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An Example of a Smooth Hyperbolic Measure

with Countably Many Ergodic

D.Dolgopyat, H. Hu, and Ya. Pesin

0.1. Introduction. We construct an example of a diffeomorphism
with nonzero Lyapunov exponents with respect to a smooth invariant mea-
sure which has countably many ergodic components. More precisely we will
prove the following result.

Theorem 0.1. There exists a C∞ diffeomorphism f of the three dimen-
sional torus T

3 such that

1. f preserves the Riemannian volume µ on T
3;

2. µ is a hyperbolic measure;
3. f has countably many ergodic components which are open (mod 0).

0.2. Construction of the Diffeomorphism f . Let A : T
2 → T

2 be
a linear hyperbolic automorphism. Passing if necessary to a power of A we
may assume that A has at least two fixed points p and p′. Consider the map
F = A× Id of the three dimensional torus T

3 = T
2 × S

1. We will perturb F
to obtain the desired map f .

Consider a countable collection of intervals {In}
∞
n=1 on the circle S

1,
where

I2n = [(n+ 2)−1, (n+ 1)−1], I2n−1 = [1 − (n+ 1)−1, 1 − (n+ 2)−1].

Clearly,
⋃

∞

n=1 In = (0, 1) and int In are pairwise disjoint.
By Proposition 0.2 below, for each n one can construct a C∞ volume

preserving ergodic diffeomorphism fn : T
2×[0, 1] → T

2×[0, 1] which satisfies:
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1. ‖F − fn‖Cn ≤ e−n2
;

2. for all 0 ≤ m <∞, Dmfn|T
2 × {z} = DmF |T2 × {z} for z = 0 or 1;

3. fn has nonzero Lyapunov exponents µ-almost everywhere.

Let Ln : In → [0, 1] be the affine map and πn = (Id, Ln) : T
2 × In →

T
2 × [0, 1]. We define the map f by setting f |T2 × In = π−1

n ◦ fn ◦ πn for all
n and f |T2 × {0} = F |T2 × {0}. Note that for every n > 0 and 0 ≤ m ≤ n
we have

‖DmF |T2 × In − π−1
n ◦Dmfn ◦ πn‖Cn ≤ ‖π−1

n ◦ (DmF −Dmfn) ◦ πn‖Cn

≤ e−n2

· nn → 0

as n→ ∞. It follows that f is C∞ on M and has the required properties.

0.3. Main Proposition. The goal of this section is to prove the fol-
lowing statement. Set I = [0, 1].

Proposition 0.2. For any k ≥ 2 and δ > 0, there exists a map g of the
three dimensional manifold M = T

2 × I such that:

1. g is a C∞ volume preserving diffeomorphism of M ;
2. ‖F − g‖Ck ≤ δ;
3. for all 0 ≤ m < ∞, Dmg|T2 × {z} = DmF |T2 × {z} for z = 0

and 1;
4. g is ergodic with respect to the Riemannian volume and has nonzero

Lyapunov exponents almost everywhere.

Before giving the formal proof let us outline the main idea. The re-
sult will be achieved in two steps. First applying a method of [SW] we
construct a perturbation map which has nonzero average central exponent∫
M
χc(x) dµ(x) 6= 0, where χc(x) denotes the Lyapunov exponent of x along

the neutral subspace Ec(x). We then further perturb this diffeomorphism
using a method of [NT] to ensure that it has the accessibility property and
therefore, is ergodic (see Section B.4 for details).

We believe that this approach works in a more general setting. Namely,
we conjecture that the following statement holds.

Proposition 0.3. Consider a one parameter family gε with g0 = F.
Then for sufficiently small ε, gε satisfies the conditions of Proposition 0.2
except for a positive codimension submanifold in the space of one parameter
families.

Proof. We proceed with the proof of Main Proposition. Consider the
linear hyperbolic map A of the torus T

2. We may assume that its eigenvalues
are η and η−1, where η > 1. Let p and p′ be fixed points of A. Choose a
number ε0 > 0 such that d(p, p′) ≥ 3ε0. Consider the local stable and
unstable one-dimensional manifolds for A at points p and p′ of “size” ε0 and
denote them respectively by V s(p), V u(p), V s(p′), and V u(p′).

Let us choose the smallest positive number n1 such that the intersection
A−n1(V s(p′)) ∩ V u(p) ∩ B(p, ε0) consists of a single point which we denote
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by q1 (here B(p, ε0) is the ball in T
2 of radius ε0 centered at p). Simi-

larly, we choose the smallest positive number n2 such that the intersection
An2(V u(p′)) ∩ V s(p) ∩ B(p, ε0) consists of a single point which we denote
by q2.

Given a sufficiently small number ε ∈ (0, ε0),

ε ≤
1

2
min{d(p, q1), d(p, q2)},

there is ` ≥ 2 such that

A−`(q1) 6∈ B(p, ε), A−`−1(q1) ∈ B(p, ε). (0.1)

We now choose ε′ ∈ (0, ε) such that A−`−1(q1) ∈ B(p, ε′).
Finally, we assume ε to be so small that for some q ∈ T

2 we have

B(p, ε) ∩ (A−n1(V s(p′)) ∪An2(V u(p′))) = ∅,

Ai(B(q, ε)) ∩B(q, ε) = ∅, Ai(B(q, ε)) ∩B(p, ε) = ∅

for i = 1, . . ., N , where N > 0 will be determined later, and ε = ε(N).
Set Ω1 = B(p, ε0)×I and Ω2 = Buc(q̄, ε0)×B

s(q̄, ε0), where q̄ = (q, 1/2)
and Buc(q̄, ε0) ⊂ V u(q) × I and Bs(q̄, ε0) ⊂ V s(q) are balls of radius ε0
about q̄.

After this preliminary considerations we describe the construction of the
map g.

Consider the coordinate system in Ω1 originated at (p, 0) ∈ M with x,
y, and z-axes to be unstable, stable, and neutral directions respectively for
the map F . If a point w = (x, y, z) ∈ Ω1 and F (w) ∈ Ω1 then F (w) =
(ηx, η−1y, z).

Choose a C∞ function ξ : I → R
+ satisfying:

1. ξ(z) > 0 on (0, 1);

2. ξ(i)(0) = ξ(i)(1) = 0 for i = 0, 1, . . .,k;
3. ‖ξ‖Ck ≤ δ.

We also choose two C∞ functions ϕ = ϕ(x) and ψ = ψ(y) which are defined
on the interval (−ε0, ε0) and satisfy

4. ϕ(x) = ϕ0 if x ∈ (−ε′, ε′) and ψ(y) = ψ0 if y ∈ (−ε′, ε′), where ϕ0

and ψ0 are positive constants;
5. ϕ(x) = 0 if |x| ≥ ε; ψ(y) ≥ 0 for any y and ψ(y) = 0 if |y| ≥ ε;
6. ‖ϕ‖Ck ≤ δ, ‖ψ‖Ck ≤ δ;

7.
∫
±ε

0 ϕ(s) ds = 0.

We now define the vector field X on Ω1 by

X(x, y, z) =

(
−ψ(y)ξ′(z)

∫ x

0
ϕ(s)ds, 0, ψ(y)ξ(z)ϕ(x)

)
.

It is easy to check that X is a divergence free vector field supported on
(−ε, ε) × (−ε, ε) × I.

We define the map ht on Ω1 to be the time t map of the flow generated
by X and we set ht = Id on the complement of Ω1. It is easy to see that
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ht is a C∞ volume preserving diffeomorphism of M which preserves the y
coordinate (the stable direction for the map F ).

Consider now the coordinate system in Ω2 originated at (q, 1/2) with x,
y, and z-axes to be unstable, stable, and neutral directions respectively. We
then switch to the cylindrical coordinate system (r, θ, y), where x = r cos θ,
y = y, and z = r sin θ.

Consider a C∞ function ρ : (−ε0, ε0) → R
+ satisfying:

8. ρ(r) > 0 if 0.2ε′ ≤ r ≤ 0.9ε and ρ(r) = 0 if r ≤ 0.1ε′ or r ≥ ε;
9. ‖ρ‖Ck ≤ δ.

We define now the map h̃τ on Ω2 by

h̃τ (r, θ, y) = (r, θ + τψ(y)ρ(r), y). (0.2)

and we set h̃τ = Id on M \Ω2. It is easy to see that for every τ the map h̃τ

is a C∞ volume preserving diffeomorphism of M .

Let us set g = gtτ = ht ◦F ◦ h̃τ . For all sufficiently small t > 0 and τ , the
map gtτ is Ck close to F and hence, is a partially hyperbolic (in the narrow
sense) C∞ diffeomorphism of M . It preserves the Riemannian volume in
M and is ergodic by Lemma 0.4. It remains to show that gtτ has nonzero
Lyapunov exponents almost everywhere.

Denote by Es
tτ (w), Eu

tτ (w), and Ec
tτ (w) the stable, unstable, and neutral

subspaces at a point w ∈ M for the map gtτ . It suffices to show that for
almost everywhere point w ∈M and every vector v ∈ Ec

τ (w), the Lyapunov
exponent χ(w, v) 6= 0.

Set κtτ (w) = Dgtτ |E
u
tτ (w), w ∈ M . By Lemma 0.7, for all sufficiently

small τ > 0, ∫

M

log κ0τ (w) dw < log η.

The subspace Eu
tτ (w) depends continuously on t and τ (for a fixed w; for

details see the paper by Burns, Pugh, Shub, and Wilkinson in this volume)
and hence, so does κtτ . It follows that for all sufficiently small τ > 0, there
is t > 0 such that ∫

M

log κtτ (w) dw < log η.

Denote by χs
tτ (w), χu

tτ (w), and χc
tτ (w) the Lyapunov exponents of gtτ at

the point w ∈M in the stable, unstable, and neutral directions respectively
(since these directions are on-dimensional the Lyapunov exponents do not
depend on the vector). By the ergodicity of gtτ , we have that for almost
every w ∈M ,

χu
tτ (w) = lim

n→∞

1

n
log

n−1∏

i=0

κtτ (g
i
tτ (w)).

By the Birkhoff ergodic theorem, we get

χu
tτ (w) =

∫

M

log κtτ (w) dw < log η.
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Since Es
tτ (w) = Es

00(w) = Es
F (w) for every t and τ , we conclude that

χs
tτ (w) = − log η for almost every w ∈ M . Since gtτ is volume preserv-

ing,
χs

tτ (w) + χu
tτ (w) + χc

tτ (w) = 0

for almost every w ∈M . It follows that χc
tτ (w) 6= 0 for almost every w ∈M

and hence, gtτ has nonzero Lyapunov exponents almost everywhere. This
completes the proof of the proposition. �

0.4. Ergodicity of the Map gtτ .

Lemma 0.4. For every sufficiently small t > 0 and τ ≥ 0 the map gtτ is
ergodic.

Proof. Consider a partially hyperbolic (in the narrow sense) diffeomor-
phism f of a compact Riemannian manifold M preserving the Riemannian
volume. Two points x, y ∈ M are called accessible (with respect to f if
they can be joined by a piecewise differentiable piecewise nonsingular path
which consists of segments tangent to either Eu or Es. The diffeomorphism
f satisfies the essential accessibility property if almost any two points in M
(with respect to the Riemannian volume) are accessible. We will show that
the map gtτ has the essential accessibility property. The ergodicity of the
map will then follow from the result by Pugh and Shub (see [PS]; see also
the paper by Burns, Pugh, Shub, and Wilkinson in this volume).

Given a point w ∈M , denote by A(w) the set of points q ∈M such that
w and q are accessible. Set Ip = {p} × (0, 1).

Lemma 0.5. For every z ∈ (0, 1),

A(p, z) ⊃ Ip. (0.3)

Proof of Lemma 0.5. We use the coordinate system (x, y, z) in Ω1

described above. Since the map ht preserves the center leaf Ip, we have that

ht(0, 0, z) = (h1
t (0, 0, z), h

2
t (0, 0, z), h

3
t (0, 0, z)) = (0, 0, h3

t (0, 0, z))

for z ∈ (0, 1). It suffices to show that for every z ∈ (0, 1),

A(p, z) ⊃ {(p, a) : a ∈ [(h−`
t )3(p, z), z]}, (0.4)

where ` is chosen by (0.1). In fact, since accessibility is a transitive relation
and h−n

t (p, z) → (p, 0) for any z ∈ (0, 1), (0.4) implies that A(p, z) ⊃ {(p, a) :
a ∈ (0, z]}. Since this holds true for all z ∈ (0, 1) and accessibility is a
reflexive relation, we obtain (0.3).

Now we proceed with the proof of (0.4).
Let q1 ∈ V u

tτ (p) and q2 ∈ V s
tτ (p) be two points constructed in Section 0.3.

The intersection V s
tτ (q1)∩V

u
tτ (q2) is not empty and consists of a single point

q3. We will prove that for any z0 ∈ (0, 1), there exist zi ∈ (0, 1), i = 1, 2, 3, 4
such that

(q1, z1) ∈ V u
tτ ((p, z0)), (q3, z3) ∈ V s

tτ ((q1, z1)),

(q2, z2) ∈ V u
tτ ((q3, z3)), (p, z4) ∈ V s

tτ ((q2, z2))
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and

z4 ≤ (h−`
t )3(p, z0). (0.5)

This means that (p, z4) ∈ A(p, z0). By continuity, we conclude that

{(p, a) : a ∈ [z4, z0]} ⊂ A(p, z0)

and (0.4) follows.
Since gtτ preserves the xz-plane, we have that V uc

tτ ((p, z0)) = V uc
F ((p, z0)).

Hence, there is a unique z1 ∈ (0, 1) such that (q1, z1) ∈ V u
tτ ((p, z0)). Notice

that

g−n
tτ (p, z0) = (p, h−n

t ((p, z0)), g−n
tτ (q1, z1) = (A−nq1, z1)

for n ≤ `. This is true because the points A−nq1, n = 0, 1, . . ., ` lie outside
the ε-neighborhood of Ip, where the perturbation map ht = Id. Similarly,
since the points A−nq1, n > ` lie inside the ε′-neighborhood of Ip, and the
third component of ht depends only on the z-coordinate, we have

g−n
tτ (q1, z1) = (A−nq1, h

−n+`
t z1).

Since d(g−n
tτ ((p, z0)), g

−n
tτ ((q1, z1))) → 0 as n→ ∞, we have

d(h−n
t ((p, z0)), h

−n+`
t ((p, z1))) → 0

as n→ ∞. It follows that z1 = (h−`
t )3((p, z0)).

By the construction of the map ht (that is ht = Id outside Ω1) the sets
A−n1V s

tτ (p′) and An2V u
tτ (p

′) are pieces of horizontal lines. This means that
z2 = z3 = z1.

Since the third component of ht is nondecreasing from (q2, z2) to (p, z4)

along V s
tτ (p), we conclude that z4 ≤ z3 = z1 = (h−`

t )3(p, z0) and thus (0.5)
holds. �

The essential accessibility property follows from Lemma 0.5 and the
following statement.

Lemma 0.6 (see [NT]). Assume that any two points in Ip are accessible.
Then the map gtτ satisfies the essential accessibility property.

Proof of Lemma 0.6. It is easy to see that for any two points x, y ∈
M which do not lie on the boundary of M one can find points x′, y′ ∈ Ip
such that the pairs (x, x′) and (y, y′) are accessible. By Lemma 0.5 the
points x′, y′ are accessible. Since accessibility is a transitive relation the
result follows. �

�

0.5. Hyperbolicity of the Map g0τ . In this section we show that for
all sufficiently small τ , the map g0τ has nonzero average Lyapunov exponent
in the central direction. Since this map is ergodic this implies that g0τ has
nonzero Lyapunov exponents almost everywhere.
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Lemma 0.7. For any sufficiently small τ > 0,
∫

M

log κ0τ (w)dw < log η. (0.6)

Proof. Our approach is an elaboration of an argument in [SW].
For any w ∈M , we introduce the coordinate system in TwM associated

with the splitting Eu
F (w)⊕Es

F (w)⊕Ec
F (w). Given τ ≥ 0 and w ∈M , there

exists a unique number ατ (w) such that the vector vτ (w) = (1, 0, ατ (w))t

lies in Eu
0τ (w) (where t denotes the transpose). Since the map h̃τ preserves

the y coordinate, by the definition of the function ατ (w), one can write the
vector Dg0τ (w)vτ (w) in the form

Dg0τ (w)vτ (w) = (κ̄τ (w), 0, κ̄τ (w)ατ (gt0(w)))t (0.7)

for some κ̄τ (w) > 1. Since the expanding rate of Dg0τ (w) along its unstable
direction is κ0τ (w) we obtain that

κ0τ (w) = κ̄τ (w)

√
1 + ατ (g0τ (w))2√

1 + ατ (w)2
.

Since Eu
0τ (w) is close to Eu

00(w) the function ατ (w) is uniformly bounded.
Using the fact that the map g0τ preserves the Riemannian volume we find
that

Lτ =

∫

M

log κ0τ (w) dw =

∫

M

log κ̄τ (w) dw. (0.8)

Consider the map h̃τ . Since it preserves the y-coordinate using (0.2), we
can write that

h̃τ (x, y, z) = (r cosσ, y, r sinσ),

where σ = σ(τ, r, θ, y) = θ + τψ(y)ρ(r). Therefore, the differential

Dh̃τ : Eu
F (w) ⊕ Ec

F (w) → Eu
F (g0τ (w)) ⊕ Ec

F (g0τ (w))

can be written in the matrix form

Dh̃τ (w) =

(
A(τ, w) B(τ, w)
C(τ, w) D(τ, w)

)

=

(
rx cosσ − rσx sinσ ry cosσ − rσy sinσ
rx sinσ + rσx cosσ ry sinσ + rσy cosσ

)
,

where

rx =
∂r

∂x
=
x

r
= cos θ, rz =

∂r

∂z
=
y

r
= sin θ,

σx =
∂σ

∂x
=

−z

r2
+
z

r
τ ρ̃r(y, r) =

sin θ

r
+ τ ρ̃r(y, r) cos θ,

σz =
∂σ

∂z
=

x

r2
+
x

r
τ ρ̃r(y, r) =

cos θ

r
+ τ ρ̃r(y, r) sin θ,
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and ρ̃(y, r) = ψ(y)ρ(r). It is easy to check that

A = A(τ, w) = 1 − τrρ̃r sin θ cos θ −
τ2ρ̃2

2
− τ2rρ̃ρ̃r cos2 θ +O(τ 3),

B = B(τ, w) = −τ ρ̃− τrρ̃r sin2 θ − τ2rρ̃ρ̃r sin θ cos θ +O(τ 3),

C = C(τ, w) = τ ρ̃+ τrρ̃r cos2 θ − τ2rρ̃ρ̃r sin θ cos θ +O(τ 3),

D = D(τ, w) = 1 + τrρ̃r sin θ cos θ −
τ2ρ̃2

2
− τ2rρ̃ρ̃r sin2 θ +O(τ 3).

(0.9)

By Lemma 0.8 below, we have

Lτ = log η −

∫

M

log(D(τ, w) − ηB(τ, w)ατ (g0τ (w)))dw.

By Lemma 0.9, we have

dLτ

dτ

∣∣∣
τ=0

= 0,
d2Lτ

dτ2

∣∣∣
τ=0

< 0.

So we can choose τ so small that Lτ 6= log η. �

Lemma 0.8.

Lτ = log η −

∫

M

log(D(τ, w) − ηB(τ, w)ατ (g0τ (w)))dw.

Proof of Lemma 0.8. Since g0τ = h0 ◦ F ◦ h̃τ = F ◦ h̃τ , we have that

Dτ (w) = Dg0τ (w)|Eu
0τ (w) ⊕ Ec

0τ (w) =

(
ηA(τ, w) ηB(τ, w)
C(τ, w) D(τ, w)

)
.

By (0.7),

Dτ (w)

(
1

ατ (w)

)
=

(
ηA(τ, w) + ηB(τ, w)ατ (w)
C(τ, w) +D(τ, w)ατ (w)

)
=

(
κτ (w)

κτ (w)ατ (g0τ (w))

)
.

(0.10)

Since h̃τ is volume preserving, AD −BC = 1 and therefore,

A+Bα =
1

D
+
B

D
(C +Dα).

Comparing the components in (0.10), we obtain

κτ (w) =η(A(τ, w) +B(τ, w)ατ (w))

=η

(
1

D(τ, w)
+
B(τ, w)

D(τ, w)
(C(τ, w) +D(τ, w)ατ (w))

)

=η

(
1

D(τ, w)
+
B(τ, w)

D(τ, w)
(κτ (w)ατ (g0τ (w)))

)
.

Solving for κτ (w), we get

κτ (w) =
η

D(τ, w) − ηB(τ, w)ατ (g0τ (w))
.

The desired result follows from (0.8). �
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Lemma 0.9.
dLτ

dτ

∣∣∣
τ=0

= 0,
d2Lτ

dτ2

∣∣∣
τ=0

< 0. (0.11)

Proof of Lemma 0.9. In order to simplify notations we set D′
τ = ∂D

∂τ
,

B′
τ = ∂B

∂τ
, C ′

τ = ∂C
∂τ

, D′′
ττ = ∂2D

∂τ2 , and B′′
ττ = ∂2B

∂τ2 . Since the function ατ (w)
is differentiable over τ (see the paper by Burns, Pugh, Shub, and Wilkinson
in this volume) by Lemma 0.8, we find

dLτ

dτ
= −

∫

M

D′
τ − ηB′

τα(g0τ (w)) − ηB ∂ατ (w)
∂τ

(g0τ (w))

D(τ, w) − ηB(τ, w)ατ (w)(g0τ (w))
dw

and therefore,

d2Lτ

dτ2
=

∫

M

(
D′

τ − ηB′
τα(g0τ (w)) − ηB(τ, w)∂ατ (w)

∂τ
(g0τ (w))

D(τ, w) − ηB(τ, w)αs(g0τ (w))

)2

dw

−

∫

M

E(τ, w)

D(τ, w) − ηB(τ, w)ατ (g0τ (w))
dw,

where

E(τ, w) =D′′

ττ − ηB′′

ττα(g0τ (w))

− ηB(τ, w)
∂2ατ (w)

∂τ2
(g0τ (w)) − 2ηB′

τ

∂ατ (w)

∂τ
(g0τ (w)).

Note that for all w 6∈ Ω2,

A(τ, w) = D(τ, w) = 1, C(τ, w) = B(τ, w) = 0

and for all w ∈M ,

A(0, w) = D(0, w) = 1, C(0, w) = B(0, w) = 0, α0(w) = 0.

It follows that
dLτ

dτ

∣∣∣
τ=0

=

∫

Ω2

D′

τ dw, (0.12)

and also that

d2Lτ

dτ2

∣∣∣
τ=0

=

∫

Ω2

[
(D′

τ )
2 −D′′

ττ + 2ηB′

τ

∂ατ (w)

∂τ
(g0τ (w))

]

τ=0

dw. (0.13)

By (0.9), we obtain that

D′

τ (0, w) = rρ̃r(r) sin θ cos θ

and hence, ∫

Ω2

D′

τdw = 0.

Therefore, (0.12) implies the equality in (0.11).
We now proceed with the inequality in (0.11). Applying Lemma 0.10

below we obtain that

∂α

∂τ
(g0τ (w))

∣∣∣
τ=0

=
C ′

τ (0, w)

η
+

∞∑

n=1

C ′
τ (0, g

−n
00 (w))

ηn+1
.
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It follows that

2ηB′

τ (0, w)
∂α

∂τ
(g0τ (w))

∣∣∣
τ=0

=2B′

τ (0, w)C ′

τ (0, w)

+ 2B′

τ (0, w)
∞∑

n=1

C ′
τ (0, g−n

00 (w))

ηn
.

First, we evaluate the term

F(w) = D′

τ (0, w)2 −D′′

ττ (0, w) + 2B′

τ (0, w)C ′

τ (0, w).

Using (0.9), we find that

F(w) =(rρ̃r sin θ cos θ)2 + (ρ̃2 + 2rρ̃ρ̃r sin2 θ)

− 2(ρ̃+ rρ̃r sin2 θ)(ρ̃+ rρ̃r cos2 θ)

= − ρ̃2 − (rρ̃r sin θ cos θ)2 − 2rρ̃ρ̃r cos2 θ.

(0.14)

Recall that Ω2 = Buc(q̄, ε0) ×Bs(q̄, ε0) and ρ̃(r) = 0 if r ≥ ε. We have

∫

Ω2

2rρ̃ρ̃r cos2 θ dw =

∫ ε0

−ε0

dy

∫ 2π

0
2 cos2 θ dθ

∫ ε

0
r2ρ̃ρ̃r dr. (0.15)

Since 0 = ρ̃(0) = ρ̃(ε) (by the definition of the function ρ), we find that
∫ ε

0
r2ρ̃ρ̃r dr =

1

2
r2ρ̃2

∣∣∣
ε

0
−

∫ ε

0
rρ̃2 dr = −

∫ ε

0
rρ̃2 dr. (0.16)

We also have that ∫ 2π

0
2 cos2 θ dθ =

∫ 2π

0
dθ. (0.17)

It follows from (0.15)–(0.17) that

−

∫

Ω2

2rρ̃ρ̃r cos2 θ dw =

∫

Ω2

rρ̃2 dw ≤ ε

∫

Ω2

ρ̃2 dw. (0.18)

Arguing similarly one can show that

−

∫

Ω2

rρ̃r sin θ cos θ dw = −
1

8

∫

Ω2

(rρ̃)2 dw (0.19)

Thus we conclude using (0.14), (0.18), and (0.19) that
∫

Ω2

F(0, w) dw ≤ −(1 − ε)

∫

Ω2

ρ̃2 dw −
1

8

∫

Ω2

(rρ̃)2 dw < 0. (0.20)

We now evaluate the remaining term

G(0, w) =
∞∑

n=1

1

ηi

∫

Ω2

2B′

τ (0, w)C ′

τ (0, g
−n
00 (w)) dw.
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Since the map g00 = F preserves the Riemannian volume we obtain that
∫

Ω2

2B′

τ (0, w)C ′

τ (0, g
−n
00 (w)) dw ≤

∫

Ω2

B′

τ (0, w)2 dw +

∫

Ω2

C ′

τ (0, g
−n
00 (w))2 dw

=

∫

Ω2

B′

τ (0, w)2 dw +

∫

Ω2

C ′

τ (0, w)2 dw

Applying (0.9), we find that
∫

Ω2

B′

τ (0, w)2 dw +

∫

Ω2

C ′

τ (0, w)2 dw

=

∫

Ω2

(ρ̃+ rρ̃r sin2 θ)2 dw +

∫

Ω2

(ρ̃+ rρ̃r cos2 θ)2 dw

≤ 4

(∫

Ω2

ρ̃2 dw +

∫

Ω2

r2ρ̃2
r dw

)
.

It follows that for sufficiently large N > 0 (which does not depend on ε)

∞∑

i=N

1

ηi

∫

Ω2

2B′

τ (0, w)C ′

τ (0, g
−i
00 (w)) dw ≤

1

10

(∫

Ω2

ρ̃2 dw +

∫

Ω2

r2ρ̃2
r dw

)
.

(0.21)
Note that if g−n

00 Ω2 ∩ Ω2 = ∅, then B′
τ (0, w)C ′

τ (0, g
−n
00 (w)) = 0 for all w.

Hence, ∫

Ω2

2B′

τ (0, w)C ′

τ (0, g
−n
00 (w)) dw = 0.

We may choose the point q and a small ε such that g−n
00 Ω2 ∩Ω2 = F−nΩ2 ∩

Ω2 = ∅ for all n = 1, 2, . . ., N . It follows from (0.13), (0.20), and (0.21)
that

d2Lτ

dτ2

∣∣∣
τ=0

=

∫

Ω2

F(0, w) dw +

∫

Ω2

G(0, w) dw

≤ −

(
9

10
− ε

)∫

Ω2

ρ̃2 dw −
1

40

∫

Ω2

r2ρ̃2
r dw < 0.

The desired result follows. �

Lemma 0.10.

∂α

∂τ
(g0τ (w))

∣∣∣
τ=0

=

∞∑

n=0

C ′
τ (0, g

−n
00 (w))

ηn+1
.

Proof of Lemma 0.10. Define

R(τ, w, α) =
C(τ, w) +D(τ, w)α

η(A(τ, w) +B(τ, w)α)
.

It follows from (0.7) that

ατ (g0τ (w)) = R(τ, w, ατ (w)). (0.22)
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By (0.7) and (0.9), we have

∂R

∂τ

∣∣∣
τ=0

=
(C ′

τ +D′
τα)(A+Bα) + (C +Dα)(A′

τ +B′
τα)

η(A+Bα)2

∣∣∣
τ=0

=
C ′

τ (0, w)

η
.

Since A(0, w), B(0, w), C(0, w), and D(0, w) are constant functions over
w = (x, y, z) we obtain that

∂H

∂x

∣∣∣
τ=0

=
∂H

∂z

∣∣∣
τ=0

= 0

for H = A, B, C, D. This implies that

∂R

∂x

∣∣∣
τ=0

=
∂R

∂z

∣∣∣
τ=0

= 0.

Since AD −BC = 1,

∂R

∂α

∣∣∣
τ=0

=
AD −BC

η(A+Bα)2

∣∣∣
τ=0

=
1

η
.

It follows from (0.22) that

∂α

∂τ
(g0τ (w))

∣∣∣
τ=0

=
C ′

τ (0, w)

η
+

1

η
·
∂α

∂τ
(w)
∣∣∣
τ=0

.

Since this inequality holds for any w, replacing w with g−1
0τ (w) we obtain

∂α

∂τ
(w)
∣∣∣
τ=0

=
C ′

τ (0, g−1
0τ (w))

η
+

1

η
·
∂α

∂τ
(g−1

0τ (w))
∣∣∣
τ=0

.

The result follows by induction. �
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