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Abstract. Let Mn be a compact C∞ Riemannian manifold of dimension
n ≥ 2. Let Diffr(Mn) be the space of all Cr diffeomorphisms of Mn, where
1 < r ≤ ∞. For a Cr diffeomorphism f in Diffr(Mn) with a hyperbolic
attractor Λf on which f is topologically transitive, let U(f) be the C1 open
set of Diffr(Mn) such that each element in U(f) can be connected to f
by finitely many C1 structural stability balls in Diffr(Mn). Then by the
structural stability, any element g in U(f) has a hyperbolic attractor Λg and
g|Λg is topologically conjugate to f |Λf . Therefore, the topological entropy
h(g|Λg) is a constant function when it is restricted to U(f). However, the
metric entropy hµ(g) with respect to the SRB measure µ = µg can vary.
We prove that the infimum of the metric entropy hµ(g) on U(f) is zero.

0. Introduction

Let Mn be a compact C∞ Riemannian manifold of dimension n ≥ 2, and
Diffr(Mn) be the space of all Cr-diffeomorphisms of Mn, 1 < r ≤ ∞. Sup-
pose f ∈ Diffr(Mn) has a hyperbolic attractor Λf . Consider an open set
U(f) ⊂ Diffr(Mn) in C1-topology consisting of Cr diffeomorphisms g that has
a hyperbolic attractor Λg topologically conjugate to Λf . (The precise defini-
tion of U(f) is given in Section 1.) Since the hyperbolic attractors of any two
elements in U(f) are topologically conjugate, the topological entropy h(g|Λg)
is a constant function restricted to U(f). On the other hand, every g ∈ U(f)
has an SRB measure µg on Λg. The metric entropy hµg(g) can vary in U(f).
It has been shown that the dependence of µg on the map g is smooth when
the maps involved have a higher degree of smoothness (see [Ru] and references
therein). In this article, we prove that the infimum of the metric entropy hµg(g)
over U(f) is zero.

In the special case of Anosov systems, if we denote by Ar(Mn) the set of all
Cr Anosov diffeomorphisms of Mn, and let U(f) be the connected component
of Ar(Mn) in Cr topology that contains f , then by structure stability, all
elements g in U(f) are topologically conjugate and therefore the topological
entropy h(g) is constant over U(f), but the metric entropy hµg(g) over U(f)
with respect to the SRB measures µg can be arbitrarily small.
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This result is interesting in several aspects. First, the topological entropy
tells the global complexity of a dynamical system. If a dynamical system
has a positive topological entropy, it can be thought as a chaotic dynamical
system. However, the topological entropy can not tell the level of complexity of
a chaotic dynamical system. As a macroscopic quantity, the metric entropy is
the standard value that measures the level of complexity of a chaotic dynamical
system. Our result says that, given a hyperbolic attractor, there is no barrier
to reduce its metric entropy along a C1 homotopic path to a number as small
as one wishes, while preserving the uniform hyperbolicity and the topological
entropy. Second, our construction of the homotopy gives an example where
the connection between a global quantity such as metric entropy and local
perturbations can be concretely described. Third, the result leads to many
interesting questions one may ask about the nature of the variation of metric
entropy within the open neighborhood U(f). For example, is it true that
the maximal value of the metric entropy hµg(g) on U(f) is the value of the
topological entropy h(f)? Is there a way to perturb the diffeomorphism f
in a direction so that its metric entropy hµg(g) either decreases or increases
monotonically? Are there any local extrema of the metric entropy hµg(g) in
U(f)?

To prove this result, the idea of perturbing a map at a fixed point in the
direction of unstable manifold is quite natural. Since µ is an SRB measure, we
have hµ(f) =

∫
log | det Dfx|Eu

x
|dµ. So if we reduce the expanding rate near a

fixed point p, a typical orbit will spend more time near p where | det Dfx|Eu
x
| is

close to 1. But the approach by considering such an orbit is difficult because
we do not know whether a typical orbit will remain typical after perturbation.

In order to get control of the SRB measure for perturbed maps, we need
distortion estimates of the unstable Jacobian along orbits independent of the
ever-decreasing expansion rate at the fixed point. We apply a technique used
in studying almost Anosov systems ([HY], [Hu1]). However, in this paper,
we deal with a family of diffeomorphisms {ft : 0 ≤ t ≤ 1} whose expansion
decreases to 1 near a fixed point p and for the limiting map f0, the expanding
rate at p is 1. We obtain that the stable foliation is absolute continuous and
the Jacobian of the holonomy maps are uniformly bounded for all ft, and the
distortion estimates of the unstable Jacobian are also uniformly bounded for
all ft as long as the initial points of the backward orbits are away from p.

Our construction also gives that every diffeomorphism with hyperbolic at-
tractor is homotopic to a diffeomorphism that has an almost hyperbolic at-
tractor, and has an infinite SRB measure on it.
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The rest of the article is divided into 5 sections. The statement of results is
given in the next section. In Section 2 we describe in detail how the perturba-
tion is constructed. We show that any map f ∈ Diffr(Mn) with a hyperbolic
attractor can be perturbed successively in an appropriate way within U(f)
such that the perturbed map has a desired normal form in a neighborhood of
its fixed point. In Section 4, we prove the uniform boundedness of the distor-
tion of the unstable Jacobian for all perturbed maps. In Section 5, we give
proofs of our theorems.

1. Statement of Results

For the definition of standard terms such as uniform hyperbolicity, topologi-
cal conjugacy, Lyapunov exponents, topological and metric entropies, we refer
readers to the book [KH].

Suppose that µ is an invariant measure for f ∈ Diffr(Mn) that has positive
Lyapunov exponents at almost every point x. Then f has a unstable manifold
W u(x) at such x. A measurable partition ξ of Mn is said to be subordinate
to unstable manifolds if for µ-a.e x, ξ(x) ⊂ W u(x) and ξ(x) contains an open
neighborhood of x in W u(x). Let {µξ

x} denote a canonical system of conditional
measures of µ with respect to ξ, that is, for every measurable set B ⊂ Mn,
x → µξ

x(B) is measurable and

ν(B) =

∫

X

νξ
x(B)dν(x).

(For a reference, see e.g. [Ro].) We say that a measure µ on Λf has absolutely
continuous conditional measures on unstable manifolds, if for every measurable
partition ξ subordinate to unstable manifolds, µξ

x is absolutely continuous with
respect to mu

x for µ-a.e. x ∈ Λf , where mu
x denotes the Lebesgue measure

induced on W u(x) (see [LS] for more details). Now we give a definition for
SRB measure which can be found in [BY] (see also e.g. [HY], [Hu1]).

Definition 1. An f -invariant Borel probability measure µ on M is called an
Sinai-Ruelle-Bowen measure or an SBR measure for f : M → M if

i) (f, µ) has positive Lyapunov exponents almost everywhere;
ii) µ has absolutely continuous conditional measures on unstable mani-

folds.

It is well known that if µ is an SRB measure on a hyperbolic attractor of f ,
then for any continuous function ψ on M , we have

lim
n→∞

1

n

n−1∑
i=0

ψ(f ix) →
∫

ψdµ
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for Lebesgue almost every x in the basin of the attractor (see [S]). Also, an SRB
measure µ is the only invariant measure satisfying the variational principle

(1.1) hµ(f) =

∫

Λ

log | det Dfx|Eu
x
|dµ,

where hµ(f) is the metric entropy of f with respect to µ ([Bo]). This formula
also follows from the entropy formula and the fact that the righthand side of
(1.1) is equal to the integral of the sum of the positive Lyapunov exponents.

A map f ∈ Diffr(Mn) is said to possess a hyperbolic attractor Λf if there is
an open set V ⊃ Λf such that f is hyperbolic on Λf and ∩∞n=1f

n(V ) = Λf .
Suppose f ∈ Diffr(Mn) has a hyperbolic attractor Λf . By the structural

stability, there is a sufficiently small ε-neighborhood of f with respect to C1

topology (called a C1 structural stability ball),

B1
ε (f) = {g ∈ Diffr(Mn) | ‖f − g‖1 < ε},

where ‖ · ‖1 means the C1 norm, such that any g ∈ B1
ε (f) has a hyperbolic

attractor Λg and g|Λg is topologically conjugate to f |Λf . We say that a map
g ∈ Diffr(Mn) can be connected with f if there are finitely many neighborhoods
{B1

εi
(fi)}n

i=0 such that f0 = g and fn = f and fi ∈ B1
εi+1

(fi+1), 0 ≤ i ≤ n− 1.

Let U(f) be the collection of such diffeomorphisms g in Diffr(Mn) which can
be connected with f in the above sense. It is clear that U(f) is an open set
of Diffr(Mn) with respect to the C1-topology. If restricted to the hyperbolic
attractors, any two maps in U(f) are topologically conjugated by a Hölder
continuous homeomorphism. Hence they have the same topological entropy.

For g ∈ U(f), let µg be its SRB measure on Λg.
For convenience we assume that f is topologically transitive on Λf . Hence,

all g ∈ U(f) are topologically transitive on Λg, and the SRB measrues are
unique. If otherwise we can use spectral decomposition ([Bo]) and consider a
topologically transitive component instead.

Theorem A. Suppose f ∈ Diffr(Mn) has a hyperbolic attractor Λf on which
f is topologically transitive. Then there is a C1 path

H = {ft ∈ U(f) | 0 < t ≤ 1}
such that f1 = f and

(1.2) lim
t→0+

hµt(ft) = 0,

where µt denotes the unique SRB measure of ft on the hyperbolic attractor Λft.

Remark 1.1. If f is an Anosov diffeomorphism, then U(f) is a connected
component of the subspace Ar(Mn) of all Anosov diffeomorphisms with respect
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to C1-topology in Diffr(Mn). The theorem says that on any connected compo-
nent of Ar(Mn), the infimum of hµ(f) is zero.

Corollary 1.2. As t → 0, µt → δO(p) in the weak∗ topology, and

hµ(ft) → 0 = hδO(p)
(f0),

where p is a fixed or periodic point, δO(p) is the invariant measure supported
on the orbit O(p) of p.

Our proof of the theorem also gives that the limiting diffeomorphism f0

has an almost hyperbolic attractor Λf0 , on which f0 admits an infinite SRB
measure. A closed f -invariant subset Λ ⊂ M is called an almost hyperbolic
set if it is hyperbolic everywhere except for a finite set S. We refer [Hu2] for
precise definition.

The following definition of an infinite SRB measure for an almost hyperbolic
attractor can be found in [Hu1]. Here for a subset Γ ⊂ M , we denote by fΓ

the first return map on Γ, and by µΓ the normalization of µ|Γ as µ(Γ) < ∞.

Definition 2. An f -invariant Borel measure µ on M is called an infinite SBR
measure, if µ(M) = ∞ and for any open set V ⊃ S,

i) µ(M\V ) < ∞,
ii) (fM\V , µM\V ) has positive Lyapunov exponents almost everywhere, and

µM\V has absolutely continuous conditional measures on unstable man-
ifolds of f .

We say that maps f and g are Cr-homotopy in a subset F ⊂ Diffr(Mn)
if there is a continuous map H : [0, 1] × Mn → Mn such that H(0, ·) = f ,
H(1, ·) = g, H(t) = H(t, ·) ∈ F ∀t ∈ [0, 1], and H(·) : [0, 1] → F is continuous

with respect to Cr topology for F. We also denote by U(f) the closure of U(f)
in Cr topology.

Theorem B. Any diffeomorphism f in Diffr(Mn) that has a hyperbolic at-

tractor is Cr-homotopic to a diffeomorphism f0 in U(f) that has an almost
hyperbolic attractor on which f0 admits an infinite SRB measure.

Remark 1.3. In the case of Anosov systems, the theorem implies that any
Anosov diffeomorphism f is Cr-homotopic to an almost Anosov diffeomor-
phism in A(Mn) that admits an infinite SRB measure.

In [HY], it is proved that there is an almost Anosov diffeomorphism on
the two dimensional torus that has an infinite SRB measure. This theorem
generalizes the result to almost hyperbolic attractors and to higher dimensional
manifolds.
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Remark 1.4. By the same arguments as in [HY] we can prove that f0 does
not admit SRB measures, and limn→∞

∑n−1
i=0 δf ix = δO(p) for Lebesgue almost

every point in the basin of the attractor.

2. Construction

Suppose f ∈ Diffr(Mn) has a hyperbolic attractor Λf on which f is topolog-
ically transitive. Without loss of generality, we will assume that f has a fixed
point p. Otherwise, we can consider a periodic orbit and deform the maps in
the same way near every point in the orbit. We will construct a family

{ft ∈ U(f) | 0 ≤ t ≤ 1}
of maps having hyperbolic attractors Λft on which ft are topologically transi-
tive. The family satisfies the following main properties:

(1) The fixed point p is preserved for the family and maps in the family
are obtained by perturbing f in a small neighborhood of p.

(2) The contracting rates along the stable directions for the maps in the
family are bounded above by a constant strictly less than 1, while the
expanding rates along the unstable directions for the maps in the family
in a small neighborhood of p can be arbitrarily close to 1 as t → 0+.

2.1. Linearizing the map near p. We first show the following lemma.

Lemma 2.1. For the given map f as above, there is g ∈ Diffr(Mn) having
the same fixed point p such that the following properties hold:

(1) g ∈ U(f) is C1 close to f , and Cr-homotopy to f in U(f).
(2) g is identical to f outside an ε1−neighborhood of p.
(3) There is a coordinate system η : Rn → Mn near p such that η(0) = p

and η−1 ◦ g ◦ η is a linear map in an ε0 (< ε1)− open ball centered at
0 ∈ Rn of the form

(2.1) L

(
xu

xs

)
=

(
Axu

Bxs

)
,

where x = (xu, xs) are coordinates provided by the unstable and stable
subspaces of Df at p, A is an expanding linear map, and B is an
contracting linear map.

Let nu and ns be the dimensions of the unstable and stable subspaces of Df
at p. We may assume that the coordinate system provided by the unstable and
stable subspaces are just Euclidean spaces Rnu

and Rns
with Rnu ⊗Rns

= Rn.
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Proof. We identify p with the origin 0 of Rn. There exists an ε1-neighborhood
of p in Mn such that f is C1 close to its linear approximation Df(0) in this
ε1-neighborhood. Identify this ε1-neighborhood with an open ball Bε1(0) of
radius ε1 centered at 0 in Rn.

In the coordinate system given by the unstable and stable subspaces Rnu

and Rns
, the linear operator Df(0) takes the form

Df(0)

(
xu

xs

)
=

(
Axu

Bxs

)
,

Take a smaller open ball Bε0(0) of radius 0 < ε0 < ε1 centered at 0. Extend
the map (f −Df(0))|Bε0 (0) to a Cr map fh on Bε1(0) so that ‖fh‖+ ‖Dfh‖ is
small. This can be done as long as the ratio ε0/ε1 is small enough. Let

D(ε0) = sup
x∈Bε0 (0)

{‖f(x)−Df(0)x‖+ ‖Df(x)−Df(0)x‖}.

We can require that

‖fh‖+ ‖Dfh‖ ≤ 2D(ε0).

Clearly,

lim
ε0→0

D(ε0) = 0.

Let τ(x) be a smooth map such that it is the identity inside Bε0(0) and it
maps every point to zero outside of Bε1(0). Define

g =

{
f if x 6∈ Bε1(0);

f − τ ◦ fh if x ∈ Bε1(0).

The map g is linear in Bε0(0). The C1-distance between g and f is bounded
by the ‖fh‖ + ‖Dτ‖‖Dfh‖. Note that by selecting a small ratio ε0/ε1, the
map τ can be made as smooth as we wish with derivatives uniformly bounded.
So, the C1-distance between g and f can be is less than any given number.
It implies that g ∈ Diffr(Mn) is in a C1-neighborhood of f . Thus, g has a
hyperbolic attractor Λg on which g is topologically transitive. Clearly, g is
Cr-homotopic to f in U(f). This completes the proof. ¤

Note that, other than using Df(0)x, the linear approximation, we can use
other nonlinear choices near 0. The only condition to be satisfied is that these
choices are Cr and sufficiently C1-close to f in an ε1-neighborhood of 0.

Corollary 2.2. The linear map in (2.1) near the origin 0 can be changed to
any Cr map which is C1 close to f in a neighborhood of 0, in particular, a
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map in the form of

(2.2) x =

(
xu

xs

)
→

(
(A + C(xs))xu

Bxs

)
,

where C(xs) are a linear maps for each xs, depending on xs in Cr and satisfying
C(0) = 0.

Now we further perturb the map g inside the small neighborhood Bε1(0).
The perturbation preserves the direct product structure form (2.1) near the
point 0. We need to perturb the map along a homotopy path in U(f) so
that the matrices A and B become diagonal matrices first. In the unstable
direction, we need to further reduce the expanding rates to a number close
to 1. In the stable direction, the contracting rate will be a constant. The
perturbation is no longer in a small C1 neighborhood of f . But we will show
that the perturbed maps are still uniformly hyperbolic and homotopic to f in
U(f).

Lemma 2.3. Let g be the map obtained in Lemma 2.1. Assume that a Cr

diffeomorphism g1 ∈ Diffr(Mn) has the following properties:

(1) g1(x) = f(x) for x 6∈ Bε0(0) and g1(0) = 0.
(2) g1(x) preserves the direct product structure Rnu

and Rns
for x ∈ Bε0(0),

i.e., g1(x) takes the form

g1

(
xu

xs

)
=

(
Ã(xu)

B̃(xs)

)
if x =

(
xu

xs

)
∈ Bε0(0),

where Ã(xu) ∈ Rnu
and B̃(xs) ∈ Rns

.
(3) Ã(xu) is expanding on Rnu

and B̃(xs) contracting on Rns
, both uni-

formly.

Then, when ε0 is sufficiently small, g1 has a hyperbolic attractor Λg.

A direct corollary of this lemma is that when Ã(xu) and B̃(xs) are homotopic
to the linear maps Axu and Bxs in Diffr(Mn), then g1 is in U(f).

Proof. Since we assume that f has a hyperbolic attractor Λf on which f is
topologically transitive, so is g in Lemma 2.1. Let Λg be the corresponding
hyperbolic attractor of g. Take an ε-neighborhood Oε(Λg) such that the stable
and unstable subspaces are extended to the entire neighborhood of the hyper-
bolic set Λg [KH]. We may also assume that ε0 ≤ ε, thus the entire Bε0(0)
is contained in Oε(Λg). Take an appropriate coordinate system (almost Lya-
punov metric) on the neighborhood Oε(Λg) such that the stable and unstable
subspaces are nearly orthogonal. At each point x inside the set Bε0(0), the
unstable and stable subspaces Eu

x and Es
x for Dg(x) are within Cε0-distance
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(Grassmannian distance) of Rnu
and Rns

, respectively, for some constant C.
We assume that for some λ < 1 < µ, we have

‖Dg(x)v‖ ≥ µ‖v‖, v ∈ Eu
x ; ‖Dg(x)w‖ ≤ λ‖w‖, w ∈ Es

x.

To show that g1 is uniformly hyperbolic, we first prove that both Dg1 and
D−1g1 admit an invariant cone field and they induce contracting operators on
these cone fields. As a consequence, we obtain exponential splitting along any
orbit of g1 inside the open neighborhood Oε(Λg). We then show the expanding
and contracting rates along the invariant subspaces of the exponential splitting
are uniform. In the process of the proof, we may need to further decrease the
radius ε0 for Bε0(0). But such modification will not affect the validity of the
arguments since it depends only on the map g.

The cone field Cu
x along the unstable subspaces is defined as follows.

Cu
x =

{
{(v, w) ∈ TxM

n : v ∈ Eu
x , w ∈ Es

x, ‖w‖ ≤ α‖v‖ for x 6∈ Bε0(0)};
{(v, w) ∈ TxM

n : v ∈ Rnu
, w ∈ Rns

, ‖w‖ ≤ α‖v‖ for x ∈ Bε0(0)},
where 0 < α < 1. The cone field Cs

x along the stable subspaces is defined in
a similar way. Note that this cone field is not continuous. But this should
not affect the Hölder continuity of stable and unstable subspaces because of
invariance.

We just need to show that the derivative operator is contracting on this
cone field, since invariance follows the contraction. Given a point x, if both x
and g1(x) are inside or outside of Bε0(0), the contraction follows automatically
since Eu and Es are invariant under Dg1 when it is restricted to the outside
of Bε0(0) and since Rnu

and Rns
are invariant under Dg1 when it is restricted

to the inside of Bε0(0). So, we just need to verify two situations: x ∈ Bε0(0)
but g1(x) 6∈ Bε0(0); and g1(x) ∈ Bε0(0) but x 6∈ Bε0(0).

Now we consider the case x ∈ Bε0(0) but g1(x) 6∈ Bε0(0).
Take (v, w) ∈ Cu

x , v ∈ Eu
x , w ∈ Es

x. Then Dg1(x)(v, w) = (DÃv, DB̃w) is in
Rnu ⊕ Rns

coordinate system. In the Eu ⊕ Es coordinate system, we have

(P11DÃv + P12DB̃w, P21DÃv + P22DB̃w) ∈ Eu ⊕ Es,

where Pij denotes the coordinate change matrices and DÃ,DB̃ are derivative

operators of Ã(xu) and B̃(xs). Since p is a fixed point of g and g1 is C0-close
to g, ‖g1(x)‖ ≤ 2ε0. So, we have ‖P11‖, ‖P22‖ ≥ (1 − ε) and ‖P12‖, ‖P21‖ ≤ ε
where ε = Cε0 for some constant C. Estimating the norms, we have

‖P11DÃv + P12DB̃w‖ ≥ ((1− ε)µ− αελ̃)‖v‖;
‖P21DÃv + P22DB̃w‖ ≤ (εµ̃ + αλ(1− ε))‖v‖,



10 HUYI HU, MIAOHUA JIANG, AND YUNPING JIANG

where µ̃, λ̃ denote the maximal expanding rate and minimal contracting rate
of Ã and B̃, respectively. We have

(2.3) ‖P21DÃv + P22DB̃w‖ ≤ α · λ(1− ε) + εµ̃/α

(1− ε)µ− αελ̃
· ‖P11DÃv + P12DB̃w‖.

If ε0 is sufficiently small, we have

λ(1− ε) + εµ̃/α

(1− ε)µ− αελ̃
< 1.

The proof for the other case is completely parallel. Thus we proved invari-
ance of the cone field around the stable subspaces.

We now prove that g1 is uniform hyperbolic. We only consider the unstable
direction. The proof for stable direction is the same. Since p is a fixed point,
we can take 0 < ε2 ≤ ε0 such that Bε2(0) ∪ g1Bε2(0) ∪ g−1

1 Bε2(0) ⊂ Bεo(0). So
for any x, either both x and g1(x) are outside of Bε2(0), or both x and g1(x)
are inside of Bε0(0). Note that the estimates obtained in (2.3) remain valid if
we replace ε0 by a smaller number ε2. Thus, if both x and g1(x) are outside
of Bε2(0), taking (v, w) ∈ Cu

x , ‖w‖ = α̃‖v‖ for some 0 ≤ α̃ ≤ α < 1, and using
the invariant splitting of g, we have

‖Dg1(x)(v, w)‖ = ‖(Dg1(x)v, Dg1(q)w)‖
= max(‖Dg1(x)v‖, ‖Dg1(x)w‖) = ‖Dg1(x)v‖ ≥ µ‖v‖,

where we use an equivalent Finsler metric in estimating the expanding rates.
If both x and g1(x) are inside of Bε0(0), using the Rnu

and Rns
coordinates,

we have the same estimates in Finsler metric. We thus conclude that g1 is
uniformly hyperbolic. ¤

Corollary 2.2 and Lemma 2.3 give us plenty of freedom to perturb the map
f inside a fixed neighborhood Bε0(0). In order to obtain bounded distortion
along unstable manifold, we will need to use Lemmas 2.1 and 2.3 to obtain
a map g1 ∈ U(f) in the form of (xu, xs) → (Ã(xu), B̃(xs)). Then, we apply
Corollary 2.2 to obtain another map in U(f) that has the form (xu, xs) →
(Ã(xu) + C(xs)xu, B̃(xs)) near the fixed point p.

2.2. Constructing the map ft. We now construct a family

H = {ft ∈ U(f) | 0 ≤ t ≤ 1}
such that the infimum of metric entropies of maps in this family with respect
to their SRB measures is zero.

Recall that ns and nu are dimensions of Rns
and Rnu

, respectively. Take
an even integer m such that nu < m ≤ nu + 2, and denote β = 1/m. Hence,
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βnu < 1. Take a family of smooth increasing functions φt : [0, 1/2) → R+ that
satisfies the following conditions.

(1) φt(r) = (1− rm)−β for r ≥ t,
(2) φt(r) = (1− (t/2)m)−β > 1 is a constant for 0 ≤ r ≤ t/2,
(3) φ′′t (r) is bounded uniformly in t and nonnegative when t

2
≤ r ≤ t.

Note that if r = 1/nβ ∈ [t, 1/2), then φ′(r) > 0 and

1

nβ
φt(

1

nβ
) =

1

(n− 1)β
.(2.4)

When t = 0, rφ0(r) is essentially a special Manneville-Pomeau map.
Take two open neighborhoods Ω0 ⊂ Ω1 such that p ∈ Ω0 ⊂ Ω0 ⊂ Ω1. Denote

κs = ‖Df(0)|Es
0
‖, the contracting rate at 0 in the stable direction. Define a

family of diffeomorphisms ft such that

(1) for x ∈ Ω0,

(2.5) ft

(
xu

xs

)
=

(
[φt(|xu|) + |xs|2]xu

κsxs

)
, if x =

(
xu

xs

)
;

(2) for x 6∈ Ω1, ft(x) = f(x);
(3) ft is uniformly hyperbolic for all t > 0 and the contracting rate is

independent of t;
(4) the expanding rate outside of Ω0 is bounded below by a constant µ > 1

with µ independent of t.

We also require that the second derivative of ft is uniformly bounded for
all t and x ∈ Mn. For simplicity, we use | · | to denote both the absolute
value of a number and the Euclidean norm of a vector. The existence of ft is
guaranteed by Lemma 2.1, Corollary 2.2, and Lemma 2.3 when t is sufficiently
small. We note that ft is C∞ on Ω0 since m is an even number. It is clear
that ft is Cr-homotopic to f for all 0 < t ≤ 1. Hence, ft has an hyperbolic
attractor Λft , and therefore ft ∈ U(f) for all 0 < t ≤ 1 by the statement after
Lemma 2.3.

3. Preliminaries

Being uniformly hyperbolic, the maps constructed in the previous section
have many special properties. We list some of them with only sketches of proofs
since details can be found in many books such as [KH, HPS]. Let Eu

x(ft) and
Es

x(ft) be the stable and unstable subspaces with respect to ft.

Lemma 3.1. The maps x → {Eu
x(ft)} and x → {Es

x(ft)} are Hölder continu-
ous and the Hölder exponents and constants can be chosen in a way independent
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of 0 ≤ t ≤ 1. More precisely, there exist γ > 0, H > 0 such that for all t > 0,
x, x′ ∈ Mn,

d
(
Eu

x(ft), E
u
x′(ft)

)
, d

(
Es

x(ft), E
s
x′(ft)

) ≤ Hd(x, x′)γ,

where the distance between subspaces is the Grassmannian distance.

Proof. Note that ‖Dft(x)|Eu
x (ft)‖ ≥ 1 and ‖Dft(x)|Es

x(ft)‖ ≤ λs < 1 for all
x ∈ Λft and t ≥ 0. The conclusions follow from the fact that the Hölder
exponent and constant depend only on the Lipschitz constant of the map ft

and the gap between the expansion and contraction rates. See [HPS]. ¤
For ε > 0, we denote

Eu
x,ft

(ε) = {v ∈ Eu
x(ft) : |v| ≤ ε} and Es

x,ft
(ε) = {v ∈ Es

x(ft) : |v| ≤ ε}
and

Ex,ft(ε) = Eu
x,ft

(ε)× Es
x,ft

(ε).

Proposition 3.2. For each t ≥ 0, there exist two continuous foliations Fu(ft)
and Fs(ft) on Λft tangent to Eu(ft) and Es(ft) respectively for which the fol-
lowing statements hold.

(1) The leaf of Fs(ft) through x, denoted by Fs(x, ft), is the stable manifold
at x, i.e.

Fs(x, ft) = W s(x, ft)

= {x′ ∈ Λft : ∃C = C ′
x, s.t. d(fn

t (x), fn
t (x′)) ≤ C(κs

t)
n ∀n ≥ 0},

where κs
t denotes the contracting rate of ft on the stable manifold.

(2) The leaf of Fu(ft) through x, denoted by Fu(x, ft), is the unstable or
weak unstable manifold at x, i.e.

Fu(x, ft) = W s(x, ft) = {x′ ∈ Λft : lim
n→∞

d(f−n
t (x), f−n

t (x′)) = 0}.
(3) There exist constants δ > 0 and D > 0 such that for all t ≥ 0, x ∈ Λft,

if Fu
δ (x, ft) is the component of Fu(x, ft) ∩ expx Ex,ft(δ) containing x,

then exp−1
x Fu

δ (x, ft) is the graph of a function

φu
x,ft

: Eu
x,ft

(δ) → Es
x,ft

(δ)

with φu
x,ft

(0) = 0 and ‖φu
x,ft
‖Cr ≤ D. The analogous statement holds

for Fs
δ(x, ft).

Proof. There results follow from Theorem 5.5 and Theorem 5A.1 in [HPS]. ¤
For convenience we will write W u(x, ft) = Fu(x, ft), W u

δ (x, ft) = Fu
δ (x, ft),

etc. and refer to W u(x, ft) and W u
δ (x, ft) as the “unstable manifold” and “local

unstable manifold” respectively at x.
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Further, for simplicity, we use Eu, Es, W u and W s to stand for invariant
subspaces and sub-manifolds, when doing so will not cause much confusion.

For x′ ∈ W s(x, ft), let ds(x, x′) denote the distance between x and x′ mea-
sured along W s(x, ft) with the induced metric. For x′′ ∈ W u(x, ft), the dis-
tance du(x, x′′) is defined similarly.

Lemma 3.3. There is Js > 0 such that for any x ∈ Λft, x′ ∈ W s(x, ft),

| det Dfn
t (x)|Eu

x (ft)|
| det Dfn

t (x′)|Eu
x′ (ft)|

≤ Js
(
ds(x, x′)

)γ
, ∀t ≥ 0.

Proof. It follows from the standard arguments and the fact that ft is uniformly
contracting along the stable manifold and Eu

x(ft) is Hölder continuous. ¤
One of the important ingredients in the proof of the main theorem is that the

W s-foliation for ft is absolute continuous with a uniformly bounded Jacobian.
Let ∆1 and ∆2 be two W u leaves for ft. A holonomy map θ : ∆1 → ∆2

is defined by sliding along the W s leaves for ft, i.e. for x ∈ ∆1, θ(x) ∈
∆2 ∩W s(x, ft). We have the following proposition.

Proposition 3.4. Given D1 > 0, there exists Js
1 > 0 such that for every

(∆1, ∆2; θ) with ds(x, θ(x)) < D1 ∀x ∈ ∆1, for every x′ ∈ ∆1 and ε > 0 with
Bu(x′, ε) ⊂ ∆1,

mu(Bu(x′, ε)) ≤ Js
1m

u
(
θBu(x′, ε)

)
.

Proof. Let D be any small disk in ∆1. We will argue that mu(D) ≈ mu(θD),
where mu denotes the Lebesgue measure on W u-sub-manifolds for ft, and “≈”
means “up to a constant”.

Let

κs
− = κs

−(ft) = max{‖Df−1
t (x)|Es

x(ft)‖−1 : x ∈ Λft},
that is, κs

− is the minimal norm of Dft restricted to the stable bundle Es(ft).
By taking a sufficiently large iterate of ft, we may assume that fn

t (D) and
fn

t

(
θD

)
are close sufficiently so that the “diameters” of fn

t (D) and fn
t (θD) are

much larger than the distance ds(y, θy) for any y ∈ fn
t (D). Here we also use θ

to denote the holonomy map from fn
t (∆1) to fn

t (∆2).
Take a finite cover {Bu(yi, r)}k

i=1 of fn
t D consisting balls of radius r, where

r = 3(κs
−)n, such that for any y′ ∈ fn

t (D), there are at most C1 such balls
covering this point, where C1 only depends on the dimension of W u.

Since ds(y′, θy′) ≤ (κs
−)n for any y′ ∈ fn

t (D), we know that θBu(yi, r) con-
tains a ball of radius at least (κs

−)n and is contained in a ball of radius at most
5(κs

−)n. Therefore, we have

(3.1) mu(Bu(yi, r)) ≈ mu(θBu(yi, r)).
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By Lemma 3.3, we have

(3.2)
∣∣det Dfn

t (x′)|Eu
x′ (ft)

∣∣ ≈
∣∣det Dfn

t (θx′)|Eu
θx′ (ft)

∣∣ ∀x′ ∈ f−n
t Bu(yi, r).

Using the fact that the C2 norm of ft is uniformly bounded, W u(x, ft) are Cr

leaves, and ft is expanding on W u(x, ft), we get for all x′1, x
′
2 ∈ f−n

t Bu(yi, r),∣∣det Dfn
t (x′1)|Eu

x′1
(ft)

∣∣
∣∣det Dfn

t (x′2)|Eu
x′2

(ft)

∣∣ ≈
n−1∏
j=0

(
1± const · du(f j

t x′1, f
j
t x′2)

)
(3.3)

≤(
1± const · diam Bu(yi, r)

)n ≈ (
1± const ·D1(3κ

s
−)n

)n ≈ const.

Combining (3.1)-(3.3), we get

(3.4) mu
(
f−n

t Bu(yi, r)
) ≈ mu

(
f−n

t (θBu(yi, r))
)
.

Let S be the union of f−n
t Bu(yi, r) that belong to D. Since

diam(f−n
t Bu(yi, r)), diam(θ

(
f−n

t Bu(yi, r)
)
) → 0 as n →∞,

it follows that

mu(S) ≈ mu(D) and mu(θS) ≈ mu(θD).

Also recall that each point in D belongs to at most C1 sets of the form
f−n

t Bu(yi, r), then (3.4) implies mu(D) ≈ mu(θD). ¤

4. Distortion Estimates

We now estimate the distortion of the Jacobian along the unstable direction.
We use the Rnu ⊕ Rns

-coordinate near the fixed point 0 and use Euclidean
metric for convenience. Let

S = Sδ = {x = (xu, xs) ∈ Ω1 : |xu|, |xs| ≤ δ}.
Denote S+ = ft(S) \ S. It is clear that S+ is independent of t for all small t.

Let δ+ = δφt(δ), where φt is given in Subsection 2.2. It is the outer radius
of S+.

We denote y = (yu, ys) = (yu
0 , ys

0) and z = (zu, zs) = (zu
0 , zs

0). We also denote
f−i

t y = yi = (yu
i , ys

i ) and f−i
t z = zi = (zu

i , zs
i ).

Lemma 4.1. Let δ > 0 be sufficiently small. For any x ∈ S+ \W u
δ+(0, ft), if

d(x,W u
δ+(0, ft)) → 0,

then
d(f−n

t (x),W s
δ (0, ft)) → 0,

and the convergence is uniform for all x ∈ S+ and t ∈ I, where n = n(x) is
the largest integer such that f−1

t x, · · · , f−n
t x ∈ S.



INFIMUM OF METRIC ENTROPY 15

Proof. First, we note that for any z ∈ S+ ∩ W u
δ+(0, ft), f−j

t z → 0 uniformly

with z and t as j → ∞, since this is true for t = 0 and f−j
t z converges to 0

faster than f−j
0 z does.

To consider the case x ∈ S+ \ W u
δ+(0, ft), we claim that for any ŷ and ẑ,

|ŷs| > |ẑs| and |ŷu| ≤ |ẑu| imply |ŷu
1 | ≤ |ẑu

1 |. Otherwise, there would be a
point x̂ in a curve joining ŷ and ẑ near which |(f−1

t x̂)u| increases with |x̂s|. It
contradicts the fact that |(f−1

t x)u| decreases with |xs| for x = (xu, xs).
This claim implies inductively that for y = x = (xu, xs) and z = (xu, 0),

we always have |yu
i | ≤ |zu

i | for all 0 ≤ i ≤ n. So if x ∈ S+ \ W u
δ+(0, ft),

we have d(xn,W
s
δ (0, ft)) ≤ d(zn,W

s
δ (0, ft)). Note that f−1

t is expanding at
a constant rate in the stable direction, we get n = n(x) → ∞ uniformly as
d(x,W u

δ+(0, ft)) → 0. Hence the result of the lemma follows. ¤
Lemma 4.2. Given any δ > 0, there exist J0 > 0 independent of t such that
for any x ∈ S+, y, z ∈ W u(x, ft) ∩ S+,

log

∣∣det Df−n
t (z)|Eu

z (ft)

∣∣
∣∣det Df−n

t (y)|Eu
y (ft)

∣∣ ≤ J0d(y, z),(4.1)

whenever f−1
t x, · · · , f−n

t x ∈ S.

Proof. We assume that δ is small enough such that S+ ⊂ Ω0. So we can
use (2.5) for the map ft.

We only need to consider the case when t is small since ft is uniformly
hyperbolic for all t away from 0.

Further, we only need to consider the case when x is sufficiently close to
W u

δ+(0, ft), since otherwise, the time that the backward orbit of x leaves the
set S is bounded, and the inequality (4.1) surely holds. Further, we may
assume that n is the largest integer such that f−1

t x, · · · , f−n
t x ∈ S.

Since the angles between Eu
yi

(ft), Eu
zi
(ft) and Rnu

are exponentially decreas-
ing as i change from n to 0, we just need to show

log

∣∣det Df−n
t (z)|Rnu (ft)

∣∣
∣∣det Df−n

t (y)|Rnu (ft)

∣∣ ≤ J0d(y, z).(4.2)

By (2.5), we have

Dft(x)|Rnu =
(
φt(|xu|) + |xs|2)I + xu · φ′t(|xu|)|xu|−1(xu)T ,

where I is the nu×nu identity matrix, and (xu)T is the transpose of the column
vector xu. Using the fact that det(aI + bxxT ) = an−1(a + b|x|2) for an nu×nu

matrix aI + bxxT , we have

(4.3) | det Dft(x)|Rnu | = (
φt(|xu|)+|xs|2)nu−1(

φt(|xu|)+|xs|2+φ′t(|xu|)|xu|).
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It means that | det Dft(x)|Rnu | only depends on the norms |xu| and |xs|.
Case One: yu, zu and pu = 0u are on the same line: zu = ayu for some

0 < a < 1.
Note that |zs

n| is close to δ by the choice of n. So |zs
n| − |zs

n−1| is close to
(1−κs)δ. By the previous lemma we know that if d(x,W u

δ+(0, ft)) is sufficiently
small, then all xn, yn, zn are close to W s

δ+(0, ft) such that

||ys
n| − |zs

n|| ≤ d(yn, zn) < |zs
n| − |zs

n−1|,
and the amount d(x,W u

δ+(0, ft)) can be taken to be independent of x and t.
Then we get |ys

n| > |zs
n−1|. By (2.5), it implies |ys

i | > |zs
i−1| for all 1 ≤ i ≤ n

and in particular, |ys
1| > |zs|.

Since y1 ∈ S, we have |yu
1 | ≤ δ by the definition of S. Also, since z ∈ S+,

we have |zu| > δ ≥ |yu
1 |. Therefore, by the fact |ys

i | > |zs
i−1| and |yu

1 | ≤ |zu|, we
can use the claim of the proof in the previous lemma with ŷ = yi and ẑ = zi−1

to get inductively that |yu
i | ≤ |zu

i−1| for all 1 ≤ i ≤ n. It follows that

j∑
i=0

(|yu
i | − |zu

i |)= |yu
0 | − (|zu

0 | − |yu
1 |)− · · · − (|zu

j−1| − |yu
j |)− |zu

j | < |yu
0 | ≤ δ+

for any 0 ≤ j ≤ n.
Now we refine the estimates. Let

τ = {x̂ = (x̂u, x̂s) ∈ W u
δ (x, ft) : x̂u = byu, a ≤ b ≤ 1},

τ̄ = {x̄ = (x̄u, x̄s) ∈ W u
δ (x, ft) : x̄u = byu, b > 0, δ ≤ |x̄u| ≤ δ+},

and τj = f−j
t τ . Both τ and τ̄ are curves in the unstable manifold W u

δ+(x, ft)
whose u-component are on the line segment from zu to yu and from δyu/|yu|
to δ+yu/|yu| respectively. We denote by ȳ and z̄ the endpoints of the curve τ̄ .

Let πu : Ω1 → Rnu
be the projection, and denote τu = πuτ and τu

j = πuτj.

We know that the first component of the map f j
t sends τu

j to τu. Also recall
that zu and yu are in the same direction. By (2.5) we know that all zu

j and yu
j

are in the same direction as well. Hence τu
j is a segment of a straight line. Let

E ⊂ Rnu
be the one dimensional subspace containing (yu, 0s) and (zu, 0s), and

let ` denote the arc length. We get

∣∣|yu
j | − |zu

j |
∣∣ = `(τu

j ) =

∫

τu

∥∥Df−j
t |E‖d`.(4.4)

Also note that Dft preserves the subspace E ⊕ Rns
. Hence Df j

t (x)|E =
Dft(f

j−1
t x)|E · · ·Dft(x)|E. By the fact that

∥∥Df−1
t |E

∥∥ is uniformly bounded
away from 0, and the C2 norm of ft is uniformly bounded from above on Ω0,
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we have that for j ≤ n,

(4.5) log

∥∥Df−j
t (z)|E

∥∥
∥∥Df−j

t (y)|E
∥∥ = log

j−1∏
i=0

(
1 +

∥∥Df−1
t (zi)|E

∥∥−
∥∥Df−1

t (yi)|E
∥∥

∥∥Df−1
t (yi)|E

∥∥
)

≤ C

j−1∑
i=0

∣∣∣
∥∥Df−1

t (zi)|E
∥∥−

∥∥Df−1
t (yi)|E

∥∥
∣∣∣ ≤ CD

j−1∑
i=0

∣∣|yu
i | − |zu

i |
∣∣ ≤ I0,

where we take I0 = δ+CD. Since this is true for any y, z ∈ τ̄ , by (4.4) we
obtain ∣∣|yu

j | − |zu
j |

∣∣
`(τu)

≤ eI0

∣∣|ȳu
j | − |z̄u

j |
∣∣

`(τ̄u)
, j = 0, 1, · · · , n.

Note that `(τ̄u) = δ+−δ only depends on δ, `(τu) = d(yu, zu), and
∑j

i=0(|ȳu
i |−

|z̄u
i |) ≤ δ+. We get

j∑
i=0

∣∣|yu
j | − |zu

j |
∣∣ ≤ eI0δ+

δ+ − δ
d(yu, zu) ≤ I1d(yu, zu)

for some I1 = I1(δ) independent of t.
Now repeating the arguments as for (4.5), we get

log

∣∣det Df−j
t (z)|Rnu

∣∣
∣∣det Df−j

t (y)|Rnu

∣∣ ≤ CD

j−1∑
i=0

d(yi, zi) ≤ J ′d(yu, zu),(4.6)

where J ′ = J ′(δ) is independent of t.
Case Two: |yu| = |zu|.
We may assume that |ys| ≤ |zs|. By (4.3), we know that | det Dft(x)−1|Rnu |

is at least quadratic in terms of |xs|. Thus, we have that there is c1 > 0 of
order |zs| such that if |yu| = |zu|, then

∣∣det Dft(z)−1|Rnu − det Dfy(y)−1|Rnu

∣∣ ≤ c1

(|zs| − |ys|),
and therefore

log

∣∣det Dft(z)−1|Rnu

∣∣
∣∣ det Dft(y)−1|Rnu

∣∣ ≤ c1C
(|zs| − |ys|) ≤ C2

(|zs| − |ys|).(4.7)

Also, by (2.5), there is a constant c0 > 0 of order |yu||zs| such that
∣∣|zu

1 | − |yu
1 |

∣∣ ≤ c0

(|zs| − |ys|).
Take z̃1 = (z̃u

1 , z̃s
1) ∈ W u

δ (x1, ft) such that z̃u
1 = (|yu

1 |/|zu
1 |)zu

1 . That is, z̃1 is the
point on W u(x1, ft) whose u-coordinate z̃u

1 is proportional to zu
1 and satisfies
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|z̃u
1 | = |yu

1 |. Then we denote ỹ1 = y1. Hence, by (4.6) we have

log

∣∣det Df−n−1
t (z1)|Rnu

∣∣
∣∣ det Df−n−1

t (z̃1)|Rnu

∣∣ ≤ J ′
(|zu

1 | − |yu
1 |

) ≤ C3

(|zs| − |ys|),

where C3 = c0J
′. By (4.7) and the fact ỹ1 = y1, this inequality implies

log

∣∣det Df−n
t (z)|Rnu

∣∣
∣∣ det Df−n

t (y)|Rnu

∣∣ ≤ log

∣∣det Df−n−1
t (z̃1)|Rnu

∣∣
∣∣ det Df−n−1

t (ỹ1)|Rnu

∣∣ + (C2 + C3)
(|zs| − |ys|).

We denote ỹs
0 = ys, z̃s

0 = zs and choose z̃i and ỹi in a similar way as we choose
z̃1 for i = 2, 3, · · · , n− 1, depending on whichever is larger between |z̃s

i−1| and
|ỹs

i−1|. Inductively, we have

log

∣∣det Df−n
t (z)|Rnu

∣∣
∣∣ det Df−n

t (y)|Rnu

∣∣ ≤ (C2 + C3)
n−1∑
i=0

∣∣|z̃s
i | − |ỹs

i |
∣∣.(4.8)

We observe that all f−n+i
t z̃i and f−n+i

t ỹi are in W u
δ (xn−1, ft) for 0 ≤ i ≤ n− 1.

It is clear that
d((f−n+i

t ỹi)
u, (f−n+i

t z̃i)
u) ≤ d(y, z).

So there is C4 > 0 such that

d((f−n+iỹi)
s, (f−n+iz̃i)

s) ≤ C4d(y, z), 0 ≤ i ≤ n− 1

because d((f−n+iỹi)
s, (f−n+iz̃i)

s) is dominated by d((f−n+iỹi)
u, (f−n+iz̃i)

u) on
unstable manifolds close to W u

δ (p, ft). Since ft is contracting in Rns
direction

with the rate κs
t , we get that

d(ỹs
i , z̃

s
i ) ≤ C4(κ

s
t)

n−id(y, z).

Hence by (4.8), we get

log

∣∣det Df−n
t (z)|Rnu

∣∣
∣∣ det Df−n

t (y)|Rnu

∣∣ ≤ J ′′d(y, z).(4.9)

Case Three: The general case, y, z ∈ W u(x, S+).
We take ỹ = (ỹu, ỹs) ∈ W u(x, S+) such that yu, ỹu and 0u are on the same

line and |ỹu| = |zu|. Then from Case One and Two we get (4.6) and (4.9)
with y, z replaced by y, ỹ and ỹ, z respectively. Therefore we obtain (4.2) with
J0 = J ′ + J ′′. ¤
Proposition 4.3. Given any δ > 0, there exist constants δ′ > 0 and J > 1
such that for all t ∈ [0, 1], x ∈ Λft, y, z ∈ W u(x, ft) \ Sδ with du(y, z) ≤ δ′,

(4.10) J−1 ≤
∣∣det Df−n

t (z)|Eu
z (ft)

∣∣
∣∣det Df−n

t (y)|Eu
y (ft)

∣∣ ≤ J ∀n ≥ 0.
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Proof. Using Lemma 4.2 and the fact that ft is uniformly hyperbolic outside
Pδ(ft), we can get the result by the same arguments identical to that in the
proof of Proposition 3.1 in [HY]. ¤

The inequalities (4.10) immediately lead to the following estimate of the
density function of SRB measure on unstable manifolds.

Corollary 4.4. Given any δ > 0, there exist constants δ′ > 0 and J > 1
such that for any t ∈ [0, 1], SRB measure µ = µt of ft, and partition ξ =
ξt subordinate to unstable manifolds of ft, the density functions ρx,t of the
conditional measures µξ

x of µ with respect to Lebesgue measure mu
x satisfies

J−1 ≤ ρx,t(z)

ρx,t(y)
≤ J

for µ-a.e. x ∈ Λft, and for all y, z ∈ ξ(x) \ Sδ with du(y, z) < δ′.

Proof. It is well known (see e.g. [L]) that the density function ρx,t satisfies

ρx,t(y)

ρx,t(z)
=

∞∏
i=0

∣∣det Df−1
t (zi)|Eu

zi
(ft)

∣∣
∞∏
i=0

∣∣det Df−1
t (yi)|Eu

yi
(ft)

∣∣

for all y, z ∈ W u(x, ft). Then we use Proposition 4.3. ¤

We mention here that we can always increase δ′ by increasing J .

5. Proofs of Theorems A and B

Consider a general map f that has a hyperbolic invariant set Λ.
The map f has local product structure, that is, for any ε > 0, there exists

δ > 0 such that for any y, z ∈ Λ with d(y, z) ≤ δ, [y, z] = W s
ε (y) ∩ W u

ε (y)
contains exact one point.

A rectangle R in Λ is a set such that y, z ∈ R implies [y, z], [z, y] ∈ R. If
Du and Ds are pieces of W u and W s leaves for f respectively, then [Du, Ds]
denotes the rectangle {[y, z] : y ∈ Du, z ∈ Ds} whenever everything makes
sense. If R is a rectangle and x ∈ R, we let

W u(x,R) = W u(x,R, f) = W u
δ (x, f) ∩R,

W s(x,R) = W s(x,R, f) = W s
δ (x, f) ∩R.

If Q and R are two rectangles, we say that fn(Q) u-crosses R if ∀x ∈ Q with
fnx ∈ R, fnW u(x,Q) ∩R = W u(fnx,R).



20 HUYI HU, MIAOHUA JIANG, AND YUNPING JIANG

A Markov partition of Λ for f is a set of finite number of rectangles {Ri} on
Λ with int Ri = Ri, such that (a) intRi ∩ int Rj = ∅ whenever i 6= j, and (b)
fRi u-crosses Rj and f−1Rj s-crosses Ri whenever fRi ∩Rj 6= ∅.

Now we assume that f is as in Theorem A that has a hyperbolic attractor
Λf .

Take a Markov partition R = {Ri} of Λf . We assume that the fixed point
p near which we deformed the map is contained in the interior intR0 of an
element R0 of the Markov partition, and that Ω1 is small enough such that
Ω1 ⊂ int R0. Hence, the perturbation is inside int R0. If there is no fixed point
contained in the interior of any element of the Markov partition, we can choose
a periodic orbit such that every point in the orbit is contained in the interior of
some Ri of the Markov partition, and make the same perturbation near every
point in the orbit.

Denote ∂sRi = {x ∈ Ri : x /∈ int W u(x,Ri)}, and ∂sR = ∪i∂
sRi. The

properties of Markov partition imply that f(∂sR) ⊂ ∂sR. Since ∂sR consists
of stable manifolds of f , and is not perturbed when we construct ft, it also
consists of stable manifolds of ft for all t ∈ [0, 1]. Similarly, ∂uR consists of
unstable manifolds of ft for all t. Hence, R is a Markov partition for all ft.

Take δ > 0 small enough such that Bu(p, δ) ⊂ W u(p,R0). Let

Pt = [Bu(p, δ),W s(p,R0)],

the rectangle determined by Bu(p, δ) and W s(p,R0). Clearly, Pt ⊂ R0, and
W s(x,R0, ft) = W s(x, Pt, ft) if x ∈ Pt, and W s(x,R0, ft) ∩ Pt = ∅ otherwise.

Denote
Qt = f−1

t Pt \ Pt.

Since ft has a hyperbolic attractor Λft on which ft is topologically transitive,
ft has a unique SRB measure µt on Λft for all 0 < t ≤ 1. Let

νt =
1

µt(Λft \ Pt)
µt.(5.1)

We have νt(Λft \ Pt) = 1.

Lemma 5.1. There is c > 0 such that νt(Qt) > c for all 0 < t ≤ 1.

Proof. Suppose there exists {tn} ∈ (0, 1] such that νtn(Qtn) → 0.
Since each ft is topologically transitive on Λft , for each rectangle Ri, i > 0,

there is k = k(i) ≥ 0 independent of t such that fk
t Ri ∩ Qt 6= ∅. Note that

if fk′
t Ri ∩ R0 6= ∅ for some k′ > 0, then fk′

t Ri u-cross R0 by the properties of

Markov partition, and therefore fk′−j
t Ri u-crosses Qt for some 1 ≤ j ≤ k′. So

we may assume that k(i) is chosen in such a way that f l
tRi ∩ R0 = ∅ for all

l = 1, · · · , k.
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Since the hyperbolicity of ft is uniform outside R0 for all 0 < t ≤ 1, we
know that there is c1 = c1(i) > 0 independent of t such that

mu(W u(x, f−k
t Qt, ft)) ≥ c1 ·mu(W u(x,Ri, ft))

for all x ∈ f−k
t Qt ∩Ri.

Denote by ξ = ξt the partition of Λft into {W u(x,Ri, ft) : x ∈ Λft , Ri ∈ R}.
So ξt is a partition subordinate to unstable manifolds of ft. Denote by νξ

x,t the
corresponding conditional measure of µt on ξ(x), where ξ(x) is the element
of ξ containing x. Note that νt and µt have the same conditional measure on
ξ(x). Since µt is an SRB measure, we can denote by ρx,t the density function of

νξ
x,t with respect to the Lebesgue measure mu

x on W u(x,Ri, ft). We know that
by Corollary 4.4 the ratio ρx,t(y)/ρx,t(z) is bounded away from 0 and infinity
for any y, z ∈ W u(x,Ri, ft), and the bounds can be chosen in a way that is
independent of 0 < t ≤ 1 and x. So we know that there is c2 > 0 such that

νξ
x,t(W

u(x, f−kQt, ft)) ≥ c2 · νξ
x,t(W

u(x,Ri, ft)).

Consequently, by invariance of νt, we get

νt(Qt) ≥ νt(f
−k
t Qt ∩Ri) ≥ c2 · νt(Ri).

It follows
νtn(Qtn) ≥ c2 · νtn(Ri).

Note that Pt ⊂ R0. Suppose that j = jt is the smallest integer such that
f j

t Pt u-crosses R0. Since ft is uniformly hyperbolic outside Pt, {jt} has a upper
bound, we again denote it by j. Suppose ftR0 is contained in Ri1 ∪ · · · ∪ Ris

for some s. Then it is easy to see by invariance of measure νt that

νt(R0 \ Pt) ≤ j
s∑

l=1

νt(Ril).

Since
νt

(∪i6=0Ri

)
+ νt(R0 \ Pt) = 1

for all 0 < t ≤ 1, we know that νt

(∪i6=0Ri

)
is uniformly bounded away from 0

for all t. Therefore, there is 0 < c3 < 1 and i such that νtnRi ≥ c3 for infinitely
many n. By taking a subsequence we may think that this is true for every n.
Hence we get

νtn(Qtn) ≥ c2c3 > 0.

It is a contradiction. ¤
Put

P0,t = Pt, Pi,t = f−1
t Pi−1,t ∩ Pi−1,t and

Qi,t = {x ∈ Qt : f j
t x ∈ Pt for j = 1, · · · , i} ∀i = 1, 2, · · · .
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Lemma 5.2. There is C > 0 such that for all t < (k0 + i)−β,

1

C(k0 + i)βnu ≤ νt(Qi,t) ≤ C

(k0 + i)βnu .

where k0 is a real number satisfies δ = k−β
0 .

Proof. By (2.4) and the definition of ft, we know that for t < (k0 + i)−β,
W u(p, Pi,t) is a ball of radius (i+k0)

−β on W u
δ (p). So mu(W u(p, Pi,t)) = C1(i+

k0)
−βnu

, where C1 is equal to the volume of the unit ball in nu dimensional
Euclidean space.

For any x ∈ Qi,t, consider the holonomy that θ : W u(x,Qt, ft) → W u(x, Pt)
maps W u(x,Qi,t, ft) to W u(p, Pi,t). By Proposition 3.4, there exists Js

1 ≥ 1
such that

1

Js
1

≤ mu(W u(x,Qi,t, ft))

mu(W u(p, Pi,t))
≤ Js

1 .

Now by Corollary 4.4, the ratio ρx,t(y)/ρx,t(z) of the density of the condi-

tional measure of νξ
x,t at any two points y, z ∈ W u(x,Qi,t, ft) are uniformly

bounded by a constant J > 0. So we get the result. ¤
Proof of Theorem A.
By (1.1), we only need to show that∫

log | det Dft|Eu(ft)|dµt → 0 as t → 0.

Take ε > 0. Since Df0(p)|Eu
p (f0) = id, there is a constant t′ > 0 and a

neighborhood V of p such that log | det Dft(x)|Eu
x (ft)| ≤ ε/2 for all x ∈ V and

t ∈ (0, t′].
It is easy to see that there is δ∗ > 0 such that V contains the rectangle

[W s
δ∗(p),W u

δ∗(p)] for all 0 < t ≤ 1. Take j > 0 such that f j
t W s(p, Pt) ⊂ W s

δ∗(p)
for all t ∈ (0, 1]. This is possible since ft is uniformly contracting along stable
direction. Also, take some k > 0 such that (k0+k)−β ≤ δ∗. Since W u(p, Pk,t) ⊂
W u

δ∗(p) for all t, We have f j
t Pk+j,t ⊂ V .

Note that Q1,t is the set of points that enter Pt under the map ft, and Pt\P1,t

is the set of points x that leave Pt under ft. We have Q1,t and P1,t are disjoint
and

Q1,t ∪ P1,t = f−1
t (Pt); Pt = (Pt \ P1,t) ∪ P1,t.

Since νt(f
−1
t Pt) = νt(Pt), we have νt(Q1,t) = νt(Pt \ P1,t). Similarly, we have

νt(Qi,t) = νt(Pi−1,t \ Pi,t). Hence,

νt(Λft \ Pk+j,t) = νt(Λft \ Pt) +

k+j−1∑
i=1

νt(Qi,t).
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By the definition of νt we know that νt(Λft \ Pt) = 1 for all 0 < t ≤ 1 and by

Lemma 5.2,
∑k+j−1

i=1 νt(Qi,t) is uniformly bounded for all 0 < t ≤ 1 since the
selections of k, j are independent of t.

Also note that βnu < 1. So the series
∑∞

i=1 (i + k0)
−βnu

diverges. Therefore
we can choose N > 0 large enough such that if all νt(Qi,t), 1 ≤ i ≤ N , satisfy
the estimates in Lemma 5.2, then

ε

2D

N∑

i=k+j

νt(Qi,t) ≥ ν(Λft \ Pk+j,t),

where D = max{log | det Dft(x)|Eu
x (ft)| : x ∈ Λft , t ∈ (0, 1]}. Then we take

0 < t′′ ≤ (N + k0)
−β.

So for any t ∈ (0, t′′], the above inequality holds, and therefore,

ε

2D
νt(Pk+j,t) =

ε

2D

∞∑

i=k+j

νt(Qi,t) ≥ νt(Λft \ Pk+j,t).

By (5.1), µt = [µt(Λft \ Pt)]
−1νt, the above inequality also holds for µt if

t ∈ (0, t′′]. Since
µt(Pk+j,t) + µt(Λft \ Pk+j,t) = 1,

we get µt(Λft \ Pk+j,t) ≤ ε

2D
. It follows

µt(Λft \ f j
t Pk+j,t) ≤ ε

2D
.(5.2)

Recall f j
t Pk+j,t ⊂ V , in which log | det Dft(x)|Eu

x (ft)| ≤ ε/2 for t ∈ (0, t′). We
get that if 0 < t ≤ min{t′, t′′}, then∫

log | det Dft|Eu(ft)|dµt

=

∫

Λt\fj
t Pk+j,t

log | det Dft|Eu(ft)|dµt +

∫

fj
t Pk+j,t

log | det Dft|Eu(ft)|dµt

≤ D · µt(Λt \ f j
t Pk+j,t) +

ε

2
· µt(f

j
t Pk+j,t) ≤ D · ε

2D
+

ε

2
= ε.

We proved the theorem. ¤
Proof of Corollary.
By the proof of Theorem A, we know that for any neighborhood V of p,

there are constants k, j > 0 such that f j
t Pk+j,t ⊂ V . Also, for any ε > 0

we can find t′′ > 0 such that for all t ∈ (0, t′′], (5.2) holds. It means that
µt(V ) ≥ µt(f

j
t Pk+j,t) → 1 as t → 0. This implies that µt → δp. The rest result

of the corollary is directly from Theorem A. ¤
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Proof of Theorem B.
The proof of the homotopy follows the construction of ft. The proof that f0

has an infinite SRB measure is the same as in [HY] and thus omitted. ¤

Remark. A referee pointed out that one can obtain Theorem A easily if nonex-
istence of SRB measures for f0 is assumed. In fact, after the construction of the
map ft, one can take a weak limit of a subsequence µti of the SRB measures for
fti as ti → 0, and get an f0 invariant measure µ′. Using the fact that there is a
common generator ξ for all ft such that hµt(ft) = hµt(ft, ξ), one can show that
lim supn→0 hµti

(fti) ≤ hµ′(f0). It implies that hµ′(f0) ≥
∫

log | det Df0|Eu |dµ′.
Hence, µ′ satisfies entropy formula by Ruelle inequality, and therefore, if µ′

has positive Lyapunov exponents, then it must be an SRB measure following a
result of Ledrappier and Young ([LY]), which contradicts the assumption. So
µ′ does not have positive Lyapunov exponents, and hence hµ′(f0) = 0.

As stated in Remark 1.4, Theorem B implies that f0 does not admits SRB
measures. Thus, Theorem A can be proved by the arguments above by using
Theorem B. In particular, for Anosov systems on the two dimensional torus,
nonexistence of SRB measures follows from a result of Hu and Young ([LY]).
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