QUASISYMMETRIC PROPERTY FOR CONJUGACIES BETWEEN ANOSOV DIFFEOMORPHISMS OF THE TWO-TORUS

HUYI HU AND YUNPING JIANG

ABSTRACT. We prove that the restrictions of the conjugacy between two Anosov diffeomorphisms of the two-torus to the stable and unstable manifolds are quasisymmetric homeomorphisms.

(This paper is dedicated to Professor Lo Yang for his 70th birthday)

1. INTRODUCTION

The study of the quasisymmetric property for a conjugacy between two one-dimensional maps has led to solutions of many important problems in one-dimensional dynamical systems and in complex dynamical systems. We give a partial list of references in this direction [9, 10, 15, 11, 21, 5, 19, 18].

A quasisymmetric homeomorphism could be very singular, that is, it could map a set of positive Lebesgue measure to a set of zero Lebesgue measure or vice versa. Generally speaking, as a conjugacy between certain two onedimensional dynamical systems, a homeomorphism must be either totally singular or smooth (see, for examples, [9, 12, 13, 14, 15, 16]). However, a quasisymmetric homeomorphism has many important geometric properties. For example, a quasisymmetric homeomorphism of the real line can be extended to the whole complex plan as a quasiconformal homeomorphism (refer to [2]).

We would like to push the study of the quasisymmetric property into higher dimensional dynamical systems but with either one-dimensional stable manifolds or one-dimensional unstable manifolds. In [3], Cawley did a similar study and more emphasized on the geometric structure of the space of Anosov diffeomorphisms of the two-torus parametrized by potentials on stable and unstable manifolds. In this paper, we study the quasisymmetric property of a conjugacy between two Anosov diffeomorphisms of the two-torus when the conjugacy is restricted to stable and unstable manifolds. The main technique we use in this paper is the Markov partition method (see [22]) which has been used in the study of the quasisymmetric property of one-dimensional dynamical systems (see [9]).

2. NOTATIONS AND THE MAIN THEOREM

Let \mathbb{T}^2 be the two-torus. Let f be an Anosov diffeomorphism of the twotorus. Suppose f is at least $C^{1+\alpha}$ for some $0 < \alpha \leq 1$. By the definition, f is an Anosov diffeomorphism if there is a invariant splitting of the tangent bundle $T\mathbb{T}^2 = E^s \oplus E^u$, where the subbundle E^s is contracted by f, and the subbundle E^u is expanded by f. That is, by considering the Lebesgue metric $\|\cdot\|$ on \mathbb{T}^2 , there are two constants $0 < \mu < 1$ and $C_0 > 0$ such that for all n > 0,

$$\|Df^n v\| \le C_0 \mu^n \|v\|, \quad \forall v \in E^s,$$

and

$$\|Df^{-n}v\| \le C_0\mu^n \|v\|, \quad \forall v \in E^u$$

The only 2-dimensional smooth manifold that support an Anosov diffeomorphism is the two-torus.

The stable and unstable manifold theorem [6] says that for an Anosov diffeomorphism f, \mathbb{T}^2 can be foliated by two transversal $C^{1+\alpha}$ submanifolds W^s and W^u such that $TW^s = E^s$ and $TW^u = E^u$. Here W^s and W^u are called the stable and unstable manifolds for f. For each x in \mathbb{T}^2 , the stable manifold $W^s(x)$ and the unstable manifold $W^u(x)$ passing x are

$$W^s(x) = \{ y \in \mathbb{T}^2 \mid d(f^n(x), f^n(y)) \to 0, \ n \to \infty \}$$

and

$$W^{u}(x) = \{ y \in \mathbb{T}^{2} \mid d(f^{-n}(x), f^{-n}(y)) \to 0, \ n \to \infty \}.$$

Each $W^{s}(x)$ or $W^{u}(x)$ is a connecting $C^{1+\alpha}$ immersed submanifold.

Suppose f and g are two Anosov diffeomorphisms of the two-torus. We say that f and g are topologically conjugate if there is a homeomorphism h of the two-torus such that

$$h \circ f = g \circ h.$$

Frank [4] and Manning [20] showed that every Anosov diffeomorphism f of the two-torus is topologically conjugate to a linear example; that is, to an automorphism defined by a hyperbolic element A of $GL(2,\mathbb{Z})$ whose determinant has absolute value one. Thus every Anosov diffeomorphism f of the two-torus has a fixed point, which we always take it as 0. It is known that the conjugacy h between any two Anosov diffeomorphisms is Hölder continuous (this will also be a corollary of our main theorem in this paper).

There is another very important geometric concept for a homeomorphism of the real line called *quasisymmetry* in complex analysis. A homeomorphism Hof the real line \mathbb{R} is called quasisymmetric if there is a constant $M \geq 1$ such that

$$\frac{1}{M} \le \left| \frac{H(x+t) - H(x)}{H(x) - H(x-t)} \right| \le M, \quad \forall x \in \mathbb{R}, \ \forall 0 < t \le 1.$$

Suppose $W_f^s(0)$ and $W_f^u(0)$ and $W_g^s(0)$ and $W_g^u(0)$ are the stable and unstable manifolds for f and g. Since they are all connecting $C^{1+\alpha}$ submanifolds of the two-torus, we have $C^{1+\alpha}$ embeddings $\rho_{s,f}$, $\rho_{u,f}$, $\rho_{s,g}$, and $\rho_{u,g}$ from \mathbb{R} onto $W_f^s(0)$, $W_f^u(0)$, $W_g^s(0)$, and $W_g^u(0)$, respectively. We assume that $\rho_{s,f}$, $\rho_{u,f}$, $\rho_{s,g}$, and $\rho_{u,g}$ preserve the arc-length.

For the conjugacy h from f to g, define

$$H_s = \rho_{s,g}^{-1} \circ h \circ \rho_{s,f} \quad \text{and} \quad H_u = \rho_{u,g}^{-1} \circ h \circ \rho_{u,f}.$$

Then they are two homeomorphisms of the real lines. We say $h|W_f^s(0)$ and $h|W_f^u(0)$ are quasisymmetric if H_s and H_u are quasisymmetric. We will prove is the following:

Theorem 1. Suppose f and g are two conjugated Anosov diffeomorphisms of the two-torus and h is a conjugacy between f and g, that is, $h \circ f = g \circ h$. Then

$$h|W_{f}^{s}(0):W_{f}^{s}(0) \to W_{g}^{s}(0) \quad and \quad h|W_{f}^{u}(0):W_{f}^{u}(0) \to W_{g}^{u}(0)$$

are both quasisymmetric homeomorphisms.

It is known that a quasisymmetric homeomorphism of the real line is Hölder continuous [2]. So the Hölder continuity property of h, which is a known result for a long time, is a corollary of the above theorem.

Corollary 1. A conjugacy h between Anosov diffeomorphisms f and g of the two-torus is Hölder continuous.

3. MARKOV PARTITIONS

Suppose f is an Anosov diffeomorphism of \mathbb{T}^2 . Then f has a local product structure, that is, for any $\epsilon > 0$, there exists $\delta > 0$ such that if $d(x, y) \leq \delta$, $W^s_{\epsilon}(x) \cap W^y_{\epsilon}(y)$ contains exact one point, denoted by [x, y], where $W^s_{\epsilon}(x)$ and $W^u_{\epsilon}(x)$ are the local stable and unstable manifold at x given by

$$W^s_{\epsilon}(x) = \{ y \in \mathbb{T}^2 \mid d(f^n(x), f^n(y)) \le \epsilon, \ \forall n \ge 0 \},\$$

and

$$W^{u}_{\epsilon}(x) = \{ y \in \mathbb{T}^{2} \mid d(f^{-n}(x), f^{-n}(y)) \le \epsilon, \ \forall n \ge 0 \}.$$

A set R whose diameter is less than δ is called a *rectangle* if $x, y \in R$ implies $[x, y] \in R$. A rectangle R is proper if it is the closure of its interior. It is easy

to check that if R is a rectangle, so is f(R), and if R and S are rectangles, so is $R \cap S$, provided the diameters of the rectangles involved are all small.

For a rectangle R and a point $x \in R$, we denote $W^s(x, R) = W^s_{\epsilon}(x) \cap R$ and $W^u(x, R) = W^u_{\epsilon}(x) \cap R$. Note that if R is connected, then both $W^s(x, R)$ and $W^u(x, R)$ are connected curves.

A Markov partition for f is a set $\mathcal{R} = \{R_1, \dots, R_n\}$ of proper connected rectangles satisfying:

- (1) $\mathbb{T}^2 = \bigcup_{i=1}^n R_i;$
- (2) $\operatorname{int}(R_i) \cap \operatorname{int}(R_j) = \emptyset$ for $1 \le i \ne j \le n$;
- (3) $fW^s(x, R_i) \subset W^s(f(x), R_j)$ if $x \in \overline{R_i}$ and $f(x) \in R_j$;
- (4) $fW^u(x, R_i) \supset W^u(f(x), R_j)$ if $x \in R_i$ and $f(x) \in R_j$.

Sinai proved that any Anosov diffeomorphism has a Markov partition of arbitrarily small diameter [22]. Since we only consider Anosov diffeomorphisms of the two-torus and since every such an Anosov diffeomorphism is topologically conjugate to a linear one, we can construct a canonical Markov partition for every f as follows. Note that diameters of rectangles in this canonical Markov partition may not be small.

Suppose A is a hyperbolic automorphism of \mathbb{T}^2 conjugating to f. We first construct a canonical Markov partition for A (refer to [1]). Note that A can be defined by a hyperbolic matrix whose absolute value of the determinant is 1. So the matrix has an eigenvalue whose absolute value is greater than 1 (called the unstable eigenvalue) and an eigenvalue whose absolute value is less than 1 (called the stable eigenvalue).

Suppose E^s and E^u are the stable and unstable eigenspaces of the matrix respectively. Then they are two transversal lines passing through the origin of \mathbb{R}^2 . Suppose the unit square $[0,1) \times [0,1)$ is a copy of \mathbb{T}^2 on the plane. Project into the \mathbb{T}^2 a segment in E^s through the origin, and a segment in E^u through the origin. Extended these segments until they cut the \mathbb{T}^2 into parallelograms. The set of these parallelograms is our canonical Markov partition \mathcal{R}_A for A. The reader may refer to [17, pp. 84-86] for more details and some pictures of a canonical Markov partition. Let h_A be the conjugacy from A to f, that is, $h_A \circ A = f \circ h_A$. Then $\mathcal{R}_f = h_A(\mathcal{R}_A)$ is our canonical Markov partition for f.

4. NESTED SEQUENCE OF PARTITIONS ON $W^{s}(0)$ and $W^{u}(0)$.

For a canonical Markov partition $\mathcal{R} = \mathcal{R}_f = \{R_1, \cdots, R_n\}$ for f, we define

$$\kappa_0^s = \{ W^s(x, R_i) \mid x \in W^s(0), 1 \le i \le n \}$$

and

$$\kappa_0^u = \{ W^u(x, R_i) \mid x \in W^u(0), 1 \le i \le n \}.$$

So κ_0^s is a partition of $W^s(0)$ into countably many segments $W^s(x, R_i), x \in W^s(0), R_i \in \mathcal{R}$ and κ_0^u is a partition of $W^u(0)$ into countably many segments $W^u(x, R_i), x \in W^u(0), R_i \in \mathcal{R}$. Then we define $\kappa_n^s = f^n \kappa_0^s$ and $\kappa_n^u = f^{-n} \kappa_0^u$ for any $n \geq 1$. That is, κ_n^s consists of all segments l^s in $W^s(0)$ such that $f^{-n}(l) \in \kappa_0^s$ and κ_n^u consists of all segments l^u in $W^u(0)$ such that $f^n(l) \in \kappa_0^u$. By the condition (3) and (4) we know that each element of κ_n^s or κ_n^u is a union of some elements of κ_{n+1}^s or κ_{n+1}^u respectively.

5. HOLONOMY MAP

For any two segments l^s and \tilde{l}^s of κ_0^s in a same rectangle $R \in \mathcal{R}$, a holonomy map $\theta^s(x) : l^s \to \tilde{l}^s$ is defined by sliding along the unstable curves, that is, for any $x \in l^s$, $\theta^s(x) = [z, x]$, the only point contained in the intersection $W^s(z) \cap W^u(x)$, where z is any point in \tilde{l}^s . Similarly, for any two segments l^u and \tilde{l}^u of κ_0^u in a same rectangle $R \in \mathcal{R}$, a holonomy map $\theta^u(y) : l^u \to \tilde{l}^u$ is defined by sliding along the stable curves, that is, for any $y \in l^s$, $\theta^u(y) = [y, z]$, the only point contained in the intersection $W^s(y) \cap W^u(z)$, where z is any point in \tilde{l}^u . The proof of the following lemma can be founded in [6, 17] (also, refer to [7, Proposition 3.2]), using the facts that both stable and unstable foliations are codimension one.

Lemma 1. All holonomies are Lipschitz continuous with a uniform Lipschitz constant. More precisely, there is a constant $C_1 > 0$ such that for any two segments l^s and \tilde{l}^s of κ_0^s in a same rectangle $R \in \mathcal{R}$,

$$d(\theta^s(x), \theta^s(x')) \le C_1 d(x, x'), \quad \forall x, x' \in l^s,$$

and for any two segments l^u and \tilde{l}^u of κ_0^s in a same rectangle $R \in \mathcal{R}$,

 $d(\theta^u(y), \theta^u(y')) \le C_1 d(y, y'), \quad \forall \ y, \ y' \in l^u.$

This lemma implies the following.

Lemma 2. There is a constant $C_1 > 1$ such that

$$\frac{1}{C_1} \le \frac{|l^s|}{|m^s|}, \frac{|l^u|}{|m^u|} \le C_1$$

for all $l^s, m^s \in \kappa_0^s$ and $l^u, m^u \in \kappa_0^u$, where $|\cdot|$ means the length of the segment.

Remark 1. Following the method used in one-dimensional dynamical systems (see [9]), Cawley [3] studied the quasisymmetric property of holonomies.

6. DISTORTIONS

For an Anosov diffeomorphism, we have that

Lemma 3 (Distortion). For any $\epsilon > 0$, there is a constant $C_2 = C_2(\epsilon) > 0$ such that for any $x, y \in W^s(0)$ with $d^s(x, y) \leq \epsilon$ and n > 0,

$$\frac{1}{C_2} \le \frac{\|Df^n(y)|_{E_y^s}\|}{\|Df^n(x)|_{E_x^s}\|} \le C_2$$

and for any $x, y \in W^u(0)$ with $d^u(x, y) \leq \epsilon$ and n > 0,

$$\frac{1}{C_2} \le \frac{\|Df^{-n}(y)|_{E_y^s}\|}{\|Df^{-n}(x)|_{E_x^s}\|} \le C_2,$$

where d^s and d^u are the distances along $W^s(0)$ and $W^u(0)$ respectively.

The proof of this lemma is the same as the proof of the naive distortion lemma in one-dimensional dynamical systems (see [9, Chapter 1]) and can be found in many books for hyperbolic dynamical systems, see, for example, [17].

7. Bounded nearby geometry

Definition 1. The nested sequences of partitions $\kappa^s = {\kappa_n^s}$ or $\kappa^u = {\kappa_n^u}$ are said to have bounded nearby geometry if there is a constant C > 0 such that for any two adjacent segments $l^s, m^s \in \kappa_n^s$ or $l^u, m^u \in \kappa_n^u$, $n \ge 0$,

$$\frac{1}{C} \le \frac{|l^s|}{|m^s|} \le C \quad or \ \frac{1}{C} \le \frac{|l^u|}{|m^u|} \le C$$

respectively.

Theorem 2. Suppose f is a $C^{1+\alpha}$ Anosov diffeomorphism for some $0 < \alpha \leq 1$. Then the nested sequences of partitions κ^s and κ^u have the bounded nearby geometry.

Proof. By Lemma 2, there is a constant $C_2 = C_2(2\epsilon) > 0$ such that

$$\frac{1}{C_1} \le \frac{|l^s|}{|m^s|}, \frac{|l^u|}{|m^u|} \le C_1$$

for any two adjacent segments $l^s, m^s \in \kappa_0^s$ or $l^u, m^u \in \kappa_0^u$.

For any $n \geq 1$ and for any two adjacent segments l^s and m^s in κ_n^s or l^u and m^u in κ_n^u , $f^{-n}(l^s)$ and $f^{-n}(m^s)$ or $f^n(l^u)$ and $f^n(m^u)$ are two adjacent segments in κ_0^s or in κ_0^u respectively. Then we apply the distortion lemma, Lemma 3, to get the result. **Lemma 4.** For any c > 0, there exists k = k(c) > 0 such that for any n > 0, $l^s \in \kappa_n^s$ and $m^s \in \kappa_{n+k}^s$ with $m^s \subset l^s$,

 $\begin{aligned} |m^{s}| &\leq c|l^{s}|,\\ and \ for \ any \ l^{u} \in \kappa_{n}^{u} \ and \ m^{u} \in \kappa_{n+k}^{u} \ with \ m^{u} \subset l^{u},\\ |m^{u}| &\leq c|l^{u}|. \end{aligned}$

Proof. By the above theorem we know that $\{|\tilde{l}^s| | \tilde{l}^s \in \kappa_0^s\}$ and $\{|\tilde{l}^u| | \tilde{l}^u \in \kappa_0^u\}$ are bounded above and below. Since f is uniformly contracting along the stable direction and f^{-1} is uniformly contracting along the unstable direction, we can take k > 0 such that for any $\tilde{l}^s \in \kappa_0^s$ and $\tilde{m}^s \in \kappa_k^s$ with $\tilde{m}^s \subset \tilde{l}^s$,

$$|\tilde{m}^s| \le cC_2^{-1}|l^s|,$$

and for any $\tilde{l}^u \in \kappa_0^u$ and $\tilde{m}^u \in \kappa_k^u$ with $\tilde{m}^u \subset \tilde{l}^u,$
 $|\tilde{m}^u| \le cC_2^{-1}|\tilde{l}^u|.$

Note that if $l^s \in \kappa_n^s$ and $m^s \in \kappa_{n+k}^s$ with $m^s \subset l^s$, then $f^{-n}(l^s) \in \kappa_0^s$ and $f^{-n}(m^s) \in \kappa_k^s$ with $f^{-n}(m^s)^s \subset f^{-n}(l^s)$. Hence, we have

$$|f^{-n}(m^s)| \le cC_2^{-1}|f^{-n}(l^s)|,$$

and similarly if $l^u \in \kappa_n^u$ and $m^u \in \kappa_{n+k}^u$ with $m^u \subset l^u$, then

$$|f^{n}(m^{u})| \le cC_{2}^{-1}|f^{n}(l^{u})|,$$

Now we apply Lemma 3 to get $|m^s| \leq c|l^s|$ and $|m^u| \leq c|l^u|$.

8. QUASISYMMETRIC PROPERTY

Proof of Theorem 1. We adapted a technique in [9, 10] to prove from the bounded nearby geometry to the quasisymmetric property.

Suppose $W_f^s(0)$ and $W_f^u(0)$ and $W_g^s(0)$ and $W_g^u(0)$ are the stable and unstable manifolds for f and g at 0. Suppose $\rho_{s,f} : \mathbb{R} \to W_f^s(0), \rho_{u,f} : \mathbb{R} \to W_f^u(0),$ $\rho_{s,g} : \mathbb{R} \to W_g^s(0), \rho_{u,g} : \mathbb{R} \to W_g^u(0)$ are embedding maps preserving arc length.

We prove that $H_u = \rho_{u,g}^{-1} \circ h \circ \rho_{u,f} : \mathbb{R} \to \mathbb{R}$ is a quasisymmetric homeomorphism. The proof that $H_s = \rho_{s,g}^{-1} \circ h \circ \rho_{s,f} : \mathbb{R} \to \mathbb{R}$ is a quasisymmetric homeomorphism is the exactly same just by replacing u by s.

Let $\xi_{n,f} = \rho_{u,f}^{-1} \kappa_{n,f}^u$ and $\xi_{n,g} = \rho_{u,g}^{-1} \kappa_{n,g}^u$ for $n \ge 0$. Then they are two sequences of nested partitions on the real line and $H_u \xi_{n,f} = \xi_{n,g}$.

Let Ω be the set of all endpoints of intervals $I \in \xi_{n,f}$, $n = 0, 1, \dots, \infty$. It is a dense subset in \mathbb{R} .

For $x \in \Omega$. Consider the interval [x - t, x]. There is a largest integer $n \ge 0$ such that there is an interval $I = [a, x] \in \xi_{n,f}$ satisfying $[x - t, x] \subseteq I$. Suppose

 $l^s \in \kappa_0^s \text{ and } \tilde{m}$ $\leq cC_2^{-1}|\tilde{l}^s|,$

 $J = [b, x] \in \xi_{n+1,f}$. Then $J \subseteq [x - t, x]$. Let $J' = [x, c] \in \xi_{n+1,f}$. From Theorem 2 for f, there is a constant $C_1 > 0$ such that

$$C_1^{-1} \le \frac{|J'|}{|J|} \le C_1$$

If |J'| > t, we have $|J'| \le C_1 |J| \le C_1 t$. Take $k = k(C_1^{-1})$ as in Lemma 4, and let $J'_k = [x, c_k] \in \xi_{n+k,f}$. Then $J'_k \subset J'$ and by the lemma we have $|J'_k| \le C_1^{-1} |J'| \le t$. This implies that $J'_k \subseteq [x, x+t]$. So we have

$$\frac{|H(J'_k)|}{|H(I)|} \le \frac{|H(x+t) - H(x)|}{|H(x) - H(x-t)|} \le \frac{|H(J')|}{|H(J)|}$$

where $H(I) \in \xi_{n,g}$, $H(J), H(J') \in \xi_{n+1,g}$, and $H(J'_k) \in \xi_{n+k+1,g}$. Now from Theorem 2 for g, we have a constant C > 0 such that

$$C^{-1} \le \frac{|H(J'_k)|}{|H(I)|} \le \frac{|H(x+t) - H(x)|}{|H(x) - H(x-t)|} \le \frac{|H(J')|}{|H(J)|} \le C.$$

If $|J'| \leq t$, we have $|J'| \geq C_1^{-1}t$. We take the same $k = k(C_1^{-1})$ as above, and let $J'_{-k} = [x, c_{-k}] \in \xi_{n-k,f}$. Then $J'_{-k} \supset J'$ and by Lemma 4 we have $|J'| \leq C_1^{-1}|J'_{-k}|$ and therefore $|J'_{-k}| \geq C_1|J'| \geq t$. This implies that $J'_{-k} \supseteq [x, x+t]$. So we have

$$\frac{|H(J')|}{|H(I)|} \le \frac{|H(x+t) - H(x)|}{|H(x) - H(x-t)|} \le \frac{|H(J'_{-k})|}{|H(J)|},$$

where $H(I) \in \xi_{n,g}$, $H(J), H(J') \in \xi_{n+1,g}$, and $H(J'_{-k}) \in \xi_{n-k+1,g}$. Now from Theorem 2 for g, we have a constant C > 0, such that

$$C^{-1} \le \frac{|H(J')|}{|H(I)|} \le \frac{|H(x+t) - H(x)|}{|H(x) - H(x-t)|} \le \frac{|H(J'_{-k})|}{|H(J)|} \le C.$$

For any $x \in \mathbb{R}$, since Ω is dense in [0, 1], we have a sequence $x_n \in \Omega$ such that $x_n \to x$ as $n \to \infty$. For any t > 0, we have that

$$C^{-1} \le \frac{|H(x_n+t) - H(x_n)|}{|H(x_n) - H(x_n-t)|} \le C.$$

Since H is continuous on \mathbb{R} , we get that

$$C^{-1} \le \frac{|H(x+t) - H(x)|}{|H(x) - H(x-t)|} \le C.$$

We proved the theorem.

References

- R. Adler and B. Weiss, Similarity of Automorphisms of the Torus. Memoirs AMS, 98, 1970.
- [2] L. V. Ahlfors, Lectures on Quasiconformal Mappings. D. Van Nostrand-Reinhold Company, Inc., Princeton, New Jersey, 1966.
- [3] E. Cawley, The Teichmüller space of an Anosov diffeomorphis of T². Inventiones Mathematicae, **112** (1993), 351-376.
- [4] J. Frank. Anosov diffeomorphisms. Proc. Symp. in Pure Math of AMS, 14:61-94, 1968.
- [5] G. Swiatek and J. Graczyk, Generic Hyperbolicity in the Logistic Family. Annals of Mathematics, Second Series, 146 (1997), 1-52.
- [6] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds. Bull. Amer. Math. Soc. 76 (1970), 1015-1019.
- [7] H. Hu, M. Jiang and Y. Jiang, Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete and Continuous Dynamical Systems, 22(2008), 215C234.
- [8] Y. Jiang, Generalized Ulam-von Neumann transformations. Ph.D. Thesis (1990), Graduate School of CUNY and UMI publication.
- [9] Y. Jiang. Renormalization and Geometry in One-Dimensional and Complex Dynamics. Advanced Series in Nonlinear Dynamics, Vol. 10 (1996) World Scientific Publishing Co. Pte. Ltd., River Edge, NJ.
- [10] Y. Jiang, Geometry of geometrically finite one-dimensional maps. Comm. in Math. Phys., 156 (1993), 639-647.
- Y. Jiang, Markov partitions and Feigenbaum-like mappings. Comm. in Math. Phys., 171 (1995), no. 2, 351-363.
- [12] Y. Jiang, Smooth classification of geometrically finite one-dimensional maps. Trans. Amer. Math. Soc., 348 (1996), 2391- 2412.
- [13] Y. Jiang, On rigidity of one-dimensional maps. Contemporary Mathematics, AMS Series, 211 (1997), 319-431.
- [14] Y. Jiang, Differentiable rigidity and smooth conjugacy. Annales Academiæ Scientiarum Fennicæ Mathematica, 30 (2005), 361-383.
- [15] Y. Jiang, Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials. Preprint.
- [16] Y. Jiang, Function model of the Teichmüller space of a closed hyperbolic Riemann surface. Preprint.
- [17] A. Katok and B. Hasselbratt, Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its applications, 54, 1995.
- [18] O. Kozlovski, W. Shen and S. van Strien, Rigidity for real polynomials. Ann. of Math. 165 (2007), 749-841.
- [19] M Lyubich, Dynamics of quadratic polynomials, I &I. Acta Mathematica, 178 (1997), 185-297.
- [20] A. Manning. There are no new Anosov diffeomorphisms on tori. Amer. Jour. of Math, 96(1974), 424-429.
- [21] W. de Melo and S. van Strien, One-Dimensional Dynamics. Springer-Verlag, Berlin, Heidelberg, 1993.

- [22] Ya. Sinai. Markov partitions and C-diffeomorphisms, Funkts. Anal. Prilozh., 2 (1968), 64-89.
- [23] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures. American Mathematical Society Centennial Publications, Volume 2: Mathematics into the Twenty-First Century, AMS, Providence, RI, 1992, pp. 417-466.

Mathematics Department, Michigan State University, East Lansing, MI 48824, USA

E-mail address: hu@math.msu.edu

Department of Mathematics, the Graduate Center and Queens College of CUNY, Flushing, NY 11367 $\,$

E-mail address: yunping.jiang@qc.cuny.edu