9. Two dimensional systems

We will apply some topology of the Euclidean plane to obtain information about two dimensional planar autonomous systems.

Definition 9.1. Let $\mathbb{S}^1 = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle in the plane \mathbb{R}^2 . A Jordan curve in the plane \mathbb{R}^2 (or a simple closed curve) in the plane \mathbb{R}^2) is the image of a 1-1 continuous map $h : S^1 \to \mathbb{R}^2$.

Theorem 9.1 (Jordan Curve Theorem). Let γ be a Jordan curve in the plane \mathbb{R}^2 . Then, $\mathbb{R}^2 \setminus \gamma$ is the union of two disjoint open connected sets S_1, S_2 each of which have γ as boundary. Precisely one of the regions S_1, S_2 is bounded.

Remark 9.2. The book refers to the sets S_i as being arcwise connected. But open connected sets in the plane are arcwise connected.

We will not prove this theorem here, instead referring to a course in topology. The bounded region of $\mathbb{R}^2 \setminus \gamma$ is frequently referred to as the *interior* of γ although it is *not* the interior in the sense of topology.

Unless otherwise stated, we will assume that f is a C^1 vector field defined in the plane \mathbb{R}^2 and, for each x, the solution $\phi(t, x)$ is defined for all $t \in \mathbb{R}$.

Let p be a regular point of the vector field f; i.e., $f(p) \neq 0$. Let L be a closed transversal to f at p. This means that there is a C^1 diffeomorphism $h : [-1,1] \to L$ such that $h(0) = p, h'(t) \neq 0$, and, for each $t \in [-1,1], h'(t)$ is not a multiple of f(h(t)). Let L_0 be the interior of L; i.e., $L_0 = \{h(s) : -1 < s < 1\}$.

Let

$$V = \{ q \in L_0 : \exists t_q > 0 \text{ s.t. } \phi(t_q, q) \in L_0, \phi(t, q) \notin L_0 \ \forall 0 < t < t_q \}.$$

The set V is the set of points in L_0 whose positive orbits return to L_0 . Let $V' = \{\phi(t_q, q) : q \in V\}$. Set $W = h^{-1}V$, $W' = h^{-1}V'$ so that W and W' are subsets of (-1, 1).

Define $g: W \to W'$ by $g(w) = h^{-1}\phi(t_{h(w)}, h(w)).$

Lemma 9.3. The set W is open in (-1, 1) and the function g is continuous on W. For any $z \in W$ for which the iterates $z, g(z), \ldots, g^n(z)$ is defined, the sequence $z, g(z), \ldots, g^n(z)$ is monotone in (-1, 1).

Proof. (W is open) It is enough to show that V is open in L. Fix $q \in V$, we show that there exists a neighborhood U of q in L_0 such that for any $z \in U, z \in V$ as well.

Take a flow-box B centered at $\phi(t_q, q)$ such that each connected component of an orbit in B is an arc which only meets L in one point. There is an $\epsilon_1 > 0$ such that if $u \in B$, then there is a $\eta(u) \in (-\epsilon_1, \epsilon_1)$ such that $\phi(\eta(u), u) \in L$. Moreover, in the flow-box coordinates on B, $\eta(u)$ is obviously a continuous function of u since $L \cap B$ is a curve transverse to the vector field. This implies that, in the standard coordinates on B, $\eta(u)$ is still a continuous function of u.

By continuity of $\phi(t_q, \cdot)$, there is a neighborhood U of q in L such that if $z \in U$, then $\phi(t_q, z) \in B$. Hence,

$$\phi(t_q + \eta(\phi(t_q, z)), z) = \phi(\eta(\phi(t_q, z)), \phi(t_q, z)) \in L.$$

So $z \in V$. This gives that V is open.

(g is continuous) The map $z \to \phi(t_z, z) = \phi(t_q + \eta(\phi(t_q, z)), z)$ is continuous because $\phi(t_q, \cdot), \eta(\cdot)$ and $\phi(\cdot, \cdot)$ are all continuous. We get that g is continuous.

(g is Monotone) Consider a point $z \in W$. If g(z) = z for all z, there is nothing to prove, so assume z is such that g(z) > z. In the opposite case in which g(z) < z one proceeds similarly.

The solution curve from h(z) to h(g(z)) together with the piece, say L_1 of L from h(g(z)) to h(z) is a Jordan curve γ . Since solutions always cross L moving in the same direction, the forward orbit of a point in the interval $L_1 \setminus \{h(z)\}$ always lies in the same component of the complement of γ . If g(g(z)) is defined, then g(g(z)) must be greater than g(z) since otherwise, the forward orbit of h(g(z)) would have to pass from one component of the complement of γ to the other one. Now the argument continues replacing z by g(z).

Denote by $\mathcal{O}_+(x) = \{\phi(t, x) : t \ge 0\}$ the forward orbit of x.

Corollary 9.4. The ω -limit set $\omega(\gamma)$ of an orbit γ can intersect the interior L_0 of a transversal L in at most one point.

So if $\gamma = \gamma(p)$ and $\omega(\gamma) \cap L_0 = \{p_0\}$, then either $\omega(\gamma) = \gamma$ and γ is a periodic orbit, or there exist $\{p_i\} \subset \mathcal{O}_+(x) \cap L_0$ such that p_i approaches p_0 monotonically.

Proof. The first part of the corollary is obvious. We only prove that second part.

We assume that L_0 is small enough that it fits inside a single flow box B.

Since $p_0 = \omega(p) \cap L_0$, there is a sequence $t_1 < t_2 < \ldots$ with $t_k \to \infty$ such that $\phi(t_k, p) \to p_0$ in L_0 .

If for some j < k, $\phi(t_j, p) = \phi(t_k, p)$. Then, γ is periodic. It must be equal to its own ω -limit set.

If for all k < j, $\phi(t_j, p) \neq \phi(t_k, p)$, then we can construct a Jordan curve using pieces of orbits $\phi(t_i, p), \phi(t_{i+1}, p)$ and pieces of L_0 as before

shows that the forward orbit $\mathcal{O}_+(p)$ in L_0 approach p_0 monotonically in L_0 as required.

Corollary 9.5. If some regular point of $\mathcal{O}_+(p)$ is also in $\omega(p)$, then $\mathcal{O}(p)$ is periodic.

Proof. This is another corollary of the Jordan curve theorem and the flow box theorem. \Box

Theorem 9.6. bounded minimal set of a C^1 autonomous planar vector field is a critical point or a periodic orbit.

Proof. If the minimal set is not a critical point, then it contains no critical points. But each of its orbits must be dense in the set. Thus, each of its points is in its own ω -limit sets. Hence, by the previous corollary, each of its orbits is periodic. Since it is minimal, it must be a single orbit.

Theorem 9.7 (Poincare-Bendixson Theorem). Suppose that $\mathcal{O}_+(x)$ is a bounded positive semi-orbit of an autonomous C^1 vector field f in the plane. If $\omega(x)$ does not contain a critical point, then $\omega(x)$ consists of a periodic orbit $\mathcal{O}(p)$. Either $\mathcal{O}(p) = \mathcal{O}(x)$ or $\mathcal{O}(p) = \overline{\mathcal{O}_+(x)} \setminus \mathcal{O}_+(x)$.

Proof. Since $\mathcal{O}_+(x)$ is bounded, $\overline{\mathcal{O}_+(x)} \neq \emptyset$ and $\omega(x)$ is a non-empty invariant set. By hypothesis, it contains only regular points. It also contains a minimal set Σ which must be a periodic orbit, $\mathcal{O}(p)$.

Suppose $\mathcal{O}(p) \neq \mathcal{O}(x)$. So $\mathcal{O}(p) \cap \mathcal{O}(x) = \emptyset$.

Since $\mathcal{O}(p) \subset \omega(x)$, $\mathcal{O}(p) \subset \overline{\mathcal{O}_+(x)} \setminus \mathcal{O}_+(x)$. Now we prove $\overline{\mathcal{O}_+(x)} \setminus \mathcal{O}_+(x) \subset \mathcal{O}(p)$.

Let L_0 be a small open transversal arc to the periodic orbit $\mathcal{O}(p)$ at p. Since p is in $\omega(x)$, there is a sequence $t_1 < t_2 < \ldots$ with $t_i \to \infty$ such that $p_i := \phi(t_i, x) \in L_0$, and $p_i \to p$ as $i \to \infty$.

Let K_i be the region bounded by $\mathcal{O}(p)$, $\{\phi(t,x) : t_i \leq t \leq t_{i+1}\}$, and the subcurve from p_i to p_{i+1} in L_0 . Since $\{\phi(t,x) : t \geq t_{i+1}\} \subset K_i, \overline{K}_i \supset \overline{\mathcal{O}_+(x)} \setminus \mathcal{O}_+(x)$. This is true for any $i \geq 0$, so $\cap_{i\geq 0}\overline{K}_i \supset \overline{\mathcal{O}_+(x)} \setminus \mathcal{O}_+(x)$. Since $\cap_{i\geq 0}\overline{K}_i = \mathcal{O}(p)$, we get what we need.

Corollary 9.8. If $\phi(x)$ contains a periodic orbit $\mathcal{O}(p)$, then $\phi(x) = \mathcal{O}(p)$.

Proof. Use the last part of proof of the theorem.

Lemma 9.9. Suppose that $\omega(p)$ contains a regular point q, which is not in the orbit of p. Then, p is a wandering point and therefore p cannot be in $\omega(x)$ for any x.

Proof. Take a small open transversal L_0 to q. Since $q \in \omega(p)$, there exists a sequence of points $\{p_i\} \subset \mathcal{O}(p) \cap L_0$ such that $p_i \to q$ monotonically as $i \to \infty$. Hence any p_i is a wandering point and so is any point in $\mathcal{O}(p)$.

Since $\omega(x)$ is contained in the nonwandering set for any x, the result follows.

Theorem 9.10. Suppose $\mathcal{O}_+(x)$ is a positive semi-orbit in a closed bounded subset K of the plane for a C^1 vector field f. Assume that K contains only a finite number of critical points. Then, one of the following holds.

- (i) $\omega(x)$ is a critical point.
- (ii) $\omega(x)$ is a periodic orbit.
- (iii) ω(x) consists of a finite number of critical points and a set of orbits γ_i such that each γ_i has its ω-limit set ω(γ_i) and α-limit set α(γ_i) consisting of a critical point.

Proof. If $\omega(x)$ contains no regular points, then since it is connected, it must consist of a single critical point. This is case (i).

Then we assume $\omega(x)$ contains at least one regular point, say p.

If $\mathcal{O}(p)$ is periodic, then by Corollary 9.8, which is case (ii).

If the orbit O(p) is not periodic, then by Lemma 9.9 $\omega(p)$ cannot cantain any regular point since p is a nonwandering point. Therefore, $\omega(p)$ consists only of critical points. Since it is connected, it must be a single critical point. A similar argument works for $\alpha(p_0)$.

We have therefore proved that each regular non-periodic ω -limit point or α -limit point of x must have each of its own ω -limit and α -limit sets reducing to single critical points.

Definition 9.2. A separatrix cycle is a set consisting of finite number of critical points p_1, p_2, \ldots, p_n and regular orbits $\gamma_1, \gamma_2, \ldots, \gamma_n$ such that $\alpha(\gamma_i) = p_i$ and $\omega(\gamma_i) = p_{i+1}$ for each $1 \le i < n$, and $\alpha(\gamma_n) = p_n$ and $\omega(\gamma_n) = p_1$.

A solution γ whose α and ω limit sets are critical points is called a separatrix.

Remark 9.11. One way in which condition (iii) in Theorem 9.10 occures is that ω -limit set consists of separatrix cycles. There can also be several regular orbits whose α and ω limits are the same critical point.

Definition 9.3. A closed orbit γ is called a limit cycle if $\gamma = \alpha(x)$ or $\gamma = \omega(x)$ for some $x \notin \gamma$.

Part of Hilbert 16th problem is the determination of the upper bound for the number of limit cycles in two-dimensionial polynomial vector

9-4

fields of degree n and an investigation of their relative positions, and the problem remains unsolved.