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Abstra
t

The goal of this paper is to study ergodi
 and rigidity properties of

smooth a
tions of the dis
rete Heisenberg group H. We establish the de-


omposition of the tangent spa
e of any C

1


ompa
t Riemannian manifold

M for Lyapunov exponents, and show that all Lyapunov exponents for the


enter elements are zero. We obtain that if an H group a
tion 
ontains an

Anosov element, then under 
ertain 
onditions on the element, the 
enter

elements are of �nite order. In parti
ular there is no faithful 
odimension-

al one Anosov Heisenberg group a
tion on any manifolds, and no faithful


odimensional two Anosov Heisenberg group a
tion on tori. In addition, we

show smooth lo
al rigidity for higher rank ergodi
 H a
tions by toral auto-

morphisms, using a generalization of the KAM (Kolmogorov-Arnold-Moser)

iterative s
heme.

0 Introdu
tion

In the past few de
ades, there is a 
onsiderable progress in studying the ergodi


theory and smooth rigidity of dynami
al system of higher rank abelian group

a
tions. Smooth a
tion (lo
al) global rigidity for higher rank abelian algebrai


a
tions has sin
e been extensively studied; some of the highlights are [DK1℄, [DK℄

and [KKH, HW℄. We refer the reader to [S
℄ for a systemati
 introdu
tion of the

dynami
s of algebrai
 Z

d

a
tions. A natural question is how to extend these
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theories to non
ommutative group a
tions. The dis
rete Heisenberg group is a

2-step nilpotent group, whi
h is the most 
lose to being abelian. So studying the

dynami
al properties of dis
rete Heisenberg group a
tions is the �rst step toward

extending what we have known about Z

d

-a
tions.

Throughout the paper, we use the symbol H to denote the dis
rete Heisen-

berg group (see Se
tion 1 for the expli
it de�nition). We �rst establish a tangent

spa
e de
omposition into subspa
es related to Lyapunov exponents on any 
om-

pa
t manifolds M in Theorem A, whi
h 
an be viewed as an extension of the


orresponding theorem established for Z

2

a
tions in [Hu℄. As 
orollaries of this

theorem, we obtain that the a
tion of 
entral elements ofHmust have 0 Lyapunov

exponents respe
t to any H invariant measure, and have 0 topologi
al entropy

when the a
tion is C

1

. This indi
ates that the a
tion of 
entral elements in H


annot be 
haoti
 for any H a
tion on 
ompa
t manifolds.

The se
ond part of our work is 
on
erning faithfulness of H a
tions. We

show in Theorem B that if an H a
tion is C

r

, r > 1, and 
ontains an Anosov

element whi
h has simple eigenvalues on stable dire
tion with �

�

> �

minfr;2g

+

(see

(1.4)), then the a
tion of any 
entral element of H is of �nite order. Spe
ially,

it is true for any 
odimension 1 a
tion. For Anosov H a
tions on tori, we show

further in Theorem D that the a
tion of any 
entral element is either 
onjugate

to a translation of �nite order or 
onjugate to an aÆne transformation of order 2

when the a
tion is of 
odimension one or two. This implies spe
ially that there is

no faithful Anosov H a
tion on T

n

with n � 5, though there are faithful Anosov

H a
tions on T

n

with n = 6 or n � 8 (see Example 1.4 and Remark 1.5 in

Se
tion 1).

Lastly we obtain some regidity results for H a
tions on tori. We prove that

all su
h a
tions are topologi
ally 
onjugate to an aÆne one in Theorem C, using

the results in [AP℄, [Fr℄ and [Ma℄. Further, we extend an approa
h for proving

lo
al di�erentiable rigidity of Heisenberg group a
tion by toral automorphisms,

based on KAM-type iteration s
heme that was �rst introdu
ed in [DK℄ and was

later developed in [DK1℄.

Re
ently, we note that the expansiveness and homo
lini
 points for Heisenberg

algebrai
 a
tions are investigated by M. G�oll, K. S
hmidt, and E. Verbitskiy in

[GSV℄. One may 
onsult [GS, Li℄ for the study of abstra
t ergodi
 theory about

nilpotent group or amenable group a
tions. It is known in 1970s that ifM = R;S

1

or I = [0; 1℄, then any nilpotent subgroup of Di�

2

(M) must be abelian ([PT℄),

whi
h implies that there is no faithful C

2

a
tion of H on S

1

. In this 
entury it

was found out that every �nitely generated, torsion-free nilpotent group has a

faithful C

1

a
tion on M ([FF℄). For the 
ase dimM = 2, there are many faithful

analyti
 Heisenberg group a
tions on S

2

, 
losed disks, 
losed annulus and torus

([Pa℄). However, Franks and Handel [FH℄ showed that a nilpotent group of C

1

di�eomorphisms whi
h are isotopi
 to the identity and preserve a measure whose

support is all of T

2

must be abelian.

The paper is organized as following. We state the results of the paper in
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Se
tion 1. Se
tion 2 is for proof of Thereom A 
on
erning Lyapunov exponents,

while Se
tion 3 is for proof of Thereom B 
on
erning faithfulness. Thereom C

and D are proved in Se
tion 4. The last se
tion is for smooth rigidity: the proof

of Theorem E.

1 Ba
kground and statement of result

Let M be a C

1


ompa
t manifold. We denote by Di�

n

(M) the group of C

r

di�eomorphisms on M for r > 0. Let H be the dis
rete Heisenberg group and let

A, B and C denote the generators of H:

AC = CA; BC = CB; AB = BAC (1.1)

Then for every K 2 H, there is a unique triple (n

1

; n

2

; n

3

) 2 Z

3

su
h that

K = A

n

1

B

n

2

C

n

3

: Clearly, H is a 2-step nilpotent group with 
enter hCi. In this

paper, we are 
on
erning ergodi
 and rigidity properties of H a
tions on 
ompa
t

manifolds.

Let � : H ! Di�

n

(M) be a C

r

group a
tion of H on a C

1


ompa
t Rie-

mannian manifold M , i.e., � : G ! Di�

n

(M) is a group homomorphism. Write

f = �(A), g = �(B) and h = �(C), then

fh = hf; gh = hg and fg = gfh: (1.2)

Throughout the paper, we always use f , g and h to denote �(A), �(B) and �(C)

respe
tively for a �xed H a
tion �.

The Heisenberg group H naturally indu
es an a
tion on T

3

sin
e H embeds

into SL(3;Z). We 
an obtain more general examples as the following.

Example 1.1. Let

A =

2

6

4

X I

n

O

O X O

O O X

3

7

5

; B =

2

6

4

Y O O

O Y I

n

O O Y

3

7

5

; C =

2

6

4

I

n

O X

�1

Y

�1

O I

n

O

O O I

n

3

7

5

;

where X;Y 2 SL(n;Z) with XY = Y X, and I

n

and O are n � n identity and

zero matrix respe
tively.

It is easy to 
he
k that 
ondition (1.1) is satis�ed. IfM = T

3n

, then A, B and

C indu
e automorphisms f , g and h on M respe
tively that generate a Heisenberg

group a
tion.

1.1 Dynami
al properties of the 
entral element h

A probability measure � on M is said to be �-invariant if �(k)

�

� = � for every

k 2 H. We denote by M(M;�) the set of all �-invariant Borel Probability

measures. It is well known and easy to prove that M(M;�) = M(M;f) \
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M(M; g) \M(M;h) 6= ;, where M(M;f) is the set of f -invariant probability

measures.

Let T

x

M be the tangent spa
e of M at x 2 M and � 2 Di�

2

(M), then

� indu
es a map D�

x

: T

x

M ! T

�x

M . It is well known that there exists a

measurable set �

�

with ��

�

= 1 for all � 2 M(M;�), su
h that for all x 2 �

�

,

0 6= u 2 T

x

M , the limit

�(x; u; �) = lim

n!1

1

n

log k D�

n

x

u k

exists and is 
alled the Lyapunov exponent of u at x.

Let �

1

(x; �) > � � � > �

r(x;�)

(x; �) denote all Lyapunov exponents of � at x with

multipli
itiesm

1

(x; �); � � � ;m

r(x;�)

(x; �) respe
tively, and T

x

M =

L

r(x;�)

i=1

E

i

(x; �)

be the 
orresponding de
omposition of tangent spa
e at x 2M .

The �rst result shows that the Lyapunov spa
e de
omposition of H-a
tion is

similar to the 
ase of Z

2

a
tion:

Theorem A. There exists an H-invariant measurable set � su
h that �� = 1

for all � 2M(M;�), and for every x 2 � there is a de
omposition of the tangent

spa
e into

T

x

M =

r(x;f)

M

i=1

r(x;g)

M

j=1

E

ij

(x)

su
h that if E

ij

(x) 6= f0g, then for all 0 6= u 2 E

ij

(x) and all s; t; r 2 Z,

lim

n!1

1

n

log k D(f

s

g

t

h

r

)

n

x

u k= s�

i

(x; f) + t�

j

(x; g): (1.3)

By this theorem, we have some immediate 
orollaries, whi
h indi
ate that the

a
tion of 
entral elements in H 
annot be 
haoti
 for any H a
tion on 
ompa
t

manifolds. The 
on
ept of 
haos was �rst introdu
ed by J. Yorke and T. Li in [LJ℄.

Up to today, there are many de�nitions of 
haos based on di�erent viewpoints.

In general, having positive Lyapunov exponents or having positive topologi
al

entropy is regarded as an important feature of 
haos for di�eomorphisms.

Corollary A.1. All Lyapunov exponents of h are zero with respe
t to any measure

� 2M(M;�). In parti
ular, for any n > 0, if h has �nitely many periodi
 points

p of period n, then all eigenvalues of Dh

n

p

have modulus 1.

Corollary A.2. If the a
tion � is C

1

, then the topologi
al entropy h

top

(h) = 0.

Remark 1.2. As we mentioned in Introdu
tion, Corollary A.1 and Corollary A.2

indi
ate that the 
entral elements in H 
annot be 
haoti
 for any C

1

H a
tion

on manifolds.

Observe that f

n

g

n

= g

n

f

n

h

n

2

, we have naturally the following question.

Question 1.3. For any � 2 M(M;�), is kDh

n

x

vk bounded by e

p

n"

for some

" > 0, or even by a polynomial in n for �-a.e. x?
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1.2 Existen
e of faithful Anosov H a
tion

A group a
tion � : G! Di�

r

(M) is 
alled faithful if the map � is inje
tive. We

give some 
onditions under whi
h an H a
tion 
annot be faithful.

A di�eomorphism � on a 
ompa
t manifold M is 
alled Anosov if the whole

tangent bundle has an uniformly hyperboli
 de
omposition into T

x

M = E

s

x

�E

u

x

invariant under the di�erential D� : TM ! TM . For a group a
tion � : G !

Di�

n

(M), if �(G) 
ontains an Anosov element, then the a
tion � is 
alled Anosov.

The following is an example of Anosov H a
tion:

Example 1.4. In Example 1.1, if X or Y is a hyperboli
 matrix, then f or g is

a hyperboli
 di�eomorphisms on M = T

3n

. Hen
e �(H) is an Anosov a
tion. In

parti
ular, we 
an take M = T

6

, and

X = Y =

2 1

1 1

; I

2

=

1 0

0 1

; O =

0 0

0 0

;

and then we get a Anosov H a
tion on M = T

6

.

We say that an Anosov di�eomorphism � has simple eigenvalues on the stable

dire
tion if for every periodi
 point p of period n, all eigenvalues of D�

n

p

j

E

s

p

are

real and has algebrai
 multipli
ity 1. An Anosov di�eomorphism is said to be of


odimension 1 if either dimE

u

= 1 or dimE

s

= 1. Clearly, either � or �

�1

has

simple eigenvalues on the stable dire
tion if � is of 
odimension 1.

If D�

n

p

j

E

s

p

has eigenvalues �

1

; �

2

; � � � ; �

dimE

s

(�)

on the stable dire
tion, we

denote by

�

�

= min

1�i�dimE

s

(�)

j�

i

j; �

+

= max

1�i�dimE

s

(�)

j�

i

j: (1.4)

Theorem B. Let � : H ! Di�

r

(M), r > 1, be an a
tion of H on 
ompa
t

manifold M su
h that �(H) 
ontains an Anosov di�eomorphism that has simple

eigenvalues with �

�

> �

minf2;rg

+

on the stable dire
tion. Then h

k

= id for some

k � 1.

Following from Theorem B, we have immediately

Corollary B.1. There is no faithful C

r

, r > 1, Heisenberg group a
tion that


ontains an Anosov element with simple eigenvalues with �

�

> �

minf2;rg

+

on the

stable dire
tion. In parti
ular, there is no faithful C

r


odimension 1 Anosov

Heisenberg group a
tion on any 
ompa
t manifold.

Also the proof of Theorem B gives

Corollary B.2. For a C

r

, r > 1, H a
tion onM , if any element is a 
odimension

1 Anosov di�eomorphism that has exa
tly one �xed point, then h

2

= id.

The next statement is a 
onsequen
e of Theorem D. We state here sin
e it


on
erns faithfulness.
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Corollary D.1. There is no faithful C

2

Anosov Heisenberg group a
tion on T

n

with n � 5.

As supplements to Corollary D.1, we give the following remark.

Remark 1.5. Example 1.4 indi
ates that T

6

does admit faithful Anosov Heisen-

berg group H a
tions. So the number \ 5" appeared in the above 
orollary is the

best. In fa
t, it is easy to see that there exist faithful Anosov Heisenberg group

a
tions on T

n

for any integer n � 8 by using the a
tion in Example 1.4 
rossing

an Anosov di�eomorphism of an manifold of dimension two or higher. However,

the authors do not know whether su
h group a
tions exist on T

7

.

1.3 Rigidity of H a
tion

Let �; �

0

be two a
tions of groupG onM , then � and �

0

are said to be topologi
ally


onjugate if there is a homeomorphism T :M !M su
h that T Æ�(g) = �

0

(g)ÆT

for any g 2 G.

The �rst two results are about global topologi
al rigidity of an H a
tion on

T

N

. Before the statement of Theorem C, we introdu
e some related notions. Let

T

n

� R

n

=Z

n

be the n-dimensional torus. For any A 2 GL(n;Z) and a 2 R

n

,

de�ne T

A;a

: T

n

! T

n

by T

A;a

([x℄) = [Ax+a℄ for any x 2 R

n

. Su
h T

A;a

is 
alled

an aÆne transformation on T

n

. Spe
ially, T

A;0

is 
alled a linear automorphism

of T

n

indu
ed by A and T

id;a

is 
alled a translation on T

n

by a. All the aÆne

transformations on T

n

form a group whi
h is 
alled the aÆne transformation

group of T

n

and is denoted by A�(T

n

). If A has no eigenvalue with modular 1,

then T

A;a

is an Anosov di�eomorphism.

Theorem C. Every Anosov Heisenberg group a
tion on T

n

is topologi
ally 
on-

jugate to an aÆne one.

In some 
ases, the form of h 
an be 
ompletely determined as the following

theorem showed.

Theorem D. If f is a 
odimension 1 Anosov di�eomorphism of a Heisenberg

group a
tion on T

n

, then h is topologi
ally 
onjugate to a translation of �nite

order. If f is a 
odimension 2 Anosov di�eomorphism for a Heisenberg group

a
tion on T

n

, then h is either topologi
ally 
onjugate to a translation of �nite

order or topologi
ally 
onjugate to an aÆne transformation T

�id;


of order 2 for

some 
 2 T

n

.

For the 
odimension 1 
ase, the following example indi
ates that h in the

above theorem 
an be non-trivial.

Example 1.6. Let A =

5 3

3 2

, b =

2=5

3=5

, 
 =

2=5

4=5

. De�ne aÆne

transformations f; g; h on T

2

by f([x℄) = [Ax℄, g([x℄) = [Ax + b℄, and h([x℄) =

[x + 
℄ for all x 2 R

2

. Then fh = hf , gh = hg, fg = gfh, and h

5

([x℄) = [x℄.

Thus we get a Heisenberg group a
tion on T

2

with h being a translation of order 5.

6



The following example shows that there do exist examples su
h that h is


onjugate to T

�Id;


as shown in Theorem D in the 
odimension 2 
ase.

Example 1.7. Take X =

2 1

1 1

. Let A =

X 0

0 �X

, B =

0 X

X 0

,

and C =

�I 0

0 �I

, where I is the 2 � 2 identity matrix. For any 
 2 R

4

, let

a = �

1

2

(A � I)
 and b = �

1

2

(B � I)
. Then it is easy to 
he
k that the aÆne

transformations T

A;a

; T

B;b

and T

�id;


on T

4

satisfy the relations T

A;a

T

�id;


=

T

�id;


T

A;a

, T

B;b

T

�id;


= T

�id;


T

B;b

and T

A;a

T

B;b

= T

B;b

T

A;a

T

�id;


. Thus we get

an aÆne Anosov H a
tion on T

4

with h being of the form T

�id;


.

An a
tion � of a �nitely generated dis
rete group G on a manifoldM is C

k;r;`

lo
ally rigid if any C

k

perturbation

e

� whi
h is suÆ
iently C

r


lose to � on a

�nite generating set is C

`


onjugate to �; i.e., there exists a di�eomorphism T

of M C

`


lose to identity whi
h 
onjugates

e

� to �: T Æ �(g) = �

0

(g) Æ T for any

g 2 G.

AnH a
tion � by automorphisms on T

N

is 
alled an ergodi
 higher rank a
tion

if it 
ontains two elements h

1

; h

2

su
h that �(h

m

1

h

n

2

) 2 SL(N;Z) is ergodi
 for

all (m;n) 6= 0 in Z

2

.

Theorem E. Let � be an ergodi
 higher rank H a
tion by automorphisms of the

N -dimensional torus. Then there exists a 
onstant l = l(�;N) 2 N su
h that �

is C

1;l;1

lo
ally rigid.

2 Lyapunov exponents: Proof of Theorem A and its


orollaries

Sin
e g and h are 
ommuting maps, by Theorem A in [Hu℄ there exists a mea-

surable set �

0

with g

s

h

t

�

0

= �

0

8s; t 2 Z, and �� = 1, 8� 2 M(M; g; h), su
h

that for all x 2 �

0

, there is a (unique) de
omposition of the tangent spa
e into

T

x

M =

r(x;g)

M

j=1

r(x;h)

M

k=1

E

jk

(x) (2.1)

su
h that for all s; t 2 Z with E

jk

(x) 6= 0, for all 0 6= u 2 E

jk

(x),

lim

n!1

1

n

log k D(g

s

h

t

)

n

x

u k= s�

j

(x; g) + t�

k

(x; h): (2.2)

Moreover,

D(g

s

h

t

)

x

(E

jk

(x)) = E

jk

(g

s

h

t

x)

and

�

j

(g

s

h

t

x; g) = �

j

(x; g); �

k

(g

s

h

t

x; h) = �

k

(x; h):

Let �

1

= \

i2Z

f

i

�

0

. By (1.2) it is easy to see that f�

1

= �

1

, g�

1

= �

1

and

h�

1

= �

1

. So �

1

is an H-invariant measurable set and ��

1

= 1 8� 2M(M;�).
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Lemma 2.1. For all x 2 �

1

and all 0 6= u 2 E

jk

(x), we have

�(fx;Df

x

u; g

�

) = ��

j

(x; g) � �

k

(x; h); �(fx;Df

x

u; h

�

) = ��

k

(x; h):

Proof. By (1.2) we have

k Dg

�n

Df

x

u k=k DfDg

�n

Dh

�n

x

u k; k Dh

�n

Df

x

u k= kDfDh

�n

x

uk:

So there is a 
onstant 
 > 0 su
h that for all n � 0,




�1

kDg

�n

Dh

�n

x

uk �kDg

�n

Df

x

uk � 
kDg

�n

Dh

�n

x

uk;




�1

kDh

�n

x

uk �kDh

�n

Df

x

uk � 
kDh

�n

x

uk:

Then by (2.2) we get that

�(fx;Df

x

u; g

�1

) = lim

n!1

1

n

log kDg

�n

Df

x

uk = ��

j

(x; g) � �

k

(x; h);

�(fx;Df

x

u; h

�1

) = lim

n!1

1

n

log kDh

�n

Df

x

uk = ��

k

(x; h);

(2.3)

whi
h are what we need.

Lemma 2.2. For any x 2 �

1

, any (j; k) with E

j;k

6= 0 and any 0 6= u 2 E

j;k

, we

have �(x; u; h) = 0.

Proof. Assume to the 
ontrary that there is some x

0

2 �

1

and some (j

0

; k

0

) with

E

j

0

;k

0

6= 0 and some 0 6= u

0

2 E

j

0

;k

0

su
h that �(x

0

; u

0

; h) 6= 0. From Lemma 2.1

we have

�(fx

0

;Df

x

0

u

0

; g) =�

j

0

(x

0

; g) � �

k

0

(x

0

; h);

�(fx

0

;Df

x

0

u

0

; h

�1

) =� �

k

0

(x

0

; h):

It follows that in the de
omposition

T

fx

0

M =

r(fx

0

;g)

M

j=1

r(fx

0

;h)

M

k=1

E

jk

(fx

0

);

there is some E

j

1

k

1

(fx

0

) 6= 0 su
h that for all 0 6= u 2 E

j

1

k

1

(fx

0

),

�(fx

0

; u; g) =�

j

0

(x

0

; g) � �

k

0

(x

0

; h);

�(fx

0

; u; h) =�

k

0

(x

0

; h):

Then by indu
tion pro
ess, we get that in the de
omposition

T

f

n

x

0

M =

r(f

n

x

0

;g)

M

j=1

r(f

n

x

0

;h)

M

k=1

E

jk

(f

n

x

0

);

8



there is some E

j

n

k

n

6= 0 su
h that for all 0 6= u 2 E

j

n

k

n

,

�(f

n

x

0

; u; g) =�

j

0

(x

0

; g) � n�

k

0

(x

0

; h);

�(f

n

x

0

; u; h) =�

k

0

(x

0

; h):

Sin
e �

k

0

(x

0

; h) = �(x

0

; u

0

; h) 6= 0; j�(f

n

x

0

; u; g)j ! 1 as n!1, 
ontradi
ting

to the fa
t that j�(p; v; g)j � sup

x2M

kDg

x

k <1 8p 2 �

1

, 8v 2 T

p

M .

Proposition 2.3. For all x 2 �

1

, there is a de
omposition of the tangent spa
e

into T

x

M =

L

r(x;g)

j=1

E

j

(x; g) su
h that for all 0 6= u 2 E

j

(x; g),

(i) the spe
trum f�

j

(x; g); m

j

(x; g); j = 1; � � � ; r(x; g)g is H-invariant;

(ii) D(f

s

g

t

h

r

)

x

E

j

(x; g) = E

j

(f

s

g

t

h

r

x; g) 8j = 1; � � � ; r(x; g), 8 s; t; r 2 Z;

(iii) lim

n!1

1

n

log kD(g

t

h

r

)

n

x

uk = t�

j

(x; g) 8 t; r 2 Z.

Proof. By Lemma 2.2, we get that the number r(x; h) = 1 and the de
omposi-

tion (2.1) be
omes that, for all x 2 �

1

,

T

x

M =

r(x;g)

M

j=1

E

j

(x; g);

where E

j

(x; g) =

L

r(x;h)

k=1

E

jk

(x) = E

j1

(x). It follows from Lemma 2.2 again that

equations (2.3) be
ome

�(fx;Df

x

u; g

�1

) =� �

j

(x; g);

�(fx;Df

x

u; h

�1

) =0:

So (i) and (ii) holds, and (iii) follows from (2.2).

Ex
hanging f and g, we 
an get the following proposition similarly:

Proposition 2.4. There is an H-invariant measurable set �

2

with ��

2

= 1,

8� 2 M(M;�) su
h that for all x 2 �

2

there is a de
omposition of the tangent

spa
e into T

x

=

L

r(x;f)

i=1

E

i

(x; f) satisfying that for every 0 6= u 2 E

i

(x; f),

(i) the spe
trum f�

i

(x; f); m

i

(x; f); i = 1; � � � ; r(x; f)g is H-invariant;

(ii) D(f

s

g

t

h

r

)

x

E

i

(x; f) = E

i

(f

s

g

t

h

r

x; f) 8i = 1; � � � ; r(x; f), 8 s; t; r 2 Z;

(iii) lim

n!1

1

n

log kD(f

s

h

r

)

n

x

uk = s�

i

(x; f), 8 s; r 2 Z.
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Proposition 2.5. There is an H-invariant measurable set �

3

� �

1

\ �

2

with

��

3

= 1 8� 2 M(M;�) su
h that for all x 2 �

3

there is a de
omposition of the

tangent spa
e into

T

x

M =

r(x;f)

M

i=1

r(x;g)

M

j=1

E

ij

(x)

satisfying that if E

ij

(x) 6= 0, then for all 0 6= u 2 E

ij

(x) and all s; t; r 2 Z,

(i) lim

n!1

1

n

log kD(f

s

h

r

)

n

x

uk = s�

i

(x; f), lim

n!1

1

n

log kD(g

t

h

r

)

n

x

uk = t�

j

(x; g);

(ii) D(f

s

g

t

h

r

)

x

E

ij

(x) = E

ij

(f

s

g

t

h

r

x);

(iii) �

i

(f

s

g

t

h

r

x; f) = �

i

(x; f), �

j

(f

s

g

t

h

r

x; g) = �

j

(x; g).

Proof. For all x 2 �

1

\�

2

, let T

x

M =

L

r(x;g)

j=1

E

j

(x; g) be the de
omposition given

in Proposition 2.3. By Proposition 2.3(ii), Df

x

(E

j

(x; g)) = E

j

(fx; g). Restri
ted

to fE

j

(x; g)g, fDf

n

x

g is a 
o
y
le on M with respe
t to f . Thus, similar to

the proof of Proposition 2.3 in [Hu℄, we obtain an H-invariant measurable set

�

3

� �

1

\ �

2

with ��

3

= 1 8� 2 M(M;�), and a de
omposition of the tangent

spa
e into

T

x

M =

r(x;f)

M

i=1

r(x;g)

M

j=1

E

ij

(x); 8x 2 �

3

:

Clearly E

ij

(x) = E

i

(x; f) \ E

j

(x; g). Thus (i) (ii) and (iii) are dire
t 
orollaries

of Proposition 2.3 and Proposition 2.4.

Proof of Theoren A. For any s; t; r 2 Z and any " > 0, set

A

+

"

=fx : 90 6= u 2E

ij

(x) s.t. �(x; u; f

s

g

t

h

r

)� s�

i

(x; f)� t�

j

(x; g) > (j�j+ 1)"g;

A

�

"

=fx : 90 6= u 2E

ij

(x) s.t. �(x; u; f

s

g

t

h

r

)� s�

i

(x; f)� t�

j

(x; g) < (j�j+ 1)"g;

where � = 6s + 6t + j2r � stj. It is easy to see that we only need to prove that

for any � 2M(M;�), for all " > 0, �(A

�

"

) = 0

Now we prove �(A

+

"

) = 0, the other one 
an be obtained similarly.

Suppose �(A

+

"

) > 0 for some � 2 M(M;�) and " > 0. Then there exists a


onstant C > 0 suÆ
iently large su
h that the set

A

";C

:= fx : 9 0 6= u 2 E

ij

(x) s.t. kD(f

s

g

t

h

r

)

n

x

uk

>C

�1

kuk expn(s�

i

(x; f) + t�

j

(x; g) + j�j") 8n � 0g

(2.4)

satis�es �(A

";C

) > 0. Let

Æ = �(A

";C

):

By (1.2) we have

kD(f

s

g

t

h

r

)

n

x

uk = kDh

st

n(n�1)

2

Df

sn

Dg

tn

Dh

rn

x

uk:

10



Then

kD(f

s

g

t

h

r

)

2n

x

uk = kDh

2stn

2

Df

2sn

Dg

2tn

Dh

(2r�st)n

x

uk 8n � 0:

For l > 0, let

A

l

f

= fx : l

�1

kuk expn(�

i

(x; f)�") � kDf

n

x

uk � lkuk expn(�

i

(x; f)+") 8u 2 E

ij

(x) 8n � 0g:

A

l

g

= fx : l

�1

kuk expn(�

j

(x; g)�") � kDg

n

x

uk � lkuk expn(�

j

(x; g)+") 8u 2 E

ij

(x) 8n � 0g:

A

l

h

= fx : l

�1

kuk exp(�jnj") � kDh

n

x

uk � lkuk exp(jnj") 8u 2 E

ij

(x) 8n 2 Zg:

Choose l suÆ
iently large so that

�(A

l

i

) > 1�

1

26

Æ; i = f; g; h:

Let

B

n

= A

l

g

\ g

�tn

(A

l

f

) \A

l

h

\ h

�stn

2

f

�sn

(A

l

g

) \ h

�stn

2

(A

l

f

):

Then �(B

n

) > 1�

5

26

Æ; and for all x 2 B

n

and all 0 6= u 2 E

ij

(x), we have

kD(f

sn

g

tn

)

x

uk � lkDg

tn

x

uk exp sn(�

i

(g

tn

x; f) + ")

�l

2

kuk exp tn�

j

(x; g) + sn�

i

(x; f) + (s+ t)n" ;

(2.5)

and

kD(g

tn

f

sn

h

stn

2

)

x

uk � l

�1

kD(f

sn

h

stn

2

)

x

uk exp(tn�

j

(x; g)� tn")

�l

�2

kDh

stn

2

uk exp sn�

i

(x; f) + tn�

j

(x; g) � (t+ s)n" :

(2.6)

Sin
e f

sn

g

tn

= g

tn

f

sn

h

stn

2

, it follows from (2.5) and (2.6) that

kDh

stn

2

uk � l

4

kuk exp[2(t+ s)n"℄ 8n � 0; 8x 2 B

n

; 80 6= u 2 E

ij

(x):

Let C

n

= h

�stn

2

(B

n

) \ B

n

. Then �(C

n

) > 1 �

10

26

Æ. For all x 2 C

n

and all

0 6= u 2 E

ij

(x), we have

kDh

2stn

2

x

uk = kDh

stn

2

Dh

stn

2

x

uk � l

4

kDh

stn

2

x

uke

2(s+t)n"

� l

8

kuke

4(s+t)n"

:

Let

D

n

= h

�(2r�st)n

g

�2tn

f

�2sn

(C

n

) \ h

�(2r�st)n

g

�2tn

(A

l

f

) \ h

�(2r�st)n

(A

l

g

) \A

l

h

:

Then

�(D

n

) > 1�

10

26

Æ �

3

26

Æ = 1�

Æ

2

> 1� Æ;

and so

�(D

n

\A

";C

) > 0:
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For any x 2 D

n

\A

";C

and any 0 6= u 2 E

ij

(x), we have

kD(f

s

g

t

h

r

)

2n

x

uk = kDh

2stn

2

Df

2sn

Dg

2tn

Dh

(2r�st)n

x

uk

�l

8

e

4(s+t)n"

le

2sn�

i

(x;f)+2sn"

le

2tn�

j

(x;g)+2tn"

le

j2r�stjn"

kuk

=l

11

kuk expn[2s�

i

(x; f) + 2t�

j

(x; g) + �"℄);

(2.7)

where � = 6s+6t+ j2r� stj. In addition, from the de�nition of A

";C

in (2.4) we

get that for all x 2 A

";C

, there is 0 6= u 2 E

ij

(x) su
h that

kD(f

s

g

t

h

r

)

2n

x

uk > C

�1

kuk exp 2n[s�

i

(x; f) + t�

j

(x; g) + j�j"℄

=C

�1

exp(nj�j")kuk exp n[2s�

i

(x; f) + 2t�

j

(x; g) + j�j"℄:

(2.8)

Clearly, (2.7) and (2.8) are 
ontradi
t to ea
h other if n >

log(l

11

C)

j�j"

. Hen
e we

must have �(A

+

"

) = 0 for all � 2 M(M;�) and and " > 0. We 
omplete the

proof of Theorem A.

Proof of Corollary A.1. By taking s = t = 0 and r = 1 in (1.3) we know that the

Lyapunov exponent of any 0 6= u 2 E

ij

(x) is equal to 0 with respe
t to h, and so

is that of any 0 6= u 2 T

x

M .

Let p be a periodi
 point of h of period n, that is, h

n

(p) = p. Sin
e fh = hf

and gh = hg, we get that both f

n

(p) and g

n

(p) are periodi
 orbits of h with

period n. Sin
e there are only �nitely many periodi
 point of h of period n, we

get that ff

s

g

t

h

r

(p) : s; t; r 2 Zg is a �nite set. Hen
e we 
an de�ne a measure

� 2 M(M;�) supported on the set. By �niteness and invarian
e we know that

�(fpg) > 0, i.e., p is a generi
 point of �. The fa
t that all Lyapunov exponents

of h at p are equal zero gives that the modulus of all eigenvalues of Dh

n

(p) are

equal to one.

Proof of Corollary A.2. Assume that h

top

(h) > 0, then there is some h-invariant

probability measure � onM su
h that the metri
 entropy h

�

(h) > 0 by the varia-

tional prin
iple. Consider the probability measure sequen
e �

n

�

1

4n

2

P

jij;jjj�n

(f

i

g

j

)

�

�.

Passing to a subsequen
e if ne
essary, suppose �

n


onverges to a probability mea-

sure � in the weak-� topology. It is easy to 
he
k that � is �(H)-invariant. Hen
e

by Corollary A.1 all Lyapunov exponents of h are zero with respe
t to �. Hen
e

h

�

(h) = 0 by Ledrappier-Young's formula.

On the other hand, sin
e h 
ommutes with every element in �(H), we have

h

(f

i

g

j

)

�

�

(h) = h

�

(h) for any i; j 2 Z. Sin
e the entropy map � ! h

�

(h) is

aÆne, we have h

�

n

(h) = h

�

(h). As the a
tion � is C

1

, it follows from [NP℄ that

0 = h

�

(h) � lim

n!1

h

�

n

(h) = h

�

(h) > 0. This is a 
ontradi
tion.

3 Faithfulness: Proof of Theorem B and its 
orollaries

Let T be a di�eomorphism on a manifold M with a hyperboli
 set �. For any

x 2 �, the stable manifold of x for T is de�ned by W

s

(x; T ) = fy 2 M :

12



d(T

n

x; T

n

y) ! 0 as n ! 1g, whi
h is T -invariant. For any " > 0, the lo
al

stable manifold W

s

"

(x; T ) is the set fy 2 M : d(T

n

x; T

n

y) � " for all n � 0g. It

is well known that W

s

"

(x; T ) �W

s

(x; T ) and W

s

(x; T ) = [

n�0

T

�n

W

s

"

(T

n

x; T ):

Lemma 3.1. Suppose p is a 
ommon �xed point of f , g and h, and f is Anosov

and has simple eigenvalues on stable dire
tion with �

�

> �

2

+

at p. Then either

h = id or h

2

= id on W

s

(p; f).

Proof. Note that the eigenvalue of Dh

p

restri
ted to ea
h stable eigenspa
e is �1

by Corollary A.1. We may assume it is 1, otherwise use h

2

instead of h. Sin
e

f has simple eigenvalues on stable dire
tion, and h 
ommutes with f , we must

have Dh

p

j

E

s

(p;f)

= id, where E

s

(p; f) = fv 2 T

p

(M) : kDf

p

(v)k < kvkg.

Denote r

0

= minfr; 2g. Take " > 0 small enough su
h that �

�

�" > (�

+

+")

r

0

and su
h that for any x; y 2W

s

"

(p; f) and n 2 N,

C

1

(�

�

� ")

n

d(x; y) < d(f

n

(x); f

n

(y)) < C

2

(�

+

+ ")

n

d(x; y) (3.1)

for some �xed 
onstants C

1

; C

2

> 0. It is 
lear that hW

s

(p; f) = W

s

(p; f) by

hf = fh. So there is "

0

� " su
h that hW

s

"

0

(p; f) �W

s

"

(p; f).

Suppose h(x) 6= x for some x 2W

s

"

0

(p; f). Let x

n

= f

n

(x). Then by (3.1) we

have

d(x

n

; h(x

n

))

d(x

n

; p)

=

d(f

n

(x); f

n

(h(x)))

d(f

n

(x); p)

�

C

1

C

2

(�

�

� ")

n

d(x; h(x))

(�

+

+ ")

n

d(x; p)

: (3.2)

Note that W

s

"

0

(p; f) is a C

r

submanifold tangent to E

s

(p; f) at p. Take a lo
al


oordinate system on W

s

(p) at p. We have

h(x

n

)� p =

Z

1

0

Dh

p+t(x

n

�p)

(x

n

� p)dt =

�

id+ (

Z

1

0

Dh

p+t(x

n

�p)

dt� id)

�

(x

n

� p):

Sin
e h is a C

r

di�eomorphism and Dh

p

j

E

s

(p;f)

= id, the equation gives

�

�

�

�

Z

1

0

Dh

p+t(x

n

�p)

dt� id

�

�

�

�

� C

3

jx

n

� pj

r

0

�1

for some C

3

> 0. Hen
e we get

jh(x

n

)� x

n

j � C

3

jx

n

� pj

r

0

:

Note that jh(x

n

)� x

n

j = d(x

n

; h(x

n

)) and jx

n

� pj = d(x

n

; p). So by (3.1)

d(x

n

; h(x

n

))

d(x

n

; p)

� C

3

d(x

n

; p)

r

0

�1

� C

3

C

2

(�

+

+ ")

n(r

0

�1)

d(x; p)

r

0

�1

for all n > 0, 
ontradi
ting to (3.2) and the fa
t �

�

� " > (�

+

+ ")

r

0

.

Then we must have h(x) = x for any x 2 W

s

"

0

(p; f), and then h = id on

W

s

(p; f) by using the fa
ts W

s

(p; f) = [

n�0

f

�n

W

s

"

0

(p; f) and fh = hf .
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Lemma 3.2. Suppose p is a periodi
 point of f with period n and f has only

�nitely many periodi
 points of period n. Then there are m; k 2 N su
h that p is

a 
ommon �xed point of f

n

, g

m

and h

k

.

In parti
ular, if p is the unique �xed point of f , then h(p) = p = g(p).

Proof. Sin
e fh = hf , h(p) is a periodi
 point of f with period n. By �niteness

of n-periodi
 point set of f , there is some k su
h that h

k

(p) = p. Then we have

f

n

g

k

(p) = g

k

f

n

h

kn

(p) = g

k

(p), that is, g

k

(p) is also a periodi
 point of f with

period n. This implies that g

kl

(p) = g

k

(p) for some l 2 N. Taking m = lk � k,

we then 
omplete the proof.

The se
ond part of the lemma now is obvious.

Proof of Theoren B. Without loss of generality, we may suppose f is an Anosov

element that has simple eigenvalues on stable dire
tion with �

�

> �

minfr;2g

+

. By

spe
tral de
omposition, f has basi
 sets 


1

; : : : ;


t

(see [Bo℄). On ea
h basi


set 


i

, we take a periodi
 point p

i

2 


i

. Assume f

n

i

(p

i

) = p

i

for some n

i

2

N. Then there are m

i

and k

i

su
h that p

i

is a 
ommon �xed point of f

n

i

; g

m

i

and h

k

i

by Lemma 3.2. Applying Lemma 3.1 to f

n

i

; g

m

i

k

i

and h

n

i

m

i

k

i

, we get

h

2n

i

m

i

k

i

= id onW

s

(p

i

; f

n

i

). Sin
eM = [

t

i=1

W

s

(p

i

; f

n

i

), we get h

2k

= id, where

k =

Q

t

i=1

n

i

m

i

k

i

.

Proof of Corollary B.2. Sin
e f has only one �xed point, we have f(p) = g(p) =

h(p) = p by Lemma 3.2. Sin
e dimE

s

p

(f) = 1, restri
ted to E

s

p

(f), Df

p

and Dg

p


ommutes. Hen
e, Df

p

�Dg

p

= Dg

p

�Df

p

�Dh

p

implies Dh

p

j

E

s

p

(f)

= id. By the

proof of Lemma 3.1, we have that h is identity on W

s

(p; f). From [Ne℄, we know

that f is transitive. So W

s

(p; f) is dense in M , and h is identity on M .

4 AÆne Anosov a
tion on tori: Proof of Theorem C

& D

Before the proof of Theorem C, let us re
all two 
lassi
al results.

Theorem 4.1 (Adler-Palais [AP℄). If R;S 2 A�(T

n

) with R being ergodi
, then

any homeomorphism � of T

n

with �R = S� is in A�(T

n

).

Theorem 4.2 (Franks-Manning [Fr, Ma℄). Any Anosov di�eomorphism of T

n

is

topologi
ally 
onjugate to a hyperboli
 toral automorphism.

Proof of Theoren C. Suppose k = f

r

g

s

h

t

is Anosov for some r; s; t 2 Z. Then

by Theorem 4.2, there is a homeomorphism � of T

n

su
h that K = �

�1

k� 2

A�(T

n

). Sin
e K is topologi
ally transitive and aÆne, K is ergodi
.

Denote F = �

�1

f�, G = �

�1

g� and H = �

�1

h�. Then we have FH = HF ,

GH = HG, FG = GFH, and K = F

r

G

s

H

t

.

Sin
e H

�1

KH = K and K 2 A�(T

n

), H 2 A�(T

n

) by Theorem 4.1. Simi-

larly, sin
e F

�1

KF = KH

�s

and K;KH

�s

2 A�(T

n

), F 2 A�(T

n

); and sin
e

G

�1

KG = KH

r

and K;KH

r

2 A�(T

n

), G 2 A�(T

n

).
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Lemma 4.3. Let A;B; C 2 GL(n;R) su
h that AB = BAC; AC = CA and

BC = CB. Suppose A is hyperboli
 with stable linear spa
e E

s

� R

n

. If the

modular of ea
h eigenvalue of C is equal to 1, then E

s

is B and C invariant.

Proof. For any v 2 E

s

, we have

lim

n!1

A

n

Cv = lim

n!1

CA

n

v = 0

by AC = CA, so E

s

is C invariant. Sin
e the modular of ea
h eigenvalue of C is

equal to 1, the in
reasing rate of matrix norm kC

n

k is bounded by a polynomial

in n by an easy 
al
ulation. Thus we have

lim

n!1

A

n

Bv = lim

n!1

BA

n

C

n

v = lim

n!1

BC

n

A

n

v = 0

by AC = CA and AB = BAC. So E

s

is B invariant.

Lemma 4.4. Let A;B; C 2 GL(1;R) su
h that AB = BAC. Then C = Id.

Proof. Sin
e GL(1;R) is 
ommutative, we have AB = BAC = ABC, whi
h means

that C is identity.

Lemma 4.5. Let A;B; C 2 GL(2;R) su
h that AB = BAC; AC = CA and BC =

CB. If the modular of ea
h eigenvalue of C is equal to 1, then C

2

= Id.

Proof. Consider A;B; C as matri
es in GL(2; C ).

Claim 1. The eigenvalues of C are 1 or �1. In fa
t, assume that C has an

eigenvalue � with �

n

6= 1 for n = 1; 2. By AC = CA, we 
an take a nonzero ve
tor

v 2 C

2

su
h that Cv = �v and Av = 
v for some 
 6= 0. Then we have

ABv = BACv = �
Bv and AB

2

v = B

2

AC

2

v = �

2


Bv:

So, v;Bv and B

2

v are three eigenve
tors of A with pairwise di�erent eigenvalues,

whi
h is a 
ontradi
tion. Hen
e � = 1 or �

2

= 1, whi
h means � = 1 or �1.

Claim 2. If �1 is an eigenvalue of C, then C

2

= id. In fa
t, we 
an take

v 2 C

2

su
h that Cv = �v and v;Bv are two eigenve
tors of A with di�erent

eigenvalues as shown in Claim 1. So, under the base fv;Bvg, C has the form

C =

�1 0

0 �1

; and C

2

= Id.

Claim 3. If all eigenvalues of C are 1, then C = id. In fa
t, if A has two di�erent

eigenvalues, then C is diagonal by AC = CA. So C 
an only be identity in this 
ase.

Similarly, if B has only simple eigenvalues, then C = id. Thus we may suppose

A;B; C have only eigenvalues �; 
; 1 respe
tively. If A is diagonal, then A and B

are 
ommutative, and then C is identity by AB = BAC. So we may suppose the

eigenspa
e V

�

of A 
orresponding to � is of dimension 1. Fix an nonzero ve
tor

v 2 V

�

. Then CV

�

= V

�

by AC = CA. Therefore ABv = BACv = �Bv and we
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get BV

�

= V

�

. So Bv = 
v. Take a ve
tor w linearly independent of v. Then,

under the base fv; wg, A;B; C has the forms

A =

� x

0 �

; B =


 y

0 


; C =

1 z

0 1

;

for some x; y; z 2 C , whi
h implies C = Id by AB = BAC.

Proof of Theorem D. From Theorem B, there is a homeomorphism � on T

n

su
h

that �

�1

f�([x℄) = [Ax + a℄, �

�1

g�([x℄) = [Bx+ b℄ and �

�1

h�([x℄) = [Cx + 
℄

for any x 2 R

n

, where A;B; C 2 GL(n;Z) and a; b; 
 2 R

n

. It is easy to 
he
k

that AB = BAC; AC = CA and BC = CB. Clearly A is hyperboli
. Let E

s

� R

n

be the stable linear subspa
e of A. We assume dim(E

s

) = 1 or 2.

By Lemma 4.3, E

s

is A, B and C invariant. Sin
e 0 2 T

n

is a 
ommon �xed

point of A, B and C, we get that the modular of ea
h eigenvalue of C is 1 by

Corollary A.1. Applying Lemma 4.4 and 4.5 to Aj

E

s

, Bj

E

s

and Cj

E

s

, we know

that Cj

E

s

= Id if dim(E

s

) = 1 and Cj

E

s

= �Id if dim(E

s

) = 2. It follows that C or

�C, as automorphism of T

n

, is identity on T

n

by the density of [E

s

℄ in T

n

. Hen
e

C or �C is identity as matrix in GL(n;Z). Thus �

�1

h�([x℄) = [�x+ 
℄. So h is


onjugate to either a translation or an aÆne transformation T

�Id;


for some 
 2

T

n

, and the formal 
ase o

urs if f is a 
odimensional 1 Anosov di�eomorphism.

Clearly, if h is 
onjugate to T

�Id;


, then h

2

= id. If h is 
onjugate to a

translation T

Id;


, then we 
an get [x + k
℄ = �

�1

h

k

�([x℄) = [x℄ for some k > 0

and for any [x℄ 2 T

n

by using the fa
t that h sends a �xed point of f to a �xed

point of f , and f has only �nite number of �xed points.

Remark 4.6. From the proof it is easy to see that the integer k 
an be 
hosen

as a fa
tor of the number of the �xed points of f .

5 Smooth Rigidity: Proof of Theorem E

5.1 Setting of the problem and the KAM s
heme

Before pro
eeding to spe
i�
s we will show how the general KAM s
heme de-

s
ribed in [DK, Se
tion 3.3℄ and [DK1, Se
tion 1.1℄ is adapted to the H a
tion �.

Step 1. Setting up the linearized equation

Let

e

� be a small perturbation of �. To prove the existen
e of a C

1

map H

su
h that

e

� ÆH = H Æ �, we need to solve the nonlinear 
onjuga
y problem

� Æ 
� 
 Æ � = �R Æ (I +
)

where

e

� = � + R and H = I + 
; and the 
orresponding linearized 
onjuga
y

equation is

� Æ 
� 
 Æ � = �R (5.1)
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for small 
 and R.

Lemma 5.1 shows that obtaining a C

1


onjuga
y for one ergodi
 generator

suÆ
es for the proof of Theorem E. Hen
e we just need to solve equation (5.1)

for one ergodi
 generator.

Step 2. Solving the linearized 
onjuga
y equation for a parti
ular element.

We 
lassify the obstru
tions for solving the linearized equation (5.1) for an

individual generator (see Lemma 5.5 and 5.6) and obtain tame estimates are

obtained for the solution. This means �nite loss of regularity in the 
hosen


olle
tion of norms in the Fr�e
het spa
es, su
h as C

r

or Sobolev norms.

Step 3. Constru
ting proje
tion of the perturbation to the twisted 
o
y
le spa
e.

First note that R is a twisted 
o
y
le not over � but over

e

� (see Lemma 3.3

of [DK℄) thus (5.1) is not a twisted 
oboundary equation over the linear a
tion

�, just an approximation. Se
ond is that even if (5.1) is a twisted 
oboundary

over �, it is impossible to produ
e a C

1


onjuga
y for a single ergodi
 generator

of the a
tion. Therefore, we 
onsider three generators, and redu
e the problem

of solving the linearized equation (5.1) to solving simultaneously the following

system:

A Æ 
�
 Æ A = �R

A

B Æ 
� 
 Æ B = �R

B

C Æ 
�
 Æ C = �R

C

(5.2)

whereA andB are ergodi
 generators and C is the 
enter: A := �(g

1

), B := �(g

2

),

C := �(g

3

) and R

A

:= R(g

1

), R

B

:= R(g

2

), R

C

:= R(g

3

).

As mentioned above, R does not satisfy this twisted 
o
y
le 
ondition:

L(R

A

; R

C

)

def

= CR

A

�R

A

Æ C � (AR

C

�R

C

Æ A) = 0;

L(R

B

; R

C

)

def

= CR

B

�R

B

Æ C � (BR

C

�R

C

Æ B) = 0;

L(R

A

; R

B

)

def

= R

A

Æ B +AR

B

�R

B

Æ AC �BR

C

Æ A�BCR

A

= 0: (5.3)

However the di�eren
e

L(R

A

; R

B

); L(R

B

; R

C

) and L(R

A

; R

B

)

is quadrati
ally small with respe
t to R (see Lemma 5.8). More pre
isely, the

perturbation R 
an be split into two terms

R = PR+ E(R)

so that PR is in the spa
e of twisted 
o
y
les and the error E(R) is bounded by

the size of L with the �xed loss of regularity (see Lemma 5.7). More pre
isely,

the system

�PR

A

= � R

A

� E(R

A

) = A
� 
 Æ A;

�PR

B

= � R

B

� E(R

B

) = B
� 
 ÆB;

�PR

C

= � R

C

� E(R

C

) = C
�
 Æ C (5.4)
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has a 
ommon solution 
 after subtra
ting a part quadrati
ally small to R.

Step 4. Conjuga
y transforms the perturbed a
tion into an a
tion quadrati
ally


lose to the target.

The 
ommon approximate solution 
 to the equations (5.2) above provides a

new perturbation

e

�

(1)

def

= H

�1

Æ

e

� ÆH

where H = I +
, is mu
h 
loser to � than

e

�; i.e., the new error

R

(1)

def

=

e

�

(1)

� �

is expe
ted to be small with respe
t to the old error R.

Step 5. The pro
ess is iterated and the 
onjuga
y is obtained.

The iteration pro
ess is set and is 
arried out, produ
ing a C

1


onjuga
y

whi
h works for the a
tion generated by the three generators A, B and C. Er-

godi
ity assures that it works for all the other elements of the a
tion �.

What is des
ribed above highlights the essential features of the KAM s
heme

for the H a
tion on torus. The last two steps 
an follow Se
tion 5.2-5.4 in [DK℄

word by word without modi�
ation. Hen
e 
ompleteness of Step 2 and 3 admits

the 
on
lusion of Theorem E.

At the end of the this se
tion, we prove a simple lemma whi
h shows that

obtaining a C

1


onjuga
y for one ergodi
 generator suÆ
es for the proof of

Theorem E.

Lemma 5.1. Let � be a Heisenberg group H a
tion by automorphisms of T

N

su
h that for some g 2 H the automorphism �(g) is ergodi
. Let

e

� be a C

1

small

perturbation of � su
h that there exists a C

1

map H : T

N

! T

N

whi
h is C

1


lose to identity and satis�es

e

�(g) ÆH = H Æ �(g):

Then H 
onjugates the 
orresponding maps for all the other elements of the a
-

tion; i.e., for all h 2 H we have

e

�(h) ÆH = H Æ �(h): (5.5)

Proof. Let h be any element in H other than g. If hg = gh it follows from (5.5)

and 
ommutativity that

�(g) Æ

~

h =

~

h Æ �(g)

where

~

h = �(h) ÆH

�1

Æ

e

�(h)

�1

ÆH.
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If hg = gh
, where 
 is the 
enter of H, then similarly we obtain

�(g) Æ (�(h) ÆH

�1

Æ

e

�(h)

�1

ÆH)

= �(h) Æ (�(g


�1

) ÆH

�1

) Æ

e

�(h)

�1

ÆH

(1)

= �(h) ÆH

�1

(

e

�(g


�1

) Æ

e

�(h)

�1

) ÆH

= �(h) ÆH

�1

e

�(h

�1

) Æ (

e

�(g) ÆH)

= (�(h) ÆH

�1

e

�(h

�1

) ÆH) Æ �(g):

Here (1) from the fa
t the H also 
onjugates �(
) and

e

�(
) whi
h is from previous

analysis.

Then the 
on
lusion follows immediately from the following fa
t (see Lemma

3.2 of [DK℄): for any C

1

small enough map F : T

N

! T

N

, if AF = F ÆA, where

A 2 GL(N;Z) and is ergodi
, then F = 0.

5.2 Some notations and basi
 fa
ts

1. It is a result of Krone
ker [Kr℄ whi
h states that an integer matrix with

all eigenvalues on the unit 
ir
le has to have all eigenvalues roots of unity.

Then there exists n 2 N su
h that all eigenvalues of C

n

are 1. Using

relation AB = BAC, we obtain AB

n

= B

n

AC

n

. Hen
e we 
an assume that

all eigenvalues of C are 1, otherwise we just turn to A, B

n

and C

n

instead

of A, B and C.

2. The dual map A

�

on Z

N

indu
es a de
omposition of R

N

into expanding,

neutral and 
ontra
ting subspa
es. We will denote the expanding subspa
e

by V

1

(A), the 
ontra
ting subspa
e by V

3

(A) and the neutral subspa
e by

V

2

(A).

R

N

= V

1

(A)

M

V

2

(A)

M

V

3

(A):

All three subspa
es V

i

(A), i = 1, 2, 3 are A invariant and

kA

i

vk � C�

i

kvk; � > 1; i � 0; v 2 V

1

(A);

kA

i

vk � C�

�i

kvk; � > 1; i � 0; v 2 V

3

(A);

kA

i

vk � Cjij

�N

kvk; � > 1; i 6= 0; v 2 V

2

(A): (5.6)

3. For v 2 Z

N

, jvj

def

= maxfk�

1

(v)k; k�

2

(v)k; k�

3

(v)kg where k�k is Eu
lidean

norm and �

i

(v) are proje
tions of v to subspa
es V

i

(i = 1; 2; 3) from (5.6),

that is, to the expanding, neutral, and 
ontra
ting subspa
es of R

N

for A (or

B); we will use the norm whi
h is more 
onvenient in a parti
ular situation;

those are equivalent norms, the 
hoi
e does not a�e
t any results).
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4. For v 2 Z

N

we say v is mostly in i(A) for i = 1; 2; 3 and will write v ,!

i(A), if the proje
tion �

i

(v) of v to the subspa
e V

i


orresponding to A is

suÆ
iently large:

jvj = k�(v)k:

The notation v ,! 1; 2(A) will be used for v whi
h is mostly in 1(A) or

mostly in 2(A).

5. Call n 2 Z

N

minimal and denote it by n

min

if n is the lowest point on its

A orbit in the sense that n ,! 3(A) and An ,! 1; 2(A). There is one su
h

minimal point on ea
h nontrivial dual A orbit, we 
hoose one on ea
h dual

A orbit and denote it by n

min

. Then n

min

is substantially large both in

1; 2(A) and in 3(A).

6. In what follows, C will denote any 
onstant that depends only on the given

linear a
tion � with 
hosen generators A, B and C and on the dimension of

the torus. C

x;y;z;���

will denote any 
onstant that in addition to the above

depends also on parameters x, y, z, � � � .

7. Let � be a C

1

fun
tion. Then we 
an write � =

P

n2Z

N

b

�

n

e

n

where e

n

=

e

2�in�x

are the 
hara
ters. Then

(i) k�k

a

def

= sup

n

j

b

�

n

jjnj

a

, a > 0.

(ii) The following relations hold (see, for example, Se
tion 3.1 of [Ll℄):

k�k

r

� Ck�k

C

r

; k�k

C

r

� Ck�k

r+�

where � > N + 1, and r 2 N.

(iii) For any F 2 SL(N;Z) (� Æ F )

n

=

b

�

(F

�

)

�1

n

where F

�

denotes transpose

matrix. We 
all (F

�

)

�1

the dual map on Z

N

. To simplify the notation

in the rest of the paper, whenever there is no 
onfusion as to whi
h

map we refer to we will denote the dual map by the same symbol F .

8. For a map F with 
oordinate fun
tions f

i

(i = 1; � � � ; k) de�ne kFk

a

def

=

max

1�i�k

kf

i

k

a

. For two maps F and G de�ne kF ;Gk

a

def

= fkFk

a

; kGk

a

g.

kFk

C

r

and kF ;Gk

C

r

are de�ned similarly. For any n 2 Z

N

F

n

def

= ((




f

1

)

n

; � � � ; (




f

k

)

n

).

5.3 Orbit growth for the dual a
tion

In this se
tion the 
ru
ial estimates for the exponential growth along individual

orbits of the dual a
tion are obtained. The following follows dire
tly from the

proof of Lemma 4.3 in [DK℄:
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Lemma 5.2. Let Q

i

be ergodi
 matri
es in SL(N;Z), 1 � i � m and suppose

there exist 
onstants C; � > 0 su
h that for every non-zero ve
tor n 2 Z

N

and

for any k = (k

1

; � � � ; k

m

) 2 Z

m

kQ

k

1

1

� � �Q

k

m

m

nk � C expf�kkkgknk

�N

: (5.7)

Then the following are satis�ed.

a) For any C

1

fun
tion ' on the torus T

N

and any y 2 C the following sums:

S

K

('; n; y;Q)

def

=

X

k=(k

1

;��� ;k

m

)2K

y

kkk

b

'

Q

k

1

1

���Q

k

m

m

n


onverge absolutely for any K � Z

m

, where Q stands for Q

1

; � � � ; Q

m

.

b) Assume in addition to the assumptions in a) that for a ve
tor n 2 Z

N

and

for every k = (k

1

; � � � ; k

m

) 2 K = K(n) � Z

m

we have

p

1

(kkk)kQ

k

1

1

� � �Q

k

m

m

nk � knk; (5.8)

where p

1

is a polynomial, then

jS

K

('; n; y;Q)j � C

a;y;Æ

k'k

a

knk

�a+�

y

+Æ

for any a > �

y;Q

def

=

N+1

�

�

�

�

logjyj

�

�

�

.


) If the assumptions (5.8) is also satis�ed for every n 2 Z

N

, then the fun
tion

S('; y;Q)

def

=

X

n2Z

N

S

K(n)

('; n; y;Q)e

n

is a C

1

fun
tion if ' is. Moreover, the following norm 
omparison holds:

kS('; y;Q)k

C

r

� C

r;y

k'k

C

r+�

for any r � 0 and � > N + 2 + [�

y;Q

℄.

Corollary 5.3. Suppose Q

i

; P

i

2 SL(N;Z), 1 � i � m, and suppose K =

K(n) � Z

m

. If 
ondition (5.7) is satis�ed for any k 2 K(n) for any n 2 Z

m

,

then for any C

1

fun
tion ' on the torus T

N

we obtain:

1. The following sums:

S

K

('; n; P ;Q)

def

=

X

k=(k

1

;��� ;k

m

)2K(n)

P

k

m

1

� � �P

k

1

m

b

'

Q

k

1

1

���Q

k

m

m

n


onverge absolutely, where P stands for P

1

; � � � ; P

m

and Q stands for Q

1

; � � � ; Q

m

.
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2. Assume in addition that for a ve
tor n 2 Z

N

and for every k = (k

1

; � � � ; k

m

) 2

K = K(n) � Z

m

we have

p

1

(kkk)kQ

k

1

1

� � �Q

k

m

m

nk � knk;

where p

1

is a polynomial, then

jS

K

('; n; P;Q)j � C

a;P;Æ

k'k

a

knk

�a+�

1

+Æ

for any a > �

P;Q

def

=

N+1

�

jlogkPkj, where kPk = maxfkP

i

k : 1 � i � mg.

3. If the assumptions (5.8) is satis�ed for every n 2 Z

N

, then the fun
tion

S('; P;Q)

def

=

X

n2Z

N

S

K(n)

('; n; P;Q)e

n

is a C

1

fun
tion if ' is. Moreover, the following norm 
omparison holds:

kS('; P;Q)k

C

r

� C

r;P

k'k

C

r+�

for any r � 0 and � > N + 2 + [�

P;Q

℄.

Proof. Sin
e

X

k=(k

1

;��� ;k

m

)2K(n)

kP

k

m

1

� � �P

k

1

m

b

'

Q

k

1

1

���Q

k

m

m

n

k �

X

k=(k

1

;��� ;k

m

)2K(n)

kPk

kkk

k

b

'

Q

k

1

1

���Q

k

m

m

n

k;

we get the 
on
lusion immediately from above lemma.

In the subsequent part we prove the exponential growth along individual

orbits of ergodi
 elements. It may be viewed as a generalization of Lemma 4.3 in

[DK℄ to higher rank non-abelian a
tions by toral automorphisms.

Lemma 5.4. There exist 
onstants C; � > 0 su
h that for every non-zero ve
tor

v 2 Z

N

and for any k = (k

1

; k

2

) 2 Z

2

nf0g,

kA

k

1

B

k

2

vk � C expf�(jk

1

j+ jk

2

j)gkvk

�N

:

Proof. From the Lyapunov spa
e de
omposition in Theorem A, we see that the

proof of Lemma 4.3 in [DK℄ also applies to this 
ase word by word. At �rst, we


an show that there exists � > 0 su
h that for any k = (k

1

; k

2

) 2 Z

2

nf0g, there

exists a Lyapunov spa
e in whi
h the Lyapunov exponent of A

k

1

B

k

2

is greater

than �(jk

1

j + jk

2

j). Ergodi
ity implies that the proje
tion of v to this spa
e is

greater than 
kvk

�N

, where 
 is a 
onstant only dependent on the de
omposition

in Theorem A. Then we get the 
on
lusion.
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5.4 Twisted 
oboundary equation over a map on torus

Obstru
tions to solving a one-
ohomology equation for a fun
tion over an ergodi


toral automorphism in C

1


ategory are sums of Fourier 
oeÆ
ients of the given

fun
tion along a dual orbit of the automorphism. This is the 
ontent of the

Lemma 4.2 in [DK℄. The same 
hara
terization holds however for one-
ohomology

equation for a map over ergodi
 toral automorphisms as well due to the estimate

in Corollary 5.3. The proofs of the two lemmas below follow 
losely the proof of

Lemma 4.2 in [DK℄ for solving a one-
ohomology equation for fun
tions.

Lemma 5.5. Let P and Q be matri
es in SL(N;Z) and Q be ergodi
. For a

map � de�ned on T

N

, if there exists a C

1

map ! whi
h is C

0

small enough on

T

N

su
h that

P! � ! ÆQ = �; (5.9)

then the following sums along all nonzero dual orbits are zero, i.e.,

1

X

i=�1

P

�(i+1)

^

�

Q

i

v

= 0 8n 6= 0:

Proof. Sin
e ! is C

0

small enough the equation (5.9) in the dual spa
e has the

form

P

b

!

n

�

b

!

Qn

=

b

�

n

8n 2 Z

N

: (5.10)

Repla
ing n by Q

i

n and applying P

�(i+1)

on the equation, we get that for any

m; ` > 0,

`

X

i=�m

P

�i

b

!

Q

i

n

�

`

X

i=�m

P

�(i+1)

b

!

Q

i+1

n

=

`

X

i=�m

P

�(i+1)

b

�

Q

i

n

;

whi
h simpli�es to

P

m

b

!

Q

�m

n

� P

�(`+1)

b

!

Q

`+1

n

=

`

X

i=�m

P

�(i+1)

b

�

Q

i

n

:

Then the 
on
lusion follows immediately if

lim

m!1

P

m

b

�

Q

�m

n

= 0 8n 6= 0;

whi
h is a dire
t 
onsequen
e of part (1) of Corollary 5.3 with K = K(n) = Z

for any n 6= 0.

Note that �

P

�1

;Q

is de�ned in part (2) of Corollary 5.3.
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Lemma 5.6. Let P and Q be ergodi
 matri
es in SL(N;Z). Let � be a C

1

map

on the torus whi
h is C

�

small enough, where � > N + 2 + �

P

�1

;Q

. If for all

nonzero n 2 Z, the following sums along the dual orbits are zero, i.e.,

1

X

i=�1

P

�(i+1)

b

�

Q

i

n

= 0 8n 6= 0: (5.11)

Then the equation

P! � ! ÆQ = � (5.12)

has a C

1

solution !, and the following estimate

k!k

C

r

� C

r

k�k

C

r+�
(5.13)

holds for any r � 0, where C

r

is a number only dependent on Lyapunov exponents

of P .

Proof. Suppose ! is a C

1

solution C

0

small enough to (5.12). Then the equation

(5.12) in the dual spa
e has the form

P

b

!

n

�

b

!

Qn

=

b

�

n

8n 2 Z

N

: (5.14)

For n = 0, sin
e P is ergodi
, we 
an immediately 
al
ulate

b

!

0

= (P � I)

�1

b

�

0

.

For n 6= 0 the dual equation has two solutions

b

!

�

n

= �

X

i�0

i��1

P

�(i+1)

b

�

Q

i

n

n 6= 0:

Ea
h sum 
onverges absolutely by part (1) of Corollary 5.3. By assumption

(5.11)

b

!

+

n

=

b

!

�

n

def

=

b

!

n

. This gives a formal solution ! =

P

b

!

+

n

e

n

=

P

b

!

�

n

e

n

. We

estimate ea
h

b

!

n

using both of the forms in order to show that ! is C

1

. In the

notation of Corollary 5.3 we 
an write

b

!

+

n

= S

K

+(P

�1

�; n; P

�1

; Q) and

b

!

�

n

= �S

K

�(P

�1

�; n; P

�1

; Q):

Here K

+

= fi 2 Z : i � 0g and K

�

= fi 2 Z : i � �1g.

If n is mostly 
ontra
ting, i.e., if n ,! 3(A), then

kA

i

nk � C�

�i

knk 8i � �1: (5.15)

If n is mostly 
ontra
ting, i.e., if n ,! 1; 2(A), then

kA

i

nk � Ci

�N

knk 8i � 0: (5.16)

Thus the polynomial estimate needed for the appli
ation of part (2) of Corol-

lary 5.3 is satis�ed either in K

+

or K

�

for any n 2 Z

N

. This estimate implies

that (5.13) holds. Finally, this also implies that smallness of C

�

norm of � guar-

antees C

0

smallness of !.

24



5.5 Constru
tion of the proje
tion

Lemma 5.7. Fix � = N +3+ �

A

�1

;A

. There exists Æ > 0 su
h that for any C

1

maps �,  , ! on T

N

that are C

�

small enough, it is possible to split �,  and !

as

� = �

A


+R�;  = �

B


+R 

! = �

C


+R!

for a C

1

map 
, so that

kR�;R ;R!k

C

r

� C

r

kR

1

; R

2

; R

3

k

C

r+Æ

and

k
k

C

r

� C

r

k�; !;  k

C

r+�

for any r � 0, where

R

1

def

= �

C

� ��

A

!; (5.17)

R

2

def

= �

C

 ��

B

! (5.18)

and

R

3

def

= � Æ B +A �  ÆAC �B! Æ A�BC�: (5.19)

Proof. (1) Constru
tion of 
 and R�. Let R� =

P

n

d

R�

n

e

n

where

d

R�

n

def

=

8

>

<

>

:

X

i2Z

A

�i

b

�

A

i

n

; n = n

min

;

0; otherwise

for n 6= 0 and

d

R�

0

def

= 0.

Note that n

min

is substantially large both in the expanding and in the 
on-

tra
ting dire
tion for A, then both (5.15) and (5.16) hold if n = n

min

. The

following estimate is obtained from (3) of Corollary 5.3:

kR�k

C

r

� C

r

k�k

C

r+� ; 8r � 0: (5.20)

Sin
e ��R� satis�es the solvable 
ondition in Lemma 5.6. By using Lemma 5.6

there is a C

1

fun
tion 
 su
h that

�

A


 = � �R� (5.21)

with estimates

k
k

C

r

� C

r

k� �R�k

C

r+�
� C

r

k�k

C

r+2�
; 8r � 0:

(2) Estimates for R�. Rewrite (5.19) we get

A �  Æ AC = B! ÆA+BC� � � Æ B +R

3

:
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Lemma 5.5 shows that the obstru
tions for B!ÆA+BC���ÆB+R

3

with respe
t

to AC vanish; therefore for any n 6= 0 we get

X

i

A

�(i+1)

b

�

B(AC)

i

n

=

X

i

A

�(i+1)

BC

b

�

(AC)

i

n

+

X

i

A

�(i+1)

B

b

!

A(AC)

i

n

+

X

i

A

�(i+1)

(R

3

)

(AC)

i

n

sin
e all the sums involved 
onverge absolutely by (1) of Corollary 5.3. Further-

more, by using the relation

B(AC)

i

= A

i

B; 8 i 2 Z; (5.22)

we obtain from the above relation

X

i

A

�(i+1)

b

�

A

i

Bn

�

X

i

BA

�(i+1)

b

�

A

i

n

=

X

i

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i

BA

�(i+1)

b

�

A

i

n

+

X

i

A

�(i+1)

B

b

!

A(AC)

i

n

+

X

i

A

�(i+1)

(R

3

)

(AC)

i

n

: (5.23)

Next, we will 
ompute the sum

P

i

A

�(i+1)

BC

b

�

(AC)

i

n

�

P

i

BA

�(i+1)

b

�

A

i

n

. To do

so, we split it into two sums

P

i

=

P

i�0

+

P

i��1

and then use relation (5.17) to

simplify ea
h one. Set

� = �

A

!:

Then for any n 6= 0, we obtain from the proof of Lemma 5.6:

X

i�1

A

�(i+1)

b

�

A

i

n

=

b

!

n

�A

�1

b

�

n

= A

�1

b

!

An

and (5.24)

�

X

i��1

A

�(i+1)

b

�

A

i

n

=

b

!

n

: (5.25)

Using relation (5.17) we get

b

�

A

i

n

� C

�i

b

�

C

i

A

i

n

=

8

>

>

>

<

>

>

>

:

X

0�j�i�1

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

); i � 1;

�

X

i�j��1

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

); i � �1:

(5.26)
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Using (5.26) for the 
ase of i � 1 we obtain

X

i�0

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�0

BA

�(i+1)

b

�

A

i

n

=

X

i�1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�1

BA

�(i+1)

b

�

A

i

n

(1)

=

X

i�1

BA

�(i+1)

C

�i

b

�

(AC)

i

n

�

b

�

A

i

n

=�

X

i�1

i�1

X

j=0

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

)

=�

X

j�0

X

i�j+1

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

):

Here (1) is from relation (5.22). Of 
ourse, to justify the 
hange of order of

summation in the last equality, we must prove the absolute 
onvergen
e of the

sum. Using the notation in Corollary 5.3 we 
an write

X

i�0

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�0

BA

�(i+1)

b

�

A

i

n

=BACS

K

((��R

1

); n; fA; Cg; fC; Ag);

where K = f(j; i) 2 Z

2

: i � 1 � j � 0g. For any i; j with jjj � jij, (5.7) in

Lemma 5.2 shows that

jC

j

A

i

nj � Cjjj

�N

jA

i

nj � C

1

jij

�N

exp(�

A

jij)jnj

�N

� C

2

expf�

A

(jij+ jjj)=4gjnj

�N

; (5.27)

where C, C

1

and C

2

are �xed numbers only dependent on A and C; and � is

given in Lemma 5.4. This justi�es to apply part (1) of Corollary 5.3 to show the

absolute 
onvergen
e of the sum.

Furthermore, we have

X

j�0

X

i�j+1

BC

�(j+1)

A

�(i+1)

b

�

C

j

A

i

n

=

X

j�0

BC

�(j+1)

A

�j

(

X

k�1

A

�(k+1)

b

�

(AC)

j

A

k

n

)

(1)

=

X

j�0

BC

�(j+1)

A

�(j+1)

b

!

A(AC)

j

n

(2)

=

X

j�0

A

�(j+1)

B

b

!

A(AC)

j

n

:

Here (1) follows from (5.24) and (2) uses relation (5.22) again.

Hen
e we obtain

X

i�0

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�0

BA

�(i+1)

b

�

A

i

n

= �

X

j�0

A

�(j+1)

B

b

!

A(AC)

j

n

+

X

j�0

X

i�j+1

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

:

(5.28)

27



To 
ompute the sum

P

i��1

we use (5.26) for the 
ase of i � �1:

X

i��1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i��1

BA

�(i+1)

b

�

A

i

n

=

X

i��1

BA

�(i+1)

C

�i

b

�

(AC)

i

n

�

b

�

A

i

n

=

X

i��1

�1

X

j=i

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

)

=

X

j��1

X

i�j

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

):

Again we need to show the absolute 
onvergen
e. We 
an also write

X

i��1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i��1

BA

�(i+1)

b

�

A

i

n

=BACS

K

0

((��R

1

); n; fA; Cg; fC; Ag);

where K

0

= f(j; i) 2 Z

2

: i � j � �1g. Then (5.27) shows that the absolute


onvergen
e follows from the same reason as in previous part.

Furthermore, by using (5.25) and relation (5.22) again we obtain

X

j��1

X

i�j

BC

�(j+1)

A

�(i+1)

b

�

C

j

A

i

n

=

X

j��1

BC

�(j+1)

A

�(j+1)

X

k��1

A

�(k+1)

b

�

A(AC)

j

A

k

n

=�

X

j��1

BC

�(j+1)

A

�(j+1)

b

!

A(AC)

j

n

= �

X

j��1

A

�(j+1)

B

b

!

A(AC)

j

n

:

Hen
e we obtain

X

i��1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i��1

BA

�(i+1)

b

�

A

i

n

= �

X

j��1

A

�(j+1)

B

b

!

A(AC)

j

n

�

X

j��1

X

i�j

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

: (5.29)

By using (5.23), (5.28) and (5.29) for any n 6= 0 we obtain:

X

i

A

�(i+1)

b

�

A

i

Bn

�

X

i

BA

�(i+1)

b

�

A

i

n

=

X

j�0

X

i�j+1

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

�

X

j��1

X

i�j

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

+

X

i

A

�(i+1)

(R

3

)

(AC)

i

n

:
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Iterating this equation with respe
t to B we obtain

X

i

A

�(i+1)

b

�

A

i

n

� lim

`!1

X

i

B

�`

A

�(i+1)

b

�

A

i

B

`

n

= �

X

k�0

X

j�0

X

i�j+1

B

�k

A

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

B

k

n

+

X

k�0

X

j��1

X

i�j

B

�k

A

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

B

k

n

�

X

k�0

X

i

B

�(k+1)

A

�(i+1)

(R

3

)

(AC)

i

B

k

n

:

The 
ondition (5.7) in Corollary 5.3 is satis�ed by Lemma 5.4. Hen
e the limit

above is 0 from part (1) of Corollary 5.3; and the absolute 
onvergen
e of the

sum involving (AC)

i

B

k

is justi�ed by the same reason. To show the absolute


onvergen
e of the other two sums involving C

j

A

i

B

k

where jjj � jij, by the same

reason the following inequality is suÆ
ient:

kC

j

A

i

B

k

nk � Cjjj

�N

kA

i

B

k

nk � Cjij

�N

expf�

A;B

(jij+ jkj)gknk

�N

� C expf

1

2

�

A;B

(jij + jkj)gknk

�N

� C expf

1

4

�

A;B

(jij + jjj+ jkj)gknk

�N

:

Hen
e by the notation of Corollary 5.3 we obtain

X

i

A

�(i+1)

b

�

A

i

n

=� S

K

1

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

+ S

K

2

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

�B

�1

S

K

3

(A

�1

R

3

; n; fB

�1

; A

�1

g; fAC; Bg);

where K

1

= f(k

1

; k

2

; k

3

) 2 Z

3

: k

1

� 0; k

2

� k

1

+1; k

3

� 0g, K

2

= f(k

1

; k

2

; k

3

) 2

Z

3

: k

1

� �1; k

2

� k

1

; k

3

� 0g and K

3

= f(k

1

; k

2

) 2 Z

2

: k

2

� 0g.

By iterating ba
kwards and applying the same reasoning, we obtain

X

i

A

�(i+1)

b

�

A

i

n

=S

K

0

1

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

�S

K

0

2

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

+B

�1

S

K

0

3

(A

�1

R

3

; n; fB

�1

; A

�1

g; fAC; Bg);

whereK

0

1

= f(k

1

; k

2

; k

3

) 2 Z

3

: k

1

� 0; k

2

� k

1

+1; k

3

� �1g,K

0

2

= f(k

1

; k

2

; k

3

) 2

Z

3

: k

1

� �1; k

2

� k

1

; k

3

� �1g and K

0

3

= f(k

1

; k

2

) 2 Z

2

: k

2

� �1g.

Then a

ording to part (3) of Corollary 5.3, the needed estimate for R� with

respe
t to R follows if in at least one of the union of half-spa
es K

+

=

S

3

i=1

K

i

and K

�

=

S

3

i=1

K

0

i

the dual a
tion satis�es some polynomial lower bound for

every n = n

min

.
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Write A and B in blo
k diagonal forms as stated in proof of Corollary 5.3. In


ase An ,! 2(A), let n

1

be the largest proje
tion of n to some neutral blo
k J

0

for A. Then

kn

1

k � Cknk:

Let the Lyapunov exponent of B on this blo
k be �. For all j; i; k the Lyapunov

exponent of C

j

A

i

B

k

on J

0

is k�. Then if � � 0, on the half-spa
e K

+

we obtain

kC

j

A

i

B

k

nk � Cjjj

�N

jij

�N

jkj

�N

kn

1

k � C

1

jijkj

�N

knk 8k � 0

and

kC

j

A

i

B

k

nk � Cjjj

�N

jij

�N

exp(k�=2)kn

1

k � C

1

jijj

�N

knk

onK

�

for k < 0 if � < 0. Thus the polynomial estimate needed for the appli
ation

of part (3) of Corollary 5.3 is satis�ed for su
h n.

In 
ase An ,! 1(A), let n

1

and n

2

be the largest proje
tions of n to some

blo
ks J

1

and J

2

with positive Lyapunov exponent �

1

and negative Lyapunov

exponent �

2

respe
tively. Let �

1

and �

2

be 
orresponding Lyapunov exponents

of B on the two blo
ks. Then

kn

1

k � Cknk; kn

2

k � Cknk:

For all j; i; k the Lyapunov exponent of C

j

A

i

B

k

on J

1

is �(j; i; k)

+

= i�

1

+ k�

1

and is �(j; i; k)

�

= i�

2

+ k�

2

on J

2

. Next, we need to show that

f(j; i; k) : �(j; i; k)

+

� 0g

[

f(j; i; k) : �(j; i; k)

�

� 0g (5.30)


overs either K

+

or K

�

. This boils down to require k(

�

1

�

1

�

�

2

�

2

) � 0. Namely, for

any (j; i) 2 Z

2

, (j; i; k) belongs to the union in (5.30) if k(

�

1

�

1

�

�

2

�

2

) � 0 and this

is true for k � 0 or for k � 0 depending on the sign of

�

1

�

1

�

�

2

�

2

. Therefore we

obtain

kC

j

A

i

B

k

nk � Cjijkj

�N

knk (5.31)

in K

+

or in K

�

.

Now 
hoose the half-spa
e in whi
h the estimate (5.31) holds, that is 
hoose

one of the sums �S

K

1

+ S

K

2

� S

K

3

or S

K

0

1

� S

K

0

2

+ S

K

0

3

. Then the assumptions

of (3) of Corollary 5.3 are satis�ed for one of the sums above; and therefore the

estimate for follows:

kR�k

C

r

� C

r

kR

1

; R

2

; R

3

k

r+�

1

(5.32)

for any r � 0 and �

1

> N + 2 + [�

A;B;C

℄, where �

A;B;C

=

N+1

�

�

�

�
logkA;B;ACk

�

�

�
.

(3) Estimates for R!. By (5.17) and (5.21) we obtain

�

A

(! ��

C


) = �

C

R� �R

1

: (5.33)
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De�ne

R!

def

= ! ��

C


 and

R 

def

=  ��

B


:

By using Lemma 5.6 to equation (5.33) we obtain

kR!k

C

r

� C

r

k�

C

R� �R

1

k

C

r+�
� C

r

kR

1

; R

2

; R

3

k

C

r+�+�

1

(5.34)

for any r � 0.

(4) Estimates for R In (5.19), substituting ! by �

C


+R! and  by �

B


+R 

we get

AR �R ÆAC = R

3

+BCR� �R� ÆB +BR! ÆA:

Again, Lemma 5.6 implies that

kR k

C

r

� C

r

kR

3

+R� Æ B +BCR� +BR! Æ Ak

r+�

3

� C

r

kR

1

; R

2

; R

3

k

C

r+�+�

1

+�

3

(5.35)

where �

3

> N + 2 + [�

A

�1

;AC

℄.

Let Æ = � + �

1

+ �

3

. Then the 
on
lusion follows from (5.20), (5.32), (5.34)

and (5.35).

In fa
t �,  , ! play the roles of R

A

, R

B

and R

C

in (5.2). The following lemma

shows that R

1

; R

2

; R

3


annot be large if �+R is a Heisenberg group a
tion. It

is in fa
t quadrati
ally small with respe
t to R.

Lemma 5.8. If

e

� = �+R is a C

1

Heisenberg group a
tion on T

N

then for any

r � 0

kR

1

; R

2

; R

3

k

C

r

� C

r

k�;  ; !k

C

r

k�;  ; !k

C

r+1
: (5.36)

Proof. The estimates for R

1

an R

2

follow the same way as in the proof of Lemma

4.7 in [DK℄. We just need to show the estimate for R

3

. Note that

e

�

A

Æ

e

�

B

=

e

�

B

Æ

e

�

C

Æ

e

�

A

(A+ �) Æ (B +  ) = (B +  ) Æ (C + !) Æ (A+ �):

Then

� Æ B +A 

= Æ ! Æ (A+ �) + CA+ C� +B! Æ (A+ �) +BC� + � Æ B � � Æ (B +  ):

Therefore,

R

3

= � ÆB +A �  Æ AC �B! Æ A�BC�

=  Æ ! Æ (A+ �) + CA+ C� �  Æ AC

+ � ÆB � � Æ (B +  ) +B! Æ (A+ �)�B! Æ A:
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The estimate (5.36) for C

r

norms follows similarly (see for example [[La℄, Ap-

pendix II℄):

kR

3

k

C

r

� C

r

k ; ! Æ (A+ �) + C�k

C

r

k ; ! Æ (A+ �) + C�k

C

r+1

+ C

r

k ; �k

C

r

k ; �k

C

r+1
+ C

r

k!; �k

C

r

k!; �k

C

r+1

� C

r

k�;  ; !k

C

r

k�;  ; !k

C

r+1
:
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