $t \in I$ and $y=\left(y_{1}, \tilde{y}\right) \in U$ such that $\left(t+y_{1}, \tilde{y}\right) \in U$, by (8.3) we have
$\rho(\psi(t, y))=\rho\left(t+y_{1}, \tilde{y}\right)=\phi\left(t+y_{1}, \rho(\tilde{y})\right)=\phi\left(t, \phi\left(y_{1}, \rho(\tilde{y})\right)\right)=\phi(t, \rho(y))$
This is what we need to show.
We end the section by a proposition in analysis.

Proposition 8.4. Suppose $f$ is a $C^{1}$ vector field in an open set $D \subset \mathbb{R}^{n}$ and there is a closed nonempty ball $B \subset D$ such that $f$ is nonzero on and nowhere tangent to the boundary of $B$. Then, $f$ possesses a critical point in $B$.
Proof. Let $\phi(t, x)$ be the local flow of $f$. Since, $f$ is non-zero on and not tangent to the boundary of $B$, orbits at the boundary either flow into or out of $B$. We suppose they flow into $B$. In the other case, we can replace $f$ by $-f$.

For $x \in B$, the solution $\phi(t, x)$ is defined and remains in $B$ for all $t>0$. Let $m>0$ be a positive integer, and consider the mapping $x \rightarrow \phi_{\frac{1}{m}}(x)$. This is a continuous self-map of the closed ball $B$ to itself. By the Brouwer fixed point theorem, it has a fixed point, say $x_{m}$. Since $B$ is compact, the sequence $\left\{x_{m}\right\}$ has a subsequence $x_{m_{k}}$ which converges, say to the point $y$ as $k \rightarrow \infty$.

Let us show that $f(y)=0$. If not, then by the flow box theorem, there are a neighborhood $V$ of $y$ in $D$ and an interval $I_{\epsilon}=[-\epsilon, \epsilon]$ about 0 in $\mathbb{R}$ such that,
(i) for $z \in V$, the solution $\phi(t, z)$ is defined for all $t \in[-\epsilon, \epsilon]$;
(ii) $\phi\left(t_{1}, z\right) \neq \phi\left(t_{2}, z\right)$ for $t_{1} \neq t_{2} \in I_{\epsilon}$.

But, if $k$ is large enough, then $x_{m_{k}} \in V$, and $\frac{1}{m_{k}}<\epsilon$. Then, $\phi_{\frac{1}{m}}\left(x_{m_{k}}\right) \neq$ $x_{m_{k}}$ by (ii), which contradicts the definition of $x_{m_{k}}$.

