9. Two dimensional systems

We will apply some topology of the Euclidean plane to obtain information about two dimensional planar autonomous systems.

Definition 9.1. Let $\mathbb{S}^{1}=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle in the plane \mathbb{R}^{2}. A Jordan curve in the plane \mathbb{R}^{2} (or a simple closed curve) in the plane \mathbb{R}^{2}) is the image of a 1-1 continuous map $h: S^{1} \rightarrow \mathbb{R}^{2}$.
Theorem 9.1 (Jordan Curve Theorem). . Let γ be a Jordan curve in the plane \mathbb{R}^{2}. Then, $\mathbb{R}^{2} \backslash \gamma$ is the union of two disjoint open connected sets S_{1}, S_{2} each of which have γ as boundary. Precisely one of the regions S_{1}, S_{2} is bounded.

Remark 9.2. The book refers to the sets S_{i} as being arcwise connected. But open connected sets in the plane are arcwise connected.

We will not prove this theorem here, instead referring to a course in topology. The bounded region of $\mathbb{R}^{2} \backslash \gamma$ is frequently referred to as the interior of γ although it is not the interior in the sense of topology.

Unless otherwise stated, we will assume that f is a C^{1} vector field defined in the plane \mathbb{R}^{2} and, for each x, the solution $\phi(t, x)$ is defined for all $t \in \mathbb{R}$.

Let p be a regular point of the vector field f; i.e., $f(p) \neq 0$. Let L be a closed tranversal to f at p. This means that there is a C^{1} diffeomorphism $h:[-1,1] \rightarrow L$ such that $h(0)=p, h^{\prime}(t) \neq 0$, and, for each $t \in[-1,1], h^{\prime}(t)$ is not a multiple of $f(h(t))$. Let L_{0} be the interior of L; i.e., $L_{0}=\{h(s):-1<s<1\}$.

Let

$$
V=\left\{q \in L_{0}: \exists t_{q}>0 \text { s.t. } \phi\left(t_{q}, q\right) \in L_{0}, \phi(t, q) \notin L_{0} \forall 0<t<t_{q}\right\} .
$$

The set V is the set of points in L_{0} whose positive orbits return to L_{0}. Let $V^{\prime}=\left\{\phi\left(t_{q}, q\right): q \in V\right\}$. Set $W=h^{-1} V, W^{\prime}=h^{-1} V^{\prime}$ so that W and W^{\prime} are subsets of $(-1,1)$.

Define $g: W \rightarrow W^{\prime}$ by $g(w)=h^{-1} \phi\left(t_{h(w)}, h(w)\right)$.
Lemma 9.3. The set W is open in $(-1,1)$ and the function g is continuous on W. For any $z \in W$ for which the iterates $z, g(z), \ldots, g^{n}(z)$ is defined, the sequence $z, g(z), \ldots, g^{n}(z)$ is monotone in $(-1,1)$.

Proof. (W is open) It is enough to show that V is open in L. Fix $q \in V$, we show that there exists a neighborhood U of q in L_{0} such that for any $z \in U, z \in V$ as well.

Take a flow-box B centered at $\phi\left(t_{q}, q\right)$ such that each connected component of an orbit in B is an arc which only meets L in one point. There
is an $\epsilon_{1}>0$ such that if $u \in B$, then there is a $\eta(u) \in\left(-\epsilon_{1}, \epsilon_{1}\right)$ such that $\phi(\eta(u), u) \in L$. Moreover, in the flow-box coordinates on $B, \eta(u)$ is obviously a continuous function of u since $L \cap B$ is a curve transverse to the vector field. This implies that, in the standard coordinates on $B, \eta(u)$ is still a continuous function of u.

By continuity of $\phi\left(t_{q}, \cdot\right)$, there is a neighborhood U of q in L such that if $z \in U$, then $\phi\left(t_{q}, z\right) \in B$. Hence,

$$
\phi\left(t_{q}+\eta\left(\phi\left(t_{q}, z\right)\right), z\right)=\phi\left(\eta\left(\phi\left(t_{q}, z\right)\right), \phi\left(t_{q}, z\right)\right) \in L .
$$

So $z \in V$. This gives that V is open.
(g is continuous) The map $z \rightarrow \phi\left(t_{z}, z\right)=\phi\left(t_{q}+\eta\left(\phi\left(t_{q}, z\right)\right), z\right)$ is continuous because $\phi\left(t_{q}, \cdot\right), \eta(\cdot)$ and $\phi(\cdot, \cdot)$ are all continuous. We get that g is continuous.
(g is Monotone) Consider a point $z \in W$. If $g(z)=z$ for all z, there is nothing to prove, so assume z is such that $g(z)>z$. In the opposite case in which $g(z)<z$ one proceeds similarly.

The solution curve from $h(z)$ to $h(g(z))$ together with the piece, say L_{1} of L from $h(g(z))$ to $h(z)$ is a Jordan curve γ. Since solutions always cross L moving in the same direction, the forward orbit of a point in the interval $L_{1} \backslash\{h(z)\}$ always lies in the same component of the complement of γ. If $g(g(z))$ is defined, then $g(g(z))$ must be greater than $g(z)$ since otherwise, the forward orbit of $h(g(z))$ would have to pass from one component of the complement of γ to the other one. Now the argument continues replacing z by $g(z)$.

Denote by $\mathcal{O}_{+}(x)=\{\phi(t, x): t \geq 0\}$ the forward orbit of x.
Corollary 9.4. The ω-limit set $\omega(\gamma)$ of an orbit γ can intersect the interior L_{0} of a transversal L in at most one point.

So if $\gamma=\gamma(p)$ and $\omega(\gamma) \cap L_{0}=\left\{p_{0}\right\}$, then either $\omega(\gamma)=\gamma$ and γ is a periodic orbit, or there exist $\left\{p_{i}\right\} \subset \mathcal{O}_{+}(x) \cap L_{0}$ such that p_{i} approaches p_{0} monotonically.
Proof. The first part of the corollary is obvious. We only prove that second part.

We assume that L_{0} is small enough that it fits inside a single flow box B.

Since $p_{0}=\omega(p) \cap L_{0}$, there is a sequence $t_{1}<t_{2}<\ldots$ with $t_{k} \rightarrow \infty$ such that $\phi\left(t_{k}, p\right) \rightarrow p_{0}$ in L_{0}.

If for some $j<k, \phi\left(t_{j}, p\right)=\phi\left(t_{k}, p\right)$. Then, γ is periodic. It must be equal to its own ω-limit set.

If for all $k<j, \phi\left(t_{j}, p\right) \neq \phi\left(t_{k}, p\right)$, then we can construct a Jordan curve using pieces of orbits $\phi\left(t_{i}, p\right), \phi\left(t_{i+1}, p\right)$ and pieces of L_{0} as before
shows that the forward orbit $\mathcal{O}_{+}(p)$ in L_{0} approach p_{0} monotonically in L_{0} as required.

Corollary 9.5. If some regular point of $\mathcal{O}_{+}(p)$ is also in $\omega(p)$, then $\mathcal{O}(p)$ is periodic.

Proof. This is another corollary of the Jordan curve theorem and the flow box theorem.

Theorem 9.6. bounded minimal set of a C^{1} autonomous planar vector field is a critical point or a periodic orbit.

Proof. If the minimal set is not a critical point, then it contains no critical points. But each of its orbits must be dense in the set. Thus, each of its points is in its own ω-limit sets. Hence, by the previous corollary, each of its orbits is periodic. Since it is minimal, it must be a single orbit.

Theorem 9.7 (Poincare-Bendixson Theorem). Suppose that $\mathcal{O}_{+}(x)$ is a bounded positive semi-orbit of an autonomous C^{1} vector field f in the plane. If $\omega(x)$ does not contain a critical point, then $\omega(x)$ consists of a periodic orbit $\mathcal{O}(p)$. Either $\mathcal{O}(p)=\mathcal{O}(x)$ or $\mathcal{O}(p)=\overline{\mathcal{O}_{+}}(x) \backslash \mathcal{O}_{+}(x)$.

Proof. Since $\mathcal{O}_{+}(x)$ is bounded, $\overline{\mathcal{O}_{+}(x)} \neq \emptyset$ and $\omega(x)$ is a non-empty invariant set. By hypothesis, it contains only regular points. It also contains a minimal set Σ which must be a periodic orbit, $\mathcal{O}(p)$.

Suppose $\mathcal{O}(p) \neq \mathcal{O}(x)$. So $\mathcal{O}(p) \cap \mathcal{O}(x)=\emptyset$.
Since $\mathcal{O}(p) \subset \omega(x), \mathcal{O}(p) \subset \overline{\mathcal{O}_{+}(x)} \backslash \mathcal{O}_{+}(x)$. Now we prove $\overline{\mathcal{O}_{+}(x)} \backslash$ $\mathcal{O}_{+}(x) \subset \mathcal{O}(p)$.

Let L_{0} be a small open transversal arc to the periodic orbit $\mathcal{O}(p)$ at p. Since p is in $\omega(x)$, there is a sequence $t_{1}<t_{2}<\ldots$ with $t_{i} \rightarrow \infty$ such that $p_{i}:=\phi\left(t_{i}, x\right) \in L_{0}$, and $p_{i} \rightarrow p$ as $i \rightarrow \infty$.

Let K_{i} be the region bounded by $\mathcal{O}(p),\left\{\phi(t, x): t_{i} \leq t \leq t_{i+1}\right\}$, and the subcurve from p_{i} to p_{i+1} in L_{0}. Since $\left\{\phi(t, x): t \geq t_{i+1}\right\} \subset K_{i}, \bar{K}_{i} \supset$ $\overline{\mathcal{O}_{+}(x)} \backslash \mathcal{O}_{+}(x)$. This is true for any $i \geq 0$, so $\cap_{i \geq 0} \bar{K}_{i} \supset \overline{\mathcal{O}_{+}(x)} \backslash \mathcal{O}_{+}(x)$. Since $\cap_{i \geq 0} \bar{K}_{i}=\mathcal{O}(p)$, we get what we need.

Corollary 9.8. If $\phi(x)$ contains a periodic orbit $\mathcal{O}(p)$, then $\phi(x)=$ $\mathcal{O}(p)$.

Proof. Use the last part of proof of the theorem.
Lemma 9.9. Suppose that $\omega(p)$ contains a regular point q, which is not in the orbit of p. Then, p is a wandering point and therefore p cannot be in $\omega(x)$ for any x.

Proof. Take a small open transversal L_{0} to q. Since $q \in \omega(p)$, there exists a sequence of points $\left\{p_{i}\right\} \subset \mathcal{O}(p) \cap L_{0}$ such that $p_{i} \rightarrow q$ monotonically as $i \rightarrow \infty$. Hence any p_{i} is a wandering point and so is any point in $\mathcal{O}(p)$.

Since $\omega(x)$ is contained in the nonwandering set for any x, the result follows.

Theorem 9.10. Suppose $\mathcal{O}_{+}(x)$ is a positive semi-orbit in a closed bounded subset K of the plane for a C^{1} vector field f. Assume that K contains only a finite number of critical points. Then, one of the following holds.
(i) $\omega(x)$ is a critical point.
(ii) $\omega(x)$ is a periodic orbit.
(iii) $\omega(x)$ consists of a finite number of critical points and a set of orbits γ_{i} such that each γ_{i} has its ω-limit set $\omega\left(\gamma_{i}\right)$ and α-limit set $\alpha\left(\gamma_{i}\right)$ consisting of a critical point.

Proof. If $\omega(x)$ contains no regular points, then since it is connected, it must consist of a single critical point. This is case (i).

Then we assume $\omega(x)$ contains at least one regular point, say p.
If $\mathcal{O}(p)$ is periodic, then by Corollary 9.8 , which is case (ii).
If the orbit $O(p)$ is not periodic, then by Lemma $9.9 \omega(p)$ cannot cantain any regular point since p is a nonwandering point. Therefore, $\omega(p)$ consists only of critical points. Since it is connected, it must be a single critical point. A similar argument works for $\alpha\left(p_{0}\right)$.

We have therefore proved that each regular non-periodic ω-limit point or α-limit point of x must have each of its own ω-limit and α-limit sets reducing to single critical points.

Definition 9.2. A separatrix cycle is a set consisting of finite number of critical points $p_{1}, p_{2}, \ldots, p_{n}$ and regular orbits $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ such that $\alpha\left(\gamma_{i}\right)=p_{i}$ and $\omega\left(\gamma_{i}\right)=p_{i+1}$ for each $1 \leq i<n$, and $\alpha\left(\gamma_{n}\right)=p_{n}$ and $\omega\left(\gamma_{n}\right)=p_{1}$.

A solution γ whose α and ω limit sets are critical points is called a separatrix.

Remark 9.11. One way in which condition (iii) in Theorem 9.10 occures is that ω-limit set consists of separatrix cycles. There can also be several regular orbits whose α and ω limits are the same critical point.

Definition 9.3. A closed orbit γ is called a limit cycle if $\gamma=\alpha(x)$ or $\gamma=\omega(x)$ for some $x \notin \gamma$.

Part of Hilbert 16th problem is the determination of the upper bound for the number of limit cycles in two-dimensionial polynomial vector
fields of degree n and an investigation of their relative positions, and the problem remains unsolved.

