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Abstract. We consider a piecewise smooth expanding map f on the unit interval

that has the form f(x) = x + x1+γ + o(x1+γ) near 0, where 0 < γ < 1. We prove
that the density function h of an absolutely continuous invariant probability measure
µ has order x−γ as x → 0, and that the decay rate of correlations with respect to µ

is polynomial for Lipschitz functions. Perron-Frobenius operators are the main tool

used for proofs.

0. Introduction

Let f : I → I be a piecewise smooth map on the unit interval I. It is well
known that if f is uniformly expanding, then it admits an absolutely continuous
invariant probability measure µ, and (f, µ) has exponential decay of correlations. If
f has indifferent fixed points, then f still admits an absolutely continuous invariant
measure µ. In addition, if f is C1+γ , 0< γ < 1, then the measure µ is finite (See
e.g. [P]). The purpose of this paper is to show that such systems has polynomial
decay of correlations.

We assume that f has an indifferent fixed point 0, and fx = x+x1+γ + o(x1+γ)
near 0. We use Perron-Frobenius operator L to get the density function h. The fact
Lh = h implies that as x → 0, h(x) goes to infinite just like x−γ multiplied by a

constant related to the value of f ′ and h at f−1(0). Then we use η(x) = h(x)
h(fx)f ′(x) ,

instead of 1
f ′(x) , to define a different operator L̃. This operator preserves L1 norms

and leaves constant functions invariant. So L̃ng → µ(g) for any continuous function

g. Moreover, if higher order terms are ignored, then near 0, L̃g(x) ≈ (1−xγ
1 )g(x1)+

xγ
1 ḡ(x1), where x1 is the preimage of x near 0, and ḡ is the average of g with weight η

at the rest of preimages (see (4.3) for details). Since restricted to a neighborhood of
0, all backward orbits approach to 0 in a polynomial rate, the rate of the convergence
L̃ng → µ(g), both in L1(I, µ) and in measure, is polynomial. Therefore the rate of
decay of correlations is polynomial as well.

We state assumptions and the main results in §1. Theorem A, which is concerning
existence and properties of density functions of invariant measures, is proved in §3.
Theorem B and its corollary, which deal with decay rate of correlations of Lipschitz
functions and mixing rate of sets respectively, are proved in §7. To obtain Theorem
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B, we prove Proposition 5.2 in §5 and §6, which asserts that the rate of convergence
L̃ng → µ(g) is polynomial.

1. Assumptions, Statements of Results and Notations

Let I = [0, 1] be the unit interval and f : I → I be a piecewise smooth map.
A fixed point p of f is called indifferent if fp = p and lim

x→p
f ′(x) = 1.

Assumptions. Let f : I → I such that

(I) There is a finite partition ξ = {I0, I1, · · · , IQ} into subintervals such that
for each q, restricted to Iq, f |int Iq

is twice differentiable and f |int Iq
maps

int Iq to (0, 1) diffeomorphically.
(II) 0 is an indifferent fixed point of f .

(III) f ′ > 1 on (0, 1], and f ′′ is bounded on [τ, 1] ∀τ > 0.

Moreover, we need the following assumption for technical reasons.

(IV) Near x = 0, f and its derivative have the form

f(x) = x+ x1+γ + x1+γδ0(x), (1.1)

f ′(x) = 1 + (1 + γ)xγ + xγδ1(x), (1.2)

f ′′(x) =
γ(1 + γ) + δ2(x)

x1−γ
, (1.3)

where δi(x) → 0 as x→ 0 for i = 0, 1, 2.

The last assumption says that f is equal to x + x1+γ plus higher order terms,
and the first and the second derivative of the higher order terms are still of higher
orders.

We denote by I0 the element of the partition ξ that contains 0.

Theorem A. Suppose f : I → I satisfies Assumption (I)−(IV). Then f has an
absolutely continuous invariant probability measure µ whose density function h(x)
satisfies

i) 0 < h(x) <∞ ∀x ∈ (0, 1];
ii) h is Lipschitz on [τ, 1] ∀0 < τ < 1;
iii) ∃R > 0 such that

|xγh(x) − σ0| ≤ Rmax{xγ , δ1(x)},

where σ0 = lim
x→0

∑

x̄1∈f−1x\I0

h(x̄1)

f ′(x̄1)
is a constant. In particular

lim
x→0

xγh(x) = σ0.
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The part of existence of absolutely continuous invariant measures was proved by
Pianigiani ([P]) in more general setting by using the first return map. For Part iii),
a similar result can be seen in [CF1] and [CF2] for a map with the form fx = x

1−x

as 0 ≤ x ≤ 1
2 , which admits σ-finite absolutely continuous invariant measure.

For a Lipschitz function F , denote by ‖F‖ the C0 norm.

Theorem B. Suppose f : I → I satisfies Assumption (I)−(IV). Let µ be the
absolutely continuous invariant probability measure and let β = γ−1. Then

i) for any Lipschitz function G, there is a constant C = C(G) > 0 such that
for any Lipschitz function F ,

∣

∣

∣

∫

(

F ◦ fn
)

Gdµ−

∫

Fdµ

∫

Gdµ
∣

∣

∣
≤

C

nβ−1
‖F‖ ∀n > 0;

ii) there exist Lipschitz functions G and F , and a constant C ′ > 0 such that

∣

∣

∣

∫

(

F ◦ fn
)

Gdµ−

∫

Fdµ

∫

Gdµ
∣

∣

∣
≥

C ′

nβ−1
∀n > 0.

A result similar to Part i) has been proved by L.-S. Young recently in more
general setting (see [Y]). However, her method is quite different with ours. She
uses tails of tower, and we use Perron-Frobenius operators. Earlier, M. Mori proved
polynomial decay of correlations for piecewise linear maps (see [M]).

Remark. By the proof of the theorem, we can see that Part i) still holds if we use
L∞(I, µ) function F and the L∞(I, µ) norm ‖F‖∞ instead of Lipschitz function
and C0 norm respectively. On the other hand, we can find C∞ functions F and G
satisfying the inequality in Part ii).

Denote ξm =
m−1
∧

i=0

f−iξ. So if E ∈ ξm, then E =
m−1
⋂

i=0

f−iIqi
for some q0, · · · , qm−1.

Also we denote by E(m) the element of ξm containing 0.

Corollary. Under the supposition of Theorem B, there exist constants C > C ′ > 0
and l > 0 such that for any m ≥ 0, E ∈ ξm, and for any measurable set E′ ⊂ [0, 1],

∣

∣µ
(

f−n−mE′ ∩E
)

− µE · µE′
∣

∣ ≤
Cmβ−1

(n− l)β−1
µE · µE′ ∀n > l,

and if in addition m ≥ l and E = E(m), then

∣

∣µ
(

f−n−mE′ ∩E
)

− µE · µE′
∣

∣ ≥
C ′mβ−1

(n+m)β−1
µE · µE′ ∀n > 0.

We introduce some notations.
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Let I0 be the element of the partition ξ containing 0. For x ∈ I0, we denote
x0 = x and xi+1 = f−1xi ∩ I0 ∀i > 0. Choose a small neighborhood P0 ⊂ I0 of 0.

For any function g, if x ∈ I0, then we denote

σg(x) =
∑

x̄1∈f−1(fx)\I0

g(x̄1)

f ′(x̄1)
. (1.4)

We should note that σg(x) depends on values of g at f−1(fx) but at x itself.
Take nondecreasing functions ρ±(x) ≥ 0 and denote B(x, ρ(x)) =

(

x−ρ−(x), x+

ρ+(x)
)

. We require that ρ±(x) are chosen in such a way that ρ±(x) = O(x1+γ)
on P0, and fB(x, ρ(x)) ⊃ B(fx, ρ(fx)) ∀x ∈ I, and y ∈ B(x, ρ(x)) if and only if
x ∈ B(y, ρ(y)). The latter implies ρ+(x) > ρ−(x) on P0. So B(x, ρ(x)) is not a ball
in Euclid metric. Since ρ±(x) are nondecreasing, we have ρ(x) ≥ ρ̄ for some ρ̄ > 0
on I\I0.

For any n ≥ 0, denote Bn(x, ρ) = {y ∈ I : d(f iy, f ix) ≤ ρ(f ix) ∀0 ≤ i ≤ n}.
We always denote β = γ−1. Choose β− < β < β+ such that β+ − β and β − β−

are small, for example, less than 0.1 and 0.1(β − 1).

2. Preliminary

Lemma 2.1. Let x ∈ I0. For any θ ≥ 0,

xθ

xθ
1

·
d(x1, y1)

d(x, y)
=
xθ

xθ
1

·
1

f ′(x)
+ o(xγ) = 1 − (1 + γ − θ)xγ + o(xγ), x→ 0,

where y ∈ B(x, ρ(x)) and y1 ∈ B(x1, ρ(x1)).

Proof. This is because by Assumption (IV), x = fx1 = x1(1 + xγ
1 + o(xγ), and

d(x, y) =
(

f ′(x1) + o(xγ)
)

d(x1, y1) =
(

1 + (1 + γ)xγ + o(xγ)
)

d(x1, y1). �

Lemma 2.2. Given β− < β < β+, we can choose P0 small enough such that for
any x ∈ P0,

i) if x = x0 ≥
(β−
r

)β

for some r > 0, then xn ≥
( β−
r + n

)β

;

ii) if x = x0 ≤
(β+

r

)β

for some r > 0, then xn ≤
( β+

r + n

)β

.

Proof. If x is small, then we can find 1 < λ < β/β− such that f(x) ≤ x(1 + λxγ).

Suppose x ≤
(β−
r

)β

. We have

f(x) ≤
(β−
r

)β(

1 +
λβ−
r

)

= ββ
−

r + λβ−
rβ+1

.

Note that λβ− < β. If r is large enough, then

(

1 −
1

r

)β(

1 +
λβ−
r

)

≤ 1 or
(

r − 1
)β(

r + λβ−

)

≤ rβ+1.
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So we get that

f(x) ≤
( β−
r − 1

)β

.

This implies the result in (i).
Part (ii) can be proved similarly. �

Define

∆(x, y) =

{

1 + J0

x
d(x, y), ∀x ∈ P0, y ∈ B

(

x, ρ(x)
)

;

1 + Jd(x, y), ∀x ∈ I\P0, y ∈ B
(

x, ρ(x)
)

,

where J, J0 > 0 are constants satisfying the proposition below.

Proposition 2.3. (Distortion Estimates) There exist constants J, J0 > 0 such that
for all x ∈ I, y ∈ B

(

x, ρ(x)
)

,

i) if x1 ∈ f−1x, y1 ∈ f−1y ∩B(x1, ρ(x1)), then

∆(x1, y1) ·
f ′(x1)

f ′(y1)
≤ ∆(x, y);

ii) for all n > 0, if xn ∈ f−nx, yn ∈ f−ny ∩Bn(xn, ρ), then
(

fn
)′

(xn)
(

fn
)′

(yn)
≤ ∆(x, y).

Proof. i) First we suppose x ∈ P0. By (1.3) and the fact f ′(y) > 1, there is a
constant c > 0 such that

f ′(x)

f ′(y)
< 1 +

(

f ′(x) − f ′(y)
)

≤ 1 + cxγ d(x, y)

x
.

Note that x−1d(x, y) is of order xγ . So by Lemma 2.1 with θ = 1 we have

∆(x1, y1) ·
f ′(x1)

f ′(y1)
≤

(

1 + J0
d(x1, y1)

x1

)

·
(

1 + cxγ
1

d(x1, y1)

x1

)

=1 + J0

[

1 +
cxγ

1

J0
+O(x2γ

1 )
]d(x1, y1)

x1

=1 + J0

(

1 +
cxγ

1

J0
+O(x2γ

1 )
)(

1 − γxγ + o(xγ)
)d(x, y)

x

If J0 is large enough, then the right side is less than 1 + J0x
−1d(x, y).

For the case x 6∈ P0, the result is clear since f is uniformly expanding outside P0.
ii) can be obtained from i) by induction. �

Remark. The ratio

(

fn
)′

(xn)
(

fn
)′

(yn)
only depends on preimages of x and y. So if fn−1xn ∈

I\I0, then we still have
(

fn
)′

(xn)
(

fn
)′

(yn)
≤ 1 + Jd(x, y)

for some J > 0 even if x ∈ P0.

Recall the definition (1.4) of σg.
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Corollary 2.4. Let x, y ∈ P0. If g satisfies g(ȳ1) ≤ g(x̄1)∆(x̄1, ȳ1) for all x̄1 ∈
f−1x\I0, ȳ1 ∈ f−1y ∩B(x̄1, ρ̄), then

σg(y1) ≤ σg(x1)
(

1 + Jd(x, y)
)

.

Proof. By (1.4) and Proposition 2.3.i),

σg(y1)

σg(x1)
=

∑

ȳ1∈f−1y\I0

g(ȳ1)/f
′(ȳ1)

∑

x̄1∈f−1x\I0

g(x̄1)/f ′(x̄1)
≤ max

{ g(ȳ1)

g(x̄1)
·
f ′(x̄1)

f ′(ȳ1)

}

≤ max
{

∆(x̄1, ȳ1)
f ′(x̄1)

f ′(ȳ1)

}

where max is taken over all pairs x̄1 ∈ f−1x\I0 and ȳ1 ∈ f−1y ∩ B(x̄1, ρ̄). Since

x̄1, ȳ1 6∈ I0, ∆(x̄1, ȳ1)
f ′(ȳ1)

f ′(x̄1)
≤

(

1 + Jd(x̄1, ȳ1)
) f ′(ȳ1)

f ′(x̄1)
≤ 1 + Jd(x, y). �

3. The Density Function

In this section we prove Theorem A, and then prove a result (Lemma 3.5) which
implies that decreasing rate of h is arbitrarily large as x goes to 0.

Proof of Theorem A.

Define Perron-Frobenius Operator L = L− log f ′ from the set of continuous func-
tions on (0, 1] to itself by

Lg(x) =
∑

x̂1∈f−1x

g(x̂1)

f ′(x̂1)
.

Let υ denote the Lebesgue measure on I. Clearly, υ(Lg) = υ(g) for any integrable
function g on (0, 1].

Also it is well known that for any fixed point h of L, a measure µ given by
µ(g) = υ(g · h) is an invariant measure of f . In fact, we can check directly that

L
(

h · (g ◦ f)
)

= g · (Lh), then we have µ(g ◦ f) = υ
(

h · (g ◦ f)
)

= υ
(

L
(

h · (g ◦ f)
)

)

=

υ
(

(Lh) · g
)

= υ(h · g) = µ(g). (See e.g. [B] for more details.)
Let B denote the set of continuous functions g on (0, 1] with the norm

‖g‖ = sup
x∈(0,1]

{

xg(x)
}

. (3.1)

It is easy to check that B is a Banach space and L is a Linear operator on B. Lemma
3.1 below implies that the operator L is continuous.

Put

G = {g ∈ B : g > 0, υ(g) = 1, g(y) ≤ g(x)∆(x, y) ∀x ∈ I, y ∈ B(x, ρ(x)),

xγg(x) ≤ H0 ∀x ∈ P0}.

where H0 is a constant to be determined later.
G is not empty since (1 − γ)x−γ ∈ G. It is clear that G is a convex set. By

Lemma 3.2 and 3.3, G is compact and LG ⊂ G if H0 is large enough. So by
Schauder-Tychonoff fixed point theorem (see e.g. [DS]), L has a fixed point h ∈ G,
and therefore, i) and ii) follows from the definition of G. Part iii) can be obtained
from Lemma 3.4 and the fact φ(x) = (1 + γ)xγ + o(xγ). �
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Lemma 3.1. L is a bounded linear operator.

Proof. Since L is a positive operator and x−1 is the maximal element in the unit ball
with respect to the norm in (3.1), we only need to prove that xL(x−1) is bounded.

Note f ′(x) ≥ 1. We have

L(
1

x
) <

∑

x̂1∈f−1x

1

x̂1
≤

1

x1
+

∑

x̄1∈f−1x\I0

1

x̄1
≤

1

x
max

z∈[0,1]

{

f ′(z)
}

+
∑

x̄1∈f−1x\I0

1

x̄1
,

where the last inequality follows from the fact x = f(x1) ≤ x1 max
z∈[0,1]

{

f ′(z)
}

. Since

the second term is bounded, ‖L‖ = sup
x∈(0,1]

{

xL(x−1)} is finite. �

Lemma 3.2. The set G is compact.

Proof. First, G is a bounded set. In fact, for any g ∈ G, if x 6∈ P0, then

1 ≥

∫

B(x,ρ(x))

g(y)dy ≥ g(x)
1

1 + Jρ(x)
· 2ρ(x).

That is,

xg(x) ≤
x

2ρ(x)

(

1 + Jρ(x)
)

≤ sup
x6∈P0

{x
(

1 + Jρ(x)
)

2ρ(x)

}

.

If x ∈ P0, then xg(x) ≤ H0x
1−γ ≤ H0.

Using the facts that g(y) ≤ ∆(x, y)g(x) ∀y ∈ B(x, ρ(x)) and xg(x) ≤ H0x
1−γ

∀x ∈ P0, we know that G is also an equicontinuous set. �

Lemma 3.3. If H0 is large enough, then LG ⊂ G.

Proof. Take g ∈ G. We prove Lg ∈ G.
It is clear that Lg > 0 and υ(Lg) = υ(g) = 1.
If x, y ∈ I with d(x, y) ≤ ρ(x), then Proposition 2.3.i) and the same arguments

as in the proof of Corollary 2.4 give

Lg(y)

Lg(x)
=

∑

ŷ1∈f−1y

g(ŷ1)/f
′(ŷ1)

∑

x̂1∈f−1x

g(x̂1)/f ′(x̂1)
≤ max

{

∆(x̂1, ŷ1)
f ′(ŷ1)

f ′(x̂1)

}

≤ ∆(x, y),

where max is taken over all pairs x̂1 ∈ f−1x and ŷ1 ∈ f−1y ∩B(x̂1, ρ(x̂1)).
Suppose x ∈ P0. Using Lemma 2.1 with θ = γ and using the fact xγg(x) ≤ H0

∀x ∈ P0, we get

xγLg(x) =xγ
1g(x1)

xγ

xγ
1

1

f ′(x1)
+ xγ

∑

x̄1∈f−1x\I0

g(x̄1)

f ′(x̄1)

≤H0

[

1 − xγ + o(xγ) +
xγ

H0

∑

x̄1∈f−1x\I0

g(x̄1)

f ′(x̄1)

]

.

Since all element g in G are uniformly bounded on I\I0, the summation in the
second term are bounded. So if we take H0 large enough, then the right side of the
inequality is less than H0. �
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Lemma 3.4. There exists R > 0 such that

∣

∣h(x)φ(x) − (1 + γ)σ0

∣

∣ ≤ Rmax{xγ , δ1(x)},

where φ(x) = f ′(x) − 1 = (1 + γ)xγ + xγδ1(x).

Proof. Denote α(x) = max{xγ , |δ1(x)|} for x ∈ P0. We may assume that α(x) is
nondecreasing on P0, otherwise we use max

0≤y≤x
{α(y)} instead.

First we claim that there exist R > 0 such that if

h(x)φ(x) ≥
(

1 + γ + c+Rα(x1)
)

σ0

for some c ≥ 0 and x ∈ P0, then

h(x1)φ(x1) ≥
(

1 + γ + c
(

1 +
1

2
xγ

1

)

+Rα(x2)
)

σ0.

In fact, since Lh = h, we have that for x ∈ P0,

h(x1) =
(

1 + φ(x1)
)(

h(x) − σh(x1)
)

≥
(

1 + φ(x1)
)(

h(x) − σ0 − Jσ0x1

)

, (3.2)

where σh(x1) ≤ σ0(1+ Jx1) follows from Corollary 2.4. Also, it is easy to check by
(1.1) and the definition of δ1(x) that

(

1 + φ(x1)
)

·
φ(x1)

φ(x)
= 1 + xγ

1 + xγ
1δ

∗
1(x1).

for some δ∗1(x) which is bounded by δ1(x) multiplied by a constant coefficient. So
by (3.2) we get

φ(x1)h(x1)

σ0
≥
φ(x)h(x)

σ0
·
(

1 + φ(x1)
)φ(x1)

φ(x)
−

(

1 + Jx1)φ(x1)
(

1 + φ(x)
)

≥
(

1 + γ + c+Rα(x1)
)(

1 + xγ
1 + xγ

1δ
∗
1(x1)

)

−
(

(1 + γ)xγ
1 + xγ

1δ1(x1)
)(

1 + φ(x1)
)

− Jx1φ(x1)
(

1 + φ(x1)
)

=
(

1 + γ + c+Rα(x1)
)

+
(

c+Rα(x1)
)(

xγ
1 + xγ

1δ
∗
1(x1)

)

+
(

1 + γ)xγ
1δ

∗
1(x1)

− (1 + γ)xγ
1φ(x1) − xγ

1δ1(x1)
(

1 + φ(x1)
)

− Jx1φ(x1)
(

1 + φ(x1)
)

.

If P0 is small enough, then |δ∗1(x1)| ≤
1

2
and therefore cxγ

1

(

1 + δ∗1(x1)
)

≥
1

2
cxγ

1 .

Note that α(x) is greater than or equal to δ1(x) and xγ . So

1

2
Rα(x1) +

(

1 + γ)δ∗1(x1) − (1 + γ)φ(x1) −
(

δ1(x1) + Jx1−γ
1 φ(x1)

)(

1 + φ(x1)
)

> 0.

if R is sufficiently large. Hence we have

φ(x1)h(x1)

σ0
≥

(

1 + γ + c+Rα(x1)
)

+
1

2
cxγ

1 ≥
(

1 + γ + c+Rα(x2)
)

+
1

2
cxγ

1 .
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It means that the claim is true.
Using this claim we can see that

φ(x)h(x) ≤ (1 + γ)σ0 + 2Rσ0α(x1) ∀x ∈ P0.

Otherwise we may have

φ(x)h(x) ≥ (1 + γ)σ0 + 2Rσ0α(x1) = (1 + γ)σ0 + cσ0 +Rσ0α(x1)

for some x ∈ P0, where c = Rα(x1) > 0. Then by using the claim repeatedly, and

using the fact c ·
(

1 +
1

2

n−1
∑

i=1

xγ
i

)

(

1 +
1

2
xγ

n

)

≥ c ·
(

1 +
1

2

n
∑

i=1

xγ
i

)

we get that

φ(xn)h(xn) ≥ (1 + γ)σ0 +Rσ0α(xn+1) + cσ0 ·
(

1 +
1

2

n
∑

i=1

xγ
i

)

.

By Lemma 2.2, xγ
i ≥

β−
r + i

∀i ≥ 0 for some r > 0 and therefore
∞
∑

i=1

xγ
i diverges.

This contradicts to the fact that xγh(x) is bounded for all x ∈ P0.
By using φ(x)h(x) > 0, the inequality of the other direction can be proved

similarly. �

Lemma 3.5. For any γ′ > 0, we can choose P0 small enough such that

h(y) ≥ h(x) ·
(

1 +
J ′

0

x1−γ′
d(x, y)

)

∀x ∈ P0, x− ρ(x) ≤ y ≤ x

for some J ′
0 > 0.

Proof. Denote τ = inf
x∈(0,1]

{ 1 − γ

xγh(x)

}

. By Lemma 2.1, there exists c > 0 such that

xγ

xγ
1

·
1

f ′(x)
= 1−xγ + o(xγ) > 1− cxγ for all x ∈ P0. We take H ′

0 ≤ min
x∈P0

{τσh(x)

c

}

and then define

G1 =
{

g ∈ G : g(x) ≥ τh(x) ∀x ∈ (0, 1], xγg(x) ≥ H ′
0 ∀x ∈ P0,

g(y) ≥ g(x)
(

1 +
J ′

0

x1−γ′
d(x, y)

)

∀x ∈ P0, x− ρ(x) ≤ y ≤ x
}

.

G1 is not empty because (1 − γ′)x−γ′

∈ G1. Clearly, G1 is compact since it is
closed in G. We will prove LG1 ⊂ G1. Then we can take h as a fixed point of L in
G1, and therefore h has the required property.

Let g ∈ G1. First, we have

Lg(x) ≥ Lτh(x) = τLh(x) = τh(x).
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Secondly, since σg(x) ≥ τσh(x) and H ′
0 ≤ c−1τσh(x) ∀x ∈ P0, we get

xγLg(x) = xγ
1g(x1)

xγ

xγ
1

1

f ′(x1)
+ xγσg(x1) ≥ H ′

0

(

1 − cxγ +
xγ

H ′
0

τσh(x1)
)

≥ H ′
0.

Now it remains to check Lg(y) ≥ Lg(x)
(

1 +
J ′

0

x1−γ′
d(x, y)

)

. That is,

g(y1)

f ′(y1)
+ σg(y1) ≥

( g(x1)

f ′(x1)
+ σg(x1)

)(

1 +
J ′

0

x1−γ′
d(x, y)

)

. (3.3)

By (1.3), if x ∈ P0, then
f ′(x)

f ′(y)
≥ 1 + f ′(x) − f ′(y) ≥ 1 +

c′

x1−γ
d(x, y) for some

c′ > 0. Also, using Lemma 2.1 for θ = 1 − γ ′ we have

g(y1)

f ′(y1)
≥
g(x1)

f ′(x1)

(

1 +
J ′

0

x1−γ′

1

d(x1, y1)
)(

1 +
c′

x1−γ
d(x, y)

)

≥
g(x1)

f ′(x1)

(

1 + J ′
0

(

1 − (γ + γ′)xγ + o(xγ)
)d(x, y)

x1−γ′
+ c′

d(x, y)

x1−γ

)

≥
g(x1)

f ′(x1)

(

1 + J ′
0

d(x, y)

x1−γ′
+
c′

2

d(x, y)

x1−γ

)

,

if P0 is small enough. Therefore, using Corollary 3.4 and interchanging the roles of
x and y, we can see that (3.3) holds if we show

g(x1)

f ′(x1)

c′

2

d(x, y)

x1−γ
≥ Jσg(y1)d(x, y) + σg(x1)

J ′
0

x1−γ′
d(x, y),

or

xγ−γ′ c′g(x1)

2f ′(x1)
≥ Jx1−γ′

σg(y1) + J ′
0σg(x1).

However, this is true if P0 is small, because xγ−γ′

g(x) ≥ xγ−γ′

x−γH ′
0 = x−γ′

H ′
0 →

∞, while all other quantities are bounded as x→ 0. �

4. The Operator L̃

Take η(x) =
h(x)

f ′(x)h(fx)
if x > 0 and η(0) = 1. By Lemma 4.4 below, η(x) is

continuous on each Iq.

Define a new Perron-Frobenius Operator L̃ = Llog η from the set of continuous
functions on [0, 1] to itself by

L̃g(x) =
∑

x̂1∈f−1x

η(x̂1)g(x̂1),

or equivalently,

L̃g(x) =
1

h
L(hg) =

1

h(x)

∑

x̂1∈f−1x

h(x̂1)

f ′(x̂1)
g(x̂1).

Recall that the measure µ, defined by µ(g) = υ(hg), is an f invariant measure,
where υ is the Lebesgue measure on I.
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Lemma 4.1. The operator L̃ has the following properties.

i) L̃c = c for any constant function c.

ii) µ(L̃g) = µ(g) for any integrable function g.

Proof. i) Using Lh = h, we get L̃c =
1

h
L(ch) =

c

h
Lh =

c

h
h = c.

ii) Since υ(Lg) = υ(g), µ(L̃g) = υ
(

h ·
1

h
L(hg)

)

= υ
(

L(hg)
)

= υ
(

hg
)

= µ(g). �

Lemma 4.2. lim
w→0

µ[0, w]

w1−γ
=

σ0

1 − γ
. Consequently, there exists a >

σ0

1 − γ
> a′ > 0

such that
a′w1−γ ≤ µ[0, w] ≤ aw1−γ .

Proof. Use the fact that µ[0, w] =
∫ w

0
h(x)dx and then use Theorem A.iii). �

Lemma 4.3. Let w ∈ I0. Then

∫ w

0

n
∏

i=1

η(xi)dµ(x) = µ[0, wn].

Proof. Note that fn : [0, wn] → [0, w] is a one to one map. We have L̃nχ[0,wn](x) =
n

∏

i=1

η(xi) as x ∈ [0, w] and L̃nχ[0,wn](x) = 0 as x ∈ [w, 1]. So by Lemma 4.1.ii),

∫ w

0

n
∏

i=1

η(xi)dµ(x) = µ
(

L̃nχ[0,wn]

)

= µ[0, wn]. �

Take ψ(x) such that η(x) = 1 − ψ(x). Recall the definition (1.4) of σg.

Lemma 4.4. η and ψ have the following properties:

i) ψ(x) =
1

h(fx)
σh(x) if x ∈ I0;

ii) lim
x→0

ψ(x)

xγ
= 1;

iii) lim
x→0

η(x) = 1, and therefore η is continuous on each Iq;

iv) 0 ≤ η(x) ≤ 1, and η(x) = 1 if and only if x = 0;
v) ψ(x) is strictly increasing and η(x) is strictly decreasing on P0;
vi) ∀x ∈ P0 and x̄ ∈ I\P0, η(x) > η(x̄), if P0 is small enough.

Proof. Since Lh = h, h(fx) =
h(x)

f ′(x)
+ σh(x) for x ∈ P0. So η(x) =

h(x)

f ′(x)h(fx)
=

1 −
1

h(fx)
σh(x). This implies i).
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Part ii) follows from Part i) and Theorem A.iii).
By Part ii), η = 1 − xγ + o(xγ). So η is continuous at 0. By the definition, it is

continuous at all other points.

By Lemma 4.1.i),
∑

x̂1∈f−1x

η(x̂1) = 1, so 0 ≤ η(x̂1) ≤ 1. Then Part iv) is clear.

To get Part v), we use Part i) and then compare Lemma 3.5 and Corollary 2.4,
from which we see that h(x) changes in a faster rate than σh(x).

Part vi) simply follows from Part iv) and v). �

By part i) of the lemma, for x ∈ I0 we can write L̃g(x) as

L̃g(x) = η(x1)g(x1) + ψ(x1)ḡ(x1) =
(

1 − ψ(x1)
)

g(x1) + ψ(x1)ḡ(x1), (4.1)

where ḡ(x1) is the average of {g(x̄1)} with weight {η(x̄1)}, x̄1 ∈ f−1x\I0, i.e.

ḡ(x1) =

∑

x̄1∈f−1x\I0

η(x̄1)g(x̄1)

∑

x̄1∈f−1x\I0

η(x̄1)
=

∑

x̄1∈f−1x\I0

h(x̄1)
f ′(x̄1)g(x̄1)

∑

x̄1∈f−1x\I0

h(x̄1)
f ′(x̄1)

. (4.2)

The second part of the lemma says that if higher order terms are ignored, then
ψ(x1) ≈ xγ

1 and therefore L̃ has the form

L̃g(x) ≈
(

1 − xγ
1

)

g(x1) + xγ
1 ḡ(x1). (4.3)

Lemma 4.5. Let gn(x) = L̃ng(x). Then for any x ∈ P0,

gn(x) = g(xn)
n

∏

i=1

η(xi) + g∗n(x),

where

g∗n(x) =
n

∑

j=1

ḡn−j(xj)ψ(xj)

j−1
∏

i=1

η(xi).

Proof. Use induction. By (4.1) the result is true for n = 1. Suppose it is true for
some n. Then

L̃gn(x) = η(x1)g(xn+1)
n+1
∏

i=2

η(xi) + η(x1)g
∗
n(x1) + ψ(x1)ḡn(x1).

Since

η(x1)g
∗
n(x1) = η(x1)

n
∑

j=1

ḡn−j(xj+1)ψ(xj+1)

j
∏

i=2

η(xi)

=η(x1)
n+1
∑

j=2

ḡn+1−j(xj)ψ(xj)

j−1
∏

i=2

η(xi) =
n+1
∑

j=2

ḡn+1−j(xj)ψ(xj)

j−1
∏

i=1

η(xi),
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we get

η(x1)g
∗
n(x1) + ψ(x1)ḡn(x1) =

n+1
∑

j=1

ḡn+1−j(xj)ψ(xj)

j−1
∏

i=1

η(xi),

which is equal to g∗n+1(x). This completes the proof. �

Lemma 4.6. Let x, y ∈ P0 with x > y. If ḡi(x) ≥ 0 ∀0 ≤ i ≤ n− 1, then

L̃ng(x) − L̃ng(y) ≥g(xn)
n

∏

i=1

η(xi) − g(yn)
n

∏

i=1

η(yi)

+
n

∑

j=1

(

ḡn−j(xj) − ḡn−j(yj)
)

ψ(xj)

j−1
∏

i=1

η(xi).

Proof. By Lemma 4.5, we only need prove

g∗n(x) − g∗n(y) ≥
n

∑

j=1

(

ḡn−j(xj) − ḡn−j(yj)
)

ψ(xj)

j−1
∏

i=1

η(xi).

Note that

g∗n(x) − g∗n(y) =
n

∑

j=1

(

ḡn−j(xj) − ḡn−j(yj)
)

ψ(xj)

j−1
∏

i=1

η(xi)

+
n

∑

j=1

ḡn−j(yj)
(

ψ(xj)

j−1
∏

i=1

η(xi) − ψ(yj)

j−1
∏

i=1

η(yi)
)

.

We only need prove that

ψ(xj)

j−1
∏

i=1

η(xi) =
σh(xj)

h(xj−1)
·

h(xj−1)

(f j−1)′(xj−1)h(x)
=

σh(xj)

(f j−1)′(xj−1)h(x)

is increasing, where the first inequality follows from Lemma 4.4.i) and the definition
of η(x). By Proposition 2.3 and Corollary 2.4, both (f j−1)′(yj−1)/(f

j−1)′(xj−1)
and σh(xj)/σh(xj) are bounded by 1 + Jd(x, y). Hence by Lemma 3.5, we see that
h(x) decreasing faster than σh(xj) and (f j−1)′(xj−1) if P0 is small enough. �

Proposition 4.7. Given β− < β < β+, we can choose P0 sufficiently small such
that for any x ∈ P0,

i) if x = x0 ≤
(β

r

)β

for some r > 0, then
n

∏

i=1

η(xi) ≥
( r

r + n

)β+

;

ii) if x = x0 ≥
(β

r

)β

for some r > 0, then
n

∏

i=1

η(xi) ≤
( r

r + n

)β−

.
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Proof. Take β+ > β′
+ > β′′

+ > β. Let P0 be small enough such that for any

x =
(β′

+

r

)β

∈ P0, 1−ψ(x) ≥ 1−
β′

+

β′′
+

xγ and 1−
(β′

+

r

)

≥
(

1−
1

r

)β+

. Hence, using

Lemma 2.2 for β′′
+, we have

1 − ψ(xi) ≥ 1 −
β′

+

β′′
+

xγ
i ≥ 1 −

β′
+

r + i
≥

(

1 −
1

r + i

)β+

=
(r + i− 1

r + i

)β+

.

Taking product we get the result of Part i).
Part ii) can be proved in a similar way. �

We denote

∆̃(x, y) =

{

1 + J̃0

x
d(x, y), ∀x ∈ P0, y ∈ B

(

x, ρ(x)
)

;

1 + J̃d(x, y), ∀x ∈ I\P0, y ∈ B
(

x, ρ(x)
)

,

where J̃ , J̃0 > 0 are constants to be determined by the following lemma.

Lemma 4.8. There exist constants J̃ , J̃0 > 0 such that ∀x ∈ I, y ∈ B(x, ρ(x)),

i) if x1 ∈ f−1x, y1 ∈ f−1y ∩B(x1, ρ(x1)), then

∆̃(x1, y1) ·
η(y1)

η(x1)
≤ ∆̃(x, y);

ii) if xn ∈ f−nx, yn ∈ f−ny ∩Bn(xn, ρ), then

n
∏

i=1

η(f iyn)

η(f ixn)
≤ ∆̃(x, y) ∀n > 0;

iii) if a function g satisfies g(ŷ1) ≤ g(x̂1)∆̃(x̂1, ŷ1) ∀x̂1 ∈ f−1x, ŷ1 ∈ f−1y ∩

B(x̂1, ρ(x̂1)), then L̃g(y) ≤ L̃g(x) · ∆̃(x, y).

Proof. Notice that
η(y)

η(x)
=
h(y)

h(x)
·
f ′(x)

f ′(y)
·
h(fx)

h(fy)
. So if we take J̃ , J̃0 > 0 such that

∆̃(x, y) ≥ ∆(x, y)2∆(fx, fy),

then the rest is the same as in the proof of Proposition 2.3 and Lemma 3.3. �

Remark. Recall the remark after Proposition 2.3. We also have that if fn−1xn ∈
I\I0, then

n
∏

i=1

η(f iyn)

η(f ixn)
≤ 1 + J̃d(x, y)

for some J̃ > 0 even if x ∈ P0.

Recall the definition of ḡ(x) in (4.2).
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Lemma 4.9. There exists a constant J̄ > 0 such that for all x, y ∈ I0, with
d(x, y) ≤ ρ̄, if g(ȳ) ≤ g(x̄)∆(x̄, ȳ) ∀x̄ ∈ f−1(fx)\I0, ȳ ∈ f−1(fy)∩B(x̄, ρ(x̄)), then

ḡ(y) ≤ ḡ(x)
(

1 + J̄d(x, y)
)

.

Proof. Clearly, η(ȳ)g(ȳ) ≤ η(x̄)g(x̄)∆̃(x̄, ȳ)2. Hence, by (4.2),

ḡ(y)=

∑

ȳ∈f−1(fy)\I0

η(ȳ)g(ȳ)

∑

ȳ∈f−1(fy)\I0

η(ȳ)
≤

∑

x̄∈f−1(fx)\I0

η(x̄)g(x̄)∆̃(x, y)2

∑

x̄∈f−1(fx)\I0

η(x̄)∆̃(x̄, ȳ)−1
= ḡ(x)max{∆̃(x̄, ȳ)3},

where max is taken over all pairs x̄ ∈ f−1(fx)\I0 and ȳ ∈ f−1(fy)∩B(x̄, ρ(x̄)). So

the result follows by choosing J̄ > 0 such that 1 + J̄d(x, y) ≥
(

1 + J̃d(x̄, ȳ)
)3

. �

5. Convergent Rate

The main result in this section is Proposition 5.2, which shows that the rate of
convergence L̃ng → µ(g) is polynomial. This proposition plays a key role for the
proof of Theorem B. Since the proof is long, we put some lemmas in next section.

From now on we denote gn(x) = L̃ng(x).

For any b+ ∈ (0, 1), define a function Γ(x, y) = Γb+(x, y) by

Γ(x, y) =

{

1 + K0

x
d(x, y) ∀x ∈ P0, y ∈ B

(

x, ρ(x)
)

;

1 +Kd(x, y), ∀x ∈ I\P0, y ∈ B
(

x, ρ(x)
)

,

where K,K0 > 0 are constants chosen as in the following lemma.

Lemma 5.1. There exist constants K,K0 > 0 such that for any x ∈ I, y ∈
B(x, ρ(x)),

i) if g(x) ≤ b+, g(x) ≤ g(y)∆̃(y, x) and g(y) ≤ g(x)∆̃(x, y), then

1 − g(y) ≤
(

1 − g(x)
)

Γ(x, y);

ii) if 1 − g(ȳ1)≤
(

1 − g(x̄1)
)

Γ(x̄1, ȳ1) ∀x̄1 ∈ f−1x, ȳ1 ∈ f−1y ∩ B(x̄1, ρ(x̄1)),
then

1 − L̃g(y) ≤
(

1 − L̃g(x)
)

Γ(x, y);

iii) there exist constant K̄ > 0 such that for all x, y ∈ I0 with d(x, y) ≤ ρ̄, if
1− g(ȳ)≤

(

1− g(x̄)
)

Γ(x̄, ȳ) ∀x̄∈f−1(fx)\I0, ȳ∈f
−1(fy)∩B(x̄, ρ(x̄)), then

1 − ḡ(y) ≤
(

1 − ḡ(x)
)(

1 + K̄d(x, y)
)

.
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Proof. Since g(x) ≤ g(y)∆̃(y, x) = g(y) + g(y)
(

∆̃(y, x) − 1
)

, we have

1 − g(y) ≤ 1 − g(x) + g(y)
(

∆̃(y, x) − 1
)

≤
(

1 − g(x)
)

(

1 +
g(y)

1 − b+

(

∆̃(y, x) − 1
)

)

≤
(

1 − g(x)
)(

1 + ∆̃(y, x) − 1
)max{1,

g(y)
1−b+

}
≤

(

1 − g(x)
)(

∆̃(y, x)
)max{1,

g(y)
1−b+

}
.

Note that for x ∈ P0, d(x, y) ≤ ρ(x) = O(x1+γ), and g(y) ≤ g(x)∆̃(x, y) ≤

b+∆̃(x, y). So g(y) is bounded. Hence, it is clear that K0 and K exist. This
is Part i). Part ii) and iii) follow from the same arguments as in the proof of
Lemma 4.8 and Lemma 4.9. �

Proposition 5.2. For any 0 < b− ≤ b+ < 1, we can find arbitrarily small v ∈ P0

such that for any continuous functions g+ ≥ g− > 0 of the form

g±(x) =

{

A±

∏k−1
i=0 η(xi), x ∈ [0, v];

b±, x ∈ [v, 1],
(5.1)

where A+ ≥ A− > 1 and k > 0 are constants that make µ(g+) ≥ 1 and µ(g−) ≤ 1,
if a function g satisfies

(a) g(x) ≤ g+(x) ∀x ∈ I, and g(x) ≥ g−(x) ∀x ≤ v,
(b) µ(g) = 1,

(c) g(y) ≤ g(x)∆̃(x, y) ∀x ∈ I, y ∈ B(x, ρ(x)), and
(d) g is decreasing on [0, v],

then for all n ≥ 0,

i) 1 − gn(x) ≥
D′A−

(n+ k)β−1
∀x ∈ I\I0,

ii) 1 − gn(x) ≤
DA+

nβ−1
∀x ∈ I,

iii)
D̄′A−

(n+ k)β−1
≤

∫

|gn(x) − 1|dµ(x) ≤
D̄A+

nβ−1
,

where D,D′, D̄, D̄′ > 0 are constants only depending on f .

Proof. We divide the proof into three steps.

Step I. We choose v and construct functions g±(x).
Take 0 < b− ≤ b+ < 1.
Take u ∈ I0 with u ≤ ρ̄, where ρ̄ = inf{ρ(x) : x ∈ I\I0}, such that for all

x > u, η(x) ≤ η(u), and for all x ∈ [u, fu], y ∈ B(x, ρ(x)), Γ(x, y) ≥ 1 + 3K̄d(x̄, ȳ)
∀x̄, ȳ ∈ I\I0 with d(x̄, ȳ) ≤ ρ(x̄). This is possible because of the definition of
Γ(x, y).

Take v = um ∈ P0 for some m > 0, and write v =
(β

s

)β

. We assume first

that s ≥ m, otherwise we can choose a smaller u. Then we assume that m is large
enough such that

m
∏

i=1

η(xi) ≤
1

2
∀x ∈ I0\[0, u]. (5.2)



DECAY OF CORRELATIONS FOR MAPS WITH INDIFFERENT FIXED POINTS 17

Since
n

∏

i=1

η(xi) +
n

∑

j=1

ψ(xj)

j−1
∏

i=1

η(xi) = 1, it implies that for any n ≥ m,

n
∑

j=1

ψ(xj)

j−1
∏

i=1

η(xi) ≥
1

2
∀x ∈ I0\[0, u]. (5.3)

Lastly we assume that s is large enough such that

c′s
β−1

β+−β+1 ≥ max
{(2β+

b−

)
1

β
−

,
( 2aββ−1

a′b−β
β−1
−

)
1

β
−

−β+1
}

, (5.4)

and

sβ−−β+1 ≥
4C1C2b+
C ′

3b−
, (5.5)

where c′ is given in (5.13), a and a′ are given in Lemma 4.2, C2 and C ′
3 are as in

Lemma 6.1 and 6.2 respectively, and C1 ≥
(

1 − b+
)−1

and satisfies that if

1 − g(y) ≤ 2
(

1 − g(x)
)(

1 + K̄d(x, y)
)

∀x ∈ [u, fu], 0 < y ≤ x;

1 − g(y) ≤
(

1 − g(x)
)

Γ(x, y) ∀x ≥ u, y ∈ B(x, ρ(x)),

then
max{1 − g(x), x ∈ I} ≤ C1 min{1 − g(x), x ≥ u}. (5.6)

Now we choose A+ ≥ A− ≥ 1 and k > 0 such that

A±

k−1
∏

i=0

η(vi) = b±, (5.7)

A+µ[0, vk] + b+µ[v, 1] ≥ 1 and A−µ[0, vk] + b−µ[v, 1] ≤ 1. (5.8)

This is possible. In fact, by Lemma 4.7 and 4.2 we have

( s

s+ k

)β+

≤
k

∏

i=1

η(vi) ≤
( s

s+ k

)β−

, (5.9)

a′
( β−
s+ k

)β−1

≤µ[0, vk] ≤ a
( β+

s+ k

)β−1

. (5.10)

These imply lim
k→0

∏k−1
i=0 η(vi)

µ[0, vk]
= 0. So we can take k such that

1

b+
− µ[v, 1] ≤

µ[0, vk]
∏k−1

i=0 η(vi)
≤

1

b−
− µ[v, 1] (5.11)
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and then take A± such that (5.7) is satisfied.
Now we define g±(x) by using (5.1). Lemma 4.3 and (5.8) give

µ(g+) = A+µ[0, vk] + b+µ[v, 1] ≥ 1, µ(g−) = A−µ[0, vk] + b−µ[v, 1] ≤ 1.

Note that by (5.9)−(5.11) we can obtain

sβ+

aββ−1
+

( 1

b+
− µ[v, 1]

)

≤ (s+ k)β+−β+1, (s+ k)β−−β+1 ≤
sβ−

a′ββ−1
−

( 1

b−
− µ[v, 1]

)

,

and therefore,

c′s
β+

β+−β+1 ≤ k + s, k ≤ cs
β
−

β
−

−β+1 , (5.12)

where c > c′ > 0 are constants satisfying

c′
β+−β+1

=
1

aββ−1
+

( 1

b+
− µ[v, 1]

)

, cβ−−β+1 =
1

a′ββ−1
−

( 1

b−
− µ[v, 1]

)

. (5.13)

Hence by (5.4) we have

k + s ≥ c′s
β−1

β+−β+1 · s ≥
(2β+

b−

)
1

β
−

· s ≥ 2s, i.e. k ≥ s. (5.14)

Moreover, by (5.7) and (5.9),

b±

(s+ k

s

)β−

≤ A± ≤ b±

(s+ k

s

)β+

, (5.15)

and therefore by (5.14),

A− ≥ b−

(s+ k

s

)β−

≥ 2β+ > 1. (5.16)

Step II. We prove that any function g satisfying condition (a)-(d) has the fol-
lowing property:

(An) 1 − gn(x) > 0 ∀x ≥ u;
( Bn) max{1 − gn(x), x ∈ I} ≤ C1 min{1 − gn(x), x ≥ u}.

First we consider the case 0 ≤ n ≤ m. Since 1−g(x) ≥ 1− b+ > 0 ∀x ≥ v = um,
by Lemma 4.1.i), 1 − gn(x) ≥ 1 − b+ > 0 ∀x ≥ u ≥ fnv. We get (An). Since

C1 ≥
(

1 − b+
)−1

, ( Bn) follows.
Now we consider the cases n > m. We only need prove the following:

(A∗
n) 1 − gn(x) > 2g(xn)

∏n
i=1 η(xi) ∀x ∈ [u, fu];

(B′
n) 1 − gn(y) ≤ 2

(

1 − gn(x)
)(

1 + K̄d(x, y)
)

∀x ∈ [u, fu], 0 < y ≤ x;

(B′′
n) 1 − gn(y) ≤

(

1 − gn(x)
)

Γ(x, y) ∀x ≥ u, y ∈ B(x, ρ(x)).
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In fact, by the definition of L̃, we know that (An−1) and (A∗
n) imply (An). Also,

by (B′
n), (B′′

n) and (5.6), we can get (Bn).
To prove (A∗

n), (B′
n) and (B′′

n), we use induction. Assume (Bj) are true for all
0 ≤ j ≤ n− 1. Then by Lemma 6.3 and the choice of C1, (A∗

n) is true.
Note that (B′′

j ) holds for any j = 0, 1, · · · ,m because of Lemma 5.1.i), ii) and
the fact that 1 − g(x) ≥ 1 − b+ > 0 ∀x ≥ v. So we may assume (Aj) and (B′′

j ) for
all j = 0, 1, · · · , n − 1. Hence, if we assume (A∗

n) in addition, then by Lemma 6.4
and Lemma 6.5, (B′

n) and (B′′
n) hold respectively.

Step III. We prove that gn satisfies i)-iii).
Since µ(gn) = µ(g) = 1,

∫

{gn>1}

(

gn(x)−1
)

dµ(x) =

∫

{gn<1}

(

1−gn(x)
)

dµ(x) =
1

2

∫

|gn(x)−1|dµ(x). (5.17)

Then the first inequality of Part iii) follows immediately from Lemma 6.2 with
D̄′ = 2C ′

3. By using (An) ∀n > 0, we get that the upper bound estimate in Part
iii) follows from Lemma 6.6 with D̄ = 2C4.

If we use (Bn), then

∫

{gn<1}

(

1 − gn(x)
)

dµ(x) ≤ max{1 − g(x) : x ∈ I}

≤C1 min{1 − g(x) : x ≥ u} ≤
C1

µ(I\I0)

∫

{gn<1}

(

1 − gn(x)
)

dµ(x). (5.18)

Considering (5.17) and the results in Part iii), we get i) with D′ =
(

2C1

)−1
D̄′ =

C−1
1 C ′

3, and get ii) with D =
(

2µ(I\I0)
)−1

C1D̄ =
(

µ(I\I0)
)−1

C1C4. �

6. Some Supplementary Lemmas

In this section we prove lemmas which are used for the proof of Proposition 5.2.

Lemma 6.1. There exists C2 > 0 such that for any x > u,

k+n
∏

i=1

η(xi) ≤ C2
1

kβ−−β+1
·

1

(n+ k)β−1
∀n, k > 0.

Proof. By Lemma 4.7, for x∗ =
(β−
r∗

)β

∈ P0 fixed,
k+n
∏

i=1

η(x∗i ) ≤
( r∗

r∗ + k + n

)β−

.

So the result is clear for this x∗. Since by Lemma 4.4.iv) η(x) is smaller outside P0

than inside P0, the result holds for all x ∈ I0\P0 as well. �
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Lemma 6.2. Let C ′
3 = 2−βa′ββ−1

− , where a′ is given in Lemma 4.2. Then
∫

{gn>1}

(

gn(x) − 1
)

dµ(x) ≥ C ′
3A−

1

(n+ k)β−1
∀n > 0.

Proof. Take t > 0 such that
( t

t+ k

)β+

=
1

b−

( s

s+ k

)β−

. (6.1)

Clearly, s ≤ t. Also, by (5.16) the right side is no more than
1

2β+
. So

t

t+ k
≤

1

2
.

We get t ≤ k.
Take

z(n) =
( β

t(1 + n
k
)

)β

. (6.2)

We claim
[0, z(n)] ⊂ {x : gn(x) ≥ 1} ∀n ≥ 0. (6.3)

In fact, for any x ≤ z(n), by Proposition 4.7 and (5.9),

k+n
∏

i=1

η(xi) ≥
( t(1 + n

k
)

t(1 + n
k
) + k + n

)β+

=
( t

t+ k

)β+

=
1

b−

( s

s+ k

)β−

≥
1

b−

k
∏

i=1

η(vi).

Then by (5.1), (4.1) and (5.7), gn(x) ≥ A−

k+n
∏

i=1

η(xi) ≥
A−

b−

k
∏

i=1

η(vi) = 1.

Now using Lemma 4.3 we have
∫

{gn>1}

(

gn(x) − 1
)

dµ(x) ≥A−

∫ z(n)

0

k+n
∏

i=1

η(xi)dµ(x) − µ[0, z(n)]

=A−µ[0, z
(n)
n+k] − µ[0, z(n)].

Since k > t, by (6.2) and Lemma 2.2, z
(n)
n+k ≥

( β−
t(1 + n

k
) + k + n

)β

≥
( β−

2(k + n)

)β

.

Then by Lemma 4.2,

A−µ[0, z
(n)
n+k] ≥ A−a

′
(

z
(n)
n+k

)β−1
≥
A−a

′ββ−1
−

2β−1

( 1

k + n

)β−1

.

So the result follows if we show A−µ[0, z
(n)
n+k] ≥ 2µ[0, z(n)].

Note that
z
(n)
n+k

z(n)
≥

( β−t

β(t+ k)

)β

. Using (5.16) and the fact t > s, we can get

A−

µ[0, z
(n)
n+k]

µ[0, z(n)]
≥ b−

(s+ k

s

)β−

·
a′

a

( β−t

β(t+ k)

)β−1

≥
a′b−
a

(β−
β

)β−1(s+ k

s

)β−−β+1

.

The right side is greater than or equal to 2 because by (5.12) and (5.4),
(k + s

s

)β−−β+1

≥
(

c′s
β−1

β+−β+1

)β−−β+1

≥
2a

a′b−

( β

β−

)β−1

. �
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Lemma 6.3. Let n > m. Suppose for all 0 ≤ j ≤ n− 1,

max{1 − gj(x), x ∈ I} ≤ C1 min{1 − gj(x), x ≥ u}.

Then 1 − gn(x) > 2g(xn)
n

∏

i=1

η(xi) ∀x ∈ [u, fu].

Proof. By (5.17), (5.18) and Lemma 6.2, we have that for all 1 ≤ j ≤ n,

1 − gj(x) ≥
1

C1

∫

{gj>1}

(

gj(x) − 1
)

dµ(x)

≥
C ′

3A−

C1

1

(k + j)β−1
≥
C ′

3A−

C1

1

(k + n)β−1
∀x ≥ u.

So the same inequality is true for 1 − ḡj(x). By Lemma 4.5 and (5.3),

1 − gn(x) >
n

∑

j=1

(

1 − ḡn−j(xj)
)

ψ(xj)

j−1
∏

i=1

η(xi) ≥
C ′

3A−

2C1

1

(k + n)β−1
.

On the other hand, since n > m, g(xn) ≤ A+

k
∏

i=1

η(xi). So by Lemma 6.1,

g(xn)
n

∏

i=1

η(xi) ≤ A+

k+n
∏

i=1

η(vi) ≤ A+C2
1

kβ−−β+1

1

(k + n)β−1
.

Now, considering (5.7) and (5.14) we have

1 − gn(x)

2g(xn)
∏n

i=1 η(xi)
≥

C ′
3A−

22C1C2A+
kβ−−β+1 ≥

C ′
3b−

4C1C2b+
sβ−−β+1.

By (5.5) it is greater than or equal to 1. �

Lemma 6.4. Let n > m. Suppose g(x) is decreasing on [0, v]. Suppose further

(i) 1 − gj(x) > 0 ∀0 ≤ j ≤ n− 1, x ≥ u,
(ii) 1 − gj(y) ≤

(

1 − gj(x)
)

Γ(x, y), ∀0 ≤ j ≤ n− 1, x ≥ u, y ∈ B(x, ρ(x)), and

(iii) 1 − gn(x) ≥ 2g(xn)
n

∏

i=1

η(xi) ∀x ∈ [u, fu].

Then for all x ∈ [u, fu] with 1 − gn(x) > 0,

1 − gn(y) ≤ 2
(

1 − gn(x)
)(

1 + K̄d(x, y)
)

∀0 < y ≤ x.

Proof. By Supposition (ii) and Lemma 5.1.iii),

(

1 − ḡn−j(xj)
)

−
(

1 − ḡn−j(yj)
)

≥ −K̄d(x, y) ·
(

1 − ḡn−j(xj)
)

. (6.4)
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Using Lemma 4.5 for the function 1−g(x) and then using Supposition (iii), we have

n
∑

j=1

(

1 − ḡn−j(xj)
)

ψ(xj)

j−1
∏

i=1

η(xi) = 1 − gn(x) −
(

1 − g(xn)
)

n
∏

i=1

η(xi)

<1 − gn(x) + g(xn)
n

∏

i=1

η(xi) ≤
3

2

(

1 − gn(x)
)

≤ 2
(

1 − gn(x)
)

. (6.5)

Therefore, by using Lemma 4.6 for the function 1 − g(x), we obtain
(

1 − gn(x)
)

−
(

1 − gn(y)
)

≥
(

1 − g(xn)
)

n
∏

i=1

η(xi) −
(

1 − g(yn)
)

n
∏

i=1

η(yi) − 2K̄
(

1 − gn(x)
)

d(x, y). (6.6)

If 1 − g(yn) ≤ 0, then either 1 − g(xn) ≥ 0 or 0 ≥ 1 − g(xn) ≥ 1 − g(yn). Since
η(x) is decreasing, (6.6) becomes

(

1 − gn(x)
)

−
(

1 − gn(y)
)

≥ −2K̄
(

1 − gn(x)
)

d(x, y). (6.7)

Then the result follows.
If 1 − g(yn) ≥ 0, then 0 ≤ 1 − g(yn) ≤ 1 − g(xn) ≤ 1 − gn(x). Since η(xi) > 0

and η(yi) < 1, (6.6) becomes
(

1 − gn(x)
)

−
(

1 − gn(y)
)

≥ −
(

1 − gn(x)
)

− 2K̄
(

1 − gn(x)
)

d(x, y).

This is the result of the lemma. �

Lemma 6.5. Suppose all conditions in Lemma 6.4 are satisfied. Then

1 − gn(y) ≤
(

1 − gn(x)
)

Γ(x, y) ∀x ∈ [u, fu], y ∈ B(x, ρ(x)).

Proof. First we assume y ≤ x, The same argument as in the proof of above lemma
tells that (6.5) holds. Further, if 1 − g(yn) ≤ 0, then (6.7) follows as well and
therefore the result is true. So we consider the case 1 − g(yn) ≥ 0. Note that
g(yn) ≥ g(xn) ≥ gn(x). By Lemma 4.8.ii) and (5.2),

(

1 − g(xn)
)

n
∏

i=1

η(xi) −
(

1 − g(yn)
)

n
∏

i=1

η(yi) ≥
(

1 − g(yn)
)

(

n
∏

i=1

η(xi) − η(yi)
)

≥ −
(

1 − g(yn)
)

n
∏

i=1

η(xi)
(

∆̃(x, y) − 1
)

≥ −
(

1 − gn(x)
) ∆̃(x, y) − 1

2
.

So by (6.6),

(

1 − gn(x)
)

−
(

1 − gn(y)
)

≥−
(

1 − gn(x)
)

(∆̃(x, y) − 1

2
+

3K̄d(x, y)

2

)

≥−
(

1 − gn(x)
)

(

Γ(x, y) − 1
)

,
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where the last step follows from the choice of u. This is the result.
Now we assume y ≥ x. We use Lemma 4.6 for the function g(x), while inter-

change the roles of x and y, and replace ḡn−j(xj) − ḡn−j(yj) by
(

1 − ḡn−j(yj)
)

−
(

1 − ḡn−j(yj)
)

, to get

gn(x) − gn(y) ≤ g(xn)
n

∏

i=1

η(xi) − g(yn)
n

∏

i=1

η(yi)

+
n

∑

j=1

[

(

1 − ḡn−j(yj)
)

−
(

1 − ḡn−j(xj)
)

]

ψ(xj)

j−1
∏

i=1

η(xi). (6.8)

Since g(yn) ≤ g(xn) and η(yn) ≤ η(xn), by Lemma 4.8.i) and Supposition (iii),

g(xn)

n
∏

i=1

η(xi) − g(yn)

n
∏

i=1

η(yi)≤
[

g(yn)

n
∏

i=1

η(yi)
]

(

∆̃(x, y) − 1
)

≤
[

g(xn)
n

∏

i=1

η(xi)
]

(

∆̃(x, y) − 1
)

≤
1 − gn(x)

2

(

Γ(x, y) − 1
)

.

Note that the arguments for (6.4) and (6.5) still hold. So (6.8) becomes
(

1 − gn(y)
)

−
(

1 − gn(x)
)

= gn(x) − gn(y)

≤(1 − gn(x))
(Γ(x, y) − 1

2
+

3K̄d(x, y)

2

)

≤ (1 − gn(x))
(

Γ(x, y) − 1
)

.

This completes the proof. �

Lemma 6.6. Let C4 = aββ−1
+ . Suppose 1 − gj(x) > 0 ∀0 ≤ j ≤ n, x ≥ u. Then

∫

{gn>1}

(

gn(x) − 1
)

dµ(x) ≤
C4A+

nβ−1
.

Proof. The supposition implies that ∀x ∈ I0,

n
∑

j=1

[

(

ḡn−j(xj) − 1
)

]

ψ(xj)

j−1
∏

i=1

η(xi) ≤ 0.

If gn(x) ≥ 1 > b+, then g(xn) ≥ 1 > b+ and therefore xn ≤ v. So by Lemma 4.5,

gn(x) − 1 ≤
(

g(xn) − 1
)

n
∏

i=1

η(xi) < g(xn)
n

∏

i=1

η(xi) ≤ A+

n+k
∏

i=1

η(xi).

Note that {x : gn(x) > 1} ⊂ [0, u]. Also note that k ≥ s ≥ m and therefore
un+k = vn+k−m ≤ vn. We have

∫

{gn>1}

(

gn(x) − 1
)

dµ(x) ≤ A+

∫ u

0

n+k
∏

i=1

η(xi)dµ(x) = A+µ[0, un+k]

≤ A+µ[0, vn] ≤ A+ · av1−γ
n ≤ aA+

( β+

s+ n

)β−1

≤ aA+

(β+

n

)β−1

. �
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7. Proofs of Theorem B and its Corollary

Proposition 7.1. There exist B, B̄ > 0 such that for any Lipschitz function g with
µ(g) = 1, and for all n > 0,

i)
∣

∣1 − L̃ng(x)
∣

∣ ≤
B

εnβ−1
∀x ∈ I\I0,

ii)

∫

|L̃ng(x) − 1|dµ(x) ≤
B̄

εnβ−1
,

where ε > 0 only depends on the Lipschitz constant of g.

Proof. Take 0 < b− < b+ < 1, and take v ∈ P0, k > 0, and functions g± with
µ(g+) > 1 and µ(g−) < 1 as in Proposition 5.2 . Then we choose A and b such that

A
k

∏

i=1

η(vi) = b and such that the function ĝ defined by

ĝ(x) =

{

A
∏k−1

i=0 η(xi), x ∈ [0, v];

b, x ∈ [v, 1]

satisfies µ(ĝ) = 1. Then we write

1 − L̃ng =
1

2ε

[

1 − L̃n
(

ĝ − ε
[

1 − g)
]

)]

−
1

2ε

[

1 − L̃n
(

ĝ + ε
[

1 − g
]

)]

.

Suppose we can find ε > 0 such that both functions ĝ(x) + ε
[

1 − g(x)
]

and

ĝ(x) − ε
[

1 − g(x)
]

satisfy the requirements (a), (c) and (d) in Proposition 5.2. By
using the proposition for these functions, we can get

|1 − L̃ng(x)| ≤
1

2ε
·
DA+

nβ−1
+

1

2ε
·
DA+

nβ−1
=

DA+

εnβ−1
∀x ∈ I\I0,

and
∫

|L̃ng(x) − 1|dµ(x) ≤
1

2ε
·
D̄A+

nβ−1
+

1

2ε
·
D̄A+

nβ−1
=

D̄A+

εnβ−1
.

Therefore the result follows with B = DA+ and B̄ = D̄A+.
Clearly we can find ε > 0 such that (a) and (d) in Proposition 5.2 hold for

functions ĝ(x) ± ε
(

1 − g(x)
)

. It remains to show that there exists ε > 0 such that

ĝ(y) ± ε
(

1 − g(y)
)

ĝ(x) ± ε
(

1 − g(x)
) ≤ ∆̃(x, y) ∀x ∈ I, y ∈ B(x, ρ(x)).

That is, we need

∆̃(x, y)ĝ(x) − ĝ(y)
∣

∣∆̃(x, y)
(

1 − g(x)
)

−
(

1 − g(y)
)
∣

∣

≥ ε > 0 (7.1)

for all x ∈ I and y ∈ B(x, ρ(x)).
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First, we consider the case x ∈ [0, v].

Recall the definition of ∆̃(x, y) and Lemma 4.8.i), we have

(

1 +
J̃0d(xk, yk)

xk

)

·

∏k−1
i=0 η(yi)

∏k−1
i=0 η(xi)

= ∆̃(xk, yk) ·

∏k−1
i=0 η(yi)

∏k−1
i=0 η(xi)

≤ ∆̃(x, y).

Hence, by the definition of ĝ,

∆̃(x, y)ĝ(x) − ĝ(y) ≥ A
(

∆̃(x, y) ·

∏k−1
i=0 η(xi)

∏k−1
i=0 η(yi)

− 1
)

k−1
∏

i=0

η(yi)

≥A
(

1 +
J̃0d(xk, yk)

xk

− 1
)

k−1
∏

i=0

η(yi) = AJ̃0
d(xk, yk)

xk

k−1
∏

i=0

η(yi).

Also, we have

∣

∣

∣
∆̃(x, y)

(

1 − g(x)
)

−
(

1 − g(y)
)

∣

∣

∣

≤
(

∆̃(x, y) − 1
)∣

∣1 − g(x)
∣

∣ +
∣

∣g(y) − g(x)
∣

∣ ≤
(

∣

∣1 − g(x)
∣

∣ +
xLg

J̃0

)

·
J̃0d(x, y)

x
,

where Lg is a Lipschitz constant of g.
Now we get that the left side of (7.1) is greater than or equal to

A
∏k−1

i=0 η(yi)
∣

∣1 − g(x)
∣

∣ + xLgJ̃
−1
0

·
d(xk, yk)

d(x, y)
·
x

xk

.

It is bounded from below for all x ∈ [0, v] and y ∈ B(x, ρ(x)) because
(

fk)′(x) → 1
and η(y) → 1 as x→ 0.

The case x ∈ [v, 1] can be considered similarly. �

Proof of Theorem B.

First, we note that by the definition of L̃, for any functions F and G defined on
I, L̃

(

(F ◦ f) ·G
)

= F ·
(

L̃G
)

. Hence

L̃n
(

(F ◦ fn) ·G
)

= F ·
(

L̃nG
)

.

So, by using Lemma 4.1.ii) we have that

µ
(

(F ◦ fn) ·G
)

− µ(F )µ(G) = µ
(

L̃n
(

(F ◦ fn) ·G
)

)

− µ
(

F · µ(G)
)

=µ
(

F ·
(

L̃nG
)

)

− µ
(

F · µ(G)
)

= µ
(

F ·
(

L̃nG− µ(G)
)

)

. (7.2)

To prove Part i), we take Lipschitz functions F and G on [0, 1]. Above formula
gives

µ
(

(F ◦ fn) ·G
)

− µ(F )µ(G) ≤ ‖F‖µ
(
∣

∣L̃nG− µ(G)
∣

∣

)

.
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By Proposition 7.1, there exist B̄ > 0 and ε = ε(G) > 0 such that

µ
(
∣

∣L̃nG− µ(G)
∣

∣

)

= µ
(
∣

∣L̃n
(

G− µ(G) + 1
)

− 1
∣

∣

)

≤
B̄

εnβ−1
.

So we can take C = B̄ε−1.
Now we prove Part ii). Let G be any Lipschitz function satisfying the require-

ments (a)-(d) in Proposition 5.2 for some functions g−(x) ≤ g+(x). In particular,
µ(G) = 1. Then we know that there exists D′ > 0 such that for all n > 0,

1 − L̃nG(x) ≥
D′A−

(n+ k)β−1
∀x ∈ I\I0,

where A− and k are described in the same proposition.
Take a Lipschitz function F (x) ≥ 0 such that F (x) = 0 on I0 and µ(F ) > 0.

Then by (7.2) we have

∣

∣µ
(

(F ◦ fn) ·G
)

− µ(F )µ(G)
∣

∣ =
∣

∣µ
(

χI\I0
· F · (L̃nG− 1)

)
∣

∣

≥µ(F ) min
x∈I\I0

{1 − L̃nG(x)} ≥ µ(F )
D′A−

(n+ k)β−1
.

Now the result follows with C ′ = (k + 1)−(β−1)D′A−µ(F ). �

Recall that E(j) is the element of ξj containing 0.

Lemma 7.2. There exist l > 0 such that for all j ≥ l, if a function g satisfies

(a) g(x) > 0 as x ∈ E(j) and g(x) = 0 as x 6∈ E(j),
(b)

∫

E(j) gdµ = 1, and

(c) g(y) ≤ g(x)
(

1 + J̃d(x, y)
)

∀x, y ∈ E(j),

then ∀n > 0,

i) 1 − L̃n+jg(x) ≥
D′A−

(n+ j)β−1
∀x ∈ I\I0,

ii) 1 − L̃n+jg(x) ≤
DA+

nβ−1
∀x ∈ I,

where D,D′ are as in Proposition 5.2, and A+ = sup{g(x) : x ∈ E(j)} and A− =
inf{g(x) : x ∈ E(j)}.

Proof. Take 0 < b− ≤ b+ < 1 such that
b+
b−

=
A+

A−
. Let v =

(β

s

)β

be the point

given in Proposition 5.2.
For each j > 0, consider the function gj(x) = L̃jg(x). Since f j : E(j) → I is a

one to one map,

gj(x) = g(xj)

j
∏

i=1

η(f ixj) ≤ A+

j
∏

i=1

η(f ixj),
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for all x ∈ I, where xj = f−jx ∩ E(j).
Note that if x ≤ y, then

g(x)η(x)

g(y)η(y)
≥

1

1 + J̃d(x, y)
·
1 − ψ(x)

1 − ψ(y)
≥

1 + ψ(y) − ψ(x)

1 + J̃d(x, y)
.

It is easy to see by Lemma 4.4.i), Lemma 3.5 and 2.4 that the right side is greater
than or equal to 1 if x is small. It means that g(x)η(x) and therefore gj(x) is

decreasing on [0, v] if E(j) is small enough.

By Lemma 2.2, the length of E(j) is between
( β−
r + j

)β

and
( β+

r + j

)β

for some

r > 0. So if j is large enough, then by (c), g(y) ≤ 2g(x) for any x, y ∈ E(j). Hence
by (b) and Lemma 4.2, we have

(r + j)β−1

2aββ−1
+

≤
1

2µE(j)
≤ A− ≤ A+ ≤

2

µE(j)
≤

2(r + j)β−1

a′ββ−1
−

. (7.3)

On the other hand, by Lemma 4.7,

j
∏

i=1

η(vi) ≤
( s

s+ j

)β

. So if j is large enough,

then g(v) ≤ b+ and therefore g(x) ≤ b+ ∀x > v.
Now we see that gj satisfies all conditions in Proposition 5.2, with j = k. There-

fore the results of the lemma follow. �

Lemma 7.3. There exist C > 0 and l > 0 such that for any m ≥ 0, if E ∈ ξm,
then for all n > 0,

|µE − L̃n+m+lχE(x)| ≤
Cmβ−1

nβ−1
µE ∀x ∈ I\I0.

Proof. Note that fm : E → I is a one to one map and fm−1E = Iq for some q.
First we consider the case fm−1E = Iq 6= I0. Put

g(x) =
1

µE
L̃mχE(x) =

1

µE

m
∏

i=1

η(f ixm),

where xm = f−mx∩E. By the remark after Lemma 4.8, we know g(y) ≤ g(x)
(

1 +

J̃d(x, y)
)

for any x ∈ I, y ∈ B(x, ρ̄). Since µ(g) = 1, by similar arguments as in
the proof of Lemma 3.2 we know that g is bounded and the bounds is independent
of m and E provided fm−1E 6= I0. Consequently, g is a Lipschitz function and the
Lipschitz constant is independent of m and E. So by Proposition 7.1, we have

∣

∣µE − L̃n+mχE(x)
∣

∣ ≤
C

nβ−1
µE ≤

Cmβ−1

nβ−1
µE ∀x ∈ I\I0

for all n > 0, where C ≥ Bε−1.
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Secondly, we consider the case that there exists l ≤ j ≤ m such that fm−jE =
E(j) ⊂ I0, where l is as in Lemma 7.2. We may assume that j is the largest number
with this property. Take

g(x) =
1

µE
L̃m−jχE(x) =

1

µE

m−j
∏

i=1

η(f ixm−j),

where xm−j = f−m+jx ∩ E. Clearly g(x) satisfies all requirements in Lemma 7.2.
So we get that for all n > 0

1 −
1

µE
L̃n+mχE(x) = 1 − L̃n+jg(x) ≤

DA+

nβ−1
∀x ∈ I\I0.

Recall (7.3), and note that r only depends on f . We may assume l > r. Since

j ≤ m, we have A+ ≤
2βmβ−1

a′ββ−1
−

. So the result follows with C ≥
2βD

a′ββ−1
−

.

Lastly, we consider the case that fm−jE = E(j) ⊂ I0 hold only for j < l. We

take a partition E = El−j

⋃

(

∪l−j−1
i=1 ∪Q

q=1 Ei,q

)

such that fm+i−1Ei,q = Iq and

fm+l−j−1El−j = I0. For each Ei,q, we use the argument similar to the first case

for the function g(x) = (µEi,q)
−1L̃m+iχEi,q

(x) to get that for all n > 0,

∣

∣µEi,q − L̃n+m+iχEi,q
(x)

∣

∣ ≤
Cmβ−1

nβ−1
µEi,q ∀x ∈ I\I0. (7.4)

Also, we have fm−jEl−j = E(l). So by taking g(x) = (µEl−j)
−1L̃m−jχEl−j

(x), the
same reasons as in the second case imply that for all n > 0,

µEl−j − L̃n+m+l−jχEl−j
(x) ≤

Cmβ−1

nβ−1
µEl−j ∀x ∈ I\I0. (7.5)

Since i ≤ l and l−j ≤ l, (7.4) and (7.5) still hold if we use L̃n+m+l instead of L̃n+m+i

and L̃n+m+l−j respectively. Hence the result follows if we take summation. �

Proof of Corollary of Theorem B.

Use (7.2) and take F = χE′ and G = χE , we get

µ(f−n−mE′ ∩E) − µE′ · µE = µ
(

χE′ · (L̃n+mχE − µE)).

Since E′ ⊂ I\I0,

µE′ · min
x∈I\I0

(

µE − L̃n+mχE(x)
)

≤µ
(

χE′ · (µE − L̃n+mχE)
)

≤ µE′ · max
x∈I\I0

(

µE − L̃n+mχE(x)
)

.
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Therefore the first inequality follows from Lemma 7.3 with n+ l replaced by n. For
the second one, we take g(x) = (µE)−1χE(x) and then apply Lemma 7.2.i) with
j = m to get

µE − L̃n+mχE(x) ≥
D′A−

(n+m)β−1
µE ∀x ∈ I\I0

for all n > 0. By (7.3), A− ≥ (2a)−1β1−β
+ mβ−1. So we get the inequality by taking

C ′ ≤ (2a)−1β1−β
+ ·D′. �
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