DECAY OF CORRELATIONS FOR PIECEWISE SMOOTH MAPS WITH INDIFFERENT FIXED POINTS

Huyi Hu

Abstract

We consider a piecewise smooth expanding map f on the unit interval that has the form $f(x)=x+x^{1+\gamma}+o\left(x^{1+\gamma}\right)$ near 0 , where $0<\gamma<1$. We prove that the density function h of an absolutely continuous invariant probability measure μ has order $x^{-\gamma}$ as $x \rightarrow 0$, and that the decay rate of correlations with respect to μ is polynomial for Lipschitz functions. Perron-Frobenius operators are the main tool used for proofs.

0. Introduction

Let $f: I \rightarrow I$ be a piecewise smooth map on the unit interval I. It is well known that if f is uniformly expanding, then it admits an absolutely continuous invariant probability measure μ, and (f, μ) has exponential decay of correlations. If f has indifferent fixed points, then f still admits an absolutely continuous invariant measure μ. In addition, if f is $C^{1+\gamma}, 0<\gamma<1$, then the measure μ is finite (See e.g. $[\mathrm{P}])$. The purpose of this paper is to show that such systems has polynomial decay of correlations.

We assume that f has an indifferent fixed point 0 , and $f x=x+x^{1+\gamma}+o\left(x^{1+\gamma}\right)$ near 0. We use Perron-Frobenius operator \mathcal{L} to get the density function h. The fact $\mathcal{L} h=h$ implies that as $x \rightarrow 0, h(x)$ goes to infinite just like $x^{-\gamma}$ multiplied by a constant related to the value of f^{\prime} and h at $f^{-1}(0)$. Then we use $\eta(x)=\frac{h(x)}{h(f x) f^{\prime}(x)}$, instead of $\frac{1}{f^{\prime}(x)}$, to define a different operator $\tilde{\mathcal{L}}$. This operator preserves L^{1} norms and leaves constant functions invariant. So $\tilde{\mathcal{L}}^{n} g \rightarrow \mu(g)$ for any continuous function g. Moreover, if higher order terms are ignored, then near $0, \tilde{\mathcal{L}} g(x) \approx\left(1-x_{1}^{\gamma}\right) g\left(x_{1}\right)+$ $x_{1}^{\gamma} \bar{g}\left(x_{1}\right)$, where x_{1} is the preimage of x near 0 , and \bar{g} is the average of g with weight η at the rest of preimages (see (4.3) for details). Since restricted to a neighborhood of 0 , all backward orbits approach to 0 in a polynomial rate, the rate of the convergence $\tilde{\mathcal{L}}^{n} g \rightarrow \mu(g)$, both in $L^{1}(I, \mu)$ and in measure, is polynomial. Therefore the rate of decay of correlations is polynomial as well.

We state assumptions and the main results in $\S 1$. Theorem A, which is concerning existence and properties of density functions of invariant measures, is proved in $\S 3$. Theorem B and its corollary, which deal with decay rate of correlations of Lipschitz functions and mixing rate of sets respectively, are proved in $\S 7$. To obtain Theorem

B, we prove Proposition 5.2 in $\S 5$ and $\S 6$, which asserts that the rate of convergence $\tilde{\mathcal{L}}^{n} g \rightarrow \mu(g)$ is polynomial.

1. Assumptions, Statements of Results and Notations

Let $I=[0,1]$ be the unit interval and $f: I \rightarrow I$ be a piecewise smooth map. A fixed point p of f is called indifferent if $f p=p$ and $\lim _{x \rightarrow p} f^{\prime}(x)=1$.

Assumptions. Let $f: I \rightarrow I$ such that
(I) There is a finite partition $\xi=\left\{I_{0}, I_{1}, \cdots, I_{Q}\right\}$ into subintervals such that for each q, restricted to $I_{q},\left.f\right|_{\operatorname{int} I_{q}}$ is twice differentiable and $\left.f\right|_{\operatorname{int} I_{q}}$ maps int I_{q} to $(0,1)$ diffeomorphically.
(II) 0 is an indifferent fixed point of f.
(III) $f^{\prime}>1$ on $(0,1]$, and $f^{\prime \prime}$ is bounded on $[\tau, 1] \forall \tau>0$.

Moreover, we need the following assumption for technical reasons.
(IV) Near $x=0, f$ and its derivative have the form

$$
\begin{align*}
f(x) & =x+x^{1+\gamma}+x^{1+\gamma} \delta_{0}(x) \tag{1.1}\\
f^{\prime}(x) & =1+(1+\gamma) x^{\gamma}+x^{\gamma} \delta_{1}(x) \tag{1.2}\\
f^{\prime \prime}(x) & =\frac{\gamma(1+\gamma)+\delta_{2}(x)}{x^{1-\gamma}} \tag{1.3}
\end{align*}
$$

where $\delta_{i}(x) \rightarrow 0$ as $x \rightarrow 0$ for $i=0,1,2$.
The last assumption says that f is equal to $x+x^{1+\gamma}$ plus higher order terms, and the first and the second derivative of the higher order terms are still of higher orders.

We denote by I_{0} the element of the partition ξ that contains 0 .
Theorem A. Suppose $f: I \rightarrow I$ satisfies Assumption (I)-(IV). Then f has an absolutely continuous invariant probability measure μ whose density function $h(x)$ satisfies
i) $0<h(x)<\infty \forall x \in(0,1]$;
ii) h is Lipschitz on $[\tau, 1] \forall 0<\tau<1$;
iii) $\exists R>0$ such that

$$
\left|x^{\gamma} h(x)-\sigma_{0}\right| \leq R \max \left\{x^{\gamma}, \delta_{1}(x)\right\}
$$

$$
\text { where } \sigma_{0}=\lim _{x \rightarrow 0} \sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{h\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)} \text { is a constant. In particular }
$$

$$
\lim _{x \rightarrow 0} x^{\gamma} h(x)=\sigma_{0}
$$

The part of existence of absolutely continuous invariant measures was proved by Pianigiani ($[\mathrm{P}]$) in more general setting by using the first return map. For Part iii), a similar result can be seen in [CF1] and [CF2] for a map with the form $f x=\frac{x}{1-x}$ as $0 \leq x \leq \frac{1}{2}$, which admits σ-finite absolutely continuous invariant measure.

For a Lipschitz function F, denote by $\|F\|$ the C^{0} norm.
Theorem B. Suppose $f: I \rightarrow I$ satisfies Assumption (I)-(IV). Let μ be the absolutely continuous invariant probability measure and let $\beta=\gamma^{-1}$. Then
i) for any Lipschitz function G, there is a constant $C=C(G)>0$ such that for any Lipschitz function F,

$$
\left|\int\left(F \circ f^{n}\right) G d \mu-\int F d \mu \int G d \mu\right| \leq \frac{C}{n^{\beta-1}}\|F\| \quad \forall n>0
$$

ii) there exist Lipschitz functions G and F, and a constant $C^{\prime}>0$ such that

$$
\left|\int\left(F \circ f^{n}\right) G d \mu-\int F d \mu \int G d \mu\right| \geq \frac{C^{\prime}}{n^{\beta-1}} \quad \forall n>0
$$

A result similar to Part i) has been proved by L.-S. Young recently in more general setting (see $[Y]$). However, her method is quite different with ours. She uses tails of tower, and we use Perron-Frobenius operators. Earlier, M. Mori proved polynomial decay of correlations for piecewise linear maps (see $[M]$).

Remark. By the proof of the theorem, we can see that Part i) still holds if we use $L^{\infty}(I, \mu)$ function F and the $L^{\infty}(I, \mu)$ norm $\|F\|_{\infty}$ instead of Lipschitz function and C^{0} norm respectively. On the other hand, we can find C^{∞} functions F and G satisfying the inequality in Part ii).

$$
\text { Denote } \xi_{m}=\bigwedge_{i=0}^{m-1} f^{-i} \xi \text {. So if } E \in \xi_{m} \text {, then } E=\bigcap_{i=0}^{m-1} f^{-i} I_{q_{i}} \text { for some } q_{0}, \cdots, q_{m-1}
$$

Also we denote by $E^{(m)}$ the element of ξ_{m} containing 0 .
Corollary. Under the supposition of Theorem B, there exist constants $C>C^{\prime}>0$ and $l>0$ such that for any $m \geq 0, E \in \xi_{m}$, and for any measurable set $E^{\prime} \subset[0,1]$,

$$
\left|\mu\left(f^{-n-m} E^{\prime} \cap E\right)-\mu E \cdot \mu E^{\prime}\right| \leq \frac{C m^{\beta-1}}{(n-l)^{\beta-1}} \mu E \cdot \mu E^{\prime} \quad \forall n>l
$$

and if in addition $m \geq l$ and $E=E^{(m)}$, then

$$
\left|\mu\left(f^{-n-m} E^{\prime} \cap E\right)-\mu E \cdot \mu E^{\prime}\right| \geq \frac{C^{\prime} m^{\beta-1}}{(n+m)^{\beta-1}} \mu E \cdot \mu E^{\prime} \quad \forall n>0
$$

We introduce some notations.

Let I_{0} be the element of the partition ξ containing 0 . For $x \in I_{0}$, we denote $x_{0}=x$ and $x_{i+1}=f^{-1} x_{i} \cap I_{0} \forall i>0$. Choose a small neighborhood $P_{0} \subset I_{0}$ of 0 .

For any function g, if $x \in I_{0}$, then we denote

$$
\begin{equation*}
\sigma_{g}(x)=\sum_{\bar{x}_{1} \in f^{-1}(f x) \backslash I_{0}} \frac{g\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)} . \tag{1.4}
\end{equation*}
$$

We should note that $\sigma_{g}(x)$ depends on values of g at $f^{-1}(f x)$ but at x itself.
Take nondecreasing functions $\rho_{ \pm}(x) \geq 0$ and denote $B(x, \rho(x))=\left(x-\rho_{-}(x), x+\right.$ $\left.\rho_{+}(x)\right)$. We require that $\rho_{ \pm}(x)$ are chosen in such a way that $\rho_{ \pm}(x)=O\left(x^{1+\gamma}\right)$ on P_{0}, and $f B(x, \rho(x)) \supset B(f x, \rho(f x)) \forall x \in I$, and $y \in B(x, \rho(x))$ if and only if $x \in B(y, \rho(y))$. The latter implies $\rho_{+}(x)>\rho_{-}(x)$ on P_{0}. So $B(x, \rho(x))$ is not a ball in Euclid metric. Since $\rho_{ \pm}(x)$ are nondecreasing, we have $\rho(x) \geq \bar{\rho}$ for some $\bar{\rho}>0$ on $I \backslash I_{0}$.

For any $n \geq 0$, denote $B_{n}(x, \rho)=\left\{y \in I: d\left(f^{i} y, f^{i} x\right) \leq \rho\left(f^{i} x\right) \forall 0 \leq i \leq n\right\}$.
We always denote $\beta=\gamma^{-1}$. Choose $\beta_{-}<\beta<\beta_{+}$such that $\beta_{+}-\beta$ and $\beta-\beta_{-}$ are small, for example, less than 0.1 and $0.1(\beta-1)$.

2. Preliminary

Lemma 2.1. Let $x \in I_{0}$. For any $\theta \geq 0$,

$$
\frac{x^{\theta}}{x_{1}^{\theta}} \cdot \frac{d\left(x_{1}, y_{1}\right)}{d(x, y)}=\frac{x^{\theta}}{x_{1}^{\theta}} \cdot \frac{1}{f^{\prime}(x)}+o\left(x^{\gamma}\right)=1-(1+\gamma-\theta) x^{\gamma}+o\left(x^{\gamma}\right), \quad x \rightarrow 0
$$

where $y \in B(x, \rho(x))$ and $y_{1} \in B\left(x_{1}, \rho\left(x_{1}\right)\right)$.
Proof. This is because by Assumption (IV), $x=f x_{1}=x_{1}\left(1+x_{1}^{\gamma}+o\left(x^{\gamma}\right)\right.$, and $d(x, y)=\left(f^{\prime}\left(x_{1}\right)+o\left(x^{\gamma}\right)\right) d\left(x_{1}, y_{1}\right)=\left(1+(1+\gamma) x^{\gamma}+o\left(x^{\gamma}\right)\right) d\left(x_{1}, y_{1}\right)$.

Lemma 2.2. Given $\beta_{-}<\beta<\beta_{+}$, we can choose P_{0} small enough such that for any $x \in P_{0}$,
i) if $x=x_{0} \geq\left(\frac{\beta_{-}}{r}\right)^{\beta}$ for some $r>0$, then $x_{n} \geq\left(\frac{\beta_{-}}{r+n}\right)^{\beta}$;
ii) if $x=x_{0} \leq\left(\frac{\beta_{+}}{r}\right)^{\beta}$ for some $r>0$, then $x_{n} \leq\left(\frac{\beta_{+}}{r+n}\right)^{\beta}$.

Proof. If x is small, then we can find $1<\lambda<\beta / \beta_{-}$such that $f(x) \leq x\left(1+\lambda x^{\gamma}\right)$.
Suppose $x \leq\left(\frac{\beta_{-}}{r}\right)^{\beta}$. We have

$$
f(x) \leq\left(\frac{\beta_{-}}{r}\right)^{\beta}\left(1+\frac{\lambda \beta_{-}}{r}\right)=\beta_{-}^{\beta} \frac{r+\lambda \beta_{-}}{r^{\beta+1}} .
$$

Note that $\lambda \beta_{-}<\beta$. If r is large enough, then

$$
\left(1-\frac{1}{r}\right)^{\beta}\left(1+\frac{\lambda \beta_{-}}{r}\right) \leq 1 \quad \text { or } \quad(r-1)^{\beta}\left(r+\lambda \beta_{-}\right) \leq r^{\beta+1}
$$

So we get that

$$
f(x) \leq\left(\frac{\beta_{-}}{r-1}\right)^{\beta}
$$

This implies the result in (i).
Part (ii) can be proved similarly.
Define

$$
\Delta(x, y)= \begin{cases}1+\frac{J_{0}}{x} d(x, y), & \forall x \in P_{0}, y \in B(x, \rho(x)) \\ 1+J d(x, y), & \forall x \in I \backslash P_{0}, y \in B(x, \rho(x))\end{cases}
$$

where $J, J_{0}>0$ are constants satisfying the proposition below.
Proposition 2.3. (Distortion Estimates) There exist constants $J, J_{0}>0$ such that for all $x \in I, y \in B(x, \rho(x))$,
i) if $x_{1} \in f^{-1} x, y_{1} \in f^{-1} y \cap B\left(x_{1}, \rho\left(x_{1}\right)\right)$, then

$$
\Delta\left(x_{1}, y_{1}\right) \cdot \frac{f^{\prime}\left(x_{1}\right)}{f^{\prime}\left(y_{1}\right)} \leq \Delta(x, y)
$$

ii) for all $n>0$, if $x_{n} \in f^{-n} x, y_{n} \in f^{-n} y \cap B_{n}\left(x_{n}, \rho\right)$, then

$$
\frac{\left(f^{n}\right)^{\prime}\left(x_{n}\right)}{\left(f^{n}\right)^{\prime}\left(y_{n}\right)} \leq \Delta(x, y)
$$

Proof. i) First we suppose $x \in P_{0}$. By (1.3) and the fact $f^{\prime}(y)>1$, there is a constant $c>0$ such that

$$
\frac{f^{\prime}(x)}{f^{\prime}(y)}<1+\left(f^{\prime}(x)-f^{\prime}(y)\right) \leq 1+c x^{\gamma} \frac{d(x, y)}{x}
$$

Note that $x^{-1} d(x, y)$ is of order x^{γ}. So by Lemma 2.1 with $\theta=1$ we have

$$
\begin{aligned}
& \Delta\left(x_{1}, y_{1}\right) \cdot \frac{f^{\prime}\left(x_{1}\right)}{f^{\prime}\left(y_{1}\right)} \leq\left(1+J_{0} \frac{d\left(x_{1}, y_{1}\right)}{x_{1}}\right) \cdot\left(1+c x_{1}^{\gamma} \frac{d\left(x_{1}, y_{1}\right)}{x_{1}}\right) \\
= & 1+J_{0}\left[1+\frac{c x_{1}^{\gamma}}{J_{0}}+O\left(x_{1}^{2 \gamma}\right)\right] \frac{d\left(x_{1}, y_{1}\right)}{x_{1}} \\
= & 1+J_{0}\left(1+\frac{c x_{1}^{\gamma}}{J_{0}}+O\left(x_{1}^{2 \gamma}\right)\right)\left(1-\gamma x^{\gamma}+o\left(x^{\gamma}\right)\right) \frac{d(x, y)}{x}
\end{aligned}
$$

If J_{0} is large enough, then the right side is less than $1+J_{0} x^{-1} d(x, y)$.
For the case $x \notin P_{0}$, the result is clear since f is uniformly expanding outside P_{0}. ii) can be obtained from i) by induction.

Remark. The ratio $\frac{\left(f^{n}\right)^{\prime}\left(x_{n}\right)}{\left(f^{n}\right)^{\prime}\left(y_{n}\right)}$ only depends on preimages of x and y. So if $f^{n-1} x_{n} \in$ $I \backslash I_{0}$, then we still have

$$
\frac{\left(f^{n}\right)^{\prime}\left(x_{n}\right)}{\left(f^{n}\right)^{\prime}\left(y_{n}\right)} \leq 1+J d(x, y)
$$

for some $J>0$ even if $x \in P_{0}$.
Recall the definition (1.4) of σ_{g}.

Corollary 2.4. Let $x, y \in P_{0}$. If g satisfies $g\left(\bar{y}_{1}\right) \leq g\left(\bar{x}_{1}\right) \Delta\left(\bar{x}_{1}, \bar{y}_{1}\right)$ for all $\bar{x}_{1} \in$ $f^{-1} x \backslash I_{0}, \bar{y}_{1} \in f^{-1} y \cap B\left(\bar{x}_{1}, \bar{\rho}\right)$, then

$$
\sigma_{g}\left(y_{1}\right) \leq \sigma_{g}\left(x_{1}\right)(1+J d(x, y))
$$

Proof. By (1.4) and Proposition 2.3.i),
$\frac{\sigma_{g}\left(y_{1}\right)}{\sigma_{g}\left(x_{1}\right)}=\frac{\sum_{\bar{y}_{1} \in f^{-1} y \backslash I_{0}} g\left(\bar{y}_{1}\right) / f^{\prime}\left(\bar{y}_{1}\right)}{\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} g\left(\bar{x}_{1}\right) / f^{\prime}\left(\bar{x}_{1}\right)} \leq \max \left\{\frac{g\left(\bar{y}_{1}\right)}{g\left(\bar{x}_{1}\right)} \cdot \frac{f^{\prime}\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{y}_{1}\right)}\right\} \leq \max \left\{\Delta\left(\bar{x}_{1}, \bar{y}_{1}\right) \frac{f^{\prime}\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{y}_{1}\right)}\right\}$
where max is taken over all pairs $\bar{x}_{1} \in f^{-1} x \backslash I_{0}$ and $\bar{y}_{1} \in f^{-1} y \cap B\left(\bar{x}_{1}, \bar{\rho}\right)$. Since $\bar{x}_{1}, \bar{y}_{1} \notin I_{0}, \Delta\left(\bar{x}_{1}, \bar{y}_{1}\right) \frac{f^{\prime}\left(\bar{y}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)} \leq\left(1+J d\left(\bar{x}_{1}, \bar{y}_{1}\right)\right) \frac{f^{\prime}\left(\bar{y}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)} \leq 1+J d(x, y)$.

3. The Density Function

In this section we prove Theorem A, and then prove a result (Lemma 3.5) which implies that decreasing rate of h is arbitrarily large as x goes to 0 .
Proof of Theorem A.
Define Perron-Frobenius Operator $\mathcal{L}=\mathcal{L}_{-\log f^{\prime}}$ from the set of continuous functions on $(0,1]$ to itself by

$$
\mathcal{L} g(x)=\sum_{\hat{x}_{1} \in f^{-1} x} \frac{g\left(\hat{x}_{1}\right)}{f^{\prime}\left(\hat{x}_{1}\right)} .
$$

Let v denote the Lebesgue measure on I. Clearly, $v(\mathcal{L} g)=v(g)$ for any integrable function g on $(0,1]$.

Also it is well known that for any fixed point h of \mathcal{L}, a measure μ given by $\mu(g)=v(g \cdot h)$ is an invariant measure of f. In fact, we can check directly that $\mathcal{L}(h \cdot(g \circ f))=g \cdot(\mathcal{L} h)$, then we have $\mu(g \circ f)=v(h \cdot(g \circ f))=v(\mathcal{L}(h \cdot(g \circ f)))=$ $v((\mathcal{L} h) \cdot g)=v(h \cdot g)=\mu(g)$. (See e.g. [B] for more details.)

Let \mathcal{B} denote the set of continuous functions g on $(0,1]$ with the norm

$$
\begin{equation*}
\|g\|=\sup _{x \in(0,1]}\{x g(x)\} . \tag{3.1}
\end{equation*}
$$

It is easy to check that \mathcal{B} is a Banach space and \mathcal{L} is a Linear operator on \mathcal{B}. Lemma 3.1 below implies that the operator \mathcal{L} is continuous.

Put

$$
\begin{aligned}
\mathcal{G}=\{g \in \mathcal{B}: & g>0, v(g)=1, g(y) \leq g(x) \Delta(x, y) \forall x \in I, y \in B(x, \rho(x)), \\
& \left.x^{\gamma} g(x) \leq H_{0} \forall x \in P_{0}\right\} .
\end{aligned}
$$

where H_{0} is a constant to be determined later.
\mathcal{G} is not empty since $(1-\gamma) x^{-\gamma} \in \mathcal{G}$. It is clear that \mathcal{G} is a convex set. By Lemma 3.2 and $3.3, \mathcal{G}$ is compact and $\mathcal{L G} \subset \mathcal{G}$ if H_{0} is large enough. So by Schauder-Tychonoff fixed point theorem (see e.g. [DS]), \mathcal{L} has a fixed point $h \in \mathcal{G}$, and therefore, i) and ii) follows from the definition of \mathcal{G}. Part iii) can be obtained from Lemma 3.4 and the fact $\phi(x)=(1+\gamma) x^{\gamma}+o\left(x^{\gamma}\right)$.

Lemma 3.1. \mathcal{L} is a bounded linear operator.
Proof. Since \mathcal{L} is a positive operator and x^{-1} is the maximal element in the unit ball with respect to the norm in (3.1), we only need to prove that $x \mathcal{L}\left(x^{-1}\right)$ is bounded.

Note $f^{\prime}(x) \geq 1$. We have

$$
\mathcal{L}\left(\frac{1}{x}\right)<\sum_{\hat{x}_{1} \in f^{-1} x} \frac{1}{\hat{x}_{1}} \leq \frac{1}{x_{1}}+\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{1}{\bar{x}_{1}} \leq \frac{1}{x} \max _{z \in[0,1]}\left\{f^{\prime}(z)\right\}+\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{1}{\bar{x}_{1}},
$$

where the last inequality follows from the fact $x=f\left(x_{1}\right) \leq x_{1} \max _{z \in[0,1]}\left\{f^{\prime}(z)\right\}$. Since the second term is bounded, $\|\mathcal{L}\|=\sup _{x \in(0,1]}\left\{x \mathcal{L}\left(x^{-1}\right)\right\}$ is finite.

Lemma 3.2. \quad The set \mathcal{G} is compact.
Proof. First, \mathcal{G} is a bounded set. In fact, for any $g \in \mathcal{G}$, if $x \notin P_{0}$, then

$$
1 \geq \int_{B(x, \rho(x))} g(y) d y \geq g(x) \frac{1}{1+J \rho(x)} \cdot 2 \rho(x)
$$

That is,

$$
x g(x) \leq \frac{x}{2 \rho(x)}(1+J \rho(x)) \leq \sup _{x \notin P_{0}}\left\{\frac{x(1+J \rho(x))}{2 \rho(x)}\right\} .
$$

If $x \in P_{0}$, then $x g(x) \leq H_{0} x^{1-\gamma} \leq H_{0}$.
Using the facts that $g(y) \leq \Delta(x, y) g(x) \forall y \in B(x, \rho(x))$ and $x g(x) \leq H_{0} x^{1-\gamma}$ $\forall x \in P_{0}$, we know that \mathcal{G} is also an equicontinuous set.

Lemma 3.3. If H_{0} is large enough, then $\mathcal{L G} \subset \mathcal{G}$.
Proof. Take $g \in \mathcal{G}$. We prove $\mathcal{L} g \in \mathcal{G}$.
It is clear that $\mathcal{L} g>0$ and $v(\mathcal{L} g)=v(g)=1$.
If $x, y \in I$ with $d(x, y) \leq \rho(x)$, then Proposition 2.3.i) and the same arguments as in the proof of Corollary 2.4 give

$$
\frac{\mathcal{L} g(y)}{\mathcal{L} g(x)}=\frac{\sum_{\hat{y}_{1} \in f^{-1} y} g\left(\hat{y}_{1}\right) / f^{\prime}\left(\hat{y}_{1}\right)}{\sum_{\hat{x}_{1} \in f^{-1} x} g\left(\hat{x}_{1}\right) / f^{\prime}\left(\hat{x}_{1}\right)} \leq \max \left\{\Delta\left(\hat{x}_{1}, \hat{y}_{1}\right) \frac{f^{\prime}\left(\hat{y}_{1}\right)}{f^{\prime}\left(\hat{x}_{1}\right)}\right\} \leq \Delta(x, y)
$$

where max is taken over all pairs $\hat{x}_{1} \in f^{-1} x$ and $\hat{y}_{1} \in f^{-1} y \cap B\left(\hat{x}_{1}, \rho\left(\hat{x}_{1}\right)\right)$.
Suppose $x \in P_{0}$. Using Lemma 2.1 with $\theta=\gamma$ and using the fact $x^{\gamma} g(x) \leq H_{0}$ $\forall x \in P_{0}$, we get

$$
\begin{aligned}
x^{\gamma} \mathcal{L} g(x) & =x_{1}^{\gamma} g\left(x_{1}\right) \frac{x^{\gamma}}{x_{1}^{\gamma}} \frac{1}{f^{\prime}\left(x_{1}\right)}+x^{\gamma} \sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{g\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)} \\
& \leq H_{0}\left[1-x^{\gamma}+o\left(x^{\gamma}\right)+\frac{x^{\gamma}}{H_{0}} \sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{g\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)}\right] .
\end{aligned}
$$

Since all element g in \mathcal{G} are uniformly bounded on $I \backslash I_{0}$, the summation in the second term are bounded. So if we take H_{0} large enough, then the right side of the inequality is less than H_{0}.

Lemma 3.4. There exists $R>0$ such that

$$
\left|h(x) \phi(x)-(1+\gamma) \sigma_{0}\right| \leq R \max \left\{x^{\gamma}, \delta_{1}(x)\right\}
$$

where $\phi(x)=f^{\prime}(x)-1=(1+\gamma) x^{\gamma}+x^{\gamma} \delta_{1}(x)$.
Proof. Denote $\alpha(x)=\max \left\{x^{\gamma},\left|\delta_{1}(x)\right|\right\}$ for $x \in P_{0}$. We may assume that $\alpha(x)$ is nondecreasing on P_{0}, otherwise we use $\max _{0 \leq y \leq x}\{\alpha(y)\}$ instead.

First we claim that there exist $R>0$ such that if

$$
h(x) \phi(x) \geq\left(1+\gamma+c+R \alpha\left(x_{1}\right)\right) \sigma_{0}
$$

for some $c \geq 0$ and $x \in P_{0}$, then

$$
h\left(x_{1}\right) \phi\left(x_{1}\right) \geq\left(1+\gamma+c\left(1+\frac{1}{2} x_{1}^{\gamma}\right)+R \alpha\left(x_{2}\right)\right) \sigma_{0} .
$$

In fact, since $\mathcal{L} h=h$, we have that for $x \in P_{0}$,

$$
\begin{equation*}
h\left(x_{1}\right)=\left(1+\phi\left(x_{1}\right)\right)\left(h(x)-\sigma_{h}\left(x_{1}\right)\right) \geq\left(1+\phi\left(x_{1}\right)\right)\left(h(x)-\sigma_{0}-J \sigma_{0} x_{1}\right), \tag{3.2}
\end{equation*}
$$

where $\sigma_{h}\left(x_{1}\right) \leq \sigma_{0}\left(1+J x_{1}\right)$ follows from Corollary 2.4. Also, it is easy to check by (1.1) and the definition of $\delta_{1}(x)$ that

$$
\left(1+\phi\left(x_{1}\right)\right) \cdot \frac{\phi\left(x_{1}\right)}{\phi(x)}=1+x_{1}^{\gamma}+x_{1}^{\gamma} \delta_{1}^{*}\left(x_{1}\right) .
$$

for some $\delta_{1}^{*}(x)$ which is bounded by $\delta_{1}(x)$ multiplied by a constant coefficient. So by (3.2) we get

$$
\begin{aligned}
& \frac{\phi\left(x_{1}\right) h\left(x_{1}\right)}{\sigma_{0}} \geq \frac{\phi(x) h(x)}{\sigma_{0}} \cdot\left(1+\phi\left(x_{1}\right)\right) \frac{\phi\left(x_{1}\right)}{\phi(x)}-\left(1+J x_{1}\right) \phi\left(x_{1}\right)(1+\phi(x)) \\
& \geq\left(1+\gamma+c+R \alpha\left(x_{1}\right)\right)\left(1+x_{1}^{\gamma}+x_{1}^{\gamma} \delta_{1}^{*}\left(x_{1}\right)\right) \\
& \quad-\left((1+\gamma) x_{1}^{\gamma}+x_{1}^{\gamma} \delta_{1}\left(x_{1}\right)\right)\left(1+\phi\left(x_{1}\right)\right)-J x_{1} \phi\left(x_{1}\right)\left(1+\phi\left(x_{1}\right)\right) \\
&=\left(1+\gamma+c+R \alpha\left(x_{1}\right)\right)+\left(c+R \alpha\left(x_{1}\right)\right)\left(x_{1}^{\gamma}+x_{1}^{\gamma} \delta_{1}^{*}\left(x_{1}\right)\right)+(1+\gamma) x_{1}^{\gamma} \delta_{1}^{*}\left(x_{1}\right) \\
& \quad-(1+\gamma) x_{1}^{\gamma} \phi\left(x_{1}\right)-x_{1}^{\gamma} \delta_{1}\left(x_{1}\right)\left(1+\phi\left(x_{1}\right)\right)-J x_{1} \phi\left(x_{1}\right)\left(1+\phi\left(x_{1}\right)\right) .
\end{aligned}
$$

If P_{0} is small enough, then $\left|\delta_{1}^{*}\left(x_{1}\right)\right| \leq \frac{1}{2}$ and therefore $c x_{1}^{\gamma}\left(1+\delta_{1}^{*}\left(x_{1}\right)\right) \geq \frac{1}{2} c x_{1}^{\gamma}$. Note that $\alpha(x)$ is greater than or equal to $\delta_{1}(x)$ and x^{γ}. So
$\frac{1}{2} R \alpha\left(x_{1}\right)+(1+\gamma) \delta_{1}^{*}\left(x_{1}\right)-(1+\gamma) \phi\left(x_{1}\right)-\left(\delta_{1}\left(x_{1}\right)+J x_{1}^{1-\gamma} \phi\left(x_{1}\right)\right)\left(1+\phi\left(x_{1}\right)\right)>0$.
if R is sufficiently large. Hence we have

$$
\frac{\phi\left(x_{1}\right) h\left(x_{1}\right)}{\sigma_{0}} \geq\left(1+\gamma+c+R \alpha\left(x_{1}\right)\right)+\frac{1}{2} c x_{1}^{\gamma} \geq\left(1+\gamma+c+R \alpha\left(x_{2}\right)\right)+\frac{1}{2} c x_{1}^{\gamma} .
$$

It means that the claim is true.
Using this claim we can see that

$$
\phi(x) h(x) \leq(1+\gamma) \sigma_{0}+2 R \sigma_{0} \alpha\left(x_{1}\right) \quad \forall x \in P_{0}
$$

Otherwise we may have

$$
\phi(x) h(x) \geq(1+\gamma) \sigma_{0}+2 R \sigma_{0} \alpha\left(x_{1}\right)=(1+\gamma) \sigma_{0}+c \sigma_{0}+R \sigma_{0} \alpha\left(x_{1}\right)
$$

for some $x \in P_{0}$, where $c=R \alpha\left(x_{1}\right)>0$. Then by using the claim repeatedly, and using the fact $c \cdot\left(1+\frac{1}{2} \sum_{i=1}^{n-1} x_{i}^{\gamma}\right)\left(1+\frac{1}{2} x_{n}^{\gamma}\right) \geq c \cdot\left(1+\frac{1}{2} \sum_{i=1}^{n} x_{i}^{\gamma}\right)$ we get that

$$
\phi\left(x_{n}\right) h\left(x_{n}\right) \geq(1+\gamma) \sigma_{0}+R \sigma_{0} \alpha\left(x_{n+1}\right)+c \sigma_{0} \cdot\left(1+\frac{1}{2} \sum_{i=1}^{n} x_{i}^{\gamma}\right)
$$

By Lemma 2.2, $x_{i}^{\gamma} \geq \frac{\beta_{-}}{r+i} \forall i \geq 0$ for some $r>0$ and therefore $\sum_{i=1}^{\infty} x_{i}^{\gamma}$ diverges. This contradicts to the fact that $x^{\gamma} h(x)$ is bounded for all $x \in P_{0}$.

By using $\phi(x) h(x)>0$, the inequality of the other direction can be proved similarly.

Lemma 3.5. For any $\gamma^{\prime}>0$, we can choose P_{0} small enough such that

$$
h(y) \geq h(x) \cdot\left(1+\frac{J_{0}^{\prime}}{x^{1-\gamma^{\prime}}} d(x, y)\right) \quad \forall x \in P_{0}, x-\rho(x) \leq y \leq x
$$

for some $J_{0}^{\prime}>0$.
Proof. Denote $\tau=\inf _{x \in(0,1]}\left\{\frac{1-\gamma}{x^{\gamma} h(x)}\right\}$. By Lemma 2.1, there exists $c>0$ such that $\frac{x^{\gamma}}{x_{1}^{\gamma}} \cdot \frac{1}{f^{\prime}(x)}=1-x^{\gamma}+o\left(x^{\gamma}\right)>1-c x^{\gamma}$ for all $x \in P_{0}$. We take $H_{0}^{\prime} \leq \min _{x \in P_{0}}\left\{\frac{\tau \sigma_{h}(x)}{c}\right\}$ and then define

$$
\begin{aligned}
\mathcal{G}_{1}=\{g \in \mathcal{G}: g(x) & \geq \tau h(x) \forall x \in(0,1], \quad x^{\gamma} g(x) \geq H_{0}^{\prime} \forall x \in P_{0} \\
g(y) & \left.\geq g(x)\left(1+\frac{J_{0}^{\prime}}{x^{1-\gamma^{\prime}}} d(x, y)\right) \forall x \in P_{0}, \quad x-\rho(x) \leq y \leq x\right\} .
\end{aligned}
$$

\mathcal{G}_{1} is not empty because $\left(1-\gamma^{\prime}\right) x^{-\gamma^{\prime}} \in \mathcal{G}_{1}$. Clearly, \mathcal{G}_{1} is compact since it is closed in \mathcal{G}. We will prove $\mathcal{L \mathcal { G } _ { 1 } \subset \mathcal { G } _ { 1 }}$. Then we can take h as a fixed point of \mathcal{L} in \mathcal{G}_{1}, and therefore h has the required property.

Let $g \in \mathcal{G}_{1}$. First, we have

$$
\mathcal{L} g(x) \geq \mathcal{L} \tau h(x)=\tau \mathcal{L} h(x)=\tau h(x)
$$

Secondly, since $\sigma_{g}(x) \geq \tau \sigma_{h}(x)$ and $H_{0}^{\prime} \leq c^{-1} \tau \sigma_{h}(x) \forall x \in P_{0}$, we get
$x^{\gamma} \mathcal{L} g(x)=x_{1}^{\gamma} g\left(x_{1}\right) \frac{x^{\gamma}}{x_{1}^{\gamma}} \frac{1}{f^{\prime}\left(x_{1}\right)}+x^{\gamma} \sigma_{g}\left(x_{1}\right) \geq H_{0}^{\prime}\left(1-c x^{\gamma}+\frac{x^{\gamma}}{H_{0}^{\prime}} \tau \sigma_{h}\left(x_{1}\right)\right) \geq H_{0}^{\prime}$.
Now it remains to check $\mathcal{L} g(y) \geq \mathcal{L} g(x)\left(1+\frac{J_{0}^{\prime}}{x^{1-\gamma^{\prime}}} d(x, y)\right)$. That is,

$$
\begin{equation*}
\frac{g\left(y_{1}\right)}{f^{\prime}\left(y_{1}\right)}+\sigma_{g}\left(y_{1}\right) \geq\left(\frac{g\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}+\sigma_{g}\left(x_{1}\right)\right)\left(1+\frac{J_{0}^{\prime}}{x^{1-\gamma^{\prime}}} d(x, y)\right) \tag{3.3}
\end{equation*}
$$

By (1.3), if $x \in P_{0}$, then $\frac{f^{\prime}(x)}{f^{\prime}(y)} \geq 1+f^{\prime}(x)-f^{\prime}(y) \geq 1+\frac{c^{\prime}}{x^{1-\gamma}} d(x, y)$ for some $c^{\prime}>0$. Also, using Lemma 2.1 for $\theta=1-\gamma^{\prime}$ we have

$$
\begin{aligned}
\frac{g\left(y_{1}\right)}{f^{\prime}\left(y_{1}\right)} & \geq \frac{g\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\left(1+\frac{J_{0}^{\prime}}{x_{1}^{1-\gamma^{\prime}}} d\left(x_{1}, y_{1}\right)\right)\left(1+\frac{c^{\prime}}{x^{1-\gamma}} d(x, y)\right) \\
& \geq \frac{g\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\left(1+J_{0}^{\prime}\left(1-\left(\gamma+\gamma^{\prime}\right) x^{\gamma}+o\left(x^{\gamma}\right)\right) \frac{d(x, y)}{x^{1-\gamma^{\prime}}}+c^{\prime} \frac{d(x, y)}{x^{1-\gamma}}\right) \\
& \geq \frac{g\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}\left(1+J_{0}^{\prime} \frac{d(x, y)}{x^{1-\gamma^{\prime}}}+\frac{c^{\prime}}{2} \frac{d(x, y)}{x^{1-\gamma}}\right),
\end{aligned}
$$

if P_{0} is small enough. Therefore, using Corollary 3.4 and interchanging the roles of x and y, we can see that (3.3) holds if we show

$$
\frac{g\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \frac{c^{\prime}}{2} \frac{d(x, y)}{x^{1-\gamma}} \geq J \sigma_{g}\left(y_{1}\right) d(x, y)+\sigma_{g}\left(x_{1}\right) \frac{J_{0}^{\prime}}{x^{1-\gamma^{\prime}}} d(x, y)
$$

or

$$
x^{\gamma-\gamma^{\prime}} \frac{c^{\prime} g\left(x_{1}\right)}{2 f^{\prime}\left(x_{1}\right)} \geq J x^{1-\gamma^{\prime}} \sigma_{g}\left(y_{1}\right)+J_{0}^{\prime} \sigma_{g}\left(x_{1}\right)
$$

However, this is true if P_{0} is small, because $x^{\gamma-\gamma^{\prime}} g(x) \geq x^{\gamma-\gamma^{\prime}} x^{-\gamma} H_{0}^{\prime}=x^{-\gamma^{\prime}} H_{0}^{\prime} \rightarrow$ ∞, while all other quantities are bounded as $x \rightarrow 0$.

4. The Operator $\tilde{\mathcal{L}}$

Take $\eta(x)=\frac{h(x)}{f^{\prime}(x) h(f x)}$ if $x>0$ and $\eta(0)=1$. By Lemma 4.4 below, $\eta(x)$ is continuous on each I_{q}.

Define a new Perron-Frobenius Operator $\tilde{\mathcal{L}}=\mathcal{L}_{\log \eta}$ from the set of continuous functions on $[0,1]$ to itself by

$$
\tilde{\mathcal{L}} g(x)=\sum_{\hat{x}_{1} \in f^{-1} x} \eta\left(\hat{x}_{1}\right) g\left(\hat{x}_{1}\right)
$$

or equivalently,

$$
\tilde{\mathcal{L}} g(x)=\frac{1}{h} \mathcal{L}(h g)=\frac{1}{h(x)} \sum_{\hat{x}_{1} \in f^{-1} x} \frac{h\left(\hat{x}_{1}\right)}{f^{\prime}\left(\hat{x}_{1}\right)} g\left(\hat{x}_{1}\right) .
$$

Recall that the measure μ, defined by $\mu(g)=v(h g)$, is an f invariant measure, where v is the Lebesgue measure on I.

Lemma 4.1. The operator $\tilde{\mathcal{L}}$ has the following properties.
i) $\tilde{\mathcal{L}} c=c$ for any constant function c.
ii) $\mu(\tilde{\mathcal{L}} g)=\mu(g)$ for any integrable function g.

Proof. i) Using $\mathcal{L} h=h$, we get $\tilde{\mathcal{L}} c=\frac{1}{h} \mathcal{L}(c h)=\frac{c}{h} \mathcal{L} h=\frac{c}{h} h=c$.
ii) Since $v(\mathcal{L} g)=v(g), \mu(\tilde{\mathcal{L}} g)=v\left(h \cdot \frac{1}{h} \mathcal{L}(h g)\right)=v(\mathcal{L}(h g))=v(h g)=\mu(g)$.

Lemma 4.2. $\lim _{w \rightarrow 0} \frac{\mu[0, w]}{w^{1-\gamma}}=\frac{\sigma_{0}}{1-\gamma}$. Consequently, there exists $a>\frac{\sigma_{0}}{1-\gamma}>a^{\prime}>0$ such that

$$
a^{\prime} w^{1-\gamma} \leq \mu[0, w] \leq a w^{1-\gamma}
$$

Proof. Use the fact that $\mu[0, w]=\int_{0}^{w} h(x) d x$ and then use Theorem A.iii).
Lemma 4.3. Let $w \in I_{0}$. Then

$$
\int_{0}^{w} \prod_{i=1}^{n} \eta\left(x_{i}\right) d \mu(x)=\mu\left[0, w_{n}\right] .
$$

Proof. Note that $f^{n}:\left[0, w_{n}\right] \rightarrow[0, w]$ is a one to one map. We have $\tilde{\mathcal{L}}^{n} \chi_{\left[0, w_{n}\right]}(x)=$ $\prod_{i=1}^{n} \eta\left(x_{i}\right)$ as $x \in[0, w]$ and $\tilde{\mathcal{L}}^{n} \chi_{\left[0, w_{n}\right]}(x)=0$ as $x \in[w, 1]$. So by Lemma 4.1.ii),

$$
\int_{0}^{w} \prod_{i=1}^{n} \eta\left(x_{i}\right) d \mu(x)=\mu\left(\tilde{\mathcal{L}}^{n} \chi_{\left[0, w_{n}\right]}\right)=\mu\left[0, w_{n}\right]
$$

Take $\psi(x)$ such that $\eta(x)=1-\psi(x)$. Recall the definition (1.4) of σ_{g}.
Lemma 4.4. η and ψ have the following properties:
i) $\psi(x)=\frac{1}{h(f x)} \sigma_{h}(x)$ if $x \in I_{0}$;
ii) $\lim _{x \rightarrow 0} \frac{\psi(x)}{x^{\gamma}}=1$;
iii) $\lim _{x \rightarrow 0} \eta(x)=1$, and therefore η is continuous on each I_{q};
iv) $0 \leq \eta(x) \leq 1$, and $\eta(x)=1$ if and only if $x=0$;
v) $\psi(x)$ is strictly increasing and $\eta(x)$ is strictly decreasing on P_{0};
vi) $\forall x \in P_{0}$ and $\bar{x} \in I \backslash P_{0}, \eta(x)>\eta(\bar{x})$, if P_{0} is small enough.

Proof. Since $\mathcal{L} h=h, h(f x)=\frac{h(x)}{f^{\prime}(x)}+\sigma_{h}(x)$ for $x \in P_{0}$. So $\eta(x)=\frac{h(x)}{f^{\prime}(x) h(f x)}=$ $1-\frac{1}{h(f x)} \sigma_{h}(x)$. This implies i).

Part ii) follows from Part i) and Theorem A.iii).
By Part ii), $\eta=1-x^{\gamma}+o\left(x^{\gamma}\right)$. So η is continuous at 0 . By the definition, it is continuous at all other points.

By Lemma 4.1.i), $\sum_{\hat{x}_{1} \in f^{-1} x} \eta\left(\hat{x}_{1}\right)=1$, so $0 \leq \eta\left(\hat{x}_{1}\right) \leq 1$. Then Part iv) is clear.
To get Part v), we use Part i) and then compare Lemma 3.5 and Corollary 2.4, from which we see that $h(x)$ changes in a faster rate than $\sigma_{h}(x)$.

Part vi) simply follows from Part iv) and v).
By part i) of the lemma, for $x \in I_{0}$ we can write $\tilde{\mathcal{L}} g(x)$ as

$$
\begin{equation*}
\tilde{\mathcal{L}} g(x)=\eta\left(x_{1}\right) g\left(x_{1}\right)+\psi\left(x_{1}\right) \bar{g}\left(x_{1}\right)=\left(1-\psi\left(x_{1}\right)\right) g\left(x_{1}\right)+\psi\left(x_{1}\right) \bar{g}\left(x_{1}\right) \tag{4.1}
\end{equation*}
$$

where $\bar{g}\left(x_{1}\right)$ is the average of $\left\{g\left(\bar{x}_{1}\right)\right\}$ with weight $\left\{\eta\left(\bar{x}_{1}\right)\right\}, \bar{x}_{1} \in f^{-1} x \backslash I_{0}$, i.e.

$$
\begin{equation*}
\bar{g}\left(x_{1}\right)=\frac{\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \eta\left(\bar{x}_{1}\right) g\left(\bar{x}_{1}\right)}{\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \eta\left(\bar{x}_{1}\right)}=\frac{\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{h\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)} g\left(\bar{x}_{1}\right)}{\sum_{\bar{x}_{1} \in f^{-1} x \backslash I_{0}} \frac{h\left(\bar{x}_{1}\right)}{f^{\prime}\left(\bar{x}_{1}\right)}} . \tag{4.2}
\end{equation*}
$$

The second part of the lemma says that if higher order terms are ignored, then $\psi\left(x_{1}\right) \approx x_{1}^{\gamma}$ and therefore $\tilde{\mathcal{L}}$ has the form

$$
\begin{equation*}
\tilde{\mathcal{L}} g(x) \approx\left(1-x_{1}^{\gamma}\right) g\left(x_{1}\right)+x_{1}^{\gamma} \bar{g}\left(x_{1}\right) \tag{4.3}
\end{equation*}
$$

Lemma 4.5. Let $g_{n}(x)=\tilde{\mathcal{L}}^{n} g(x)$. Then for any $x \in P_{0}$,

$$
g_{n}(x)=g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)+g_{n}^{*}(x)
$$

where

$$
g_{n}^{*}(x)=\sum_{j=1}^{n} \bar{g}_{n-j}\left(x_{j}\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) .
$$

Proof. Use induction. By (4.1) the result is true for $n=1$. Suppose it is true for some n. Then

$$
\tilde{\mathcal{L}} g_{n}(x)=\eta\left(x_{1}\right) g\left(x_{n+1}\right) \prod_{i=2}^{n+1} \eta\left(x_{i}\right)+\eta\left(x_{1}\right) g_{n}^{*}\left(x_{1}\right)+\psi\left(x_{1}\right) \bar{g}_{n}\left(x_{1}\right)
$$

Since

$$
\begin{aligned}
& \eta\left(x_{1}\right) g_{n}^{*}\left(x_{1}\right)=\eta\left(x_{1}\right) \sum_{j=1}^{n} \bar{g}_{n-j}\left(x_{j+1}\right) \psi\left(x_{j+1}\right) \prod_{i=2}^{j} \eta\left(x_{i}\right) \\
= & \eta\left(x_{1}\right) \sum_{j=2}^{n+1} \bar{g}_{n+1-j}\left(x_{j}\right) \psi\left(x_{j}\right) \prod_{i=2}^{j-1} \eta\left(x_{i}\right)=\sum_{j=2}^{n+1} \bar{g}_{n+1-j}\left(x_{j}\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right),
\end{aligned}
$$

we get

$$
\eta\left(x_{1}\right) g_{n}^{*}\left(x_{1}\right)+\psi\left(x_{1}\right) \bar{g}_{n}\left(x_{1}\right)=\sum_{j=1}^{n+1} \bar{g}_{n+1-j}\left(x_{j}\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right)
$$

which is equal to $g_{n+1}^{*}(x)$. This completes the proof.
Lemma 4.6. Let $x, y \in P_{0}$ with $x>y$. If $\bar{g}_{i}(x) \geq 0 \quad \forall 0 \leq i \leq n-1$, then

$$
\begin{aligned}
\tilde{\mathcal{L}}^{n} g(x)-\tilde{\mathcal{L}}^{n} g(y) & \geq g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)-g\left(y_{n}\right) \prod_{i=1}^{n} \eta\left(y_{i}\right) \\
& +\sum_{j=1}^{n}\left(\bar{g}_{n-j}\left(x_{j}\right)-\bar{g}_{n-j}\left(y_{j}\right)\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) .
\end{aligned}
$$

Proof. By Lemma 4.5, we only need prove

$$
g_{n}^{*}(x)-g_{n}^{*}(y) \geq \sum_{j=1}^{n}\left(\bar{g}_{n-j}\left(x_{j}\right)-\bar{g}_{n-j}\left(y_{j}\right)\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right)
$$

Note that

$$
\begin{aligned}
g_{n}^{*}(x)-g_{n}^{*}(y) & =\sum_{j=1}^{n}\left(\bar{g}_{n-j}\left(x_{j}\right)-\bar{g}_{n-j}\left(y_{j}\right)\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) \\
& +\sum_{j=1}^{n} \bar{g}_{n-j}\left(y_{j}\right)\left(\psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right)-\psi\left(y_{j}\right) \prod_{i=1}^{j-1} \eta\left(y_{i}\right)\right)
\end{aligned}
$$

We only need prove that

$$
\psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right)=\frac{\sigma_{h}\left(x_{j}\right)}{h\left(x_{j-1}\right)} \cdot \frac{h\left(x_{j-1}\right)}{\left(f^{j-1}\right)^{\prime}\left(x_{j-1}\right) h(x)}=\frac{\sigma_{h}\left(x_{j}\right)}{\left(f^{j-1}\right)^{\prime}\left(x_{j-1}\right) h(x)}
$$

is increasing, where the first inequality follows from Lemma 4.4.i) and the definition of $\eta(x)$. By Proposition 2.3 and Corollary 2.4, both $\left(f^{j-1}\right)^{\prime}\left(y_{j-1}\right) /\left(f^{j-1}\right)^{\prime}\left(x_{j-1}\right)$ and $\sigma_{h}\left(x_{j}\right) / \sigma_{h}\left(x_{j}\right)$ are bounded by $1+J d(x, y)$. Hence by Lemma 3.5, we see that $h(x)$ decreasing faster than $\sigma_{h}\left(x_{j}\right)$ and $\left(f^{j-1}\right)^{\prime}\left(x_{j-1}\right)$ if P_{0} is small enough.

Proposition 4.7. Given $\beta_{-}<\beta<\beta_{+}$, we can choose P_{0} sufficiently small such that for any $x \in P_{0}$,
i) if $x=x_{0} \leq\left(\frac{\beta}{r}\right)^{\beta}$ for some $r>0$, then $\prod_{i=1}^{n} \eta\left(x_{i}\right) \geq\left(\frac{r}{r+n}\right)^{\beta_{+}}$;
ii) if $x=x_{0} \geq\left(\frac{\beta}{r}\right)^{\beta}$ for some $r>0$, then $\prod_{i=1}^{n} \eta\left(x_{i}\right) \leq\left(\frac{r}{r+n}\right)^{\beta_{-}}$.

Proof. Take $\beta_{+}>\beta_{+}^{\prime}>\beta_{+}^{\prime \prime}>\beta$. Let P_{0} be small enough such that for any $x=\left(\frac{\beta_{+}^{\prime}}{r}\right)^{\beta} \in P_{0}, 1-\psi(x) \geq 1-\frac{\beta_{+}^{\prime}}{\beta_{+}^{\prime \prime}} x^{\gamma}$ and $1-\left(\frac{\beta_{+}^{\prime}}{r}\right) \geq\left(1-\frac{1}{r}\right)^{\beta_{+}}$. Hence, using Lemma 2.2 for $\beta_{+}^{\prime \prime}$, we have

$$
1-\psi\left(x_{i}\right) \geq 1-\frac{\beta_{+}^{\prime}}{\beta_{+}^{\prime \prime}} x_{i}^{\gamma} \geq 1-\frac{\beta_{+}^{\prime}}{r+i} \geq\left(1-\frac{1}{r+i}\right)^{\beta_{+}}=\left(\frac{r+i-1}{r+i}\right)^{\beta_{+}}
$$

Taking product we get the result of Part i).
Part ii) can be proved in a similar way.
We denote

$$
\tilde{\Delta}(x, y)= \begin{cases}1+\frac{\tilde{J}_{0}}{x} d(x, y), & \forall x \in P_{0}, y \in B(x, \rho(x)) \\ 1+\tilde{J} d(x, y), & \forall x \in I \backslash P_{0}, y \in B(x, \rho(x))\end{cases}
$$

where $\tilde{J}, \tilde{J}_{0}>0$ are constants to be determined by the following lemma.
Lemma 4.8. There exist constants $\tilde{J}, \tilde{J}_{0}>0$ such that $\forall x \in I, y \in B(x, \rho(x))$,
i) if $x_{1} \in f^{-1} x, y_{1} \in f^{-1} y \cap B\left(x_{1}, \rho\left(x_{1}\right)\right)$, then

$$
\tilde{\Delta}\left(x_{1}, y_{1}\right) \cdot \frac{\eta\left(y_{1}\right)}{\eta\left(x_{1}\right)} \leq \tilde{\Delta}(x, y)
$$

ii) if $x_{n} \in f^{-n} x, y_{n} \in f^{-n} y \cap B_{n}\left(x_{n}, \rho\right)$, then

$$
\prod_{i=1}^{n} \frac{\eta\left(f^{i} y_{n}\right)}{\eta\left(f^{i} x_{n}\right)} \leq \tilde{\Delta}(x, y) \quad \forall n>0
$$

iii) if a function g satisfies $g\left(\hat{y}_{1}\right) \leq g\left(\hat{x}_{1}\right) \tilde{\Delta}\left(\hat{x}_{1}, \hat{y}_{1}\right) \forall \hat{x}_{1} \in f^{-1} x, \hat{y}_{1} \in f^{-1} y \cap$ $B\left(\hat{x}_{1}, \rho\left(\hat{x}_{1}\right)\right)$, then $\tilde{\mathcal{L}} g(y) \leq \tilde{\mathcal{L}} g(x) \cdot \tilde{\Delta}(x, y)$.

Proof. Notice that $\frac{\eta(y)}{\eta(x)}=\frac{h(y)}{h(x)} \cdot \frac{f^{\prime}(x)}{f^{\prime}(y)} \cdot \frac{h(f x)}{h(f y)}$. So if we take $\tilde{J}, \tilde{J}_{0}>0$ such that

$$
\tilde{\Delta}(x, y) \geq \Delta(x, y)^{2} \Delta(f x, f y)
$$

then the rest is the same as in the proof of Proposition 2.3 and Lemma 3.3.
Remark. Recall the remark after Proposition 2.3. We also have that if $f^{n-1} x_{n} \in$ $I \backslash I_{0}$, then

$$
\prod_{i=1}^{n} \frac{\eta\left(f^{i} y_{n}\right)}{\eta\left(f^{i} x_{n}\right)} \leq 1+\tilde{J} d(x, y)
$$

for some $\tilde{J}>0$ even if $x \in P_{0}$.
Recall the definition of $\bar{g}(x)$ in (4.2).

DECAY OF CORRELATIONS FOR MAPS WITH INDIFFERENT FIXED POINTS 15
Lemma 4.9. There exists a constant $\bar{J}>0$ such that for all $x, y \in I_{0}$, with $d(x, y) \leq \bar{\rho}$, if $g(\bar{y}) \leq g(\bar{x}) \Delta(\bar{x}, \bar{y}) \forall \bar{x} \in f^{-1}(f x) \backslash I_{0}, \bar{y} \in f^{-1}(f y) \cap B(\bar{x}, \rho(\bar{x}))$, then

$$
\bar{g}(y) \leq \bar{g}(x)(1+\bar{J} d(x, y)) .
$$

Proof. Clearly, $\eta(\bar{y}) g(\bar{y}) \leq \eta(\bar{x}) g(\bar{x}) \tilde{\Delta}(\bar{x}, \bar{y})^{2}$. Hence, by (4.2),

$$
\bar{g}(y)=\frac{\sum_{\bar{y} \in f^{-1}(f y) \backslash I_{0}} \eta(\bar{y}) g(\bar{y})}{\sum_{\bar{y} \in f^{-1}(f y) \backslash I_{0}} \eta(\bar{y})} \leq \frac{\sum_{\bar{x} \in f^{-1}(f x) \backslash I_{0}} \eta(\bar{x}) g(\bar{x}) \tilde{\Delta}(x, y)^{2}}{\sum_{\bar{x} \in f^{-1}(f x) \backslash I_{0}} \eta(\bar{x}) \tilde{\Delta}(\bar{x}, \bar{y})^{-1}}=\bar{g}(x) \max \left\{\tilde{\Delta}(\bar{x}, \bar{y})^{3}\right\},
$$

where max is taken over all pairs $\bar{x} \in f^{-1}(f x) \backslash I_{0}$ and $\bar{y} \in f^{-1}(f y) \cap B(\bar{x}, \rho(\bar{x}))$. So the result follows by choosing $\bar{J}>0$ such that $1+\bar{J} d(x, y) \geq(1+\tilde{J} d(\bar{x}, \bar{y}))^{3}$.

5. Convergent Rate

The main result in this section is Proposition 5.2, which shows that the rate of convergence $\tilde{\mathcal{L}}^{n} g \rightarrow \mu(g)$ is polynomial. This proposition plays a key role for the proof of Theorem B. Since the proof is long, we put some lemmas in next section.

From now on we denote $g_{n}(x)=\tilde{\mathcal{L}}^{n} g(x)$.
For any $b_{+} \in(0,1)$, define a function $\Gamma(x, y)=\Gamma_{b_{+}}(x, y)$ by

$$
\Gamma(x, y)= \begin{cases}1+\frac{K_{0}}{x} d(x, y) & \forall x \in P_{0}, y \in B(x, \rho(x)) \\ 1+K d(x, y), & \forall x \in I \backslash P_{0}, y \in B(x, \rho(x))\end{cases}
$$

where $K, K_{0}>0$ are constants chosen as in the following lemma.
Lemma 5.1. There exist constants $K, K_{0}>0$ such that for any $x \in I, y \in$ $B(x, \rho(x))$,
i) if $g(x) \leq b_{+}, g(x) \leq g(y) \tilde{\Delta}(y, x)$ and $g(y) \leq g(x) \tilde{\Delta}(x, y)$, then

$$
1-g(y) \leq(1-g(x)) \Gamma(x, y)
$$

ii) if $1-g\left(\bar{y}_{1}\right) \leq\left(1-g\left(\bar{x}_{1}\right)\right) \Gamma\left(\bar{x}_{1}, \bar{y}_{1}\right) \forall \bar{x}_{1} \in f^{-1} x, \bar{y}_{1} \in f^{-1} y \cap B\left(\bar{x}_{1}, \rho\left(\bar{x}_{1}\right)\right)$, then

$$
1-\tilde{\mathcal{L}} g(y) \leq(1-\tilde{\mathcal{L}} g(x)) \Gamma(x, y)
$$

iii) there exist constant $\bar{K}>0$ such that for all $x, y \in I_{0}$ with $d(x, y) \leq \bar{\rho}$, if $1-g(\bar{y}) \leq(1-g(\bar{x})) \Gamma(\bar{x}, \bar{y}) \forall \bar{x} \in f^{-1}(f x) \backslash I_{0}, \bar{y} \in f^{-1}(f y) \cap B(\bar{x}, \rho(\bar{x}))$, then

$$
1-\bar{g}(y) \leq(1-\bar{g}(x))(1+\bar{K} d(x, y))
$$

Proof. Since $g(x) \leq g(y) \tilde{\Delta}(y, x)=g(y)+g(y)(\tilde{\Delta}(y, x)-1)$, we have

$$
\begin{aligned}
& 1-g(y) \leq 1-g(x)+g(y)(\tilde{\Delta}(y, x)-1) \leq(1-g(x))\left(1+\frac{g(y)}{1-b_{+}}(\tilde{\Delta}(y, x)-1)\right) \\
\leq & (1-g(x))(1+\tilde{\Delta}(y, x)-1)^{\max \left\{1, \frac{g(y)}{1-b_{+}}\right\}} \leq(1-g(x))(\tilde{\Delta}(y, x))^{\max \left\{1, \frac{g(y)}{1-b_{+}}\right\}} .
\end{aligned}
$$

Note that for $x \in P_{0}, d(x, y) \leq \rho(x)=O\left(x^{1+\gamma}\right)$, and $g(y) \leq g(x) \tilde{\Delta}(x, y) \leq$ $b_{+} \tilde{\Delta}(x, y)$. So $g(y)$ is bounded. Hence, it is clear that K_{0} and K exist. This is Part i). Part ii) and iii) follow from the same arguments as in the proof of Lemma 4.8 and Lemma 4.9.

Proposition 5.2. For any $0<b_{-} \leq b_{+}<1$, we can find arbitrarily small $v \in P_{0}$ such that for any continuous functions $g_{+} \geq g_{-}>0$ of the form

$$
g_{ \pm}(x)= \begin{cases}A_{ \pm} \prod_{i=0}^{k-1} \eta\left(x_{i}\right), & x \in[0, v] \tag{5.1}\\ b_{ \pm}, & x \in[v, 1]\end{cases}
$$

where $A_{+} \geq A_{-}>1$ and $k>0$ are constants that make $\mu\left(g_{+}\right) \geq 1$ and $\mu\left(g_{-}\right) \leq 1$, if a function g satisfies
(a) $g(x) \leq g_{+}(x) \forall x \in I$, and $g(x) \geq g_{-}(x) \forall x \leq v$,
(b) $\mu(g)=1$,
(c) $g(y) \leq g(x) \tilde{\Delta}(x, y) \forall x \in I, y \in B(x, \rho(x))$, and
(d) g is decreasing on $[0, v]$,
then for all $n \geq 0$,
i) $1-g_{n}(x) \geq \frac{D^{\prime} A_{-}}{(n+k)^{\beta-1}} \quad \forall x \in I \backslash I_{0}$,
ii) $1-g_{n}(x) \leq \frac{D A_{+}}{n^{\beta-1}} \quad \forall x \in I$,
iii) $\frac{\bar{D}^{\prime} A_{-}}{(n+k)^{\beta-1}} \leq \int\left|g_{n}(x)-1\right| d \mu(x) \leq \frac{\bar{D} A_{+}}{n^{\beta-1}}$,
where $D, D^{\prime}, \bar{D}, \bar{D}^{\prime}>0$ are constants only depending on f.
Proof. We divide the proof into three steps.
Step I. We choose v and construct functions $g_{ \pm}(x)$.
Take $0<b_{-} \leq b_{+}<1$.
Take $u \in I_{0}$ with $u \leq \bar{\rho}$, where $\bar{\rho}=\inf \left\{\rho(x): x \in I \backslash I_{0}\right\}$, such that for all $x>u, \eta(x) \leq \eta(u)$, and for all $x \in[u, f u], y \in B(x, \rho(x)), \Gamma(x, y) \geq 1+3 \bar{K} d(\bar{x}, \bar{y})$ $\forall \bar{x}, \bar{y} \in I \backslash I_{0}$ with $d(\bar{x}, \bar{y}) \leq \rho(\bar{x})$. This is possible because of the definition of $\Gamma(x, y)$.

Take $v=u_{m} \in P_{0}$ for some $m>0$, and write $v=\left(\frac{\beta}{s}\right)^{\beta}$. We assume first that $s \geq m$, otherwise we can choose a smaller u. Then we assume that m is large enough such that

$$
\begin{equation*}
\prod_{i=1}^{m} \eta\left(x_{i}\right) \leq \frac{1}{2} \quad \forall x \in I_{0} \backslash[0, u] \tag{5.2}
\end{equation*}
$$

Since $\prod_{i=1}^{n} \eta\left(x_{i}\right)+\sum_{j=1}^{n} \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right)=1$, it implies that for any $n \geq m$,

$$
\begin{equation*}
\sum_{j=1}^{n} \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) \geq \frac{1}{2} \quad \forall x \in I_{0} \backslash[0, u] . \tag{5.3}
\end{equation*}
$$

Lastly we assume that s is large enough such that

$$
\begin{equation*}
c^{\prime} s^{\frac{\beta-1}{\beta_{+}-\beta+1}} \geq \max \left\{\left(\frac{2^{\beta_{+}}}{b_{-}}\right)^{\frac{1}{\beta_{-}}},\left(\frac{2 a \beta^{\beta-1}}{a^{\prime} b_{-} \beta_{-}^{\beta-1}}\right)^{\frac{1}{\beta_{-}-\beta+1}}\right\} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
s^{\beta_{-}-\beta+1} \geq \frac{4 C_{1} C_{2} b_{+}}{C_{3}^{\prime} b_{-}}, \tag{5.5}
\end{equation*}
$$

where c^{\prime} is given in (5.13), a and a^{\prime} are given in Lemma $4.2, C_{2}$ and C_{3}^{\prime} are as in Lemma 6.1 and 6.2 respectively, and $C_{1} \geq\left(1-b_{+}\right)^{-1}$ and satisfies that if

$$
\begin{gathered}
1-g(y) \leq 2(1-g(x))(1+\bar{K} d(x, y)) \quad \forall x \in[u, f u], 0<y \leq x \\
1-g(y) \leq(1-g(x)) \Gamma(x, y) \quad \forall x \geq u, y \in B(x, \rho(x))
\end{gathered}
$$

then

$$
\begin{equation*}
\max \{1-g(x), x \in I\} \leq C_{1} \min \{1-g(x), x \geq u\} \tag{5.6}
\end{equation*}
$$

Now we choose $A_{+} \geq A_{-} \geq 1$ and $k>0$ such that

$$
\begin{align*}
& A_{ \pm} \prod_{i=0}^{k-1} \eta\left(v_{i}\right)=b_{ \pm} \tag{5.7}\\
& A_{+} \mu\left[0, v_{k}\right]+b_{+} \mu[v, 1] \geq 1 \quad \text { and } \quad A_{-} \mu\left[0, v_{k}\right]+b_{-} \mu[v, 1] \leq 1 \tag{5.8}
\end{align*}
$$

This is possible. In fact, by Lemma 4.7 and 4.2 we have

$$
\begin{align*}
\left(\frac{s}{s+k}\right)^{\beta_{+}} & \leq \prod_{i=1}^{k} \eta\left(v_{i}\right) \leq\left(\frac{s}{s+k}\right)^{\beta_{-}}, \tag{5.9}\\
a^{\prime}\left(\frac{\beta_{-}}{s+k}\right)^{\beta-1} & \leq \mu\left[0, v_{k}\right] \leq a\left(\frac{\beta_{+}}{s+k}\right)^{\beta-1} . \tag{5.10}
\end{align*}
$$

These imply $\lim _{k \rightarrow 0} \frac{\prod_{i=0}^{k-1} \eta\left(v_{i}\right)}{\mu\left[0, v_{k}\right]}=0$. So we can take k such that

$$
\begin{equation*}
\frac{1}{b_{+}}-\mu[v, 1] \leq \frac{\mu\left[0, v_{k}\right]}{\prod_{i=0}^{k-1} \eta\left(v_{i}\right)} \leq \frac{1}{b_{-}}-\mu[v, 1] \tag{5.11}
\end{equation*}
$$

and then take $A_{ \pm}$such that (5.7) is satisfied.
Now we define $g_{ \pm}(x)$ by using (5.1). Lemma 4.3 and (5.8) give

$$
\mu\left(g_{+}\right)=A_{+} \mu\left[0, v_{k}\right]+b_{+} \mu[v, 1] \geq 1, \quad \mu\left(g_{-}\right)=A_{-} \mu\left[0, v_{k}\right]+b_{-} \mu[v, 1] \leq 1
$$

Note that by (5.9) - (5.11) we can obtain

$$
\frac{s^{\beta_{+}}}{a \beta_{+}^{\beta-1}}\left(\frac{1}{b_{+}}-\mu[v, 1]\right) \leq(s+k)^{\beta_{+}-\beta+1}, \quad(s+k)^{\beta_{-}-\beta+1} \leq \frac{s^{\beta_{-}}}{a^{\prime} \beta_{-}^{\beta-1}}\left(\frac{1}{b_{-}}-\mu[v, 1]\right)
$$

and therefore,

$$
\begin{equation*}
c^{\prime} s^{\frac{\beta_{+}}{\beta_{+}-\beta+1}} \leq k+s, \quad k \leq c s^{\frac{\beta_{-}}{\beta_{-}-\beta+1}} \tag{5.12}
\end{equation*}
$$

where $c>c^{\prime}>0$ are constants satisfying

$$
\begin{equation*}
c^{\prime \beta_{+}-\beta+1}=\frac{1}{a \beta_{+}^{\beta-1}}\left(\frac{1}{b_{+}}-\mu[v, 1]\right), \quad c^{\beta_{-}-\beta+1}=\frac{1}{a^{\prime} \beta_{-}^{\beta-1}}\left(\frac{1}{b_{-}}-\mu[v, 1]\right) . \tag{5.13}
\end{equation*}
$$

Hence by (5.4) we have

$$
\begin{equation*}
k+s \geq c^{\prime} s^{\frac{\beta-1}{\beta_{+}-\beta+1}} \cdot s \geq\left(\frac{2^{\beta_{+}}}{b_{-}}\right)^{\frac{1}{\beta_{-}}} \cdot s \geq 2 s, \quad \text { i.e. } \quad k \geq s \tag{5.14}
\end{equation*}
$$

Moreover, by (5.7) and (5.9),

$$
\begin{equation*}
b_{ \pm}\left(\frac{s+k}{s}\right)^{\beta_{-}} \leq A_{ \pm} \leq b_{ \pm}\left(\frac{s+k}{s}\right)^{\beta_{+}} \tag{5.15}
\end{equation*}
$$

and therefore by (5.14),

$$
\begin{equation*}
A_{-} \geq b_{-}\left(\frac{s+k}{s}\right)^{\beta_{-}} \geq 2^{\beta_{+}}>1 \tag{5.16}
\end{equation*}
$$

Step II. We prove that any function g satisfying condition (a)-(d) has the following property:

$$
\begin{aligned}
& \left(\mathcal{A}_{n}\right) 1-g_{n}(x)>0 \forall x \geq u ; \\
& \left(\mathcal{B}_{n}\right) \max \left\{1-g_{n}(x), x \in I\right\} \leq C_{1} \min \left\{1-g_{n}(x), x \geq u\right\} .
\end{aligned}
$$

First we consider the case $0 \leq n \leq m$. Since $1-g(x) \geq 1-b_{+}>0 \forall x \geq v=u_{m}$, by Lemma 4.1.i), $1-g_{n}(x) \geq 1-b_{+}>0 \forall x \geq u \geq f^{n} v$. We get $\left(\mathcal{A}_{n}\right)$. Since $C_{1} \geq\left(1-b_{+}\right)^{-1},\left(\mathcal{B}_{n}\right)$ follows.

Now we consider the cases $n>m$. We only need prove the following:

$$
\begin{aligned}
&\left(\mathcal{A}_{n}^{*}\right) 1-g_{n}(x)>2 g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \forall x \in[u, f u] ; \\
&\left(\mathcal{B}_{n}^{\prime}\right) 1-g_{n}(y) \leq 2\left(1-g_{n}(x)\right)(1+\bar{K} d(x, y)) \forall x \in[u, f u], 0<y \leq x ; \\
&\left(\mathcal{B}_{n}^{\prime \prime}\right) 1-g_{n}(y) \leq\left(1-g_{n}(x)\right) \Gamma(x, y) \forall x \geq u, y \in B(x, \rho(x)) .
\end{aligned}
$$

In fact, by the definition of $\tilde{\mathcal{L}}$, we know that $\left(\mathcal{A}_{n-1}\right)$ and $\left(\mathcal{A}_{n}^{*}\right)$ imply $\left(\mathcal{A}_{n}\right)$. Also, by $\left(\mathcal{B}_{n}^{\prime}\right),\left(\mathcal{B}_{n}^{\prime \prime}\right)$ and (5.6), we can get $\left(\mathcal{B}_{n}\right)$.

To prove $\left(\mathcal{A}_{n}^{*}\right),\left(\mathcal{B}_{n}^{\prime}\right)$ and $\left(\mathcal{B}_{n}^{\prime \prime}\right)$, we use induction. Assume $\left(\mathcal{B}_{j}\right)$ are true for all $0 \leq j \leq n-1$. Then by Lemma 6.3 and the choice of $C_{1},\left(\mathcal{A}_{n}^{*}\right)$ is true.

Note that ($\mathcal{B}_{j}^{\prime \prime}$) holds for any $j=0,1, \cdots, m$ because of Lemma 5.1.i), ii) and the fact that $1-g(x) \geq 1-b_{+}>0 \forall x \geq v$. So we may assume $\left(\mathcal{A}_{j}\right)$ and ($\left.\mathcal{B}_{j}^{\prime \prime}\right)$ for all $j=0,1, \cdots, n-1$. Hence, if we assume $\left(\mathcal{A}_{n}^{*}\right)$ in addition, then by Lemma 6.4 and Lemma 6.5, $\left(\mathcal{B}_{n}^{\prime}\right)$ and $\left(\mathcal{B}_{n}^{\prime \prime}\right)$ hold respectively.

Step III. We prove that g_{n} satisfies i)-iii).
Since $\mu\left(g_{n}\right)=\mu(g)=1$,

$$
\begin{equation*}
\int_{\left\{g_{n}>1\right\}}\left(g_{n}(x)-1\right) d \mu(x)=\int_{\left\{g_{n}<1\right\}}\left(1-g_{n}(x)\right) d \mu(x)=\frac{1}{2} \int\left|g_{n}(x)-1\right| d \mu(x) \tag{5.17}
\end{equation*}
$$

Then the first inequality of Part iii) follows immediately from Lemma 6.2 with $\bar{D}^{\prime}=2 C_{3}^{\prime}$. By using $\left(\mathcal{A}_{n}\right) \forall n>0$, we get that the upper bound estimate in Part iii) follows from Lemma 6.6 with $\bar{D}=2 C_{4}$.

If we use $\left(\mathcal{B}_{n}\right)$, then

$$
\begin{align*}
& \int_{\left\{g_{n}<1\right\}}\left(1-g_{n}(x)\right) d \mu(x)
\end{align*} \leq \max \{1-g(x): x \in I\},
$$

Considering (5.17) and the results in Part iii), we get i) with $D^{\prime}=\left(2 C_{1}\right)^{-1} \bar{D}^{\prime}=$ $C_{1}^{-1} C_{3}^{\prime}$, and get ii) with $D=\left(2 \mu\left(I \backslash I_{0}\right)\right)^{-1} C_{1} \bar{D}=\left(\mu\left(I \backslash I_{0}\right)\right)^{-1} C_{1} C_{4}$.

6. Some Supplementary Lemmas

In this section we prove lemmas which are used for the proof of Proposition 5.2.
Lemma 6.1. There exists $C_{2}>0$ such that for any $x>u$,

$$
\prod_{i=1}^{k+n} \eta\left(x_{i}\right) \leq C_{2} \frac{1}{k^{\beta--\beta+1}} \cdot \frac{1}{(n+k)^{\beta-1}} \quad \forall n, k>0
$$

Proof. By Lemma 4.7, for $x^{*}=\left(\frac{\beta_{-}}{r^{*}}\right)^{\beta} \in P_{0}$ fixed, $\prod_{i=1}^{k+n} \eta\left(x_{i}^{*}\right) \leq\left(\frac{r^{*}}{r^{*}+k+n}\right)^{\beta_{-}}$. So the result is clear for this x^{*}. Since by Lemma 4.4.iv) $\eta(x)$ is smaller outside P_{0} than inside P_{0}, the result holds for all $x \in I_{0} \backslash P_{0}$ as well.

Lemma 6.2. Let $C_{3}^{\prime}=2^{-\beta} a^{\prime} \beta_{-}^{\beta-1}$, where a^{\prime} is given in Lemma 4.2. Then

$$
\int_{\left\{g_{n}>1\right\}}\left(g_{n}(x)-1\right) d \mu(x) \geq C_{3}^{\prime} A_{-} \frac{1}{(n+k)^{\beta-1}} \quad \forall n>0 .
$$

Proof. Take $t>0$ such that

$$
\begin{equation*}
\left(\frac{t}{t+k}\right)^{\beta_{+}}=\frac{1}{b_{-}}\left(\frac{s}{s+k}\right)^{\beta_{-}} \tag{6.1}
\end{equation*}
$$

Clearly, $s \leq t$. Also, by (5.16) the right side is no more than $\frac{1}{2^{\beta_{+}}}$. So $\frac{t}{t+k} \leq \frac{1}{2}$. We get $t \leq k$.

Take

$$
\begin{equation*}
z^{(n)}=\left(\frac{\beta}{t\left(1+\frac{n}{k}\right)}\right)^{\beta} \tag{6.2}
\end{equation*}
$$

We claim

$$
\begin{equation*}
\left[0, z^{(n)}\right] \subset\left\{x: g_{n}(x) \geq 1\right\} \quad \forall n \geq 0 \tag{6.3}
\end{equation*}
$$

In fact, for any $x \leq z^{(n)}$, by Proposition 4.7 and (5.9),

$$
\prod_{i=1}^{k+n} \eta\left(x_{i}\right) \geq\left(\frac{t\left(1+\frac{n}{k}\right)}{t\left(1+\frac{n}{k}\right)+k+n}\right)^{\beta_{+}}=\left(\frac{t}{t+k}\right)^{\beta_{+}}=\frac{1}{b_{-}}\left(\frac{s}{s+k}\right)^{\beta_{-}} \geq \frac{1}{b_{-}} \prod_{i=1}^{k} \eta\left(v_{i}\right)
$$

Then by (5.1), (4.1) and (5.7), $g_{n}(x) \geq A_{-} \prod_{i=1}^{k+n} \eta\left(x_{i}\right) \geq \frac{A_{-}}{b_{-}} \prod_{i=1}^{k} \eta\left(v_{i}\right)=1$.
Now using Lemma 4.3 we have

$$
\begin{aligned}
\int_{\left\{g_{n}>1\right\}}\left(g_{n}(x)-1\right) d \mu(x) & \geq A_{-} \int_{0}^{z^{(n)}} \prod_{i=1}^{k+n} \eta\left(x_{i}\right) d \mu(x)-\mu\left[0, z^{(n)}\right] \\
& =A_{-} \mu\left[0, z_{n+k}^{(n)}\right]-\mu\left[0, z^{(n)}\right]
\end{aligned}
$$

Since $k>t$, by (6.2) and Lemma 2.2, $z_{n+k}^{(n)} \geq\left(\frac{\beta_{-}}{t\left(1+\frac{n}{k}\right)+k+n}\right)^{\beta} \geq\left(\frac{\beta_{-}}{2(k+n)}\right)^{\beta}$. Then by Lemma 4.2,

$$
A_{-} \mu\left[0, z_{n+k}^{(n)}\right] \geq A_{-} a^{\prime}\left(z_{n+k}^{(n)}\right)^{\beta-1} \geq \frac{A_{-} a^{\prime} \beta_{-}^{\beta-1}}{2^{\beta-1}}\left(\frac{1}{k+n}\right)^{\beta-1}
$$

So the result follows if we show $A_{-} \mu\left[0, z_{n+k}^{(n)}\right] \geq 2 \mu\left[0, z^{(n)}\right]$.
Note that $\frac{z_{n+k}^{(n)}}{z^{(n)}} \geq\left(\frac{\beta_{-} t}{\beta(t+k)}\right)^{\beta}$. Using (5.16) and the fact $t>s$, we can get $A_{-} \frac{\mu\left[0, z_{n+k}^{(n)}\right]}{\mu\left[0, z^{(n)}\right]} \geq b_{-}\left(\frac{s+k}{s}\right)^{\beta_{-}} \cdot \frac{a^{\prime}}{a}\left(\frac{\beta_{-} t}{\beta(t+k)}\right)^{\beta-1} \geq \frac{a^{\prime} b_{-}}{a}\left(\frac{\beta_{-}}{\beta}\right)^{\beta-1}\left(\frac{s+k}{s}\right)^{\beta_{-}-\beta+1}$.
The right side is greater than or equal to 2 because by (5.12) and (5.4),

$$
\left(\frac{k+s}{s}\right)^{\beta_{-}-\beta+1} \geq\left(c^{\prime} s^{\frac{\beta-1}{\beta_{+}-\beta+1}}\right)^{\beta_{-}-\beta+1} \geq \frac{2 a}{a^{\prime} b_{-}}\left(\frac{\beta}{\beta_{-}}\right)^{\beta-1} .
$$

Lemma 6.3. Let $n>m$. Suppose for all $0 \leq j \leq n-1$,

$$
\max \left\{1-g_{j}(x), x \in I\right\} \leq C_{1} \min \left\{1-g_{j}(x), x \geq u\right\}
$$

Then $1-g_{n}(x)>2 g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \forall x \in[u, f u]$.
Proof. By (5.17), (5.18) and Lemma 6.2, we have that for all $1 \leq j \leq n$,

$$
\begin{aligned}
& 1-g_{j}(x) \geq \frac{1}{C_{1}} \int_{\left\{g_{j}>1\right\}}\left(g_{j}(x)-1\right) d \mu(x) \\
\geq & \frac{C_{3}^{\prime} A_{-}}{C_{1}} \frac{1}{(k+j)^{\beta-1}} \geq \frac{C_{3}^{\prime} A_{-}}{C_{1}} \frac{1}{(k+n)^{\beta-1}} \quad \forall x \geq u .
\end{aligned}
$$

So the same inequality is true for $1-\bar{g}_{j}(x)$. By Lemma 4.5 and (5.3),

$$
1-g_{n}(x)>\sum_{j=1}^{n}\left(1-\bar{g}_{n-j}\left(x_{j}\right)\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) \geq \frac{C_{3}^{\prime} A_{-}}{2 C_{1}} \frac{1}{(k+n)^{\beta-1}} .
$$

On the other hand, since $n>m, g\left(x_{n}\right) \leq A_{+} \prod_{i=1}^{k} \eta\left(x_{i}\right)$. So by Lemma 6.1,

$$
g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \leq A_{+} \prod_{i=1}^{k+n} \eta\left(v_{i}\right) \leq A_{+} C_{2} \frac{1}{k^{\beta_{-}-\beta+1}} \frac{1}{(k+n)^{\beta-1}}
$$

Now, considering (5.7) and (5.14) we have

$$
\frac{1-g_{n}(x)}{2 g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)} \geq \frac{C_{3}^{\prime} A_{-}}{2^{2} C_{1} C_{2} A_{+}} k^{\beta_{-}-\beta+1} \geq \frac{C_{3}^{\prime} b_{-}}{4 C_{1} C_{2} b_{+}} s^{\beta_{--} \beta+1}
$$

By (5.5) it is greater than or equal to 1.
Lemma 6.4. Let $n>m$. Suppose $g(x)$ is decreasing on $[0, v]$. Suppose further
(i) $1-g_{j}(x)>0 \forall 0 \leq j \leq n-1, x \geq u$,
(ii) $1-g_{j}(y) \leq\left(1-g_{j}(x)\right) \Gamma(x, y), \forall 0 \leq j \leq n-1, x \geq u, y \in B(x, \rho(x))$, and
(iii) $1-g_{n}(x) \geq 2 g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \forall x \in[u, f u]$.

Then for all $x \in[u, f u]$ with $1-g_{n}(x)>0$,

$$
1-g_{n}(y) \leq 2\left(1-g_{n}(x)\right)(1+\bar{K} d(x, y)) \quad \forall 0<y \leq x
$$

Proof. By Supposition (ii) and Lemma 5.1.iii),

$$
\begin{equation*}
\left(1-\bar{g}_{n-j}\left(x_{j}\right)\right)-\left(1-\bar{g}_{n-j}\left(y_{j}\right)\right) \geq-\bar{K} d(x, y) \cdot\left(1-\bar{g}_{n-j}\left(x_{j}\right)\right) . \tag{6.4}
\end{equation*}
$$

Using Lemma 4.5 for the function $1-g(x)$ and then using Supposition (iii), we have

$$
\begin{align*}
& \sum_{j=1}^{n}\left(1-\bar{g}_{n-j}\left(x_{j}\right)\right) \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right)=1-g_{n}(x)-\left(1-g\left(x_{n}\right)\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \\
& \quad<1-g_{n}(x)+g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \leq \frac{3}{2}\left(1-g_{n}(x)\right) \leq 2\left(1-g_{n}(x)\right) . \tag{6.5}
\end{align*}
$$

Therefore, by using Lemma 4.6 for the function $1-g(x)$, we obtain

$$
\begin{align*}
& \left(1-g_{n}(x)\right)-\left(1-g_{n}(y)\right) \\
\geq & \left(1-g\left(x_{n}\right)\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)-\left(1-g\left(y_{n}\right)\right) \prod_{i=1}^{n} \eta\left(y_{i}\right)-2 \bar{K}\left(1-g_{n}(x)\right) d(x, y) . \tag{6.6}
\end{align*}
$$

If $1-g\left(y_{n}\right) \leq 0$, then either $1-g\left(x_{n}\right) \geq 0$ or $0 \geq 1-g\left(x_{n}\right) \geq 1-g\left(y_{n}\right)$. Since $\eta(x)$ is decreasing, (6.6) becomes

$$
\begin{equation*}
\left(1-g_{n}(x)\right)-\left(1-g_{n}(y)\right) \geq-2 \bar{K}\left(1-g_{n}(x)\right) d(x, y) \tag{6.7}
\end{equation*}
$$

Then the result follows.
If $1-g\left(y_{n}\right) \geq 0$, then $0 \leq 1-g\left(y_{n}\right) \leq 1-g\left(x_{n}\right) \leq 1-g_{n}(x)$. Since $\eta\left(x_{i}\right)>0$ and $\eta\left(y_{i}\right)<1$, (6.6) becomes

$$
\left(1-g_{n}(x)\right)-\left(1-g_{n}(y)\right) \geq-\left(1-g_{n}(x)\right)-2 \bar{K}\left(1-g_{n}(x)\right) d(x, y)
$$

This is the result of the lemma.
Lemma 6.5. Suppose all conditions in Lemma 6.4 are satisfied. Then

$$
1-g_{n}(y) \leq\left(1-g_{n}(x)\right) \Gamma(x, y) \quad \forall x \in[u, f u], y \in B(x, \rho(x))
$$

Proof. First we assume $y \leq x$, The same argument as in the proof of above lemma tells that (6.5) holds. Further, if $1-g\left(y_{n}\right) \leq 0$, then (6.7) follows as well and therefore the result is true. So we consider the case $1-g\left(y_{n}\right) \geq 0$. Note that $g\left(y_{n}\right) \geq g\left(x_{n}\right) \geq g_{n}(x)$. By Lemma 4.8.ii) and (5.2),

$$
\begin{aligned}
& \left(1-g\left(x_{n}\right)\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)-\left(1-g\left(y_{n}\right)\right) \prod_{i=1}^{n} \eta\left(y_{i}\right) \geq\left(1-g\left(y_{n}\right)\right)\left(\prod_{i=1}^{n} \eta\left(x_{i}\right)-\eta\left(y_{i}\right)\right) \\
& \geq-\left(1-g\left(y_{n}\right)\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)(\tilde{\Delta}(x, y)-1) \geq-\left(1-g_{n}(x)\right) \frac{\tilde{\Delta}(x, y)-1}{2} .
\end{aligned}
$$

So by (6.6),

$$
\begin{aligned}
\left(1-g_{n}(x)\right)-\left(1-g_{n}(y)\right) & \geq-\left(1-g_{n}(x)\right)\left(\frac{\tilde{\Delta}(x, y)-1}{2}+\frac{3 \bar{K} d(x, y)}{2}\right) \\
& \geq-\left(1-g_{n}(x)\right)(\Gamma(x, y)-1)
\end{aligned}
$$

where the last step follows from the choice of u. This is the result.
Now we assume $y \geq x$. We use Lemma 4.6 for the function $g(x)$, while interchange the roles of x and y, and replace $\bar{g}_{n-j}\left(x_{j}\right)-\bar{g}_{n-j}\left(y_{j}\right)$ by $\left(1-\bar{g}_{n-j}\left(y_{j}\right)\right)-$ $\left(1-\bar{g}_{n-j}\left(y_{j}\right)\right)$, to get

$$
\begin{align*}
& g_{n}(x)-g_{n}(y) \leq g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)-g\left(y_{n}\right) \prod_{i=1}^{n} \eta\left(y_{i}\right) \\
+ & \sum_{j=1}^{n}\left[\left(1-\bar{g}_{n-j}\left(y_{j}\right)\right)-\left(1-\bar{g}_{n-j}\left(x_{j}\right)\right)\right] \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) . \tag{6.8}
\end{align*}
$$

Since $g\left(y_{n}\right) \leq g\left(x_{n}\right)$ and $\eta\left(y_{n}\right) \leq \eta\left(x_{n}\right)$, by Lemma 4.8.i) and Supposition (iii),

$$
\begin{gathered}
g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)-g\left(y_{n}\right) \prod_{i=1}^{n} \eta\left(y_{i}\right) \leq\left[g\left(y_{n}\right) \prod_{i=1}^{n} \eta\left(y_{i}\right)\right](\tilde{\Delta}(x, y)-1) \\
\quad \leq\left[g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)\right](\tilde{\Delta}(x, y)-1) \leq \frac{1-g_{n}(x)}{2}(\Gamma(x, y)-1) .
\end{gathered}
$$

Note that the arguments for (6.4) and (6.5) still hold. So (6.8) becomes

$$
\begin{aligned}
& \left(1-g_{n}(y)\right)-\left(1-g_{n}(x)\right)=g_{n}(x)-g_{n}(y) \\
\leq & \left(1-g_{n}(x)\right)\left(\frac{\Gamma(x, y)-1}{2}+\frac{3 \bar{K} d(x, y)}{2}\right) \leq\left(1-g_{n}(x)\right)(\Gamma(x, y)-1) .
\end{aligned}
$$

This completes the proof.
Lemma 6.6. Let $C_{4}=a \beta_{+}^{\beta-1}$. Suppose $1-g_{j}(x)>0 \forall 0 \leq j \leq n, x \geq u$. Then

$$
\int_{\left\{g_{n}>1\right\}}\left(g_{n}(x)-1\right) d \mu(x) \leq \frac{C_{4} A_{+}}{n^{\beta-1}} .
$$

Proof. The supposition implies that $\forall x \in I_{0}$,

$$
\sum_{j=1}^{n}\left[\left(\bar{g}_{n-j}\left(x_{j}\right)-1\right)\right] \psi\left(x_{j}\right) \prod_{i=1}^{j-1} \eta\left(x_{i}\right) \leq 0
$$

If $g_{n}(x) \geq 1>b_{+}$, then $g\left(x_{n}\right) \geq 1>b_{+}$and therefore $x_{n} \leq v$. So by Lemma 4.5,

$$
g_{n}(x)-1 \leq\left(g\left(x_{n}\right)-1\right) \prod_{i=1}^{n} \eta\left(x_{i}\right)<g\left(x_{n}\right) \prod_{i=1}^{n} \eta\left(x_{i}\right) \leq A_{+} \prod_{i=1}^{n+k} \eta\left(x_{i}\right)
$$

Note that $\left\{x: g_{n}(x)>1\right\} \subset[0, u]$. Also note that $k \geq s \geq m$ and therefore $u_{n+k}=v_{n+k-m} \leq v_{n}$. We have

$$
\begin{aligned}
& \int_{\left\{g_{n}>1\right\}}\left(g_{n}(x)-1\right) d \mu(x) \leq A_{+} \int_{0}^{u} \prod_{i=1}^{n+k} \eta\left(x_{i}\right) d \mu(x)=A_{+} \mu\left[0, u_{n+k}\right] \\
& \leq A_{+} \mu\left[0, v_{n}\right] \leq A_{+} \cdot a v_{n}^{1-\gamma} \leq a A_{+}\left(\frac{\beta_{+}}{s+n}\right)^{\beta-1} \leq a A_{+}\left(\frac{\beta_{+}}{n}\right)^{\beta-1}
\end{aligned}
$$

7. Proofs of Theorem B and its Corollary

Proposition 7.1. There exist $B, \bar{B}>0$ such that for any Lipschitz function g with $\mu(g)=1$, and for all $n>0$,
i) $\left|1-\tilde{\mathcal{L}}^{n} g(x)\right| \leq \frac{B}{\epsilon n^{\beta-1}} \forall x \in I \backslash I_{0}$,
ii) $\int\left|\tilde{\mathcal{L}}^{n} g(x)-1\right| d \mu(x) \leq \frac{\bar{B}}{\epsilon n^{\beta-1}}$,
where $\epsilon>0$ only depends on the Lipschitz constant of g.
Proof. Take $0<b_{-}<b_{+}<1$, and take $v \in P_{0}, k>0$, and functions $g_{ \pm}$with $\mu\left(g_{+}\right)>1$ and $\mu\left(g_{-}\right)<1$ as in Proposition 5.2. Then we choose A and b such that $A \prod_{i=1}^{k} \eta\left(v_{i}\right)=b$ and such that the function \hat{g} defined by

$$
\hat{g}(x)= \begin{cases}A \prod_{i=0}^{k-1} \eta\left(x_{i}\right), & x \in[0, v] \\ b, & x \in[v, 1]\end{cases}
$$

satisfies $\mu(\hat{g})=1$. Then we write

$$
\left.1-\tilde{\mathcal{L}}^{n} g=\frac{1}{2 \epsilon}\left[1-\tilde{\mathcal{L}}^{n}(\hat{g}-\epsilon[1-g)]\right)\right]-\frac{1}{2 \epsilon}\left[1-\tilde{\mathcal{L}}^{n}(\hat{g}+\epsilon[1-g])\right] .
$$

Suppose we can find $\epsilon>0$ such that both functions $\hat{g}(x)+\epsilon[1-g(x)]$ and $\hat{g}(x)-\epsilon[1-g(x)]$ satisfy the requirements (a), (c) and (d) in Proposition 5.2. By using the proposition for these functions, we can get

$$
\left|1-\tilde{\mathcal{L}}^{n} g(x)\right| \leq \frac{1}{2 \epsilon} \cdot \frac{D A_{+}}{n^{\beta-1}}+\frac{1}{2 \epsilon} \cdot \frac{D A_{+}}{n^{\beta-1}}=\frac{D A_{+}}{\epsilon n^{\beta-1}} \quad \forall x \in I \backslash I_{0}
$$

and

$$
\int\left|\tilde{\mathcal{L}}^{n} g(x)-1\right| d \mu(x) \leq \frac{1}{2 \epsilon} \cdot \frac{\bar{D} A_{+}}{n^{\beta-1}}+\frac{1}{2 \epsilon} \cdot \frac{\bar{D} A_{+}}{n^{\beta-1}}=\frac{\bar{D} A_{+}}{\epsilon n^{\beta-1}} .
$$

Therefore the result follows with $B=D A_{+}$and $\bar{B}=\bar{D} A_{+}$.
Clearly we can find $\epsilon>0$ such that (a) and (d) in Proposition 5.2 hold for functions $\hat{g}(x) \pm \epsilon(1-g(x))$. It remains to show that there exists $\epsilon>0$ such that

$$
\frac{\hat{g}(y) \pm \epsilon(1-g(y))}{\hat{g}(x) \pm \epsilon(1-g(x))} \leq \tilde{\Delta}(x, y) \quad \forall x \in I, y \in B(x, \rho(x))
$$

That is, we need

$$
\begin{equation*}
\frac{\tilde{\Delta}(x, y) \hat{g}(x)-\hat{g}(y)}{|\tilde{\Delta}(x, y)(1-g(x))-(1-g(y))|} \geq \epsilon>0 \tag{7.1}
\end{equation*}
$$

for all $x \in I$ and $y \in B(x, \rho(x))$.

First, we consider the case $x \in[0, v]$.
Recall the definition of $\tilde{\Delta}(x, y)$ and Lemma 4.8.i), we have

$$
\left(1+\frac{\tilde{J}_{0} d\left(x_{k}, y_{k}\right)}{x_{k}}\right) \cdot \frac{\prod_{i=0}^{k-1} \eta\left(y_{i}\right)}{\prod_{i=0}^{k-1} \eta\left(x_{i}\right)}=\tilde{\Delta}\left(x_{k}, y_{k}\right) \cdot \frac{\prod_{i=0}^{k-1} \eta\left(y_{i}\right)}{\prod_{i=0}^{k-1} \eta\left(x_{i}\right)} \leq \tilde{\Delta}(x, y)
$$

Hence, by the definition of \hat{g},

$$
\begin{aligned}
& \tilde{\Delta}(x, y) \hat{g}(x)-\hat{g}(y) \geq A\left(\tilde{\Delta}(x, y) \cdot \frac{\prod_{i=0}^{k-1} \eta\left(x_{i}\right)}{\prod_{i=0}^{k-1} \eta\left(y_{i}\right)}-1\right) \prod_{i=0}^{k-1} \eta\left(y_{i}\right) \\
\geq & A\left(1+\frac{\tilde{J}_{0} d\left(x_{k}, y_{k}\right)}{x_{k}}-1\right) \prod_{i=0}^{k-1} \eta\left(y_{i}\right)=A \tilde{J}_{0} \frac{d\left(x_{k}, y_{k}\right)}{x_{k}} \prod_{i=0}^{k-1} \eta\left(y_{i}\right)
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
& |\tilde{\Delta}(x, y)(1-g(x))-(1-g(y))| \\
\leq & (\tilde{\Delta}(x, y)-1)|1-g(x)|+|g(y)-g(x)| \leq\left(|1-g(x)|+\frac{x L_{g}}{\tilde{J}_{0}}\right) \cdot \frac{\tilde{J}_{0} d(x, y)}{x}
\end{aligned}
$$

where L_{g} is a Lipschitz constant of g.
Now we get that the left side of (7.1) is greater than or equal to

$$
\frac{A \prod_{i=0}^{k-1} \eta\left(y_{i}\right)}{|1-g(x)|+x L_{g} \tilde{J}_{0}^{-1}} \cdot \frac{d\left(x_{k}, y_{k}\right)}{d(x, y)} \cdot \frac{x}{x_{k}}
$$

It is bounded from below for all $x \in[0, v]$ and $y \in B(x, \rho(x))$ because $\left(f^{k}\right)^{\prime}(x) \rightarrow 1$ and $\eta(y) \rightarrow 1$ as $x \rightarrow 0$.

The case $x \in[v, 1]$ can be considered similarly.
Proof of Theorem B.
First, we note that by the definition of $\tilde{\mathcal{L}}$, for any functions F and G defined on $I, \tilde{\mathcal{L}}((F \circ f) \cdot G)=F \cdot(\tilde{\mathcal{L}} G)$. Hence

$$
\tilde{\mathcal{L}}^{n}\left(\left(F \circ f^{n}\right) \cdot G\right)=F \cdot\left(\tilde{\mathcal{L}}^{n} G\right) .
$$

So, by using Lemma 4.1.ii) we have that

$$
\begin{align*}
& \mu\left(\left(F \circ f^{n}\right) \cdot G\right)-\mu(F) \mu(G)=\mu\left(\tilde{\mathcal{L}}^{n}\left(\left(F \circ f^{n}\right) \cdot G\right)\right)-\mu(F \cdot \mu(G)) \\
= & \mu\left(F \cdot\left(\tilde{\mathcal{L}}^{n} G\right)\right)-\mu(F \cdot \mu(G))=\mu\left(F \cdot\left(\tilde{\mathcal{L}}^{n} G-\mu(G)\right)\right) . \tag{7.2}
\end{align*}
$$

To prove Part i), we take Lipschitz functions F and G on $[0,1]$. Above formula gives

$$
\mu\left(\left(F \circ f^{n}\right) \cdot G\right)-\mu(F) \mu(G) \leq\|F\| \mu\left(\left|\tilde{\mathcal{L}}^{n} G-\mu(G)\right|\right)
$$

By Proposition 7.1, there exist $\bar{B}>0$ and $\epsilon=\epsilon(G)>0$ such that

$$
\mu\left(\left|\tilde{\mathcal{L}}^{n} G-\mu(G)\right|\right)=\mu\left(\left|\tilde{\mathcal{L}}^{n}(G-\mu(G)+1)-1\right|\right) \leq \frac{\bar{B}}{\epsilon n^{\beta-1}}
$$

So we can take $C=\bar{B} \epsilon^{-1}$.
Now we prove Part ii). Let G be any Lipschitz function satisfying the requirements (a)-(d) in Proposition 5.2 for some functions $g_{-}(x) \leq g_{+}(x)$. In particular, $\mu(G)=1$. Then we know that there exists $D^{\prime}>0$ such that for all $n>0$,

$$
1-\tilde{\mathcal{L}}^{n} G(x) \geq \frac{D^{\prime} A_{-}}{(n+k)^{\beta-1}} \quad \forall x \in I \backslash I_{0}
$$

where A_{-}and k are described in the same proposition.
Take a Lipschitz function $F(x) \geq 0$ such that $F(x)=0$ on I_{0} and $\mu(F)>0$. Then by (7.2) we have

$$
\begin{aligned}
& \left|\mu\left(\left(F \circ f^{n}\right) \cdot G\right)-\mu(F) \mu(G)\right|=\left|\mu\left(\chi_{I \backslash I_{0}} \cdot F \cdot\left(\tilde{\mathcal{L}}^{n} G-1\right)\right)\right| \\
\geq & \mu(F) \min _{x \in I \backslash I_{0}}\left\{1-\tilde{\mathcal{L}}^{n} G(x)\right\} \geq \mu(F) \frac{D^{\prime} A_{-}}{(n+k)^{\beta-1}} .
\end{aligned}
$$

Now the result follows with $C^{\prime}=(k+1)^{-(\beta-1)} D^{\prime} A_{-} \mu(F)$.
Recall that $E^{(j)}$ is the element of ξ_{j} containing 0.
Lemma 7.2. There exist $l>0$ such that for all $j \geq l$, if a function g satisfies
(a) $g(x)>0$ as $x \in E^{(j)}$ and $g(x)=0$ as $x \notin E^{(j)}$,
(b) $\int_{E^{(j)}} g d \mu=1$, and
(c) $g(y) \leq g(x)(1+\tilde{J} d(x, y)) \quad \forall x, y \in E^{(j)}$,
then $\forall n>0$,
i) $1-\tilde{\mathcal{L}}^{n+j} g(x) \geq \frac{D^{\prime} A_{-}}{(n+j)^{\beta-1}} \quad \forall x \in I \backslash I_{0}$,
ii) $1-\tilde{\mathcal{L}}^{n+j} g(x) \leq \frac{D A_{+}}{n^{\beta-1}} \quad \forall x \in I$,
where D, D^{\prime} are as in Proposition 5.2, and $A_{+}=\sup \left\{g(x): x \in E^{(j)}\right\}$ and $A_{-}=$ $\inf \left\{g(x): x \in E^{(j)}\right\}$.
Proof. Take $0<b_{-} \leq b_{+}<1$ such that $\frac{b_{+}}{b_{-}}=\frac{A_{+}}{A_{-}}$. Let $v=\left(\frac{\beta}{s}\right)^{\beta}$ be the point given in Proposition 5.2.

For each $j>0$, consider the function $g_{j}(x)=\tilde{\mathcal{L}}^{j} g(x)$. Since $f^{j}: E^{(j)} \rightarrow I$ is a one to one map,

$$
g_{j}(x)=g\left(x_{j}\right) \prod_{i=1}^{j} \eta\left(f^{i} x_{j}\right) \leq A_{+} \prod_{i=1}^{j} \eta\left(f^{i} x_{j}\right)
$$

for all $x \in I$, where $x_{j}=f^{-j} x \cap E^{(j)}$.
Note that if $x \leq y$, then

$$
\frac{g(x) \eta(x)}{g(y) \eta(y)} \geq \frac{1}{1+\tilde{J} d(x, y)} \cdot \frac{1-\psi(x)}{1-\psi(y)} \geq \frac{1+\psi(y)-\psi(x)}{1+\tilde{J} d(x, y)}
$$

It is easy to see by Lemma 4.4.i), Lemma 3.5 and 2.4 that the right side is greater than or equal to 1 if x is small. It means that $g(x) \eta(x)$ and therefore $g_{j}(x)$ is decreasing on $[0, v]$ if $E^{(j)}$ is small enough.

By Lemma 2.2, the length of $E^{(j)}$ is between $\left(\frac{\beta_{-}}{r+j}\right)^{\beta}$ and $\left(\frac{\beta_{+}}{r+j}\right)^{\beta}$ for some $r>0$. So if j is large enough, then by (c), $g(y) \leq 2 g(x)$ for any $x, y \in E^{(j)}$. Hence by (b) and Lemma 4.2, we have

$$
\begin{equation*}
\frac{(r+j)^{\beta-1}}{2 a \beta_{+}^{\beta-1}} \leq \frac{1}{2 \mu E^{(j)}} \leq A_{-} \leq A_{+} \leq \frac{2}{\mu E^{(j)}} \leq \frac{2(r+j)^{\beta-1}}{a^{\prime} \beta_{-}^{\beta-1}} \tag{7.3}
\end{equation*}
$$

On the other hand, by Lemma 4.7, $\prod_{i=1}^{j} \eta\left(v_{i}\right) \leq\left(\frac{s}{s+j}\right)^{\beta}$. So if j is large enough, then $g(v) \leq b_{+}$and therefore $g(x) \leq b_{+} \forall x>v$.

Now we see that g_{j} satisfies all conditions in Proposition 5.2, with $j=k$. Therefore the results of the lemma follow.

Lemma 7.3. There exist $C>0$ and $l>0$ such that for any $m \geq 0$, if $E \in \xi_{m}$, then for all $n>0$,

$$
\left|\mu E-\tilde{\mathcal{L}}^{n+m+l} \chi_{E}(x)\right| \leq \frac{C m^{\beta-1}}{n^{\beta-1}} \mu E \quad \forall x \in I \backslash I_{0} .
$$

Proof. Note that $f^{m}: E \rightarrow I$ is a one to one map and $f^{m-1} E=I_{q}$ for some q.
First we consider the case $f^{m-1} E=I_{q} \neq I_{0}$. Put

$$
g(x)=\frac{1}{\mu E} \tilde{\mathcal{L}}^{m} \chi_{E}(x)=\frac{1}{\mu E} \prod_{i=1}^{m} \eta\left(f^{i} x_{m}\right)
$$

where $x_{m}=f^{-m} x \cap E$. By the remark after Lemma 4.8, we know $g(y) \leq g(x)(1+$ $\tilde{J} d(x, y))$ for any $x \in I, y \in B(x, \bar{\rho})$. Since $\mu(g)=1$, by similar arguments as in the proof of Lemma 3.2 we know that g is bounded and the bounds is independent of m and E provided $f^{m-1} E \neq I_{0}$. Consequently, g is a Lipschitz function and the Lipschitz constant is independent of m and E. So by Proposition 7.1, we have

$$
\left|\mu E-\tilde{\mathcal{L}}^{n+m} \chi_{E}(x)\right| \leq \frac{C}{n^{\beta-1}} \mu E \leq \frac{C m^{\beta-1}}{n^{\beta-1}} \mu E \quad \forall x \in I \backslash I_{0}
$$

for all $n>0$, where $C \geq B \epsilon^{-1}$.

Secondly, we consider the case that there exists $l \leq j \leq m$ such that $f^{m-j} E=$ $E^{(j)} \subset I_{0}$, where l is as in Lemma 7.2. We may assume that j is the largest number with this property. Take

$$
g(x)=\frac{1}{\mu E} \tilde{\mathcal{L}}^{m-j} \chi_{E}(x)=\frac{1}{\mu E} \prod_{i=1}^{m-j} \eta\left(f^{i} x_{m-j}\right)
$$

where $x_{m-j}=f^{-m+j} x \cap E$. Clearly $g(x)$ satisfies all requirements in Lemma 7.2. So we get that for all $n>0$

$$
1-\frac{1}{\mu E} \tilde{\mathcal{L}}^{n+m} \chi_{E}(x)=1-\tilde{\mathcal{L}}^{n+j} g(x) \leq \frac{D A_{+}}{n^{\beta-1}} \quad \forall x \in I \backslash I_{0} .
$$

Recall (7.3), and note that r only depends on f. We may assume $l>r$. Since $j \leq m$, we have $A_{+} \leq \frac{2^{\beta} m^{\beta-1}}{a^{\prime} \beta_{-}^{\beta-1}}$. So the result follows with $C \geq \frac{2^{\beta} D}{a^{\prime} \beta_{-}^{\beta-1}}$.

Lastly, we consider the case that $f^{m-j} E=E^{(j)} \subset I_{0}$ hold only for $j<l$. We take a partition $E=E_{l-j} \bigcup\left(\cup_{i=1}^{l-j-1} \cup_{q=1}^{Q} E_{i, q}\right)$ such that $f^{m+i-1} E_{i, q}=I_{q}$ and $f^{m+l-j-1} E_{l-j}=I_{0}$. For each $E_{i, q}$, we use the argument similar to the first case for the function $g(x)=\left(\mu E_{i, q}\right)^{-1} \tilde{\mathcal{L}}^{m+i} \chi_{E_{i, q}}(x)$ to get that for all $n>0$,

$$
\begin{equation*}
\left|\mu E_{i, q}-\tilde{\mathcal{L}}^{n+m+i} \chi_{E_{i, q}}(x)\right| \leq \frac{C m^{\beta-1}}{n^{\beta-1}} \mu E_{i, q} \quad \forall x \in I \backslash I_{0} \tag{7.4}
\end{equation*}
$$

Also, we have $f^{m-j} E_{l-j}=E^{(l)}$. So by taking $g(x)=\left(\mu E_{l-j}\right)^{-1} \tilde{\mathcal{L}}^{m-j} \chi_{E_{l-j}}(x)$, the same reasons as in the second case imply that for all $n>0$,

$$
\begin{equation*}
\mu E_{l-j}-\tilde{\mathcal{L}}^{n+m+l-j} \chi_{E_{l-j}}(x) \leq \frac{C m^{\beta-1}}{n^{\beta-1}} \mu E_{l-j} \quad \forall x \in I \backslash I_{0} . \tag{7.5}
\end{equation*}
$$

Since $i \leq l$ and $l-j \leq l,(7.4)$ and (7.5) still hold if we use $\tilde{\mathcal{L}}^{n+m+l}$ instead of $\tilde{\mathcal{L}}^{n+m+i}$ and $\tilde{\mathcal{L}}^{n+m+l-j}$ respectively. Hence the result follows if we take summation.

Proof of Corollary of Theorem B.

Use (7.2) and take $F=\chi_{E^{\prime}}$ and $G=\chi_{E}$, we get

$$
\mu\left(f^{-n-m} E^{\prime} \cap E\right)-\mu E^{\prime} \cdot \mu E=\mu\left(\chi_{E^{\prime}} \cdot\left(\tilde{\mathcal{L}}^{n+m} \chi_{E}-\mu E\right)\right) .
$$

Since $E^{\prime} \subset I \backslash I_{0}$,

$$
\begin{aligned}
& \mu E^{\prime} \cdot \min _{x \in I \backslash I_{0}}\left(\mu E-\tilde{\mathcal{L}}^{n+m} \chi_{E}(x)\right) \\
\leq & \mu\left(\chi_{E^{\prime}} \cdot\left(\mu E-\tilde{\mathcal{L}}^{n+m} \chi_{E}\right)\right) \leq \mu E^{\prime} \cdot \max _{x \in I \backslash I_{0}}\left(\mu E-\tilde{\mathcal{L}}^{n+m} \chi_{E}(x)\right) .
\end{aligned}
$$

Therefore the first inequality follows from Lemma 7.3 with $n+l$ replaced by n. For the second one, we take $g(x)=(\mu E)^{-1} \chi_{E}(x)$ and then apply Lemma 7.2.i) with $j=m$ to get

$$
\mu E-\tilde{\mathcal{L}}^{n+m} \chi_{E}(x) \geq \frac{D^{\prime} A_{-}}{(n+m)^{\beta-1}} \mu E \quad \forall x \in I \backslash I_{0}
$$

for all $n>0$. By (7.3), $A_{-} \geq(2 a)^{-1} \beta_{+}^{1-\beta} m^{\beta-1}$. So we get the inequality by taking $C^{\prime} \leq(2 a)^{-1} \beta_{+}^{1-\beta} \cdot D^{\prime}$.

Acknowledgment. It is my pleasure to thank Professor Lai-Sang Young for introducing me this problem. I also wish to thank Professor Sheldon Newhouse for his valuable suggestion and helpful conversation.

References

[B] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math., vol. 470, Springer, New York, 1975.
[CF1] P. Collet and P. Ferrero, Absolutely continuous invariant measure for expanding pick maps of the interval expect at a marginal fixed point, Instabilities and nonequilibrium structures, E. Tirapehui and D. Villaroel Eds., Kluwer Academic Publishers, New York, 1989.
[CF2] P. Collet and P. Ferrero, Some limit ratio theorem related to a real endomorphism in case of neutral fixed point, Ann. Inst. Henri Poicaré 52 (1990), 283-301.
[DS] N. Dunford and J. Schwartz, Linear Operator Part I, Interscience Publishers, New York, 1958.
[M] M. Mori, On the intermittency of a piecewise linear map, Tokyo J. Math. 16 (1993), 411-428.
[P] G. Pianigiani, First return map and invariant measures, Israel J. Math. 35 (1980), 32-48.
[Y] L.-S. Young, Recurrence time and rate of mixing, preprint.
Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Current address: Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, USA

