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Abstract

For a large class of nonuniformly expanding maps of Rm, with indiffer-

ent fixed points and unbounded distortion and non necessarily Markovian,

we construct an absolutely continuous invariant measure. We extend to

our case techniques previously used for expanding maps on quasi-Hölder

spaces. We give general conditions and provide examples to which apply

our result.

0 Introduction

The aim of this paper is to treat a class of multidimensional nonsingular trans-
formations with indifferent fixed points which do not enjoy any Markov property.
These maps exhibit two major difficulties. First the presence of discontinuities
(the boundaries of the domains of local injectivity); second the nonuniformity
caused by the presence of the indifferent fixed points. While there are several
techniques to handle with the former point (see e.g. [C], [Bu], [S]), there is an
essential difficulty for the latter one: unbounded distortion.

It is well known that for a nonuniformly expanding map T on the unit inter-
val with an indifferent fixed point p, unbounded distortion occurs at the fixed
point (see for instance the examples treated in [Pi] and [Th]). That is, for any
neighborhood U of p, there are points x ∈ U such that |(T−n

1 )′(p)/(T−n
1 )′(x)| is

unbounded as n increases, where T1 denote the restriction of T to some neigh-
borhood of p. However, this only happens at the indifferent fixed point p; if we
remove an arbitrarily small neighborhood of p, and we consider the first return
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map with respect to its complement, then the reduced system has bounded dis-
tortion. Unfortunately, this is not the case for nonuniformly expanding maps T

in higher dimensional spaces with an indifferent fixed point p (we just consider
only one indifferent fixed point for convenience). The system has unbounded
distortion in the following sense: there are uncountably many points z such
that for any neighborhood V of z, we can find ẑ ∈ V such that the ratio

|detDT−n
1 (z)|/|det DT−n

1 (ẑ)|

is unbounded as n → ∞ (see Example 1 in Section 2). The points with un-
bounded distortion are not given explicitly by the map. Therefore, the methods
for the one dimensional case cannot be applied directly here, since the first re-
turn map with respect to the complement of any neighborhood of p still have
unbounded distortion.

Distortion estimates play an important role for the existence of absolutely
continuous invariant measures in the case of hyperbolic or expanding maps.
This is because the bounds of distortion give the bounds of the ratio of the den-
sity function. In many works, bounded distortion are either assumed or proved
(e.g. [Yo1, Yo2], [ABV], [FJ], [Yu1, Yu2], [BPS]). However, for many systems
the density function h(x) may be only an L1 function and, the ratio h(x)/h(y)
may be unbounded as well on close points x and y. Therefore we need some
techniques to handle these situations.

This work is an attempt toward this direction: we will prove the existence of
absolutely continuous invariant measures for maps with indifferent fixed points
in higher dimensions and in presence of unbounded distortion.

Existence of absolutely continuous invariant measures for expanding systems
with an indifferent fixed point was proved for one dimensional cases in 1980 ([Pi],
[Th]). However, there is no corresponding results for higher dimensional cases,
except for some special examples ([Yu2], [H]).

In this paper we are able to cover an open set of maps in the space of
expanding systems with an indifferent fixed point p whose local expression is an
isometry plus homogeneous terms and higher order terms (see Example 3 and
Remark 2.1 thereafter). We could also deal with maps whose differential has at
least one eigenvalue greater than one at the indifferent fixed point (see Example
2). Actually our assumptions (1 to 4) are formulated in a general way with the
attempt to capture and control the delicate behavior around the indifferent fixed
point due to the lack of bounded distortion. We provide in Theorem B and C
sufficient conditions to check those assumptions and we successively apply them
to examples in Section 2.

What we get here could not be derived easily from other existing results.
Since the distortions are unbounded, Young’s results [Yo1, Yo2] do not follow
directly. Neither do Yuri’s techniques [Yu1, Yu2] for the same reasons, even if we
model our map to give it a Markov or a finite range structure. Also, the condition
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lim supn→∞
1
n

∑n−1
i=0 log ||DT (T i(x))−1|| < 0 in [ABV] cannot be obtained in our

case since T may admit a σ-finite absolutely continuous invariant measure. If
we study the first return map T̂ instead, then ‖DT̂x(v)‖ can be arbitrary large
for x close to the discontinuity set, and therefore the assumptions on the critical
set in [ABV] are not satisfied.

Our construction consists of the following steps. We first replace the trans-
formation T by a first return map T̂ with respect to a domain outside a neigh-
borhood of the indifferent fixed point to get a uniformly expanding map with a
countable number of discontinuity surfaces. Then we prove a Lasota-Yorke [LY]
inequality on the induced system by acting the Perron-Frobenius (PF) operator
on the space of “quasi-Hölder” functions to obtain a density function ĥ. This
result is interesting in itself since it extends the work of [S] to piecewise expand-
ing maps with a countable number of branches. The density function ĥ defines
an absolutely continuous probability measure µ̂ invariant under T̂ ; then we ex-
tend µ̂ to an absolutely continuous invariant measure µ for T . The measure
µ has finitely many ergodic components, and these could be finite or infinite,
depending on the behavior of T near the fixed point. Moreover these maps can
be arranged in such a way that the absolutely continuous invariant measure has
both finite and infinite components that lie side by side (see Example 1).

The space of quasi-Hölder functions, introduced by Keller [K], developed by
Blank [Bl] and successfully applied by Saussol [S] and successively by Buzzi [Bu]
(see also [BK]) and Tsujii [Ts] to the multidimensional expanding case, reveals
to be very useful to control the oscillations of a function under the iteration of
the PF operator across the discontinuities of the map ∗. Our result shows that
it is also useful for unbounded distortion caused by nonuniform expansion, since
as we point out in Remark 1.9, the oscillations of test functions are produced
under iteration, not only by the propagation of discontinuities, but also by the
distortion of the determinant of the map.

The plan of the paper is the following: in Section 1 we state the assumptions
and the main theorem (Theorem A) about existence of absolutely continuous
invariant measures, and give sufficient conditions (Theorems B and C) to pro-
duce a wide class of maps which fit the preceding assumptions. In Section 2
we study carefully some concrete examples. The proofs of Theorem B and C
are respectively in Section 3 and 4. Section 5 contains the proof of Theorem
A, while the last section, Section 6, deals with the proof of the Lasota-Yorke
inequality for the induced system.

∗The use of the more standard space of bounded variation functions (in the sense of distri-
bution) allowed as well to get absolute invariant measures for some class of piecewise uniformly
expanding maps, see for instance [BG, PGB, Ad, C], but they need a stronger control of the
geometrical shape of the discontinuity surfaces.
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1 Assumptions and statements of results

Let M ⊂ Rm be a compact subset with intM = M and d be the Euclidean
distance. Let ν be the Lebesgue measure on M . We assume νM = 1.

Let T : M → M be a map satisfying the following assumptions.

For A ⊂ M and ε > 0, denote Bε(A) = {x ∈ Rm; d(x,A) ≤ ε}.
Assumption 1. (Piecewise smoothness) There are finitely many disjoint open
sets U1, · · · , UK with M =

⋃K
i=1 Ui such that for each i,

(a) Ti := T |Ui
: Ui → M is C1+α;

(b) Ti can be extended to a C1+α map Ti : Ũi → M such that TiŨi ⊃ Bε1(TiUi)
for some ε1 > 0, where Ũi is a neighborhood of Ui.

Assumption 2. (Fixed point) There is a point p ∈ U1 such that:

(a) Tp = p;

(b) T−1{p} /∈ ∂Uj for any j.

Since M ⊂ Rm, we may take a coordinate system such that p = 0. Hence,
we write |x| = d(x, p) if x ∈ M .

For any x ∈ Ui, we define s(x) = s(x, T ) as the inverse of the slowest
expansion near x by:

s(x, T ) = min
{
s : d(x, y) ≤ sd(Tx, Ty), y ∈ Ui, d(x, y) ≤ min{ε1, 0.1|x|} }

.

where the factor 0.1 makes the ball away from the origin, though any other
small factor would work as well.

Denote by γm the volume of the unit ball in Rm.

Assumption 3. (Expanding Rates) There exists an open connected region R

bounded by a smooth surface with p ∈ R, R ⊂ TR, TR ⊂ U1 and with either
R ⊂ TUj or R ∩ TUj = ∅ such that:

(a) ∀x ∈ M \ {p} we have 0 < s(x) ≤ 1 , and if s(x) = 1 then x ∈ R and
|Tx| > |x|;

(b) there exist constants η0 ∈ (0, 1), ε2 > 0 such that

sα + λ ≤ η0 < 1,

where
s := max{s(x) : x ∈ M\R},

λ = max
{

2 sup
ε0≤ε2

sup
ε≤ε0

GU (ε, ε0)
εα

εα
0 ,

3sγm−1

(1− s)γm

}
, (1.1)
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GU (ε, ε0) = sup
x∈M

GU (x, ε, ε0), (1.2)

and

GU (x, ε, ε0) =
K∑

j=1

ν(T−1
j Bε(∂TUj) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
;

(c) there exists N = Ns > 0 and ε3 > 0 such that for all x ∈ Bε3(TR\R),

s(T−N
1 (x), TN

1 ) ≤ s

5m

(λ(1− s)m

2CpI2

)1/α

for λ given by (1.1) and where I and Cp are constants defined below in
Assumption 4(c).

We say that T : M → M is an almost expanding piecewise smooth map with
an indifferent fixed point p if it verifies Assumption 1, 2 and 3(a), and s(p) = 1.

Remark 1.1. We first observe that Assumption 1 does not require any Markov
property of the partition {U1, · · · , UK}. Moreover, by Assumption 3(a), the
map Tj : Uj → Tj(Uj) is noncontracting for each j, and therefore it is a local
diffeomorphisms. Also, by the assumption, for any x ∈ U1, T−n

1 x → p, because
the set of limit points of {T−n

1 x} cannot contain any other point but p.

Remark 1.2. By Assumption 1(b), |detDT (x)| is bounded. This is because the
map x → |detDT (x)| is continuous on U i for each i, and U i is compact.

Remark 1.3. Assumption 3(b) is the main assumption that requires uniform
dilation outside R and gives condition on the relations between expanding rates
and discontinuity. It is proved in [S] (see the proof of Lemma 2.1) that if the
boundary of Ui consists of piecewise C1 codimension one embedded compact
submanifolds, then GU (ε, ε0) ≤ 2Y

γm−1

γm

sε

(1− s)ε0

(
1 + o(1)

)
, where Y is the

maximal number of smooth components of the boundary of all Ui that meet in
one point. We refer to [S] for more details about the meaning of GU (ε, ε0).

Remark 1.4. We do not require the boundary of Ui to be piecewise smooth.
In fact, they could be fractals as analyzed in [S]. However, Assumption 3(b)
implies ν(∂Uj) = 0 for any j = 1, · · · ,K. †

†In fact, if ν(∂Uj) > 0 for some j, then we take the set of the density points

∆ =

{
x ∈ M : lim

ε→0

ν(Bε(x) ∩ ∂Uj)

νBε(x)
= 1

}
.

By the Lebesgue-Vitali Theorem (see, e.g. [SG], Chapter 10), ν∆ = ν(∂Uj) > 0. In particular,
∆ 6= ∅. Therefore for any x ∈ ∆, if ε0 is sufficiently small and ε = (1− s)ε0, then

GU (x, ε, ε0) ≥
ν(T−1

j Bε(∂TUj) ∩B(1−s)ε0 (x))

ν(B(1−s)ε0 (x))
≥ ν(∂Uj ∩Bε(x))

ν(Bε(x))

is sufficiently close to 1, which contradicts the assumption.
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Remark 1.5. We allow that s(x, T ) = 1 for some x other than p. However
we still need some expanding rate inside R. This is given by Assumption 3(c).
If s(T−N

1 (x), TN
1 ) can be arbitrarily small by taking N sufficiently large, then

Assumption 3(c) is always true.

Denote R0 = TR\R. Clearly, R0 ⊂ U1 because of the choice of R.

Assumption 4. (Distortions)

(a) There exists c > 0 such that for any x, y ∈ TUj with d(x, y) ≤ ε1,
∣∣detDT−1

j (x)− detDT−1
j (y)

∣∣ ≤ c|det DT−1
j (x)|d(x, y)α,

where ε1 is given by Assumption 1(b);

(b) For any b > 0, there exist J > 0, ε4 > 0 such that for any ε ∈ (0, ε4], we
can find 0 < N = N(ε) ≤ ∞ with

|det DT−n
1 (y)|

|det DT−n
1 (x)| ≤ 1 + Jεα ∀y ∈ Bε(x), x ∈ Bε4(R0), n ∈ (0, N],

and ∞∑

n=N

sup
y∈Bε(x)

|det DT−n
1 (y)| ≤ bεm+α ∀x ∈ Bε4(R0);

(c) There exist constants I > 1, Cp > 0, ε5 > 0 such that for any 0 < ε0 ≤ ε5,
n > 0, there is a finite or countable partition ξ = ξn of Bε0(R0) such that
∀A ∈ ξ, 0 < ε ≤ ε0, diam(A ∩Bε0(∂R0)) ≤ 5mε0,

ν
(
Bε(∂R0) ∩A)

)

ν
(
Bε0(∂R0) ∩A

) ≤ Cp

(
ε

ε0

)α

, (1.3)

whenever ν
(
T−n

1 (Bε0(∂R0)) ∩A
) 6= 0, and for any x, y ∈ A,

|det DT−n
1 (y)|

|det DT−n
1 (x)| ≤ I. (1.4)

Remark 1.6. In fact, Assumption 4(a) is a consequence of Assumption 1(a)
since |detDT (x)| is bounded from above as we mentioned in Remark 1.2. How-
ever we state it here independently due to its importance for our arguments.

Remark 1.7. If T−1
1 has bounded distortion in Bε5(R0) in the sense that for

any J0 > 1, there is ε > 0 such that for any x, y ∈ Bε5(R0) with d(x, y) ≤ ε and

for any n > 0,
|det DT−n

1 (y)|
|det DT−n

1 (x)| ≤ J0d(x, y)α, then Assumption 4(b) and (c) are

true with ε4 = ε5 = ε0.
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Remark 1.8. Actually, by our proof the condition diam(A∩Bε0(∂R0)) ≤ 5mε0

in Assumption 4(c) can be replaced by

diamT−n
1 (A ∩Bε0(∂R0)) ≤ s

(λ(1− s)m

2CpI2

)1/α

for all n ≥ Ns, where s and Ns are given by Assumption 3(b) and (c) respectively
(see (6.4)).

Remark 1.9. When we iterate the system, oscillations of the test functions
are produced by both discontinuities ∂Uj and distortion of |detDT |. It is very
common for an expanding system in a multidimensional space with an indifferent
fixed point to have unbounded distortion near the fixed point, (see Example 1 in
the next section). Assumption 4(b) requires that the distortion (namely the

ratio |detDT−n
1 (y)|

|detDT−n
1 (x)|) is uniformly bounded only up to some n = N(ε) whenever

the points x and y are ε-close and |det DT−n
1 (y)| is summable for n ≥ N(ε)

with the sum which is small (of the order of a power of ε).

Remark 1.10. Assumption 4(c) is a usual bounded distortion estimate since it

controls uniformly the ratio |detDT−n
1 (y)|

|detDT−n
1 (x)| when the points x and y are chosen

close enough in an element of a partition depending on n.

We are now ready to state our main result.

Theorem A. Suppose T : M → M satisfies Assumption 1 to 4. Then T admits
an absolutely continuous invariant measure µ with at most finitely many ergodic
components µ1, · · · , µs that are either finite or σ-finite, and the density functions
of µi are bounded on any compact set away from p. Hence,

· µ is finite if
∞∑

n=1

ν(T−n
1 R) < ∞.

Moreover, if for any ball Bε(x) in M , there exists Ñ = Ñ(x, ε) > 0 such that
T ÑBε(x) ⊃ M , then the density function is bounded below by a positive number.
Hence

· µ is σ-finite if
∞∑

n=1

ν(T−n
1 R) = ∞.

Remark 1.11. We will give an example in the next section showing that it is
possible for µ to have both finite and σ-finite ergodic components simultaneously,
and both contain the same indifferent fixed point p in their supports.

Since Assumption 4(b) and 4(c) are difficult to verify, we give some sufficient
conditions in the next theorems.

The conditions satisfied by the maps studied in the second part of both
Theorem B and C are the following:
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There are constants γ′ > γ > 0, Ci, C
′
i > 0, i = 0, 1, 2, such that in a

neighborhood of the indifferent fixed point p = 0,

|x|(1− C ′0|x|γ + O(|x|γ′)) ≤ |T−1
1 x| ≤ |x|(1− C0|x|γ + O(|x|γ′)), (1.5)

1− C ′1|x|γ ≤ ‖DT−1
1 (x)‖ ≤ 1− C1|x|γ , (1.6)

C ′2|x|γ−1 ≤ ‖D2T−1
1 (x)‖ ≤ C2|x|γ−1. (1.7)

Remark 1.12. If a map T1 satisfies all of these inequalities, then ‖DT1(p)‖ =
‖DT1(p)−1‖ = 1, and DT1(p) is an isometry. If γ > 1, then D2T1(p) = 0.

Further, consider the space of C3 maps that is expanding at every point x

in a neighborhood of p except at p itself and whose differential DT1(p) is an
isometry. Then it is easy to see that the maps satisfying (1.5) to (1.7) form a
generic set in the C3 topology.

We would like to point out that the local behaviors given by the inequalities
(1.5) to (1.7) allow us to apply the useful Lemmas 3.1 and 3.2 (see below), which
permit a good control of the iterates of the Jacobian of the map. This will allow
us to check assumptions 4(b) and 4(c) on the examples of the next section.

Theorem B. Suppose T : M → M verifies Assumption 1 to 3 and 4(a). Then
the Assumption 4(b) is satisfied if one of the following two conditions holds:

i) There exists a constant κ ∈ (0, 1) such that |detDT | ≥ κ−1 > 1, and a
constant α̂ > α such that T is C1+α̂ in a neighborhood of p. In this case,
µ is finite if Assumption 4(c) also holds.

ii) There exists an open region R̃ ⊂ R containing p with T−L
1 R ⊂ R̃ for

some L > 0, and constants γ′ > γ > 0, C0, C1, C2 > 0 such that the
second inequalities in (1.5) to (1.7) hold; and there exist constants δ, τ > 0,
Cδ, Cτ > 0 with

1
γ(1− α)

− τ <
δ − 1
m + α

(1.8)

such that for any x ∈ R0, n ≥ L,

|det DT−n
1 (x)| ≤ Cδ

nδ
, ‖DT−n

1 (x)‖ ≤ Cτ

nτ
. (1.9)

In Theorem C, part i) below, we use the partial order x ≺ y between two
points x and y if |xj | < |yj | for every j = 1, · · · ,m, where xj and yj are the jth
component of x and y in Rm respectively. In part ii) we denote by E(v1, · · · , vk)
the subspace spanned by vectors v1, · · · , vk, and by Ex(S) the tangent space of
a submanifold S at a point x ∈ S. Also, we may use a coordinate system (t, φ)
near p where t = |x| and φ ∈ Sm−1, the m− 1 dimensional sphere.

Theorem C. Suppose T : M → M verifies Assumption 1 to 3 and 4(a). Then
the Assumption 4(c) is satisfied if one of the following two conditions holds:
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i) There is a partition of TR into finite or countable number of regions {Di}
such that ν(R \ ∪iDi) = 0, T (Di ∩ R) = Di ∩ TR and on each Di ∩ TR,
with the partial order decribed as above, T satisfies the following: x ≺ y

implies |detDT (x)| < |detDT (y)|; if x ≺ y, then T−1
1 x ≺ T−1

1 y; x ≺ Tx

for any x ∈ Di ∩ R; and for any y ∈ R0 ∩ Di there is x ∈ ∂R ∩ Di such
that x ≺ y ≺ Tx.

ii) Suppose T is C1+γ and satisfies (1.5) to (1.7) near p. There are two
families of cones {Cx} and {C′x}, uniformly continuous in (t, φ) in the
tangent bundle over the set TR, where t ≥ 0 and φ = Sm−1 with (t, φ) ∈
TR, such that (a) DTx(Cx) ⊂ CTx and DTx(C′x) ⊃ C′Tx ∀x ∈ R; (b)
there exists a positive angle θ0 such that for any x ∈ TR and v ∈ Cx and
v′ ∈ C′x, the angle between these two vectors is bounded from below by θ0;
(c) ∃d > 0, such that

|detDTx|E(v,v′)|
‖DTx|E(v)‖ · ‖DTx|E(v′)‖

≤ 1− d|x|γ (1.10)

for any v, v′ ∈ Cx; and (d) Cx contains the position vector from p to x for
all x ∈ TR, C′x contains Ex(∂Bε(R0)) for all x ∈ ∂(Bε(R0)), 0 < ε ≤ ε5,
and

‖DTx|E(∂(T−n
1 R))‖ ≤

|Tx|1/(1−θ)

|x|1/(1−θ)
∀x ∈ ∂(T−n

1 R), n > 0 (1.11)

for some θ with (1 + γ)(1− θ) > 1.

Remark 1.13. The conditions in Theorem B.i) mean that DTp has at least one
eigenvalue with absolute value greater than 1.

Remark 1.14. In Theorem C. ii), the cones are not in general continuous with
x at the point p, though they are continuous in (t, φ). (See Example 1.)

Remark 1.15. The condition in Theorem C.ii) part (c) implies that under DT ,
vectors in the cone Cx expands faster than that in C′x. To see this, let us first
recall that if a 2 × 2 matrix has two eigenvectors v1 and v2 with corresponding
eigenvalues λ1 > λ2 > 0 respectively, then under iterations all vectors, except
for v2, move toward v1, up to a coefficient. So if two vectors are close to v1,
then the angle between these two vectors decreases under iterations of A, and if
we replace v1 by v2, then the angle between them increases. In our case, cone
invariance in part (a) corresponds the fact that DTx has two eigenvectors and
(1.10) implies that the angle between v and v′ becomes smaller under DTx. (See
Lemma 4.2.)

Remark 1.16. If we write DT (x) = T0(x) + Tγ(x) + Th(x), where T0 = DTp,
Tγ satisfies Tγ(tx) = tγTγ(x) ∀t > 0 and |Th(x)| = O(|x|γ′), γ′ > γ, then
the construction of the cones {Cx} and {C′x} depends substantially on Tγ as x

near p: this is explicitly seen in the proof of Lemma 4.3. So it is easy to get
uniformity near t = 0.
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2 Examples

Now we give three examples of maps for which all the assumptions of Theorem
A can be checked. Since we allow discontinuities, it is easy to construct a map
that satisfies Assumption 1 to 3 and 4(a). So our examples concentrate mostly
on the local behavior of the map in the neighborhood of the indifferent fixed
point p = 0, although a complete description is provided for example 1.

In the latter we show that the map has unbounded distortion, and the condi-
tions in part ii) of Theorem B and C can be verified, and then that the map can
have both finite and infinite components for the absolutely continuous invariant
measure.

Example 1. We let M ⊂ R2 and near the fixed point p = (0, 0), the map T

has the form

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)2

)
(2.1)

up to order O(|z|4), where z = (x, y) and |z| =
√

x2 + y2.

It is easy to see that

DT (x, y) =
(

1 + 3x2 + y2 + O(|z|4) 2xy + O(|z|4)
4xy + O(|z|4) 1 + 2x2 + 6y2 + O(|z|4)

)
, (2.2)

and

detDT (x, y) = 1 + 5x2 + 7y2 + O(|z|4), (2.3)

Note that in this example, T is locally injective and T−1 will denote its
inverse.

Unbounded distortion
We begin to show that the distortion is unbounded even away from p = 0 in the
sense that there are uncountably many points z such that for any neighborhood
V of z, we can find ẑ ∈ V such that the ratio

|det DT−n
1 (z)|/|detDT−n

1 (ẑ)| (2.4)

is unbounded as n →∞.
Take z′ = (x0, 0) and denote z′n = T−nz′. By Lemma 3.1 in the next section,

we have |z′n| ∼
1√
2n

, where an ∼ bn means lim
n→∞

an

bn
= 1. Hence by (2.3) and

Lemma 3.2 with ti = zi, r(ti) = |detDT (zi)|, C ′ = 5 and γC = 2, we get

|det DT−n(z′)| ≤ D′

n5/2
for some D′ > 0. On the other hand if we take z′′ =

(0, y0) and denote z′′n = T−nz′′, then |z′′n| ∼
1√
4n

and |det DT−n(z′′)| ≥ D′′

n7/4

for some D′′ > 0. So
|det DT−n(z′′)|
|detDT−n(z′)| → ∞ as n →∞.
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We take a curve from z′ to z′′ that does not contain the origin. If for every
z on the curve, there is a neighborhood V such that for all ẑ ∈ V , the ratio in
(2.4) is bounded for all n > 0, then the ratio |detDT−n(z′′)|/|det DT−n(z′)|
should be bounded. This contradicts the above fact. So we know that there are
some points on the curve at which distortion is unbounded. By moving z′ and
z′′, we can get uncountably many pairwise disjoint curves and therefore we get
what we need.

Validity of Assumption 4(b)
For any z = (x, y), we put again zn = T−nz.

Note that

|z|(1 + |z|2 + O(|z|4)) ≤ |Tz| ≤ |z|(1 + 2|z|2 + O(|z|4)),
or

|zn|
(
1 + |zn|2 + O(|zn|4)

) ≤ |zn−1| ≤ |zn|
(
1 + 2|zn|2 + O(|zn|4)

)
.

So by Lemma 3.1, we have
1√

4(n + k)
+ O(n−β′) ≤ |zn| ≤ 1√

2(n + k)
+ O(n−β′), (2.5)

for some integer k, where β′ > 1/2.
Since (2.3) implies that |detDT (z)|−1 ≤ 1 − 5|z|2 + O(|z|4), by (2.5) and

Lemma 3.2 we get

|det DT−n(z)| ≤ Dn−5/2. (2.6)

Also by (2.2),

DT−1(x, y) =
(

1− 3x2 − y2 + O(r4) −2xy + O(r4)
−4xy + O(r4) 1− 2x2 − 6y2 + O(r4)

)
.

So ‖DT−1(z)‖ ≤ 1− |z|2 + O(|z|4), hence by Lemma 3.2,

‖DT−n(z)‖ ≤ D′n−1/2 (2.7)

for some D′ > 0. Now by (2.6), (2.7) and (1.9), we know that δ = 5/2 and
τ = 1/2. Since m = 2 and γ = 2, we have (1.8) if α = 1/2. By Theorem B.ii),
T satisfies Assumption 4(b).

Validity of Assumption 4(c)
It is easy to check that we can apply Theorem C.i) as we will do in Example 2
below. However, we use this map to show how to apply Theorem C.ii).

Notice that if we take two vectors v0 = (x, y)∗ and v′0 = (y,−x)∗ at the
tangent plane of z = (x, y), where the asterisk denotes transpose, then by (2.2)
we have

DTz(v0) =
(

x + 3x3 + 3xy2 + O(|z|5)
y + 6x2y + 6y3 + O(|z|5)

)
,

DTz(v′0) =
(

y + x2y + y3 + O(|z|5)
−x− 2x3 − 2xy2 + O(|z|5)

)
.
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This means that |DTz(v′0)| < |DTz(v0)|. We define Cz at each point z as the cone
bounded by lines generated by vectors 3v0 + 2v′0 and 3v0 − 2v′0 and containing
v0, and define C′z as the cone bounded by lines generated by vectors 3v′0 + 2v0

and 3v′0 − 2v0 and disjoint with Cz. We can check that part (a) and (b) in
Theorem B.ii) are satisfied. Also we can check that for all unit vector v′ ∈ C′z,
|DTz(v′)| ≤ |Tz|2.5/|z|2.5. So if we take R in such a way that the tangent
lines of ∂(T−n0

1 R) are in the cones C′ for some n0 ≥ 0, then we use the fact
DT−1(C′) ⊂ C′ to get that part (c) is satisfied for all n ≥ n0 with 1− θ = 2/5.

Coexistence of finite and σ-finite components
We now arrange this map in such a way that the absolute continuous invariant
measure µ has a finite and a σ-finite ergodic components simultaneously, and
both contain the same indifferent fixed point p = 0 in their supports. We assume
that our map satisfies Assumptions 1 to 3 and 4(a), besides the condition 4(b)
and 4(c) checked above. We also assume that there is a partition of M =
{M1,M2} such that for i = 1, 2, TMi = Mi and for any ball Bε(x) in Mi, there
exists an integer N such that TNBε(x) = Mi, and

{z = (x, y) ∈ B1(p) : y < x2} ⊂ M1, {z = (x, y) ∈ B1(p) : y > x2} ⊂ M2.

This is possible since it is easy to check that TΓ ∩ B1(p) = Γ, where Γ =
{(x, y) ∈ B1(p) : y = x2}. The assumptions just required insure the applicability
of Theorem A. Since both M1 and M2 are invariant sets, T has absolutely
continuous invariant measures µ1 and µ2 with respect to the Lebesgue measure
restricted to M1 and M2 respectively. Now we show µ1M1 < ∞ and µ2M2 = ∞.

For this purpose we may assume that R = B1(p). By (2.5), we know that
T−n

1 R ⊂ B2/
√

2n(p) for all large n. So

ν(T−n
1 R ∩M1) ≤ ν

{
(x, y) : x2 + y2 ≤ 4

2n
, |y| ≤ |x|2} ≤ C

( 4
2n

)3/2

for some C > 0. It follows that
∞∑

n=1

ν(T−n
1 R ∩M1) < ∞. Applying Theorem A

to the system T : M1 → M1, we get that µ1M1 ≤ ∞.
Also, by (2.5), we have that T−n

1 R ⊃ B1/2
√

4n(p) for all large n. Hence it

is easy to see that ν(T−n
1 R) ≥ π/16n and therefore

∞∑
n=1

ν(T−n
1 R) = ∞. Since

ν
(
T−n

1 R ∩M1

)
+ ν

(
T−n

1 R ∩M2

)
= ν

(
T−n

1 R
)
, we get

∞∑
n=1

ν(T−n
1 R ∩M2) = ∞.

So we have µ2M2 = ∞.

Full construction of the map
We now show how to arrange this map in order to verify all the assumptions
required by Theorem A.
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Let M = {(x, y) ∈ R2 : |x|, |y| ≤ 1000}. Take a partition {U1, · · · , UK} of M

such that
(i) U1 = {(x, y) ∈ R2 : |x|, |y| ≤ 10};
(ii) diamUi ≤ 10 if i 6= 1;
(iii) ∂Ui are piecewise smooth curves; and
(iv) every point x ∈ M is contained in at most 3 ∂Uis.
Let R = {(x, y) ∈ R2 : x2 +y2 ≤ (3+ ε1)2}, where ε1 was used to define s(x)

in Section 1.
We define T : M → M such that
(a) on the set {(x, y) ∈ R2 : x2 + y2 ≤ 42}, T has the form

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)τ(x,y)

)

where τ is a smooth function decreasing with x2 + y2 such that τ(x, y) = 2 if
x2 + y2 ≤ 1; τ(x, y) = 1 if 2 ≤ x2 + y2 ≤ 3.5. So in the neighborhood of (0, 0),
T has the form (2.1);

(b) Ti = T |Ui
is a C2 map for all i, and can be extended to an ε neighborhood

of Ui;
(c) s(x) < 0.1,∀x 6∈ R;
(d) R /∈ T (∂Ui) for any i.
Note that on the boundary of R, s(x)−1 ≥ 10. In fact, observe that near the

boundary of R,

T (x, y) =
(
x(1 + x2 + y2), y(1 + x2 + y2)

)
.

It is easy to see by the choice of ε1 that at the point x = (3+ε1, 0), s(x)−1 ≥ 10.
Observe that DT is the same at every point of ∂R, up to a rotation. So we have
that s(x)−1 ≥ 10,∀x ∈ ∂R. This shows that such systems exist.

It is obvious that Assumption 1 to 2 are satisfied.
Note that TR = {(x, y) : x2 + y2 ≤ (3 + ε1)(1 + (3 + ε1)2)} ⊂ U1. So by (d)

the requirements for R in Assumption 3 are satisfied.
Assumption 3(a) is obvious.
Since for x ∈ TR \R, |T−n

1 x| has the order n−1/2, we get ‖DT−1
1 (T−n

1 x)‖ ≤
1− c/n for some c > 0. So we have ‖DT−n

1 (x)‖ → 0. By Remark 1.5, Assump-
tion 3(c) follows.

Assumption 4(a) follows from (b).
Now we verify Assumption 3(b). By (c) we have s ≤ 0.1. Note that γ2 = π,

γ1 = 2. By (iv), we can choose Y = 3. Then

4s

1− s
Y

γ1

γ2
≤ 0.4

0.9
3

2
π

=
8
3π

≤ 0.85.

So by Remark 1.3, we make Assumption 3(b) holds.

The next example shows how to use part i) in Theorem B and C to verify
Assumption 4(b) and 4(c).
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Example 2. Let T : R3 → R3 be given by

T (x, y, z)=
(
x(1 + x2 + y2 + z2), y(1 + x2 + y2 + z2)2, z(2 + x2 + y2 + z2)3

)

as (x, y, z) near the origin.

Note that by an argument similar to that given in the preceding example, we
can prove that for this map the distortion is unbounded away from the origin.

Since detDT(0,0,0) = 2 and T is C∞ near the origin, by Theorem B.i),
Assumption 4(b) is satisfied.

Let Di, i = 1, · · · , 8, be the eight octants in R3. Clearly all the requirements
in Theorem C.i) are satisfied. So we get Assumption 4(c) as well.

The last example shows that our results cover an open set in the space of
piecewise expanding maps T with an indifferent fixed point p such that DT (p)
is an isometry, and s(x) > 1 ∀x 6= p.

Example 3. Let T : Rm → Rm be given by

T (x)= Ex + H(x, x, x) + O(|x|4), (2.8)

where x ∈ Rm is a column vector, E is an m × m orthogonal matrix, H :
Rm×Rm×Rm → Rm is a linear map close to the map H0(x, x, x) = xT x(Ex),
and xT denote the transpose of x.

We first consider the case H = H0. Then

T (x)= Ex(1 + xT x) + O(|x|4), (2.9)

and

DT (x) = E(I + |x|2I + 2xxT ) + O(|x|3),

where I denote the m×m identity matrix. It is easy to see that

|det DT (x)| = 1 + (m + 2)|x|2 + O(|x|3),
‖DT−1(x)‖−1 = 1 + |x|2 + O(|x|3).

So if H is close to H0, then

|detDTp(x)|−1 ≤ 1− C̄ ′1|x|2 + O(|x|3),
‖DT−1

p p(x)‖ = 1− Ĉ
′|
1 x|2 + O(|x|3)

for some C̄ ′1 close to m + 2 and Ĉ ′1 close to 1.
Also note that if H is close to H0, then

|T−1(x)| ≥ |x|(1− C ′|x|2 + O(|x|3)),
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for some C ′ close to 1. So if we take x in a neighborhood of p and denote
xn = T−nx, then by Lemma 3.1,

|xn−1| ≥ 1
(2C(n + k))1/2

+ O
( 1
(n + k)β′

)

for some k > 0 and β > 1/2. By Lemma 3.2, we get that

|detDT−n
1 (x)| ≤ D̄

( k

n + k

)C̄′1/2C

, ‖DT−n
1 (x)‖ ≤ D̂

( k

n + k

)Ĉ′1/2C

(2.10)

for some D̄, D̂ > 0. Hence, we get (1.9) for δ = C̄ ′1/2C and τ = Ĉ ′1/2C which are
close to 1+m/2 and 1/2 respectively. Since γ = 2, we get (1.8) if α is close to 0.
The requirements of Thereom B.ii) are satisfied. This verifies Assumption 4(b).

For each x we let Ex denote the one dimensional subspace spanned by the
vector x, and E′

x be the orthogonal complement of E. Then we define the cones

Cx = {u + u′ : u ∈ Ex, u′ ∈ E′
x, |u′| ≤ |u|/2}

C′x = {u + u′ : u ∈ Ex, u ∈ E′
x, |u| ≤ |u′|/2}

Note that if H = H0, then we have |DT (x)(u)| = 1 + 3|x|2|u| for u ∈ Ex

and |DT (x)(u′)| = 1 + |x|2|u′| for u′ ∈ E′
x. Using this fact we can check that

all requirements in Theorem C.ii) are satisfied. Also note that DT change
continuously with the third order term H of T . So if H is close to H0, then the
requirements of Theorem C.ii) are also satisfied. This verifies Assumption 4(c)
for these T .

Remark 2.1. Consider the set S of all C4 maps T defined in a neighborhood
of 0 in Rm satisfying T (0) = 0, DT (0) = E, an isometry map, and s(x) < 1
if x 6= 0, where s(x) is defined before Assumption 3. The condition s(x) < 1
implies D2T (p) = 0. Hence the Taylor expression of T has the form (2.8),
where H = 6D3T .

If Ta, Tb ∈ S are close in C3 topology, then the corresponding Ha and Hb

are close. So the example implies that our results cover an open subset of S that
containing the map given in (2.9).

3 Proof of Theorem B

We first prove some lemmas.
For γ > 0, let β = 1/γ.

Lemma 3.1. If

tn−1 ≥ tn + Ct1+γ
n + O(t1+γ′

n ) ∀n > 0, (3.1)

where γ′ > γ, then for all large n,

tn ≤ 1
(γC(n + k))β

+ O
( 1
(n + k)β′

) ∀n > 0 (3.2)
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for some β′ > β and k ∈ Z. The result remains true if we exchange “≤” and
“≥”. Therefore, if (3.1) becomes an equality, then so does (3.2).

Proof: We claim that if

tn−1 ≥ tn + Ct1+γ
n + C ′t1+γ′

n , (3.3)

for some large n and

tγn ≥
1

γCn

(
1 +

1
nδ′

)
(3.4)

for some δ′ > 0, then

tγn−1 ≥
1

γC(n− 1)

(
1 +

1
(n− 1)δ′

)
.

This gives the results since we can choose an integer k such that for some large
n0 > 0,

tγn ≤
1

γC(n0 + k)

(
1 +

1
(n0 + k)δ′

)
.

By relabelling the indices, the claim implies (3.2) for all n ≥ n0.
Now we prove the claim. Denote γn = γ

(
1 + n−δ′

)−1. By (3.3) and (3.4),

tγn−1 ≥ tn
γ
(
1 + Ctn

γ + C ′tnγ′)γ ≥ 1
Cnγn

(
1 +

C

Cnγn
+

C ′

(Cnγn)γ′/γ

)γ

.

To prove the lemma we only need to show that

1
nγn

(
1 +

1
nγn

+
C ′

(Cnγn)γ′/γ

)γ

≥ 1
(n− 1)γn−1

,

or, equivalently,

n− 1
n

(
1 +

1
nγ

+
1

n1+δ′γ
+

C ′

(Cnγn)γ′/γ

)γ

≥ γn

γn−1
=

1 + (n− 1)−δ′

1 + n−δ′ .

Take δ′ < min{1, γ′/γ− 1}. Then (nγn)−(γ′/γ) is of higher order. We can check
that as n →∞, the left side of the inequality is like 1 + n−(1+δ′) and the right
side is like 1+ δ′n−(1+δ′). Since δ′ < 1, the right side is smaller as n is large. ¤

Lemma 3.2. If for all n > 0, tn satisfies (3.2), and r(tn) ≤ 1−C ′tγn+O(t1+γ′
n ),

where C ′ > 0, then there exists D > 0 such that for all k0 ≥ k,

n+k0−k∏

i=k0−k

r(ti) ≤ D
( k

n + k

)C′/γC

. (3.5)

The result remains true if we replace “≤” by “≥” in all three inequalities.
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Proof: Note that

r(tn) ≤ 1− C ′

γCn
+ O

( 1
n1+γ′

)
=

(
1− 1

n

) C′
γC ·

(
1 + O

( 1
n1+γ′

))
,

where γ′ > 0. Then we take product. ¤

Lemma 3.3. Let θ ∈ (0, 1) and C̄ ′1, C̄2, D̄1 > 0, and let R̃ ⊂ Rm be a bounded
region containing the origin. Suppose the map T : R̃ → Rm is injective with
T−1R̃ ⊂ R̃ and satisfies

d(Tx, Ty) ≥ (1 + C̄ ′1|x|γ)d(x, y), (3.6)

log
∣∣∣det DT (x)
det DT (y)

∣∣∣ ≤ C̄2|x|γ−1d(x, y) (3.7)

for all x, y ∈ R̃ with d(x, y) ≤ |x|/2. Then there exists J ′ > 0 such that for all
x, y ∈ TR̃ with

d(xi, yi)1−θ ≤ D̄1|xi|, i = 1, · · · , n, (3.8)

where xi = T−ix and yi = T−iy, we have

log
∣∣∣det DTn(xn)
detDTn(yn)

∣∣∣ ≤ J ′d(x, y)θ. (3.9)

Proof: We prove by induction that for all i = 1, · · · , n,

log
∣∣∣detDT i(xn)
det DT i(yn)

∣∣∣ ≤ J ′d(xn−i, yn−i)θ. (3.10)

For i = 1, by (3.7), (3.8) and (3.6), we have

log
∣∣∣detDT (xn)
detDT (yn)

∣∣∣ ≤ C̄2D̄1|xn|γd(xn, yn)θ ≤ C̄2D̄1|xn−1|γd(xn−1, yn−1)θ.

So if J ′ ≥ sup{C̄2D̄1|x|γ : x ∈ R̃} then the right side of the inequality is less
than J ′d(xn, yn)θ because |xn| ≤ |x|.

Suppose (3.10) is true up to i = k − 1. Then similarly we have

log
∣∣∣detDT k(xn)
detDT k(yn)

∣∣∣ ≤ log
∣∣∣detDT k−1(xn)
detDT k−1(yn)

∣∣∣ + log
∣∣∣det DT (xn−k+1)
detDT (yn−k+1)

∣∣∣

≤ J ′d(xn−k+1, yn−k+1)θ + C̄2|xn−k+1|γ−1d(xn−k+1, yn−k+1)

= J ′
(
1 +

C̄2D̄1

J ′
|xn−k+1|γ

)
· d(xn−k+1, yn−k+1)θ

d(xn−k, yn−k)θ
· d(xn−k, yn−k)θ

≤ J ′
(
1 +

C̄2D̄1

J ′
|xn−k+1|γ

)
· 1
(1 + C̄ ′1|xn−k+1|γ)θ

d(xn−k, yn−k)θ.
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Clearly if J ′ is large enough, then the right side is bounded by J ′d(xn−k, yn−k)θ.
We get (3.10) for i = k. ¤

We are finally ready to prove the theorem of this section.

Proof of Theorem B:
Part i). We assume that T is C1+α̂ and |detDT | ≥ κ−1 > 1 on TR. We also
regard α̂ ≤ 1. So there exist c1 > 0 such that

|det DT−1
1 (y)|

|det DT−1
1 (x)| ≤ 1 + c1d(x, y)α̂

for all x, y ∈ TR. Let xi = T−i
1 x and yi = T−i

1 y. Clearly, d(xi, yi) ≤ d(x, y). So
if d(x, y) ≤ ε and 0 < n ≤ N , then

|detDT−n
1 (y)|

|det DT−n
1 (x)| ≤

(
1 + c1d(x, y)α̂

)n ≤ (
1 + c1ε

α̂
)N

. (3.11)

Also, there exists C > 0 such that for any y ∈ Bε(R0), |detDT−n
1 (y)| ≤ Cκn.

Hence,
∞∑

n=N

sup
y∈Bε(x)

|det DT−n
1 (y)| ≤ CκN

1− κ
.

Let b > 0 be given.
Consider the function

σ(ε) =
(1 + c1ε

α̂)N0−c2 log ε

1 + Jεα
,

where N0 = 1 + log(C−1b(1 − κ))/ log κ and c2 = −(m + α)/ log κ. Since
lim
ε→0

(1 + c1ε
α̂)N0−c2 log ε = 1, we have lim

ε→0
σ(ε) = 1. Note that if

(N0 − c2 log ε)α̂c1ε
α̂−1 · (1 + Jεα)− αJεα−1 · (1 + c1ε

α̂) < 0, (3.12)

then σ′(ε) < 0. Since α̂ > α, the first term in (3.12) is of higher order. So
we can choose J > 0 and ε4 > 0 such that for all ε ∈ (0, ε4], (3.12) holds and
therefore σ(ε) ≤ 1.

Now for each ε ∈ (0, ε4], we take N = N(ε) as the integer part of N0−c2 log ε.
Clearly, for such N we have

CκN

1− κ
≤ bεm+α.

So the second inequality in Assumption 4(b) is true. For the first inequality,
note that

(1 + c1ε
α̂)N ≤ (1 + c1ε

α̂)N0−c2 log ε ≤ 1 + Jεα.

Then by (3.11) we get what we need.
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Part ii). Let us put β = 1/γ and θ = α. Take ρ > 0 such that

β

1− θ
− τ < ρ <

δ − 1
m + α

. (3.13)

Let b > 0 be given.
Note that by Lemma 3.1, (1.5) implies that there exists C̄0 > 0 such that

for any x ∈ R0, |xn| ≥ 1
(C̄0n)β

. Take Nb ≥ L such that for all n ≥ Nb,

b−
1

m+α

( ∞∑

k=n

Cδ

kδ

) 1
m+α

<
1
nρ

<
1

(n− 1)ρ
<

1

2Cτ C̄
β

1−θ

0 n
β

1−θ−τ
, (3.14)

where Cδ and Cτ are as in (1.9). The inequality is possible because of (3.13).
Note that (1.6) and (1.7) imply (3.6) and (3.7) respectively. By Lemma 3.3

we can take J ′ > 0 such that (3.9) holds for any x ∈ R0, n > 0 whenever (3.8)
holds with D̄1 = 1 for all xi, yi, i = 1, · · · , n.

Take ε′4 > 0 such that for all x, y with x ∈ R0, d(x, y) ≤ ε′4, n = 1, · · · , Nb,
we have d(xn, yn)1−θ ≤ |xn|. By the choice of J ′, (3.9) holds for all 1 ≤ n ≤ Nb.

Then we take ε4 = min{ε′4, 1/Nρ
b }, and J > 0 such that eJ′εθ

4 ≤ 1 + Jεθ
4.

We show that J and ε4 satisfies the requirement. Let ε ∈ (0, ε4]. Take
N = N(ε) > Nb such that

1
Nρ

≤ ε <
1

(N − 1)ρ
.

By the first inequality of (1.9) and (3.14),

∞∑

k=N

sup
y∈Bε(x)

|det DT−k(y)| ≤
∞∑

k=N

Cδ

kδ
≤ b · 1

Nρ(m+α)
≤ bεm+α.

On the other hand, if x ∈ R0 and d(x, y) ≤ ε, then by the last inequality of
(1.9) and (3.14), for any Nb < n ≤ N ,

d(xn, yn) ≤ 2Cτ

nτ
ε ≤ 2Cτ

nτ

1
(N − 1)ρ

≤ 1

C̄
β

1−θ

0 n
β

1−θ

≤ |xn|
1

1−θ .

So we know that (3.9) holds for all 0 ≤ n ≤ N . Then by the choice of J and
the fact θ = α,

∣∣∣det DTn(xn)
detDTn(yn)

∣∣∣ ≤ eJ′d(x,y)θ ≤ eJ′εα ≤ 1 + Jεα.

This is what we need. ¤
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4 Proof of Theorem C

The proof consists again of two parts.
Proof of Theorem C:
Part i). For x ∈ ∂R, denote

D(x) = {z ∈ R0 : x ≺ z ≺ Tx}.

Clearly the collection {D(x) : x ∈ ∂R∩Di} form a cover of Di ∩R0. Note that
by the meaning of x ≺ Tx, every D(x) contains an open set in Di ∩ R0. So we
can construct a finite or countable partition ξ of R0 such that every element of
ξ belongs to the closure D(x) of some D(x).

Note that for any x,

|detDT−n
1 (x)|

|detDT−n
1 (Tx)| =

|detDT (x)|
|det DT (xn)| ≤ | det DT (x)|

is always bounded. So for any y, z ∈ D(x), we have

|detDT−n
1 (y)|

|detDT−n
1 (z)| ≤

|detDT−n
1 (x)|

|detDT−n
1 (Tx)| ≤ | detDT (x)|.

Hence (1.4) follows. Obviously we can arrange the partition ξ in such a way
that (1.3) also holds. Therefore ξ is a desired partition for any n.

Part ii). First, we take θ > 0 such that

DTx(v′) ≤ (|Tx|/|x|)1/(1−θ)

for all x ∈ ∂(T−n
1 R) and v′ ∈ Ex(∂(T−n

1 R)). This is possible because of the
assumption stated in part (d) of Theorem C.ii). So for any n > 0, if we take
x, y ∈ ∂R0 such that d(xn, yn) ≤ D̄1|xn|1/(1−θ), we have

d(xi, yi) ≤ D̄1|xi|1/(1−θ) ∀i = 1, · · · , n. (4.1)

By Lemma 3.3, we get that there exists I1 > 0 such that

|det DT−n
1 (y)|

|detDT−n
1 (x)| ≤ I1. (4.2)

That is, (1.4) holds for all such x, y.
We construct ξ = ξn. Note that we only need do it for n sufficiently large.

Since the family of cones C′x are uniformly continuous in x = (t, φ), we can find
t0 > 0 such that for any x, y ∈ TR with d(x, y) ≤ t0, the Hausdorff distance
between C′x and C′y is less than θ0/2. Then we take N > 0 large enough such
that for any x ∈ R0 and n > N , |xn| ≤ t0. Note that for any x, the position
vector from p to x, denoted by ux, is contained in Cx. By part (a) and (d)
in the conditions of the theorem we know that at x ∈ T−n

1 (∂R0), C′x contains
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the tangent plane of the surface. Hence, if v′ ∈ Ex(T−n
1 (∂R0), then the angle

between ux and v′, denoted by ∠(ux, v′), is larger than θ0, and therefore for
any v′ ∈ Ey(T−n

1 (∂R0), we have ∠(ux, v′) ≥ θ0/2, whenever y ∈ T−n
1 (∂R0)

with d(x, y) ≤ t0. So for any x, y ∈ T−n
1 (∂R0) with d(x, y) ≤ t0, we have

dS(x, y) ≤ d(x, y)/ sin(θ0/2), where dS(·, ·) is the distance restricted to the sur-
faces {T−n

1 (∂R0)}. This means that we can take a partition ξ(n) on T−n
1 (∂R0)

such that every element of ξ(n) is contained in a ball of radius |xn|1/(1−θ) and
containing a ball of radius |xn|1/(1−θ)/10m sin(θ0/2), with respect to the metric
on T−n

1 (∂R0), and these elements are close to (m−1) dimensional disks. Denote
ξ′ = Tnξ(n). Clearly, it is a partition of ∂R0. Then we can take a partition ξ

of R0 whose elements has the form ∪x∈A′Fx ∩R0, where A′ is an element of ξ′,
and Fx is given in Lemma 4.1.

Now we prove that ξ satisfies (1.3) and (1.4). Condition (1.6) implies
‖DT (p)‖ = 1. We first consider the case that DT (p) = id.

By (1.5), we know that d(x, Tx) ≤ C|x|1+γ for some C > 0. So the “width”
of the annulus T−i

1 (Bε5(R0)) is bounded by C ′|T−i
1 x|1+γ for some C ′ > 0.

By part (b) and (d) of the condition in the theorem, for 0 < ε ≤ ε5, x ∈
T−i

1 (∂Bε(R0)), the angle between the tangent space of T−i
1 (∂Bε(R)) and the po-

sition vector ux is larger than θ0. So the length of the curve FT−i
1 x∩T−i

1 Bε5(R0)

is bounded by C|T−i
1 x|1+γ for some C ≥ C ′. Hence, for any x, y ∈ Bε5(R0) with

y ∈ Fx, we can get

d(xi, yi) ≤ C|xi|1+γ (4.3)

and therefore by applying Lemma 3.3 we get

|det DT−n
1 (y)|

|det DT−n
1 (x)| ≤ I2 (4.4)

for some I2 > 0. Also, the construction of ξ′ implies (4.1) and therefore (4.2)
for any x, y ∈ A′, where A′ ∈ ξ′. So by the construction of ξ, we get (1.4) with
I = I1I

2
2 for any x, y ∈ A.

On the other hand, for any x, y ∈ Bε5(R0) with y ∈ Fx, we have (4.3). So we
can apply Lemma 4.4 to get that inside A, distortion of |DT |E(F)| is bounded. It
means that for each x ∈ A, the ratio of the length of T−n

1 (Bε(∂R0)∩A))∩Fxn

and the length of T−n
1 (Bε0(∂R0) ∩ A)) ∩ Fxn

is uniformly bounded by ε/ε0

multiplied by a constant. Notice that the angle between the tangent vectors
of F and the tangent space of T−n

1 (∂Bε(R0)) are greater than θ0. Also notice
that by the construction of ξ′, for any A ∈ ξ, the size of the set T−n

1 A along the
fiber direction is much smaller than the size of T−n

1 A′. Hence, the ratio between
ν(T−n

1 Bε(∂R0)∩A)) and ν(T−n
1 Bε0(∂R0)∩A)) is bounded by a constant times

ε/ε0 ≤ (ε/ε0)α for some α ∈ (0, 1]. Now we use (1.4) to get (1.3).‡

‡Let us make this argument more precise. We denote with A′n and An(ε) respectively the
backward iterates T−n

1 A′ of some A′ ∈ ξ′ and of the set A∩Bε(∂R0) where A = ∪x∈A′Fx∩R0.
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If DTp 6= id, then it is a rotation, say S. Hence near p we can write Tx =
Sx+Tr(x) where |Tr(x)| ≤ C|x|1+γ . If we write T (i) = id +S−i ◦Tr ◦Si−1, then
Tn = Sn ◦ T (n) ◦ · · · ◦ T (1). It implies that the “width” of the annulus T−i

1 R0 is
bounded by C|T−i

1 x|1+γ . Then we apply the same arguments to get (1.4) and
(1.3). ¤

Lemma 4.1. There is a foliation on {Fx} on TR \ {p} consisting of curves
from p to points on ∂(TR) such that for any x ∈ TR, the tangent line of Fx

lies in Cx, and TFx ∩ TR = FTx.

Proof: Denote Ex = ∩n≥0DTn
T−n

1 x
(CT−n

1 x) for all x ∈ TR\{p}. By Lemma 4.2,
we know that sine of the angle between any two vectors in DTn

T−n
1 x

(CT−n
1 x) is less

than (1−d|xn|γ) · · · (1−d|x1|γ). By (1.5) and Lemma 3.1, the product diverges
as n →∞. So {Ex} is a subbundle of the tangent bundle over TR\{p}. Further,
we have DTx(Ex) = ETx for all x ∈ R. By Lemma 4.3, we know that {Ex}
Since the angles between the tangent spaces of the curves Fx and the tangent spaces of the
ε-neighborhood of the boundary of R0 are uniformly bounded away from zero, the length of
the curve Fx ∩ Bε(∂R0), when x ∈ A′, is of order ε. Its n-backward iterate in An(ε) will be
therefore bounded by a constant times ε times d1+γ

n,M , where dn,M is the maximum over the

ε-compact neighborhood of R0 of |T−i
1 x| (see above; equivalently we set dn,m the minimum

of |T−i
1 x| over the ε-compact neighborhood of R0). Let us call this upper bound ln,ε. We

construct then the ln,ε-neighborhood of A′n, Bln,ε (A′n). Clearly

ν(An(ε)) ≤ ν(Bln,ε (A′n)) ≤ ν′(A′n,ε)ln,ε

where A′n,ε = {z ∈ T−n
1 A′; d(z, A′n) ≤ ln,ε} and ν′ denotes the Riemannian volume on

T−n
1 ∂R0. Since A′n,ε is contained in a ball of radius d

1
1−θ

n,M + ln,ε and A′n by construction

contains a ball of radius
d

1
1−θ
n,m sin θ0/2

10m
, we have that ν′(A′n,ε) ≤ const(d

1
1−θ

n,M + ln,ε)m−1γm−1

and ν′(A′n) ≥ (
d

1
1−θ
n,m sin θ0/2

10m
)m−1γm−1. But dn,M , dn,m are of order n−β , with β = 1/γ (see

Lemma 3.1), and since (1 + γ)(1− θ) > 1, we see immediately that for large n:

ν(An(ε)) ≤ C′ν′(A′n)ln,ε

where C′ is a suitable constant, depending on m. Let us now define the following objects:
An(ε0): the backward iterate of A ∩ Bε0 (∂R0), l′n,ε0

: the minimum length of the backward
images of the curves Fx ∩ Bε0 (∂R0), when x ∈ A′; A′n,ε0

= {z ∈ A′n; d(z, ∂A′n) ≥ l′n,ε0
} and

Bl′′n,ε0
(A′n,ε0

) the l′′n,ε0
-neighborhood of A′n,ε0

, being l′′n,ε0
= l′n,ε0

sin θ0. Moreover by what

we already said above and which follows from Lemma 4.3, the bounded distortion property
along the points of the backward images of the curves A∩Bε0 (∂R0), will imply that l′n,ε0

will
be of the same order as ln,ε0 (the maximum length of the backward images of the curves).
Taking this into account we get:

ν(An(ε0)) ≥ ν(Bl′′n,ε0
(A′n,ε0

)) ≥ ((
d

1
1−θ
n,m sin θ0/2

10m
− l′′n,ε0

)m−1γm−1l′′n,ε0

By using as above the uniform bounds on dn,M , dn,m when n is large, we see that ν(An(ε0)) ≥
C′′ν′(A′n)ln,ε0 , where C′′ is a suitable constant depending on m. By dividing ν(An(ε)) and
ν(An(ε0)), we get the desired result.
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satisfies the Hölder condition near each x with Hölder constants depending on
x. Note that {Ex} determines a vector field. We can integrate it to get a family
of curves {Fx} from p to boundary points of TR that satisfies TFx∩TR = FTx.
By our assumption, {Fx} is the “strong unstable manifold” at x.

It is easy to see that the curve passing through x is unique, and therefore
{Fx} forms a foliation. In fact, if there are two such curves Fx and F ′x that pass
through x, then we can take a curve Γ close to x joining y ∈ Fx and y′ ∈ F ′x
such that the tangent line of Γ is in C′. Let us denote by An the area of the
“triangle” bounded by the curves T−n

1 Γ, T−n
1 Fx,y and T−n

1 F ′x,y′ , and by Ln and
L′n the lengths of the curves T−n

1 Fx,y and T−n
1 F ′x,y′ respectively, where Fx,y is

the part of the curve in Fx between x and y, and F ′x,y′ is understood in a similar
way. By the assumption stated in part (c), the ratio between An and Ln · L′n
tends to infinity, which is a contradiction. ¤

Lemma 4.2. For any v, v′ ∈ Cx,

sin∠(DTx(v), DTx(v′)) ≤ (1− d|x|γ) sin ∠(v, v′),

where the symbol ∠(v, v′) denotes the angle between the vectors v and v′.

Proof: Note that

|det DTx|E(v,v′)| =
|DTx(v)| · |DTx(v′)| · sin∠(DTx(v), DTx(v′))

|v| · |v′| · sin∠(v, v)

and

||DTx|E(v)|| =
|DTx(v)|
|v| , ||DTx|E(v′)|| =

|DTx(v)|
|v′| .

Then the results follows from (1.10). ¤

Lemma 4.3. There exist constants H > 0, a > 0, and τ1 ∈ (0, 1), such that for
all x ∈ TR\{p},

d(Ex, Ey) ≤ Hd(x, y)τ1

|x|τ1
∀y ∈ B(x, a|x|), (4.5)

where d(Ex, Ey) is defined by d(Ex, Ey) = sin∠(vx, vy), vx and vy are the
tangent vectors of Fx and Fy at x and y respectively chosen in the way that
0 ≤ ∠(vx, vy) < π/2.

Proof: We note that we only need prove (4.5) for all x in a small neighborhood
R̃ ⊂ R of p, because DTx(Ex) = ETx, and then the results can be extended to
TR.

Take d̃ ∈ (0, d). Then for each x we can extend Cx to C̃x such that (1.10)
holds with d̃ for all v ∈ Cx and v′ ∈ C̃x. By (1.5) and the fact that T is C1+γ ,
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we can write DT (x) = T0(x) + Tγ(x) + Th(x), where T0 = DTp, Tγ satisfies
Tγ(tx) = tγTγ(x) ∀t > 0 and |Th(x)| = o(|x|γ). So it is easy to see that we can
find εa > 0 such that C̃x ∩ Sm−1 contains an εa-neighborhood of Cx ∩ Sm−1 in
Sm−1 for all x with |x| small. Moreover, since Cx is uniformly continuous in (t, φ),
we can take a > 0 and R̃ small such that for all x ∈ R̃, with d(x, y) ≤ a|x|γ ,
Cy ⊂ C̃x. So if v ∈ Cx and v′ ∈ Cy, we have

|detDTx|E(v,v′)|
‖DTx|E(v)‖ · ‖DTx|E(v′)‖

≤ 1− d̃|x|γ .

Hence, by the same arguments used in Lemma 4.2 we have

sin∠(DTx(v), DTx(v′)) ≤ (1− d̃|x|γ) sin ∠(v, v′). (4.6)

Take τ1 ∈ (0, 1) such that
(
1− d̃

2
|x|γ

)( |Tx|
|x| ·

d(x, y)
d(Tx, Ty)

)τ1 ≤ 1 (4.7)

for all x ∈ R̃ close to p with d(x, y) ≤ a|x|.
Take 0 < a1 ≤ a such that if d(x, y) ≤ a1|x|, then

‖DT (x)−DT (y)‖ ≤ C̄2|x|γ−1d(x, y)τ1 (4.8)

for some C̄2 > 0. This is possible because of (1.7).
Take H > 0 such that Hd̃ > 2C̄2.
Let L = {Lx : x ∈ R̃\{p} } be the set of all line bundles in the tangent bundle

over R̃. Clearly DT induces a map D : L → L given by (DL)x = DTx(LT−1
1 x),

and E = {Ex} is the unique fixed point of D contained in C. Denote

H =
{
{Lx} ∈ L ∩ C : d(Lx, Ly) ≤ Hd(x, y)τ1

|x|τ1
∀y ∈ B(x, a1|x|)

}
. (4.9)

We show that D(H) ⊂ H. This implies the result since {Ex} = ∩n≥0DnC.
Take {Lx} ∈ H. Let x, y ∈ R̃ with d(x, y) ≤ a1|x|. Take unit vectors

ex ∈ Lx, ey ∈ Ly. So sin∠(ex, ey) ≤ H|x|−τ1d(x, y)τ1 . By (4.6) and (4.8),

sin∠(DTx(ex), DTy(ey))

≤ sin∠(DTx(ex), DTx(ey)) + sin∠(DTx(ey), DTy(ey))

≤ (1− d̃|x|γ) sin ∠(ex, ey) + |DTx(ey)−DTy(ey)|
≤ (1− d̃|x|γ)

Hd(x, y)τ1

|x|τ1
+ C̄2|x|γ−1d(x, y)τ1

=
[
(1− d̃|x|γ)H + C̄2|x|γ

]d(Tx, Ty)τ1

|Tx|τ1
· d(x, y)τ1

d(Tx, Ty)τ1

|Tx|τ1

|x|τ1
.

By the choice of H, the quantity in the bracket is less than 1− d̃|x|γ/2. Then
by (4.7) the right side of the inequality is less than H|Tx|−τ1d(Tx, Ty)τ1 . We
get the desired results. ¤
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Lemma 4.4. There exists J∗ > 0 such that for any x, y with d(xi, yi) ≤ |xi|γ̄
for some γ̄ > 1, i = 1, · · · , n,

|DT−n
1 (y)|Ey(F)|

|DT−n
1 (x)|Ex(F)|

≤ J∗. (4.10)

Proof: Take an integer r̄ ≥ 2C ′0/C0, where C0 and C ′0 are as in (1.6). We
assume that x0 ≤ 1/(γC ′0k0)β for some k0 ≥ 1. Then we take ki = (r̄i − 1)k0

for i = 1, · · · , ` − 1, where ` − 1 is the largest number j such that kj < n. Let
k` = n. By Lemma 3.1, we know that

|xj |γ ≤ 2/(γC ′0(k0 + j)). (4.11)

Hence, (1.6) implies

‖DT ki−ki−1
xki

‖ ≤
ki−1∏

j=ki−1

‖DTxj
‖ ≤

ki−1∏

j=ki−1

(
1+

2C1

γC ′0(k0 + j)

)
≤

ki−1∏

j=ki−1

(
1+

1
k0 + j

)C

for some C larger than 2C/γC ′0 if ki is large enough. So the choice of r̄ gives

‖DT ki−ki−1
xki

‖ ≤
( k0 + ki

k0 + ki−1

)C

≤ r̄C (4.12)

for all i ≥ 0.
Let ex be the unit tangent vector of F at x. We have

|DT−n
1 (y)|Ey(F)|

|DT−n
1 (x)|Ex(F)|

=
|DTn

xn
(exn

)|
|DTn

yn
(eyn

)| =
|DTn

xn
(exn

)|
|DTn

xn
(eyn

)| ·
|DTn

xn
(eyn

)|
|DTn

yn
(eyn

)|

=
∏̀

i=1

|DT
ki−ki−1
xki

(exki
)|

|DT
ki−ki−1
xki

(eyki
)|
·

n∏

j=1

|DTxj
(eyj

)|
|DTyj

(eyj
)| .

By the results of Lemma 4.3 and (4.12), each factor in the first product is
bounded by

1 +
|DT

ki−ki−1
xki

(exki
)| − |DT

ki−ki−1
xki

(eyki
)|

|DT
ki−ki−1
xki

(eyki
)|

≤ 1 +
|DT

ki−ki−1
xki

(exki
− eyki

)|
|DT

ki−ki−1
xki

(eyki
)|

≤ 1 +
‖DT

ki−ki−1
xki

‖ · |exki
− eyki

|
|DT

ki−ki−1
xki

(eyki
)|

≤ 1 +
r̄C ·BHd(xki

, yki
)τ1

|xki
| ≤ 1 + r̄CBH|xki

|τ1(γ̄−1),

where we use the fact that |exki
− eyki

| ≤ B sin∠(exki
, eyki

) for some B > 0.
Also note that by (4.11) and the choice of ki, {|xki

|} decreases exponentially
fast as i →∞. Since γ̄ > 1, the first product in above equality is convergent.
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For the second product, by (1.7) each factor is bounded by

1 +
|DTxj

(eyj
)| − |DTyj

(eyj
)|

|DTyj
(eyj

)| ≤ 1 +
C|xj |γ−1d(x, y)
|DTyj

(eyj
)| ≤ 1 +

C|xj |γ̄+γ−1

|DTyj
(eyj

)| .

By (4.11) and the fact γ̄ > 1, we know that
∑

j |xj |γ̄+γ−1 converges. So the
product is also bounded. We get the result. ¤

5 Proof of Theorem A

In this section we first introduce a subspace Vα of L1 ≡ L1(Rm, ν) with compact
unit ball that contains the density function of the invariant measures of the
induced map of T with respect to the relatively compact subspace M\R. Here
we only give a brief description and list some properties we use. We refer to [S]
and [K] for more details.

Let f be an L1(Rm, ν) function. If Ω is a Borel subset of Rm, we define
the oscillation of f over Ω by the difference of essential supremum and essential
infimum of f over Ω:

osc(f,Ω) = Esup
Ω

f − Einf
Ω

f.

If Bε(x) denotes the ball of radius ε about the point x, then we get a measurable
function x → osc(f, Bε(x)). The function have the following properties.

Proposition 5.1. Let f, fi, g ∈ L∞(Rm, ν) with g ≥ 0, ε > 0, and S be a Borel
subset of Rm. Then

(i) osc
(∑

i

fi, Bε(·)
) ≤

∑

i

osc
(
fi, Bε(·)

)
,

(ii) osc
(
fχS , Bε(·)

) ≤ osc
(
f, S ∩Bε(·)

)
χS(·) + 2

[
Esup

S∩Bε(·)
f
]
χBε(S)∩Bε(Sc),

(iii) osc
(
fg, S

)≤ osc
(
f, S

)
Esup

S
g + osc

(
g, S

)
Einf

S
f .

Proof: See [S] Proposition 3.2. ¤

Take 0 < α < 1 and ε0 > 0. We define the α-seminorm of f as

|f |α = sup
0<ε≤ε0

ε−α

∫

Rm

osc(f,Bε(x))dν(x). (5.1)

We will consider the space of the functions f with bounded α-seminorm, namely,

Vα =
{
f ∈ L1 : |f |α < ∞}

, (5.2)
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and equip Vα with the norm

‖ · ‖α=‖ · ‖1 +| · |α, (5.3)

where ‖ · ‖1 denotes the L1 norm. This space does not depend on the choice
of ε0. With the ‖ · ‖α norm, Vα is a Banach space; moreover according to
Theorem 1.13 in [K], the unit ball in Vα is compact in L1.

Proposition 5.2. Let f ∈ Vα. Then

(i) ‖f‖∞ ≤ 1
γmεm

0

‖f‖α provided ε0 ≤ 1,

(ii) There exists a ball Bε(x) such that Einf
Bε(x)

f > 0.

Proof: See [S] Proposition 3.4 and Lemma 3.1. ¤

To prove Theorem A we need one more ingredient, the so-called Lasota-
Yorke’s inequality, which will be proved in Section 6. This inequality provides
an upper bound on the action of the Perron-Frobenius operator on the elements
in Vα. Such an operator will be defined on the subspace M\R with a potential
given by the inverse of the determinant of the induced map. We denote it by
P̂ f . We will prove

|P̂ f |α ≤ η|f |α + D‖f‖1
for some η < 1 and D < ∞. This, plus the compactness of the unit ball of Vα

in L1, allow us to invoke the ergodic theorem of Ionescu-Tulcea and Marinescu
([IM], see also [K], Theorem 3.3,) to obtain an invariant probability measure
µ absolutely continuous with respect to ν on M\R. The measure µ has finite
number of ergodic components, and is “unique greatest” in the sense that any
other measure absolutely continuous with respect to ν is absolutely continuous
with respect to µ.

Proof of Theorem A:
Recall that R is given in Assumption 3. We construct an induced system

(M̂, T̂ ). Denote M̂ = M\R. Let T̂ : M̂ → M̂ be the first return map of
T , so that T̂ (x) = T (x) if x 6∈ T−1R, otherwise T̂ (x) = T i+1(x) = T i

1Tj(x)
if x ∈ T−1

j R, where i is the smallest positive integer such that T i
1Tj(x) /∈ R.

We denote g(x) = |det DT (x)|−1, and similarly ĝ(x) = g(x) if x 6∈ T−1R

and ĝ(x) = |detDT̂ (x)|−1 = |det DT i+1(x)|−1 if otherwise. Let ν̂ be the
renormalization of the Lebesgue measure ν restricted to M̂ .

Let P be the Perron-Frobenius operator of T with the potential function
log g(x), i.e.

Pf(x) =
∑

Ty=x

f(y)g(y).
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Then let P̂ be the Perron-Frobenius operator of T̂ with the potential function
log ĝ(x), i.e.

P̂ f(x) =
K∑

j=1

∞∑

i=0

f(T−1
j T−i

1 x)ĝ(T−1
j T−i

1 x). (5.4)

By the definition of the induced system, we know that if x ∈ M \ TR, then
i = 0, and if x ∈ TR \R, then j 6= 1.

By Proposition 6.2 in the next section we have the Lasota-Yorke’s inequality
for the induced system (M̂, T̂ ). So T̂ has an absolutely continuous invariant
probability measure µ̂ on M̂ with density function ĥ that has finitely many
ergodic components.

We extend ĥ to R\{p} to get a density function h on M\{p}. That is, if
x ∈ R\{p}, we let

h(x) =
K∑

j=2

h(T−1
j x)g(T−1

j x)

+
K∑

j=2

∞∑

i=1

h(T−1
j T−i

1 x)g(T−1
j T−i

1 x)g(T−i
1 x) · · · g(T−1

1 x). (5.5)

It is clear that h is well defined and nonnegative. Also, by this definition, for
x ∈ TR\{p},

h(T−1
1 x) =

K∑

j=2

h(T−1
j T−1

1 x)g(T−1
j T−1

1 x)

+
K∑

j=2

∞∑

i=2

h(T−1
j T−i

1 x)g(T−1
j T−i

1 x)g(T−i
1 x) · · · g(T−2

1 x). (5.6)

Note that

Ph(x) = h(T−1
1 x)g(T−1

1 x) +
K∑

j=2

h(T−1
j x)g(T−1

j x).

So if x ∈ R\{p}, we substitute h(T−1
1 x) in (5.6) and then compare it with

(5.5) to get that the right side is equal to h(x). If x ∈ TR\R, we substitute
h(T−1

1 x) and then compare it with (5.4), using the fact j 6= 1 and ĝ(T−1
j T−i

1 x) =
g(T−1

j T−i
1 x)g(T−i

1 x) · · · g(T−1
1 x), to get Ph(x) = P̂ h(x), which is also equal to

ĥ(x) = h(x). Since outside TR, P̂ f = Pf for any f and ĥ = h, we obtain
Ph = h on M\{p}.

Let µ be the measure on M with density h. Clearly, µ is invariant under T

and has the same number of ergodic components as µ̂ does.
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Next, we show that µM is finite if
∞∑

i=1

ν(T−i
1 R) < ∞. Recall R0 = TR\R,

and let Rn = T−n
1 R0 for n > 0. By Remark 1.1, diam Rn → 0. So we have

R =
∑∞

n=1 Rn ∪ {p}. Since µ is invariant, we have

µRi = µRi+1 +
K′∑

j=2

µ(T−1
j Ri),

where we assume that in addition to T−1
1 R ⊂ U1, R has K ′ − 1 preimages in

U2, · · · , UK′ , where K ′ ≤ K. Take summation from i = n to infinity, we get

µRn =
K′∑

j=2

µ
(
T−1

j

∞⋃

i=n

Ri

)
=

K′∑

j=2

µ
(
T−1

j T−n
1 R

)
.

Note that ‖ĥ‖∞ ≤ ∞ since ĥ ∈ Vα, and then note that the Jacobian of T−1
j is

less than or equal to 1. We have

µ
(
T−1

j T−n
1 R

) ≤ ‖ĥ‖∞ν
(
T−1

j T−n
1 R

) ≤ ‖ĥ‖∞ν
(
T−n

1 R
)
.

Hence

µR =
∞∑

n=1

µRn ≤ ‖ĥ‖∞(K ′ − 1)
∞∑

n=1

ν
(
T−n

1 R
)

< ∞. (5.7)

Now we prove the last part of the theorem. By Proposition 5.2(ii), there is
a ball Bε(z) ⊂ M \ R such that Einf

Bε(x)
ĥ ≥ h∗ > 0 for some constant h∗. By

the assumption in the statement of Theorem A, there exists Ñ > 0 such that
T ÑBε(z) ⊃ M . So for any x ∈ M , there is y0 ∈ Bε(z) such that T Ñy0 = x.
Since |detDT | is bounded above, we have g∗ := inf{g(y) : y ∈ M} > 0. Hence,
for every x,

h(x) = (P Ñh)(x) =
∑

T Ñ y=x

h(y)
Ñ−1∏

i=0

g(T iy) ≥ h(y0)
Ñ−1∏

i=0

g(T iy0) ≥ h∗gÑ
∗ .

By splitting R over the disjoint union (mod 0) of the Rn as in (5.7), we get

µR =
∞∑

n=1

µRn ≥ (h∗gÑ
∗ )g∗

K′∑

j=2

ν
(
T−n

1 R
)

= ∞.

This ends the proof. ¤
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6 A Lasota-Yorke type inequality

Let R be as in Assumption 3. Denote T̂ij = T i
1Tj and Uij = T̂−1

ij (R0) = T−1
j Ri

for i > 1 and U0j = Uj\T−1
j R. So if TUl 63 p, then Uil is undefined for any

i > 0 and U0l = Ul. Clearly, Uij ⊂ Uj for all i > 0 and {Uij , i ≥ 0} are pairwise
disjoint.

Lemma 6.1. There exists 0 < ε6 ≤ ε5 such that for any ε0 ≤ ε6, ε ≤ ε0 and
∀x ∈ M̂ ,

2
K∑

j=1

∞∑

i=0

ν(T̂−1
ij Bε(∂R0) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
≤ λεα

εα
0

, (6.1)

where λ is given by Assumption 3(b).

Proof: Note that the sets ∪∞i=1∂Uij , j = 1, · · · ,K, are pairwise separated. So
by Assumption 3(b) and the definition of λ in (1.1) we only need prove that
there exists ε6 > 0 such that for any given j, neighborhood if 0 < ε ≤ ε0 ≤ ε6,
then

2
∞∑

i=0

ν(T̂−1
ij Bε(∂R0) ∩B(1−s)ε6(x))

ν(B(1−s)ε6(x))
≤ λεα

εα
0

. (6.2)

Take

ε6 ≤ min{ε5, ε3} ·
(λ(1− s)m

2CpI2

)1/α

,

where ε3 is given by Assumption 3(c).
Recall that Ns is also given by Assumption 3(c). Reduce ε6 if necessary such

that for any x, the ball B(1−s)ε6(x) intersects at most one connected component
of the set {T̂−1

ij Bε6(∂R0), 0 < i ≤ Ns, 1 < j ≤ K}, which, we remember, are
pairwise disjoint. We also require ε6 small enough such that for any 1 < j ≤ K,
1 ≤ i ≤ Ns, the part T̂−1

ij ∂R0 ∩ Bε6(x) are close to an (m − 1) dimensional
plane.

Take ε and ε0 such that 0 < ε ≤ ε0 ≤ ε6 .
We first consider the case 1 ≤ i ≤ Ns. Note that T̂−1

ij Bε(∂R0)∩B(1−s)ε0(x) ⊂
Bsε(T−1

ij ∂R0) ∩ B(1−s)ε0(x). The volume of the latter is close to γm−1((1 −

s)ε0)m−1 · 2sε = 2sγm−1ε(1 − s)m−1εm−1
0 . So

ν(T̂−1
ij Bε(∂R) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
is

close to
2sγm−1ε(1− s)m−1εm−1

0

γm(1− s)mεm
0

=
2sγm−1ε

(1− s)γmε0
. Hence, by Assumption 3(b),

we know that it is less than λεα/εα
0 .

Now we consider the case that i ≥ Ns.
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Let ε̃ = ε0

( 2CpI
2

λ(1− s)m

)1/α

. We have ε̃ ≤ ε5.

For each i, we take a partition ξi = {Ãi1, Ãi2, · · · , } satisfying Assumption
4(c) with n = i and ε̃ ≤ ε5. Denote Aik = Ãik∩Bε̃(∂R0), A′ik = Ãik∩Bε(∂R0),
Aijk = T̂−1

ij Aik and A′ijk = T̂−1
ij A′ik. Then we let

A = {Aijk : A′ijk ∩B(1−s)ε0(x) 6= ∅}, A′ = {A′ijk : Aijk ∈ A}.

By abusing notations, we may also think that A and A′ are the unions of the
sets they contain.

By the fact

νAijk =
∫

Aik

|detDT̂−1
ij (x)|dν(x)

and Assumption 4(c), we know that

νA′ijk

νAijk
≤ Cpε

α

ε̃α
· I2 =

CpI
2εαλ(1− s)m

2CpI2εα
0

=
εαλ(1− s)m

2εα
0

. (6.3)

Denote s∗ = sup
{
s(T−Ns

1 (z), TNs
1 ) : z ∈ Bε̃(R0)

}
. Note that by Assumption

4(c), diam Aik ≤ 5mε̃ ≤ 5mε0

( 2CpI
2

λ(1− s)m

)1/α

. Since i ≥ Ns, by Assumption

3(c), we have

diamAijk ≤ 5mε0

( 2CpI
2

λ(1− s)m

)1/α

· s∗ = sε0. (6.4)

So if Aijk ∈ A, then Aijk ∩B(1−s)ε0(x) 6= ∅, and therefore Aijk ⊂ Bε0(x). That
is,

A ⊂ Bε0(x). (6.5)

Note that
∞⋃

i=0

T̂−1
ij Bε(∂R) ∩B(1−s)ε0(x) ⊂ A′. (6.6)

By (6.3) to (6.6), we get

2
∞∑

i=0

ν(T̂−1
ij Bε(∂R) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
≤ 2 · νA′

νA · νA
νBε0(x)

· µBε0(x)
ν(B(1−s)ε0(x)

≤ 2 · εαλ(1− s)m

2εα
0

· 1 · γmεm
0

γm(1− s)mεm
0

= λ
εα

εα
0

.

This is (6.2), the formula we need to show. ¤
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Proposition 6.2. Assume that T : M → M satisfies Assumption 1 to 4, and
T̂ : M̂ → M̂ is the reduced system with respect to M̂ = M\R. Then there exist
η < 1 and D < ∞ such that for any f ∈ Vα = Vα(ε0), we have Pf ∈ Vα and

|P̂ f |α ≤ η|f |α + D‖f‖1
for all ε0 sufficiently small.

Proof: Take ζ > 0 such that for any ε ≤ ε4,

(1 + Jsαεa)(1 + csaεα) ≤ 1 + ζεα, (6.7)

where c, J and ε4 are given in Assumption 4(a) and (b) respectively.
Recall that by Assumption 3(b), sα + λ ≤ η0 < 1. Take b > 0 such that

(sα + λ) + 3K ′bγ−1
m < 1, where K ′ is the number of preimages of p for the map

T . Recall also that ε1, ε2, ε4 and ε6 are given in Assumption 1(b), 3(b), 4(b)
and Lemma 6.1 respectively. Take ε0 ≤ min{ε1, ε2, ε4, ε6} such that

η := (1 + ζεα
0 )(sα + λ) + 3K ′bγ−1

m < 1. (6.8)

Denote

GR(x, ε, ε0) = 2
K∑

j=1

N(ε)∑

i=0

ν(T̂−1
ij Bε(∂R0) ∩B(1−s)ε0(x))

ν(B(1−s)ε0(x))
.

Recall that GU (x, ε, ε0) is given by (1.2) in Assumption 3(b). Note that if ε0

is small, then suppGU (·, ε, ε0) and suppGR(·, ε, ε0) are disjoint. Also, by (1.1)
and Lemma 6.1, we know that

G(ε, ε0) = sup
x∈M

{GU (x, ε, ε0), GR(x, ε, ε0)} ≤ λεα

εα
0

. (6.9)

Then we take

D = 2ζ + 2(1 + ζεα) sup
ε≤ε0

G(ε, ε0)ε−α + K ′bγ−1
m . (6.10)

By (6.9), G(ε, ε0)ε−α ≤ λε−α
0 . We have D < ∞.

Let ε ≤ ε0.
By Proposition 5.1,

osc
(
P̂ f, Bε(x)

) ≤
K∑

j=1

∞∑

i=0

osc
(
(fĝ) ◦ T̂−1

ij χT̂Uij
, Bε(x)

)

≤
K∑

j=1

∞∑

i=0

(
osc

(
(fĝ) ◦ T̂−1

ij , Bε(x)
)
χT̂Uij

(x) +
[
2Esup

Bε(x)

(fĝ) ◦ T̂−1
ij

]
χBε(∂T̂Uij)

(x)
)

=:
K∑

j=1

∞∑

i=0

(
R

(1)
ij (x)χT̂Uij

(x) + R
(2)
ij (x)χBε(∂T̂Uij)

(x)
)
. (6.11)
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Denote yij = T̂−1
ij x. We can choose N = N(ε) > 0 for each 0 < ε ≤ ε0

according to Assumption 4(b).
For R

(1)
ij (x) with x ∈ T̂Uij , we first consider the case i ≤ N(ε). By

Assumption 4(a), (b) and (6.7), we have ĝ(y′ij)/ĝ(yij) ≤ (1 + Jsαεα)(1 +
csαεα) ≤ 1 + ζεα if d(T i+1yij , T

i+1y′ij) ≤ sε. Hence ĝ(y′ij) ≤ (1 + ζεα)ĝ(yij)
and osc

(
ĝ ◦ T̂−1

ij , Bε(x)
) ≤ osc

(
ĝ, Bsε(yij)) ≤ 2ζεαĝ(yij). So we get for almost

every x,

R
(1)
ij (x) = osc

(
fĝ, T̂−1

ij Bε(x) ∩ Uij

)

≤ osc
(
f, Bsε(yij) ∩ Uij

)
Esup

Bsε(yij)∩Uij

ĝ + osc
(
ĝ, Bsε(yij) ∩ Uij

)
Einf

Bsε(yij)∩Uij

f

≤ (1 + ζεα) osc
(
f, Bsε(yij) ∩ Uij

)
ĝ(yij) + 2ζεαf(yij)ĝ(yij).

If i > N(ε), then we must have x ∈ R0, and therefore for almost every x,

R
(1)
ij (x) = osc

(
fĝ, T̂−1

ij Bε(x) ∩ Uij

)

≤ osc
(
f, T̂−1

ij Bε(x) ∩ Uij)
)

Einf
T̂−1

ij
Bε(x)∩Uij

ĝ + osc
(
ĝ, T̂−1

ij Bε(x) ∩ Uij

)
Esup

T̂−1
ij

Bε(x)

f

≤ osc
(
f, Bsε(yij) ∩ Uij

)
ĝ(yij) + ‖f‖∞ sup

T̂−1
ij

Bε(x)

ĝ.

By Assumption 4(b), for any x ∈ R0,
∞∑

i=N

( sup
T̂−1

ij
Bε(x)

ĝ) ≤ bεm+α. Hence,

K∑

j=1

∞∑

i=0

R
(1)
ij (x)χT̂Uij

(x) ≤ K ′bεm+α‖f‖∞χR0(x)

+
K∑

j=1

∞∑

i=0

(
(1 + ζεα) osc

(
f, Bsε(yij) ∩ Uij

)
ĝ(yij) + 2ζεαf(yij)ĝ(yij)

)

≤ K ′bεm+α‖f‖∞χR0(x)+ (1 + ζεα)
[
P̂ osc

(
f, Bsε(·)

)]
(x)+ 2ζεα(P̂ f)(x).

Since
∫

M̂
P̂ fdν̂ =

∫
M̂

fdν̂ for any integrable function f , we have

∫

M̂

K∑

j=1

∞∑

i=0

R
(1)
ij χT̂Uij

dν̂

≤ K ′bεm+α‖f‖∞ν̂R0 + (1 + ζεα)
∫

M̂

osc
(
f, Bsε(·)

)
dν̂ + 2ζεα

∫

M̂

fdν̂

≤ (1 + ζεα)sαεα|f |α + 2ζεα‖f‖1 + K ′bεm+α‖f‖∞ν̂R0. (6.12)

As for R
(2)
ij (x), if i ≤ N(ε), then we have

Esup
Bε(x)

(fĝ) ◦ T̂−1
ij ≤ [

Esup
Bsε(yij)

|f |]ĝ(yij)(1 + ζεα).
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Hence by the same method as in [S], we get that

∫

M̂

K∑

j=1

N(ε)∑

i=0

R
(2)
ij χBε(∂T̂Uij)

dν̂ ≤ 2(1 + ζεα)G(ε, ε0)
(
εα
0 |f |α + ‖f‖1).

If i ≥ N(ε), then Esup
Bε(x)

(fĝ) ◦ T̂−1
ij ≤ ‖f‖∞ sup

T̂−1
ij

Bε(x)

ĝ, and

K∑

j=1

∞∑

i=N(ε)

R
(2)
ij χBε(∂T̂Uij)

≤ 2K ′‖f‖∞
∞∑

i=N(ε)

sup
T̂−1

ij
Bε(x)

ĝ.

Again, by Assumption 4(b) it is bounded by 2K ′bεm+α‖f‖∞. So we have

∫

M̂

K∑

j=1

∞∑

i=0

R
(2)
ij χBε(∂T̂Uij)

dν̂

≤ 2(1 + ζεα)G(ε, ε0)
(
εα
0 |f |α + ‖f‖1) + 2K ′bεm+α‖f‖∞ν̂Bε(∂R0).(6.13)

We may assume that ν̂R0 + ν̂Bε(∂R0) ≤ 1. By Proposition 5.2(i) and (5.3)
we have that εm+α‖f‖∞ ≤ γ−1

m εα‖f‖α and ‖f‖α = |f |α + ‖f‖1 respectively. So
by (6.11), (6.12) and (6.13), we get
∫

M̂

osc
(
Pf, Bε(·)

)
dν̂ ≤ [

(1 + ζεα)
(
sαεα + 2G(ε, ε0)εα

0

)
+ 3K ′bγ−1

m εα
]|f |α

+
[
2ζεα + 2(1 + ζεα)G(ε, ε0) + 3K ′bγ−1

m εα
]‖f‖1.

Now the result follows by the choice of η and D in (6.8) and (6.10). ¤
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