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Abstrat

The goal of this paper is to study ergodi and rigidity properties of

smooth ations of the disrete Heisenberg group H. We establish the de-

omposition of the tangent spae of any C

1

ompat Riemannian manifold

M for Lyapunov exponents, and show that all Lyapunov exponents for the

enter elements are zero. We obtain that if an H group ation ontains an

Anosov element, then under ertain onditions on the element, the enter

elements are of �nite order. In partiular there is no faithful odimension-

al one Anosov Heisenberg group ation on any manifolds, and no faithful

odimensional two Anosov Heisenberg group ation on tori. In addition, we

show smooth loal rigidity for higher rank ergodi H ations by toral auto-

morphisms, using a generalization of the KAM (Kolmogorov-Arnold-Moser)

iterative sheme.

0 Introdution

In the past few deades, there is a onsiderable progress in studying the ergodi

theory and smooth rigidity of dynamial system of higher rank abelian group

ations. Smooth ation (loal) global rigidity for higher rank abelian algebrai

ations has sine been extensively studied; some of the highlights are [DK1℄, [DK℄

and [KKH, HW℄. We refer the reader to [S℄ for a systemati introdution of the

dynamis of algebrai Z

d

ations. A natural question is how to extend these
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theories to nonommutative group ations. The disrete Heisenberg group is a

2-step nilpotent group, whih is the most lose to being abelian. So studying the

dynamial properties of disrete Heisenberg group ations is the �rst step toward

extending what we have known about Z

d

-ations.

Throughout the paper, we use the symbol H to denote the disrete Heisen-

berg group (see Setion 1 for the expliit de�nition). We �rst establish a tangent

spae deomposition into subspaes related to Lyapunov exponents on any om-

pat manifolds M in Theorem A, whih an be viewed as an extension of the

orresponding theorem established for Z

2

ations in [Hu℄. As orollaries of this

theorem, we obtain that the ation of entral elements ofHmust have 0 Lyapunov

exponents respet to any H invariant measure, and have 0 topologial entropy

when the ation is C

1

. This indiates that the ation of entral elements in H

annot be haoti for any H ation on ompat manifolds.

The seond part of our work is onerning faithfulness of H ations. We

show in Theorem B that if an H ation is C

r

, r > 1, and ontains an Anosov

element whih has simple eigenvalues on stable diretion with �

�

> �

minfr;2g

+

(see

(1.4)), then the ation of any entral element of H is of �nite order. Speially,

it is true for any odimension 1 ation. For Anosov H ations on tori, we show

further in Theorem D that the ation of any entral element is either onjugate

to a translation of �nite order or onjugate to an aÆne transformation of order 2

when the ation is of odimension one or two. This implies speially that there is

no faithful Anosov H ation on T

n

with n � 5, though there are faithful Anosov

H ations on T

n

with n = 6 or n � 8 (see Example 1.4 and Remark 1.5 in

Setion 1).

Lastly we obtain some regidity results for H ations on tori. We prove that

all suh ations are topologially onjugate to an aÆne one in Theorem C, using

the results in [AP℄, [Fr℄ and [Ma℄. Further, we extend an approah for proving

loal di�erentiable rigidity of Heisenberg group ation by toral automorphisms,

based on KAM-type iteration sheme that was �rst introdued in [DK℄ and was

later developed in [DK1℄.

Reently, we note that the expansiveness and homolini points for Heisenberg

algebrai ations are investigated by M. G�oll, K. Shmidt, and E. Verbitskiy in

[GSV℄. One may onsult [GS, Li℄ for the study of abstrat ergodi theory about

nilpotent group or amenable group ations. It is known in 1970s that ifM = R;S

1

or I = [0; 1℄, then any nilpotent subgroup of Di�

2

(M) must be abelian ([PT℄),

whih implies that there is no faithful C

2

ation of H on S

1

. In this entury it

was found out that every �nitely generated, torsion-free nilpotent group has a

faithful C

1

ation on M ([FF℄). For the ase dimM = 2, there are many faithful

analyti Heisenberg group ations on S

2

, losed disks, losed annulus and torus

([Pa℄). However, Franks and Handel [FH℄ showed that a nilpotent group of C

1

di�eomorphisms whih are isotopi to the identity and preserve a measure whose

support is all of T

2

must be abelian.

The paper is organized as following. We state the results of the paper in
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Setion 1. Setion 2 is for proof of Thereom A onerning Lyapunov exponents,

while Setion 3 is for proof of Thereom B onerning faithfulness. Thereom C

and D are proved in Setion 4. The last setion is for smooth rigidity: the proof

of Theorem E.

1 Bakground and statement of result

Let M be a C

1

ompat manifold. We denote by Di�

n

(M) the group of C

r

di�eomorphisms on M for r > 0. Let H be the disrete Heisenberg group and let

A, B and C denote the generators of H:

AC = CA; BC = CB; AB = BAC (1.1)

Then for every K 2 H, there is a unique triple (n

1

; n

2

; n

3

) 2 Z

3

suh that

K = A

n

1

B

n

2

C

n

3

: Clearly, H is a 2-step nilpotent group with enter hCi. In this

paper, we are onerning ergodi and rigidity properties of H ations on ompat

manifolds.

Let � : H ! Di�

n

(M) be a C

r

group ation of H on a C

1

ompat Rie-

mannian manifold M , i.e., � : G ! Di�

n

(M) is a group homomorphism. Write

f = �(A), g = �(B) and h = �(C), then

fh = hf; gh = hg and fg = gfh: (1.2)

Throughout the paper, we always use f , g and h to denote �(A), �(B) and �(C)

respetively for a �xed H ation �.

The Heisenberg group H naturally indues an ation on T

3

sine H embeds

into SL(3;Z). We an obtain more general examples as the following.

Example 1.1. Let

A =

2

6

4

X I

n

O

O X O

O O X

3

7

5

; B =

2

6

4

Y O O

O Y I

n

O O Y

3

7

5

; C =

2

6

4

I

n

O X

�1

Y

�1

O I

n

O

O O I

n

3

7

5

;

where X;Y 2 SL(n;Z) with XY = Y X, and I

n

and O are n � n identity and

zero matrix respetively.

It is easy to hek that ondition (1.1) is satis�ed. IfM = T

3n

, then A, B and

C indue automorphisms f , g and h on M respetively that generate a Heisenberg

group ation.

1.1 Dynamial properties of the entral element h

A probability measure � on M is said to be �-invariant if �(k)

�

� = � for every

k 2 H. We denote by M(M;�) the set of all �-invariant Borel Probability

measures. It is well known and easy to prove that M(M;�) = M(M;f) \
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M(M; g) \M(M;h) 6= ;, where M(M;f) is the set of f -invariant probability

measures.

Let T

x

M be the tangent spae of M at x 2 M and � 2 Di�

2

(M), then

� indues a map D�

x

: T

x

M ! T

�x

M . It is well known that there exists a

measurable set �

�

with ��

�

= 1 for all � 2 M(M;�), suh that for all x 2 �

�

,

0 6= u 2 T

x

M , the limit

�(x; u; �) = lim

n!1

1

n

log k D�

n

x

u k

exists and is alled the Lyapunov exponent of u at x.

Let �

1

(x; �) > � � � > �

r(x;�)

(x; �) denote all Lyapunov exponents of � at x with

multipliitiesm

1

(x; �); � � � ;m

r(x;�)

(x; �) respetively, and T

x

M =

L

r(x;�)

i=1

E

i

(x; �)

be the orresponding deomposition of tangent spae at x 2M .

The �rst result shows that the Lyapunov spae deomposition of H-ation is

similar to the ase of Z

2

ation:

Theorem A. There exists an H-invariant measurable set � suh that �� = 1

for all � 2M(M;�), and for every x 2 � there is a deomposition of the tangent

spae into

T

x

M =

r(x;f)

M

i=1

r(x;g)

M

j=1

E

ij

(x)

suh that if E

ij

(x) 6= f0g, then for all 0 6= u 2 E

ij

(x) and all s; t; r 2 Z,

lim

n!1

1

n

log k D(f

s

g

t

h

r

)

n

x

u k= s�

i

(x; f) + t�

j

(x; g): (1.3)

By this theorem, we have some immediate orollaries, whih indiate that the

ation of entral elements in H annot be haoti for any H ation on ompat

manifolds. The onept of haos was �rst introdued by J. Yorke and T. Li in [LJ℄.

Up to today, there are many de�nitions of haos based on di�erent viewpoints.

In general, having positive Lyapunov exponents or having positive topologial

entropy is regarded as an important feature of haos for di�eomorphisms.

Corollary A.1. All Lyapunov exponents of h are zero with respet to any measure

� 2M(M;�). In partiular, for any n > 0, if h has �nitely many periodi points

p of period n, then all eigenvalues of Dh

n

p

have modulus 1.

Corollary A.2. If the ation � is C

1

, then the topologial entropy h

top

(h) = 0.

Remark 1.2. As we mentioned in Introdution, Corollary A.1 and Corollary A.2

indiate that the entral elements in H annot be haoti for any C

1

H ation

on manifolds.

Observe that f

n

g

n

= g

n

f

n

h

n

2

, we have naturally the following question.

Question 1.3. For any � 2 M(M;�), is kDh

n

x

vk bounded by e

p

n"

for some

" > 0, or even by a polynomial in n for �-a.e. x?
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1.2 Existene of faithful Anosov H ation

A group ation � : G! Di�

r

(M) is alled faithful if the map � is injetive. We

give some onditions under whih an H ation annot be faithful.

A di�eomorphism � on a ompat manifold M is alled Anosov if the whole

tangent bundle has an uniformly hyperboli deomposition into T

x

M = E

s

x

�E

u

x

invariant under the di�erential D� : TM ! TM . For a group ation � : G !

Di�

n

(M), if �(G) ontains an Anosov element, then the ation � is alled Anosov.

The following is an example of Anosov H ation:

Example 1.4. In Example 1.1, if X or Y is a hyperboli matrix, then f or g is

a hyperboli di�eomorphisms on M = T

3n

. Hene �(H) is an Anosov ation. In

partiular, we an take M = T

6

, and

X = Y =

2 1

1 1

; I

2

=

1 0

0 1

; O =

0 0

0 0

;

and then we get a Anosov H ation on M = T

6

.

We say that an Anosov di�eomorphism � has simple eigenvalues on the stable

diretion if for every periodi point p of period n, all eigenvalues of D�

n

p

j

E

s

p

are

real and has algebrai multipliity 1. An Anosov di�eomorphism is said to be of

odimension 1 if either dimE

u

= 1 or dimE

s

= 1. Clearly, either � or �

�1

has

simple eigenvalues on the stable diretion if � is of odimension 1.

If D�

n

p

j

E

s

p

has eigenvalues �

1

; �

2

; � � � ; �

dimE

s

(�)

on the stable diretion, we

denote by

�

�

= min

1�i�dimE

s

(�)

j�

i

j; �

+

= max

1�i�dimE

s

(�)

j�

i

j: (1.4)

Theorem B. Let � : H ! Di�

r

(M), r > 1, be an ation of H on ompat

manifold M suh that �(H) ontains an Anosov di�eomorphism that has simple

eigenvalues with �

�

> �

minf2;rg

+

on the stable diretion. Then h

k

= id for some

k � 1.

Following from Theorem B, we have immediately

Corollary B.1. There is no faithful C

r

, r > 1, Heisenberg group ation that

ontains an Anosov element with simple eigenvalues with �

�

> �

minf2;rg

+

on the

stable diretion. In partiular, there is no faithful C

r

odimension 1 Anosov

Heisenberg group ation on any ompat manifold.

Also the proof of Theorem B gives

Corollary B.2. For a C

r

, r > 1, H ation onM , if any element is a odimension

1 Anosov di�eomorphism that has exatly one �xed point, then h

2

= id.

The next statement is a onsequene of Theorem D. We state here sine it

onerns faithfulness.
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Corollary D.1. There is no faithful C

2

Anosov Heisenberg group ation on T

n

with n � 5.

As supplements to Corollary D.1, we give the following remark.

Remark 1.5. Example 1.4 indiates that T

6

does admit faithful Anosov Heisen-

berg group H ations. So the number \ 5" appeared in the above orollary is the

best. In fat, it is easy to see that there exist faithful Anosov Heisenberg group

ations on T

n

for any integer n � 8 by using the ation in Example 1.4 rossing

an Anosov di�eomorphism of an manifold of dimension two or higher. However,

the authors do not know whether suh group ations exist on T

7

.

1.3 Rigidity of H ation

Let �; �

0

be two ations of groupG onM , then � and �

0

are said to be topologially

onjugate if there is a homeomorphism T :M !M suh that T Æ�(g) = �

0

(g)ÆT

for any g 2 G.

The �rst two results are about global topologial rigidity of an H ation on

T

N

. Before the statement of Theorem C, we introdue some related notions. Let

T

n

� R

n

=Z

n

be the n-dimensional torus. For any A 2 GL(n;Z) and a 2 R

n

,

de�ne T

A;a

: T

n

! T

n

by T

A;a

([x℄) = [Ax+a℄ for any x 2 R

n

. Suh T

A;a

is alled

an aÆne transformation on T

n

. Speially, T

A;0

is alled a linear automorphism

of T

n

indued by A and T

id;a

is alled a translation on T

n

by a. All the aÆne

transformations on T

n

form a group whih is alled the aÆne transformation

group of T

n

and is denoted by A�(T

n

). If A has no eigenvalue with modular 1,

then T

A;a

is an Anosov di�eomorphism.

Theorem C. Every Anosov Heisenberg group ation on T

n

is topologially on-

jugate to an aÆne one.

In some ases, the form of h an be ompletely determined as the following

theorem showed.

Theorem D. If f is a odimension 1 Anosov di�eomorphism of a Heisenberg

group ation on T

n

, then h is topologially onjugate to a translation of �nite

order. If f is a odimension 2 Anosov di�eomorphism for a Heisenberg group

ation on T

n

, then h is either topologially onjugate to a translation of �nite

order or topologially onjugate to an aÆne transformation T

�id;

of order 2 for

some  2 T

n

.

For the odimension 1 ase, the following example indiates that h in the

above theorem an be non-trivial.

Example 1.6. Let A =

5 3

3 2

, b =

2=5

3=5

,  =

2=5

4=5

. De�ne aÆne

transformations f; g; h on T

2

by f([x℄) = [Ax℄, g([x℄) = [Ax + b℄, and h([x℄) =

[x + ℄ for all x 2 R

2

. Then fh = hf , gh = hg, fg = gfh, and h

5

([x℄) = [x℄.

Thus we get a Heisenberg group ation on T

2

with h being a translation of order 5.
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The following example shows that there do exist examples suh that h is

onjugate to T

�Id;

as shown in Theorem D in the odimension 2 ase.

Example 1.7. Take X =

2 1

1 1

. Let A =

X 0

0 �X

, B =

0 X

X 0

,

and C =

�I 0

0 �I

, where I is the 2 � 2 identity matrix. For any  2 R

4

, let

a = �

1

2

(A � I) and b = �

1

2

(B � I). Then it is easy to hek that the aÆne

transformations T

A;a

; T

B;b

and T

�id;

on T

4

satisfy the relations T

A;a

T

�id;

=

T

�id;

T

A;a

, T

B;b

T

�id;

= T

�id;

T

B;b

and T

A;a

T

B;b

= T

B;b

T

A;a

T

�id;

. Thus we get

an aÆne Anosov H ation on T

4

with h being of the form T

�id;

.

An ation � of a �nitely generated disrete group G on a manifoldM is C

k;r;`

loally rigid if any C

k

perturbation

e

� whih is suÆiently C

r

lose to � on a

�nite generating set is C

`

onjugate to �; i.e., there exists a di�eomorphism T

of M C

`

lose to identity whih onjugates

e

� to �: T Æ �(g) = �

0

(g) Æ T for any

g 2 G.

AnH ation � by automorphisms on T

N

is alled an ergodi higher rank ation

if it ontains two elements h

1

; h

2

suh that �(h

m

1

h

n

2

) 2 SL(N;Z) is ergodi for

all (m;n) 6= 0 in Z

2

.

Theorem E. Let � be an ergodi higher rank H ation by automorphisms of the

N -dimensional torus. Then there exists a onstant l = l(�;N) 2 N suh that �

is C

1;l;1

loally rigid.

2 Lyapunov exponents: Proof of Theorem A and its

orollaries

Sine g and h are ommuting maps, by Theorem A in [Hu℄ there exists a mea-

surable set �

0

with g

s

h

t

�

0

= �

0

8s; t 2 Z, and �� = 1, 8� 2 M(M; g; h), suh

that for all x 2 �

0

, there is a (unique) deomposition of the tangent spae into

T

x

M =

r(x;g)

M

j=1

r(x;h)

M

k=1

E

jk

(x) (2.1)

suh that for all s; t 2 Z with E

jk

(x) 6= 0, for all 0 6= u 2 E

jk

(x),

lim

n!1

1

n

log k D(g

s

h

t

)

n

x

u k= s�

j

(x; g) + t�

k

(x; h): (2.2)

Moreover,

D(g

s

h

t

)

x

(E

jk

(x)) = E

jk

(g

s

h

t

x)

and

�

j

(g

s

h

t

x; g) = �

j

(x; g); �

k

(g

s

h

t

x; h) = �

k

(x; h):

Let �

1

= \

i2Z

f

i

�

0

. By (1.2) it is easy to see that f�

1

= �

1

, g�

1

= �

1

and

h�

1

= �

1

. So �

1

is an H-invariant measurable set and ��

1

= 1 8� 2M(M;�).
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Lemma 2.1. For all x 2 �

1

and all 0 6= u 2 E

jk

(x), we have

�(fx;Df

x

u; g

�

) = ��

j

(x; g) � �

k

(x; h); �(fx;Df

x

u; h

�

) = ��

k

(x; h):

Proof. By (1.2) we have

k Dg

�n

Df

x

u k=k DfDg

�n

Dh

�n

x

u k; k Dh

�n

Df

x

u k= kDfDh

�n

x

uk:

So there is a onstant  > 0 suh that for all n � 0,



�1

kDg

�n

Dh

�n

x

uk �kDg

�n

Df

x

uk � kDg

�n

Dh

�n

x

uk;



�1

kDh

�n

x

uk �kDh

�n

Df

x

uk � kDh

�n

x

uk:

Then by (2.2) we get that

�(fx;Df

x

u; g

�1

) = lim

n!1

1

n

log kDg

�n

Df

x

uk = ��

j

(x; g) � �

k

(x; h);

�(fx;Df

x

u; h

�1

) = lim

n!1

1

n

log kDh

�n

Df

x

uk = ��

k

(x; h);

(2.3)

whih are what we need.

Lemma 2.2. For any x 2 �

1

, any (j; k) with E

j;k

6= 0 and any 0 6= u 2 E

j;k

, we

have �(x; u; h) = 0.

Proof. Assume to the ontrary that there is some x

0

2 �

1

and some (j

0

; k

0

) with

E

j

0

;k

0

6= 0 and some 0 6= u

0

2 E

j

0

;k

0

suh that �(x

0

; u

0

; h) 6= 0. From Lemma 2.1

we have

�(fx

0

;Df

x

0

u

0

; g) =�

j

0

(x

0

; g) � �

k

0

(x

0

; h);

�(fx

0

;Df

x

0

u

0

; h

�1

) =� �

k

0

(x

0

; h):

It follows that in the deomposition

T

fx

0

M =

r(fx

0

;g)

M

j=1

r(fx

0

;h)

M

k=1

E

jk

(fx

0

);

there is some E

j

1

k

1

(fx

0

) 6= 0 suh that for all 0 6= u 2 E

j

1

k

1

(fx

0

),

�(fx

0

; u; g) =�

j

0

(x

0

; g) � �

k

0

(x

0

; h);

�(fx

0

; u; h) =�

k

0

(x

0

; h):

Then by indution proess, we get that in the deomposition

T

f

n

x

0

M =

r(f

n

x

0

;g)

M

j=1

r(f

n

x

0

;h)

M

k=1

E

jk

(f

n

x

0

);

8



there is some E

j

n

k

n

6= 0 suh that for all 0 6= u 2 E

j

n

k

n

,

�(f

n

x

0

; u; g) =�

j

0

(x

0

; g) � n�

k

0

(x

0

; h);

�(f

n

x

0

; u; h) =�

k

0

(x

0

; h):

Sine �

k

0

(x

0

; h) = �(x

0

; u

0

; h) 6= 0; j�(f

n

x

0

; u; g)j ! 1 as n!1, ontraditing

to the fat that j�(p; v; g)j � sup

x2M

kDg

x

k <1 8p 2 �

1

, 8v 2 T

p

M .

Proposition 2.3. For all x 2 �

1

, there is a deomposition of the tangent spae

into T

x

M =

L

r(x;g)

j=1

E

j

(x; g) suh that for all 0 6= u 2 E

j

(x; g),

(i) the spetrum f�

j

(x; g); m

j

(x; g); j = 1; � � � ; r(x; g)g is H-invariant;

(ii) D(f

s

g

t

h

r

)

x

E

j

(x; g) = E

j

(f

s

g

t

h

r

x; g) 8j = 1; � � � ; r(x; g), 8 s; t; r 2 Z;

(iii) lim

n!1

1

n

log kD(g

t

h

r

)

n

x

uk = t�

j

(x; g) 8 t; r 2 Z.

Proof. By Lemma 2.2, we get that the number r(x; h) = 1 and the deomposi-

tion (2.1) beomes that, for all x 2 �

1

,

T

x

M =

r(x;g)

M

j=1

E

j

(x; g);

where E

j

(x; g) =

L

r(x;h)

k=1

E

jk

(x) = E

j1

(x). It follows from Lemma 2.2 again that

equations (2.3) beome

�(fx;Df

x

u; g

�1

) =� �

j

(x; g);

�(fx;Df

x

u; h

�1

) =0:

So (i) and (ii) holds, and (iii) follows from (2.2).

Exhanging f and g, we an get the following proposition similarly:

Proposition 2.4. There is an H-invariant measurable set �

2

with ��

2

= 1,

8� 2 M(M;�) suh that for all x 2 �

2

there is a deomposition of the tangent

spae into T

x

=

L

r(x;f)

i=1

E

i

(x; f) satisfying that for every 0 6= u 2 E

i

(x; f),

(i) the spetrum f�

i

(x; f); m

i

(x; f); i = 1; � � � ; r(x; f)g is H-invariant;

(ii) D(f

s

g

t

h

r

)

x

E

i

(x; f) = E

i

(f

s

g

t

h

r

x; f) 8i = 1; � � � ; r(x; f), 8 s; t; r 2 Z;

(iii) lim

n!1

1

n

log kD(f

s

h

r

)

n

x

uk = s�

i

(x; f), 8 s; r 2 Z.

9



Proposition 2.5. There is an H-invariant measurable set �

3

� �

1

\ �

2

with

��

3

= 1 8� 2 M(M;�) suh that for all x 2 �

3

there is a deomposition of the

tangent spae into

T

x

M =

r(x;f)

M

i=1

r(x;g)

M

j=1

E

ij

(x)

satisfying that if E

ij

(x) 6= 0, then for all 0 6= u 2 E

ij

(x) and all s; t; r 2 Z,

(i) lim

n!1

1

n

log kD(f

s

h

r

)

n

x

uk = s�

i

(x; f), lim

n!1

1

n

log kD(g

t

h

r

)

n

x

uk = t�

j

(x; g);

(ii) D(f

s

g

t

h

r

)

x

E

ij

(x) = E

ij

(f

s

g

t

h

r

x);

(iii) �

i

(f

s

g

t

h

r

x; f) = �

i

(x; f), �

j

(f

s

g

t

h

r

x; g) = �

j

(x; g).

Proof. For all x 2 �

1

\�

2

, let T

x

M =

L

r(x;g)

j=1

E

j

(x; g) be the deomposition given

in Proposition 2.3. By Proposition 2.3(ii), Df

x

(E

j

(x; g)) = E

j

(fx; g). Restrited

to fE

j

(x; g)g, fDf

n

x

g is a oyle on M with respet to f . Thus, similar to

the proof of Proposition 2.3 in [Hu℄, we obtain an H-invariant measurable set

�

3

� �

1

\ �

2

with ��

3

= 1 8� 2 M(M;�), and a deomposition of the tangent

spae into

T

x

M =

r(x;f)

M

i=1

r(x;g)

M

j=1

E

ij

(x); 8x 2 �

3

:

Clearly E

ij

(x) = E

i

(x; f) \ E

j

(x; g). Thus (i) (ii) and (iii) are diret orollaries

of Proposition 2.3 and Proposition 2.4.

Proof of Theoren A. For any s; t; r 2 Z and any " > 0, set

A

+

"

=fx : 90 6= u 2E

ij

(x) s.t. �(x; u; f

s

g

t

h

r

)� s�

i

(x; f)� t�

j

(x; g) > (j�j+ 1)"g;

A

�

"

=fx : 90 6= u 2E

ij

(x) s.t. �(x; u; f

s

g

t

h

r

)� s�

i

(x; f)� t�

j

(x; g) < (j�j+ 1)"g;

where � = 6s + 6t + j2r � stj. It is easy to see that we only need to prove that

for any � 2M(M;�), for all " > 0, �(A

�

"

) = 0

Now we prove �(A

+

"

) = 0, the other one an be obtained similarly.

Suppose �(A

+

"

) > 0 for some � 2 M(M;�) and " > 0. Then there exists a

onstant C > 0 suÆiently large suh that the set

A

";C

:= fx : 9 0 6= u 2 E

ij

(x) s.t. kD(f

s

g

t

h

r

)

n

x

uk

>C

�1

kuk expn(s�

i

(x; f) + t�

j

(x; g) + j�j") 8n � 0g

(2.4)

satis�es �(A

";C

) > 0. Let

Æ = �(A

";C

):

By (1.2) we have

kD(f

s

g

t

h

r

)

n

x

uk = kDh

st

n(n�1)

2

Df

sn

Dg

tn

Dh

rn

x

uk:

10



Then

kD(f

s

g

t

h

r

)

2n

x

uk = kDh

2stn

2

Df

2sn

Dg

2tn

Dh

(2r�st)n

x

uk 8n � 0:

For l > 0, let

A

l

f

= fx : l

�1

kuk expn(�

i

(x; f)�") � kDf

n

x

uk � lkuk expn(�

i

(x; f)+") 8u 2 E

ij

(x) 8n � 0g:

A

l

g

= fx : l

�1

kuk expn(�

j

(x; g)�") � kDg

n

x

uk � lkuk expn(�

j

(x; g)+") 8u 2 E

ij

(x) 8n � 0g:

A

l

h

= fx : l

�1

kuk exp(�jnj") � kDh

n

x

uk � lkuk exp(jnj") 8u 2 E

ij

(x) 8n 2 Zg:

Choose l suÆiently large so that

�(A

l

i

) > 1�

1

26

Æ; i = f; g; h:

Let

B

n

= A

l

g

\ g

�tn

(A

l

f

) \A

l

h

\ h

�stn

2

f

�sn

(A

l

g

) \ h

�stn

2

(A

l

f

):

Then �(B

n

) > 1�

5

26

Æ; and for all x 2 B

n

and all 0 6= u 2 E

ij

(x), we have

kD(f

sn

g

tn

)

x

uk � lkDg

tn

x

uk exp sn(�

i

(g

tn

x; f) + ")

�l

2

kuk exp tn�

j

(x; g) + sn�

i

(x; f) + (s+ t)n" ;

(2.5)

and

kD(g

tn

f

sn

h

stn

2

)

x

uk � l

�1

kD(f

sn

h

stn

2

)

x

uk exp(tn�

j

(x; g)� tn")

�l

�2

kDh

stn

2

uk exp sn�

i

(x; f) + tn�

j

(x; g) � (t+ s)n" :

(2.6)

Sine f

sn

g

tn

= g

tn

f

sn

h

stn

2

, it follows from (2.5) and (2.6) that

kDh

stn

2

uk � l

4

kuk exp[2(t+ s)n"℄ 8n � 0; 8x 2 B

n

; 80 6= u 2 E

ij

(x):

Let C

n

= h

�stn

2

(B

n

) \ B

n

. Then �(C

n

) > 1 �

10

26

Æ. For all x 2 C

n

and all

0 6= u 2 E

ij

(x), we have

kDh

2stn

2

x

uk = kDh

stn

2

Dh

stn

2

x

uk � l

4

kDh

stn

2

x

uke

2(s+t)n"

� l

8

kuke

4(s+t)n"

:

Let

D

n

= h

�(2r�st)n

g

�2tn

f

�2sn

(C

n

) \ h

�(2r�st)n

g

�2tn

(A

l

f

) \ h

�(2r�st)n

(A

l

g

) \A

l

h

:

Then

�(D

n

) > 1�

10

26

Æ �

3

26

Æ = 1�

Æ

2

> 1� Æ;

and so

�(D

n

\A

";C

) > 0:
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For any x 2 D

n

\A

";C

and any 0 6= u 2 E

ij

(x), we have

kD(f

s

g

t

h

r

)

2n

x

uk = kDh

2stn

2

Df

2sn

Dg

2tn

Dh

(2r�st)n

x

uk

�l

8

e

4(s+t)n"

le

2sn�

i

(x;f)+2sn"

le

2tn�

j

(x;g)+2tn"

le

j2r�stjn"

kuk

=l

11

kuk expn[2s�

i

(x; f) + 2t�

j

(x; g) + �"℄);

(2.7)

where � = 6s+6t+ j2r� stj. In addition, from the de�nition of A

";C

in (2.4) we

get that for all x 2 A

";C

, there is 0 6= u 2 E

ij

(x) suh that

kD(f

s

g

t

h

r

)

2n

x

uk > C

�1

kuk exp 2n[s�

i

(x; f) + t�

j

(x; g) + j�j"℄

=C

�1

exp(nj�j")kuk exp n[2s�

i

(x; f) + 2t�

j

(x; g) + j�j"℄:

(2.8)

Clearly, (2.7) and (2.8) are ontradit to eah other if n >

log(l

11

C)

j�j"

. Hene we

must have �(A

+

"

) = 0 for all � 2 M(M;�) and and " > 0. We omplete the

proof of Theorem A.

Proof of Corollary A.1. By taking s = t = 0 and r = 1 in (1.3) we know that the

Lyapunov exponent of any 0 6= u 2 E

ij

(x) is equal to 0 with respet to h, and so

is that of any 0 6= u 2 T

x

M .

Let p be a periodi point of h of period n, that is, h

n

(p) = p. Sine fh = hf

and gh = hg, we get that both f

n

(p) and g

n

(p) are periodi orbits of h with

period n. Sine there are only �nitely many periodi point of h of period n, we

get that ff

s

g

t

h

r

(p) : s; t; r 2 Zg is a �nite set. Hene we an de�ne a measure

� 2 M(M;�) supported on the set. By �niteness and invariane we know that

�(fpg) > 0, i.e., p is a generi point of �. The fat that all Lyapunov exponents

of h at p are equal zero gives that the modulus of all eigenvalues of Dh

n

(p) are

equal to one.

Proof of Corollary A.2. Assume that h

top

(h) > 0, then there is some h-invariant

probability measure � onM suh that the metri entropy h

�

(h) > 0 by the varia-

tional priniple. Consider the probability measure sequene �

n

�

1

4n

2

P

jij;jjj�n

(f

i

g

j

)

�

�.

Passing to a subsequene if neessary, suppose �

n

onverges to a probability mea-

sure � in the weak-� topology. It is easy to hek that � is �(H)-invariant. Hene

by Corollary A.1 all Lyapunov exponents of h are zero with respet to �. Hene

h

�

(h) = 0 by Ledrappier-Young's formula.

On the other hand, sine h ommutes with every element in �(H), we have

h

(f

i

g

j

)

�

�

(h) = h

�

(h) for any i; j 2 Z. Sine the entropy map � ! h

�

(h) is

aÆne, we have h

�

n

(h) = h

�

(h). As the ation � is C

1

, it follows from [NP℄ that

0 = h

�

(h) � lim

n!1

h

�

n

(h) = h

�

(h) > 0. This is a ontradition.

3 Faithfulness: Proof of Theorem B and its orollaries

Let T be a di�eomorphism on a manifold M with a hyperboli set �. For any

x 2 �, the stable manifold of x for T is de�ned by W

s

(x; T ) = fy 2 M :

12



d(T

n

x; T

n

y) ! 0 as n ! 1g, whih is T -invariant. For any " > 0, the loal

stable manifold W

s

"

(x; T ) is the set fy 2 M : d(T

n

x; T

n

y) � " for all n � 0g. It

is well known that W

s

"

(x; T ) �W

s

(x; T ) and W

s

(x; T ) = [

n�0

T

�n

W

s

"

(T

n

x; T ):

Lemma 3.1. Suppose p is a ommon �xed point of f , g and h, and f is Anosov

and has simple eigenvalues on stable diretion with �

�

> �

2

+

at p. Then either

h = id or h

2

= id on W

s

(p; f).

Proof. Note that the eigenvalue of Dh

p

restrited to eah stable eigenspae is �1

by Corollary A.1. We may assume it is 1, otherwise use h

2

instead of h. Sine

f has simple eigenvalues on stable diretion, and h ommutes with f , we must

have Dh

p

j

E

s

(p;f)

= id, where E

s

(p; f) = fv 2 T

p

(M) : kDf

p

(v)k < kvkg.

Denote r

0

= minfr; 2g. Take " > 0 small enough suh that �

�

�" > (�

+

+")

r

0

and suh that for any x; y 2W

s

"

(p; f) and n 2 N,

C

1

(�

�

� ")

n

d(x; y) < d(f

n

(x); f

n

(y)) < C

2

(�

+

+ ")

n

d(x; y) (3.1)

for some �xed onstants C

1

; C

2

> 0. It is lear that hW

s

(p; f) = W

s

(p; f) by

hf = fh. So there is "

0

� " suh that hW

s

"

0

(p; f) �W

s

"

(p; f).

Suppose h(x) 6= x for some x 2W

s

"

0

(p; f). Let x

n

= f

n

(x). Then by (3.1) we

have

d(x

n

; h(x

n

))

d(x

n

; p)

=

d(f

n

(x); f

n

(h(x)))

d(f

n

(x); p)

�

C

1

C

2

(�

�

� ")

n

d(x; h(x))

(�

+

+ ")

n

d(x; p)

: (3.2)

Note that W

s

"

0

(p; f) is a C

r

submanifold tangent to E

s

(p; f) at p. Take a loal

oordinate system on W

s

(p) at p. We have

h(x

n

)� p =

Z

1

0

Dh

p+t(x

n

�p)

(x

n

� p)dt =

�

id+ (

Z

1

0

Dh

p+t(x

n

�p)

dt� id)

�

(x

n

� p):

Sine h is a C

r

di�eomorphism and Dh

p

j

E

s

(p;f)

= id, the equation gives

�

�

�

�

Z

1

0

Dh

p+t(x

n

�p)

dt� id

�

�

�

�

� C

3

jx

n

� pj

r

0

�1

for some C

3

> 0. Hene we get

jh(x

n

)� x

n

j � C

3

jx

n

� pj

r

0

:

Note that jh(x

n

)� x

n

j = d(x

n

; h(x

n

)) and jx

n

� pj = d(x

n

; p). So by (3.1)

d(x

n

; h(x

n

))

d(x

n

; p)

� C

3

d(x

n

; p)

r

0

�1

� C

3

C

2

(�

+

+ ")

n(r

0

�1)

d(x; p)

r

0

�1

for all n > 0, ontraditing to (3.2) and the fat �

�

� " > (�

+

+ ")

r

0

.

Then we must have h(x) = x for any x 2 W

s

"

0

(p; f), and then h = id on

W

s

(p; f) by using the fats W

s

(p; f) = [

n�0

f

�n

W

s

"

0

(p; f) and fh = hf .
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Lemma 3.2. Suppose p is a periodi point of f with period n and f has only

�nitely many periodi points of period n. Then there are m; k 2 N suh that p is

a ommon �xed point of f

n

, g

m

and h

k

.

In partiular, if p is the unique �xed point of f , then h(p) = p = g(p).

Proof. Sine fh = hf , h(p) is a periodi point of f with period n. By �niteness

of n-periodi point set of f , there is some k suh that h

k

(p) = p. Then we have

f

n

g

k

(p) = g

k

f

n

h

kn

(p) = g

k

(p), that is, g

k

(p) is also a periodi point of f with

period n. This implies that g

kl

(p) = g

k

(p) for some l 2 N. Taking m = lk � k,

we then omplete the proof.

The seond part of the lemma now is obvious.

Proof of Theoren B. Without loss of generality, we may suppose f is an Anosov

element that has simple eigenvalues on stable diretion with �

�

> �

minfr;2g

+

. By

spetral deomposition, f has basi sets 


1

; : : : ;


t

(see [Bo℄). On eah basi

set 


i

, we take a periodi point p

i

2 


i

. Assume f

n

i

(p

i

) = p

i

for some n

i

2

N. Then there are m

i

and k

i

suh that p

i

is a ommon �xed point of f

n

i

; g

m

i

and h

k

i

by Lemma 3.2. Applying Lemma 3.1 to f

n

i

; g

m

i

k

i

and h

n

i

m

i

k

i

, we get

h

2n

i

m

i

k

i

= id onW

s

(p

i

; f

n

i

). SineM = [

t

i=1

W

s

(p

i

; f

n

i

), we get h

2k

= id, where

k =

Q

t

i=1

n

i

m

i

k

i

.

Proof of Corollary B.2. Sine f has only one �xed point, we have f(p) = g(p) =

h(p) = p by Lemma 3.2. Sine dimE

s

p

(f) = 1, restrited to E

s

p

(f), Df

p

and Dg

p

ommutes. Hene, Df

p

�Dg

p

= Dg

p

�Df

p

�Dh

p

implies Dh

p

j

E

s

p

(f)

= id. By the

proof of Lemma 3.1, we have that h is identity on W

s

(p; f). From [Ne℄, we know

that f is transitive. So W

s

(p; f) is dense in M , and h is identity on M .

4 AÆne Anosov ation on tori: Proof of Theorem C

& D

Before the proof of Theorem C, let us reall two lassial results.

Theorem 4.1 (Adler-Palais [AP℄). If R;S 2 A�(T

n

) with R being ergodi, then

any homeomorphism � of T

n

with �R = S� is in A�(T

n

).

Theorem 4.2 (Franks-Manning [Fr, Ma℄). Any Anosov di�eomorphism of T

n

is

topologially onjugate to a hyperboli toral automorphism.

Proof of Theoren C. Suppose k = f

r

g

s

h

t

is Anosov for some r; s; t 2 Z. Then

by Theorem 4.2, there is a homeomorphism � of T

n

suh that K = �

�1

k� 2

A�(T

n

). Sine K is topologially transitive and aÆne, K is ergodi.

Denote F = �

�1

f�, G = �

�1

g� and H = �

�1

h�. Then we have FH = HF ,

GH = HG, FG = GFH, and K = F

r

G

s

H

t

.

Sine H

�1

KH = K and K 2 A�(T

n

), H 2 A�(T

n

) by Theorem 4.1. Simi-

larly, sine F

�1

KF = KH

�s

and K;KH

�s

2 A�(T

n

), F 2 A�(T

n

); and sine

G

�1

KG = KH

r

and K;KH

r

2 A�(T

n

), G 2 A�(T

n

).
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Lemma 4.3. Let A;B; C 2 GL(n;R) suh that AB = BAC; AC = CA and

BC = CB. Suppose A is hyperboli with stable linear spae E

s

� R

n

. If the

modular of eah eigenvalue of C is equal to 1, then E

s

is B and C invariant.

Proof. For any v 2 E

s

, we have

lim

n!1

A

n

Cv = lim

n!1

CA

n

v = 0

by AC = CA, so E

s

is C invariant. Sine the modular of eah eigenvalue of C is

equal to 1, the inreasing rate of matrix norm kC

n

k is bounded by a polynomial

in n by an easy alulation. Thus we have

lim

n!1

A

n

Bv = lim

n!1

BA

n

C

n

v = lim

n!1

BC

n

A

n

v = 0

by AC = CA and AB = BAC. So E

s

is B invariant.

Lemma 4.4. Let A;B; C 2 GL(1;R) suh that AB = BAC. Then C = Id.

Proof. Sine GL(1;R) is ommutative, we have AB = BAC = ABC, whih means

that C is identity.

Lemma 4.5. Let A;B; C 2 GL(2;R) suh that AB = BAC; AC = CA and BC =

CB. If the modular of eah eigenvalue of C is equal to 1, then C

2

= Id.

Proof. Consider A;B; C as matries in GL(2; C ).

Claim 1. The eigenvalues of C are 1 or �1. In fat, assume that C has an

eigenvalue � with �

n

6= 1 for n = 1; 2. By AC = CA, we an take a nonzero vetor

v 2 C

2

suh that Cv = �v and Av = v for some  6= 0. Then we have

ABv = BACv = �Bv and AB

2

v = B

2

AC

2

v = �

2

Bv:

So, v;Bv and B

2

v are three eigenvetors of A with pairwise di�erent eigenvalues,

whih is a ontradition. Hene � = 1 or �

2

= 1, whih means � = 1 or �1.

Claim 2. If �1 is an eigenvalue of C, then C

2

= id. In fat, we an take

v 2 C

2

suh that Cv = �v and v;Bv are two eigenvetors of A with di�erent

eigenvalues as shown in Claim 1. So, under the base fv;Bvg, C has the form

C =

�1 0

0 �1

; and C

2

= Id.

Claim 3. If all eigenvalues of C are 1, then C = id. In fat, if A has two di�erent

eigenvalues, then C is diagonal by AC = CA. So C an only be identity in this ase.

Similarly, if B has only simple eigenvalues, then C = id. Thus we may suppose

A;B; C have only eigenvalues �; ; 1 respetively. If A is diagonal, then A and B

are ommutative, and then C is identity by AB = BAC. So we may suppose the

eigenspae V

�

of A orresponding to � is of dimension 1. Fix an nonzero vetor

v 2 V

�

. Then CV

�

= V

�

by AC = CA. Therefore ABv = BACv = �Bv and we
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get BV

�

= V

�

. So Bv = v. Take a vetor w linearly independent of v. Then,

under the base fv; wg, A;B; C has the forms

A =

� x

0 �

; B =

 y

0 

; C =

1 z

0 1

;

for some x; y; z 2 C , whih implies C = Id by AB = BAC.

Proof of Theorem D. From Theorem B, there is a homeomorphism � on T

n

suh

that �

�1

f�([x℄) = [Ax + a℄, �

�1

g�([x℄) = [Bx+ b℄ and �

�1

h�([x℄) = [Cx + ℄

for any x 2 R

n

, where A;B; C 2 GL(n;Z) and a; b;  2 R

n

. It is easy to hek

that AB = BAC; AC = CA and BC = CB. Clearly A is hyperboli. Let E

s

� R

n

be the stable linear subspae of A. We assume dim(E

s

) = 1 or 2.

By Lemma 4.3, E

s

is A, B and C invariant. Sine 0 2 T

n

is a ommon �xed

point of A, B and C, we get that the modular of eah eigenvalue of C is 1 by

Corollary A.1. Applying Lemma 4.4 and 4.5 to Aj

E

s

, Bj

E

s

and Cj

E

s

, we know

that Cj

E

s

= Id if dim(E

s

) = 1 and Cj

E

s

= �Id if dim(E

s

) = 2. It follows that C or

�C, as automorphism of T

n

, is identity on T

n

by the density of [E

s

℄ in T

n

. Hene

C or �C is identity as matrix in GL(n;Z). Thus �

�1

h�([x℄) = [�x+ ℄. So h is

onjugate to either a translation or an aÆne transformation T

�Id;

for some  2

T

n

, and the formal ase ours if f is a odimensional 1 Anosov di�eomorphism.

Clearly, if h is onjugate to T

�Id;

, then h

2

= id. If h is onjugate to a

translation T

Id;

, then we an get [x + k℄ = �

�1

h

k

�([x℄) = [x℄ for some k > 0

and for any [x℄ 2 T

n

by using the fat that h sends a �xed point of f to a �xed

point of f , and f has only �nite number of �xed points.

Remark 4.6. From the proof it is easy to see that the integer k an be hosen

as a fator of the number of the �xed points of f .

5 Smooth Rigidity: Proof of Theorem E

5.1 Setting of the problem and the KAM sheme

Before proeeding to spei�s we will show how the general KAM sheme de-

sribed in [DK, Setion 3.3℄ and [DK1, Setion 1.1℄ is adapted to the H ation �.

Step 1. Setting up the linearized equation

Let

e

� be a small perturbation of �. To prove the existene of a C

1

map H

suh that

e

� ÆH = H Æ �, we need to solve the nonlinear onjugay problem

� Æ 
� 
 Æ � = �R Æ (I +
)

where

e

� = � + R and H = I + 
; and the orresponding linearized onjugay

equation is

� Æ 
� 
 Æ � = �R (5.1)
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for small 
 and R.

Lemma 5.1 shows that obtaining a C

1

onjugay for one ergodi generator

suÆes for the proof of Theorem E. Hene we just need to solve equation (5.1)

for one ergodi generator.

Step 2. Solving the linearized onjugay equation for a partiular element.

We lassify the obstrutions for solving the linearized equation (5.1) for an

individual generator (see Lemma 5.5 and 5.6) and obtain tame estimates are

obtained for the solution. This means �nite loss of regularity in the hosen

olletion of norms in the Fr�ehet spaes, suh as C

r

or Sobolev norms.

Step 3. Construting projetion of the perturbation to the twisted oyle spae.

First note that R is a twisted oyle not over � but over

e

� (see Lemma 3.3

of [DK℄) thus (5.1) is not a twisted oboundary equation over the linear ation

�, just an approximation. Seond is that even if (5.1) is a twisted oboundary

over �, it is impossible to produe a C

1

onjugay for a single ergodi generator

of the ation. Therefore, we onsider three generators, and redue the problem

of solving the linearized equation (5.1) to solving simultaneously the following

system:

A Æ 
�
 Æ A = �R

A

B Æ 
� 
 Æ B = �R

B

C Æ 
�
 Æ C = �R

C

(5.2)

whereA andB are ergodi generators and C is the enter: A := �(g

1

), B := �(g

2

),

C := �(g

3

) and R

A

:= R(g

1

), R

B

:= R(g

2

), R

C

:= R(g

3

).

As mentioned above, R does not satisfy this twisted oyle ondition:

L(R

A

; R

C

)

def

= CR

A

�R

A

Æ C � (AR

C

�R

C

Æ A) = 0;

L(R

B

; R

C

)

def

= CR

B

�R

B

Æ C � (BR

C

�R

C

Æ B) = 0;

L(R

A

; R

B

)

def

= R

A

Æ B +AR

B

�R

B

Æ AC �BR

C

Æ A�BCR

A

= 0: (5.3)

However the di�erene

L(R

A

; R

B

); L(R

B

; R

C

) and L(R

A

; R

B

)

is quadratially small with respet to R (see Lemma 5.8). More preisely, the

perturbation R an be split into two terms

R = PR+ E(R)

so that PR is in the spae of twisted oyles and the error E(R) is bounded by

the size of L with the �xed loss of regularity (see Lemma 5.7). More preisely,

the system

�PR

A

= � R

A

� E(R

A

) = A
� 
 Æ A;

�PR

B

= � R

B

� E(R

B

) = B
� 
 ÆB;

�PR

C

= � R

C

� E(R

C

) = C
�
 Æ C (5.4)
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has a ommon solution 
 after subtrating a part quadratially small to R.

Step 4. Conjugay transforms the perturbed ation into an ation quadratially

lose to the target.

The ommon approximate solution 
 to the equations (5.2) above provides a

new perturbation

e

�

(1)

def

= H

�1

Æ

e

� ÆH

where H = I +
, is muh loser to � than

e

�; i.e., the new error

R

(1)

def

=

e

�

(1)

� �

is expeted to be small with respet to the old error R.

Step 5. The proess is iterated and the onjugay is obtained.

The iteration proess is set and is arried out, produing a C

1

onjugay

whih works for the ation generated by the three generators A, B and C. Er-

godiity assures that it works for all the other elements of the ation �.

What is desribed above highlights the essential features of the KAM sheme

for the H ation on torus. The last two steps an follow Setion 5.2-5.4 in [DK℄

word by word without modi�ation. Hene ompleteness of Step 2 and 3 admits

the onlusion of Theorem E.

At the end of the this setion, we prove a simple lemma whih shows that

obtaining a C

1

onjugay for one ergodi generator suÆes for the proof of

Theorem E.

Lemma 5.1. Let � be a Heisenberg group H ation by automorphisms of T

N

suh that for some g 2 H the automorphism �(g) is ergodi. Let

e

� be a C

1

small

perturbation of � suh that there exists a C

1

map H : T

N

! T

N

whih is C

1

lose to identity and satis�es

e

�(g) ÆH = H Æ �(g):

Then H onjugates the orresponding maps for all the other elements of the a-

tion; i.e., for all h 2 H we have

e

�(h) ÆH = H Æ �(h): (5.5)

Proof. Let h be any element in H other than g. If hg = gh it follows from (5.5)

and ommutativity that

�(g) Æ

~

h =

~

h Æ �(g)

where

~

h = �(h) ÆH

�1

Æ

e

�(h)

�1

ÆH.
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If hg = gh, where  is the enter of H, then similarly we obtain

�(g) Æ (�(h) ÆH

�1

Æ

e

�(h)

�1

ÆH)

= �(h) Æ (�(g

�1

) ÆH

�1

) Æ

e

�(h)

�1

ÆH

(1)

= �(h) ÆH

�1

(

e

�(g

�1

) Æ

e

�(h)

�1

) ÆH

= �(h) ÆH

�1

e

�(h

�1

) Æ (

e

�(g) ÆH)

= (�(h) ÆH

�1

e

�(h

�1

) ÆH) Æ �(g):

Here (1) from the fat the H also onjugates �() and

e

�() whih is from previous

analysis.

Then the onlusion follows immediately from the following fat (see Lemma

3.2 of [DK℄): for any C

1

small enough map F : T

N

! T

N

, if AF = F ÆA, where

A 2 GL(N;Z) and is ergodi, then F = 0.

5.2 Some notations and basi fats

1. It is a result of Kroneker [Kr℄ whih states that an integer matrix with

all eigenvalues on the unit irle has to have all eigenvalues roots of unity.

Then there exists n 2 N suh that all eigenvalues of C

n

are 1. Using

relation AB = BAC, we obtain AB

n

= B

n

AC

n

. Hene we an assume that

all eigenvalues of C are 1, otherwise we just turn to A, B

n

and C

n

instead

of A, B and C.

2. The dual map A

�

on Z

N

indues a deomposition of R

N

into expanding,

neutral and ontrating subspaes. We will denote the expanding subspae

by V

1

(A), the ontrating subspae by V

3

(A) and the neutral subspae by

V

2

(A).

R

N

= V

1

(A)

M

V

2

(A)

M

V

3

(A):

All three subspaes V

i

(A), i = 1, 2, 3 are A invariant and

kA

i

vk � C�

i

kvk; � > 1; i � 0; v 2 V

1

(A);

kA

i

vk � C�

�i

kvk; � > 1; i � 0; v 2 V

3

(A);

kA

i

vk � Cjij

�N

kvk; � > 1; i 6= 0; v 2 V

2

(A): (5.6)

3. For v 2 Z

N

, jvj

def

= maxfk�

1

(v)k; k�

2

(v)k; k�

3

(v)kg where k�k is Eulidean

norm and �

i

(v) are projetions of v to subspaes V

i

(i = 1; 2; 3) from (5.6),

that is, to the expanding, neutral, and ontrating subspaes of R

N

for A (or

B); we will use the norm whih is more onvenient in a partiular situation;

those are equivalent norms, the hoie does not a�et any results).
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4. For v 2 Z

N

we say v is mostly in i(A) for i = 1; 2; 3 and will write v ,!

i(A), if the projetion �

i

(v) of v to the subspae V

i

orresponding to A is

suÆiently large:

jvj = k�(v)k:

The notation v ,! 1; 2(A) will be used for v whih is mostly in 1(A) or

mostly in 2(A).

5. Call n 2 Z

N

minimal and denote it by n

min

if n is the lowest point on its

A orbit in the sense that n ,! 3(A) and An ,! 1; 2(A). There is one suh

minimal point on eah nontrivial dual A orbit, we hoose one on eah dual

A orbit and denote it by n

min

. Then n

min

is substantially large both in

1; 2(A) and in 3(A).

6. In what follows, C will denote any onstant that depends only on the given

linear ation � with hosen generators A, B and C and on the dimension of

the torus. C

x;y;z;���

will denote any onstant that in addition to the above

depends also on parameters x, y, z, � � � .

7. Let � be a C

1

funtion. Then we an write � =

P

n2Z

N

b

�

n

e

n

where e

n

=

e

2�in�x

are the haraters. Then

(i) k�k

a

def

= sup

n

j

b

�

n

jjnj

a

, a > 0.

(ii) The following relations hold (see, for example, Setion 3.1 of [Ll℄):

k�k

r

� Ck�k

C

r

; k�k

C

r

� Ck�k

r+�

where � > N + 1, and r 2 N.

(iii) For any F 2 SL(N;Z) (� Æ F )

n

=

b

�

(F

�

)

�1

n

where F

�

denotes transpose

matrix. We all (F

�

)

�1

the dual map on Z

N

. To simplify the notation

in the rest of the paper, whenever there is no onfusion as to whih

map we refer to we will denote the dual map by the same symbol F .

8. For a map F with oordinate funtions f

i

(i = 1; � � � ; k) de�ne kFk

a

def

=

max

1�i�k

kf

i

k

a

. For two maps F and G de�ne kF ;Gk

a

def

= fkFk

a

; kGk

a

g.

kFk

C

r

and kF ;Gk

C

r

are de�ned similarly. For any n 2 Z

N

F

n

def

= ((



f

1

)

n

; � � � ; (



f

k

)

n

).

5.3 Orbit growth for the dual ation

In this setion the ruial estimates for the exponential growth along individual

orbits of the dual ation are obtained. The following follows diretly from the

proof of Lemma 4.3 in [DK℄:
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Lemma 5.2. Let Q

i

be ergodi matries in SL(N;Z), 1 � i � m and suppose

there exist onstants C; � > 0 suh that for every non-zero vetor n 2 Z

N

and

for any k = (k

1

; � � � ; k

m

) 2 Z

m

kQ

k

1

1

� � �Q

k

m

m

nk � C expf�kkkgknk

�N

: (5.7)

Then the following are satis�ed.

a) For any C

1

funtion ' on the torus T

N

and any y 2 C the following sums:

S

K

('; n; y;Q)

def

=

X

k=(k

1

;��� ;k

m

)2K

y

kkk

b

'

Q

k

1

1

���Q

k

m

m

n

onverge absolutely for any K � Z

m

, where Q stands for Q

1

; � � � ; Q

m

.

b) Assume in addition to the assumptions in a) that for a vetor n 2 Z

N

and

for every k = (k

1

; � � � ; k

m

) 2 K = K(n) � Z

m

we have

p

1

(kkk)kQ

k

1

1

� � �Q

k

m

m

nk � knk; (5.8)

where p

1

is a polynomial, then

jS

K

('; n; y;Q)j � C

a;y;Æ

k'k

a

knk

�a+�

y

+Æ

for any a > �

y;Q

def

=

N+1

�

�

�

�

logjyj

�

�

�

.

) If the assumptions (5.8) is also satis�ed for every n 2 Z

N

, then the funtion

S('; y;Q)

def

=

X

n2Z

N

S

K(n)

('; n; y;Q)e

n

is a C

1

funtion if ' is. Moreover, the following norm omparison holds:

kS('; y;Q)k

C

r

� C

r;y

k'k

C

r+�

for any r � 0 and � > N + 2 + [�

y;Q

℄.

Corollary 5.3. Suppose Q

i

; P

i

2 SL(N;Z), 1 � i � m, and suppose K =

K(n) � Z

m

. If ondition (5.7) is satis�ed for any k 2 K(n) for any n 2 Z

m

,

then for any C

1

funtion ' on the torus T

N

we obtain:

1. The following sums:

S

K

('; n; P ;Q)

def

=

X

k=(k

1

;��� ;k

m

)2K(n)

P

k

m

1

� � �P

k

1

m

b

'

Q

k

1

1

���Q

k

m

m

n

onverge absolutely, where P stands for P

1

; � � � ; P

m

and Q stands for Q

1

; � � � ; Q

m

.
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2. Assume in addition that for a vetor n 2 Z

N

and for every k = (k

1

; � � � ; k

m

) 2

K = K(n) � Z

m

we have

p

1

(kkk)kQ

k

1

1

� � �Q

k

m

m

nk � knk;

where p

1

is a polynomial, then

jS

K

('; n; P;Q)j � C

a;P;Æ

k'k

a

knk

�a+�

1

+Æ

for any a > �

P;Q

def

=

N+1

�

jlogkPkj, where kPk = maxfkP

i

k : 1 � i � mg.

3. If the assumptions (5.8) is satis�ed for every n 2 Z

N

, then the funtion

S('; P;Q)

def

=

X

n2Z

N

S

K(n)

('; n; P;Q)e

n

is a C

1

funtion if ' is. Moreover, the following norm omparison holds:

kS('; P;Q)k

C

r

� C

r;P

k'k

C

r+�

for any r � 0 and � > N + 2 + [�

P;Q

℄.

Proof. Sine

X

k=(k

1

;��� ;k

m

)2K(n)

kP

k

m

1

� � �P

k

1

m

b

'

Q

k

1

1

���Q

k

m

m

n

k �

X

k=(k

1

;��� ;k

m

)2K(n)

kPk

kkk

k

b

'

Q

k

1

1

���Q

k

m

m

n

k;

we get the onlusion immediately from above lemma.

In the subsequent part we prove the exponential growth along individual

orbits of ergodi elements. It may be viewed as a generalization of Lemma 4.3 in

[DK℄ to higher rank non-abelian ations by toral automorphisms.

Lemma 5.4. There exist onstants C; � > 0 suh that for every non-zero vetor

v 2 Z

N

and for any k = (k

1

; k

2

) 2 Z

2

nf0g,

kA

k

1

B

k

2

vk � C expf�(jk

1

j+ jk

2

j)gkvk

�N

:

Proof. From the Lyapunov spae deomposition in Theorem A, we see that the

proof of Lemma 4.3 in [DK℄ also applies to this ase word by word. At �rst, we

an show that there exists � > 0 suh that for any k = (k

1

; k

2

) 2 Z

2

nf0g, there

exists a Lyapunov spae in whih the Lyapunov exponent of A

k

1

B

k

2

is greater

than �(jk

1

j + jk

2

j). Ergodiity implies that the projetion of v to this spae is

greater than kvk

�N

, where  is a onstant only dependent on the deomposition

in Theorem A. Then we get the onlusion.
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5.4 Twisted oboundary equation over a map on torus

Obstrutions to solving a one-ohomology equation for a funtion over an ergodi

toral automorphism in C

1

ategory are sums of Fourier oeÆients of the given

funtion along a dual orbit of the automorphism. This is the ontent of the

Lemma 4.2 in [DK℄. The same haraterization holds however for one-ohomology

equation for a map over ergodi toral automorphisms as well due to the estimate

in Corollary 5.3. The proofs of the two lemmas below follow losely the proof of

Lemma 4.2 in [DK℄ for solving a one-ohomology equation for funtions.

Lemma 5.5. Let P and Q be matries in SL(N;Z) and Q be ergodi. For a

map � de�ned on T

N

, if there exists a C

1

map ! whih is C

0

small enough on

T

N

suh that

P! � ! ÆQ = �; (5.9)

then the following sums along all nonzero dual orbits are zero, i.e.,

1

X

i=�1

P

�(i+1)

^

�

Q

i

v

= 0 8n 6= 0:

Proof. Sine ! is C

0

small enough the equation (5.9) in the dual spae has the

form

P

b

!

n

�

b

!

Qn

=

b

�

n

8n 2 Z

N

: (5.10)

Replaing n by Q

i

n and applying P

�(i+1)

on the equation, we get that for any

m; ` > 0,

`

X

i=�m

P

�i

b

!

Q

i

n

�

`

X

i=�m

P

�(i+1)

b

!

Q

i+1

n

=

`

X

i=�m

P

�(i+1)

b

�

Q

i

n

;

whih simpli�es to

P

m

b

!

Q

�m

n

� P

�(`+1)

b

!

Q

`+1

n

=

`

X

i=�m

P

�(i+1)

b

�

Q

i

n

:

Then the onlusion follows immediately if

lim

m!1

P

m

b

�

Q

�m

n

= 0 8n 6= 0;

whih is a diret onsequene of part (1) of Corollary 5.3 with K = K(n) = Z

for any n 6= 0.

Note that �

P

�1

;Q

is de�ned in part (2) of Corollary 5.3.
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Lemma 5.6. Let P and Q be ergodi matries in SL(N;Z). Let � be a C

1

map

on the torus whih is C

�

small enough, where � > N + 2 + �

P

�1

;Q

. If for all

nonzero n 2 Z, the following sums along the dual orbits are zero, i.e.,

1

X

i=�1

P

�(i+1)

b

�

Q

i

n

= 0 8n 6= 0: (5.11)

Then the equation

P! � ! ÆQ = � (5.12)

has a C

1

solution !, and the following estimate

k!k

C

r

� C

r

k�k

C

r+�
(5.13)

holds for any r � 0, where C

r

is a number only dependent on Lyapunov exponents

of P .

Proof. Suppose ! is a C

1

solution C

0

small enough to (5.12). Then the equation

(5.12) in the dual spae has the form

P

b

!

n

�

b

!

Qn

=

b

�

n

8n 2 Z

N

: (5.14)

For n = 0, sine P is ergodi, we an immediately alulate

b

!

0

= (P � I)

�1

b

�

0

.

For n 6= 0 the dual equation has two solutions

b

!

�

n

= �

X

i�0

i��1

P

�(i+1)

b

�

Q

i

n

n 6= 0:

Eah sum onverges absolutely by part (1) of Corollary 5.3. By assumption

(5.11)

b

!

+

n

=

b

!

�

n

def

=

b

!

n

. This gives a formal solution ! =

P

b

!

+

n

e

n

=

P

b

!

�

n

e

n

. We

estimate eah

b

!

n

using both of the forms in order to show that ! is C

1

. In the

notation of Corollary 5.3 we an write

b

!

+

n

= S

K

+(P

�1

�; n; P

�1

; Q) and

b

!

�

n

= �S

K

�(P

�1

�; n; P

�1

; Q):

Here K

+

= fi 2 Z : i � 0g and K

�

= fi 2 Z : i � �1g.

If n is mostly ontrating, i.e., if n ,! 3(A), then

kA

i

nk � C�

�i

knk 8i � �1: (5.15)

If n is mostly ontrating, i.e., if n ,! 1; 2(A), then

kA

i

nk � Ci

�N

knk 8i � 0: (5.16)

Thus the polynomial estimate needed for the appliation of part (2) of Corol-

lary 5.3 is satis�ed either in K

+

or K

�

for any n 2 Z

N

. This estimate implies

that (5.13) holds. Finally, this also implies that smallness of C

�

norm of � guar-

antees C

0

smallness of !.
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5.5 Constrution of the projetion

Lemma 5.7. Fix � = N +3+ �

A

�1

;A

. There exists Æ > 0 suh that for any C

1

maps �,  , ! on T

N

that are C

�

small enough, it is possible to split �,  and !

as

� = �

A


+R�;  = �

B


+R 

! = �

C


+R!

for a C

1

map 
, so that

kR�;R ;R!k

C

r

� C

r

kR

1

; R

2

; R

3

k

C

r+Æ

and

k
k

C

r

� C

r

k�; !;  k

C

r+�

for any r � 0, where

R

1

def

= �

C

� ��

A

!; (5.17)

R

2

def

= �

C

 ��

B

! (5.18)

and

R

3

def

= � Æ B +A �  ÆAC �B! Æ A�BC�: (5.19)

Proof. (1) Constrution of 
 and R�. Let R� =

P

n

d

R�

n

e

n

where

d

R�

n

def

=

8

>

<

>

:

X

i2Z

A

�i

b

�

A

i

n

; n = n

min

;

0; otherwise

for n 6= 0 and

d

R�

0

def

= 0.

Note that n

min

is substantially large both in the expanding and in the on-

trating diretion for A, then both (5.15) and (5.16) hold if n = n

min

. The

following estimate is obtained from (3) of Corollary 5.3:

kR�k

C

r

� C

r

k�k

C

r+� ; 8r � 0: (5.20)

Sine ��R� satis�es the solvable ondition in Lemma 5.6. By using Lemma 5.6

there is a C

1

funtion 
 suh that

�

A


 = � �R� (5.21)

with estimates

k
k

C

r

� C

r

k� �R�k

C

r+�
� C

r

k�k

C

r+2�
; 8r � 0:

(2) Estimates for R�. Rewrite (5.19) we get

A �  Æ AC = B! ÆA+BC� � � Æ B +R

3

:
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Lemma 5.5 shows that the obstrutions for B!ÆA+BC���ÆB+R

3

with respet

to AC vanish; therefore for any n 6= 0 we get

X

i

A

�(i+1)

b

�

B(AC)

i

n

=

X

i

A

�(i+1)

BC

b

�

(AC)

i

n

+

X

i

A

�(i+1)

B

b

!

A(AC)

i

n

+

X

i

A

�(i+1)

(R

3

)

(AC)

i

n

sine all the sums involved onverge absolutely by (1) of Corollary 5.3. Further-

more, by using the relation

B(AC)

i

= A

i

B; 8 i 2 Z; (5.22)

we obtain from the above relation

X

i

A

�(i+1)

b

�

A

i

Bn

�

X

i

BA

�(i+1)

b

�

A

i

n

=

X

i

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i

BA

�(i+1)

b

�

A

i

n

+

X

i

A

�(i+1)

B

b

!

A(AC)

i

n

+

X

i

A

�(i+1)

(R

3

)

(AC)

i

n

: (5.23)

Next, we will ompute the sum

P

i

A

�(i+1)

BC

b

�

(AC)

i

n

�

P

i

BA

�(i+1)

b

�

A

i

n

. To do

so, we split it into two sums

P

i

=

P

i�0

+

P

i��1

and then use relation (5.17) to

simplify eah one. Set

� = �

A

!:

Then for any n 6= 0, we obtain from the proof of Lemma 5.6:

X

i�1

A

�(i+1)

b

�

A

i

n

=

b

!

n

�A

�1

b

�

n

= A

�1

b

!

An

and (5.24)

�

X

i��1

A

�(i+1)

b

�

A

i

n

=

b

!

n

: (5.25)

Using relation (5.17) we get

b

�

A

i

n

� C

�i

b

�

C

i

A

i

n

=

8

>

>

>

<

>

>

>

:

X

0�j�i�1

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

); i � 1;

�

X

i�j��1

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

); i � �1:

(5.26)
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Using (5.26) for the ase of i � 1 we obtain

X

i�0

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�0

BA

�(i+1)

b

�

A

i

n

=

X

i�1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�1

BA

�(i+1)

b

�

A

i

n

(1)

=

X

i�1

BA

�(i+1)

C

�i

b

�

(AC)

i

n

�

b

�

A

i

n

=�

X

i�1

i�1

X

j=0

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

)

=�

X

j�0

X

i�j+1

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

):

Here (1) is from relation (5.22). Of ourse, to justify the hange of order of

summation in the last equality, we must prove the absolute onvergene of the

sum. Using the notation in Corollary 5.3 we an write

X

i�0

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�0

BA

�(i+1)

b

�

A

i

n

=BACS

K

((��R

1

); n; fA; Cg; fC; Ag);

where K = f(j; i) 2 Z

2

: i � 1 � j � 0g. For any i; j with jjj � jij, (5.7) in

Lemma 5.2 shows that

jC

j

A

i

nj � Cjjj

�N

jA

i

nj � C

1

jij

�N

exp(�

A

jij)jnj

�N

� C

2

expf�

A

(jij+ jjj)=4gjnj

�N

; (5.27)

where C, C

1

and C

2

are �xed numbers only dependent on A and C; and � is

given in Lemma 5.4. This justi�es to apply part (1) of Corollary 5.3 to show the

absolute onvergene of the sum.

Furthermore, we have

X

j�0

X

i�j+1

BC

�(j+1)

A

�(i+1)

b

�

C

j

A

i

n

=

X

j�0

BC

�(j+1)

A

�j

(

X

k�1

A

�(k+1)

b

�

(AC)

j

A

k

n

)

(1)

=

X

j�0

BC

�(j+1)

A

�(j+1)

b

!

A(AC)

j

n

(2)

=

X

j�0

A

�(j+1)

B

b

!

A(AC)

j

n

:

Here (1) follows from (5.24) and (2) uses relation (5.22) again.

Hene we obtain

X

i�0

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i�0

BA

�(i+1)

b

�

A

i

n

= �

X

j�0

A

�(j+1)

B

b

!

A(AC)

j

n

+

X

j�0

X

i�j+1

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

:

(5.28)
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To ompute the sum

P

i��1

we use (5.26) for the ase of i � �1:

X

i��1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i��1

BA

�(i+1)

b

�

A

i

n

=

X

i��1

BA

�(i+1)

C

�i

b

�

(AC)

i

n

�

b

�

A

i

n

=

X

i��1

�1

X

j=i

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

)

=

X

j��1

X

i�j

BA

�(i+1)

C

�(j+1)

(

b

�

C

j

A

i

n

� (R

1

)

C

j

A

i

n

):

Again we need to show the absolute onvergene. We an also write

X

i��1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i��1

BA

�(i+1)

b

�

A

i

n

=BACS

K

0

((��R

1

); n; fA; Cg; fC; Ag);

where K

0

= f(j; i) 2 Z

2

: i � j � �1g. Then (5.27) shows that the absolute

onvergene follows from the same reason as in previous part.

Furthermore, by using (5.25) and relation (5.22) again we obtain

X

j��1

X

i�j

BC

�(j+1)

A

�(i+1)

b

�

C

j

A

i

n

=

X

j��1

BC

�(j+1)

A

�(j+1)

X

k��1

A

�(k+1)

b

�

A(AC)

j

A

k

n

=�

X

j��1

BC

�(j+1)

A

�(j+1)

b

!

A(AC)

j

n

= �

X

j��1

A

�(j+1)

B

b

!

A(AC)

j

n

:

Hene we obtain

X

i��1

A

�(i+1)

BC

b

�

(AC)

i

n

�

X

i��1

BA

�(i+1)

b

�

A

i

n

= �

X

j��1

A

�(j+1)

B

b

!

A(AC)

j

n

�

X

j��1

X

i�j

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

: (5.29)

By using (5.23), (5.28) and (5.29) for any n 6= 0 we obtain:

X

i

A

�(i+1)

b

�

A

i

Bn

�

X

i

BA

�(i+1)

b

�

A

i

n

=

X

j�0

X

i�j+1

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

�

X

j��1

X

i�j

BA

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

n

+

X

i

A

�(i+1)

(R

3

)

(AC)

i

n

:
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Iterating this equation with respet to B we obtain

X

i

A

�(i+1)

b

�

A

i

n

� lim

`!1

X

i

B

�`

A

�(i+1)

b

�

A

i

B

`

n

= �

X

k�0

X

j�0

X

i�j+1

B

�k

A

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

B

k

n

+

X

k�0

X

j��1

X

i�j

B

�k

A

�(i+1)

C

�(j+1)

(R

1

)

C

j

A

i

B

k

n

�

X

k�0

X

i

B

�(k+1)

A

�(i+1)

(R

3

)

(AC)

i

B

k

n

:

The ondition (5.7) in Corollary 5.3 is satis�ed by Lemma 5.4. Hene the limit

above is 0 from part (1) of Corollary 5.3; and the absolute onvergene of the

sum involving (AC)

i

B

k

is justi�ed by the same reason. To show the absolute

onvergene of the other two sums involving C

j

A

i

B

k

where jjj � jij, by the same

reason the following inequality is suÆient:

kC

j

A

i

B

k

nk � Cjjj

�N

kA

i

B

k

nk � Cjij

�N

expf�

A;B

(jij+ jkj)gknk

�N

� C expf

1

2

�

A;B

(jij + jkj)gknk

�N

� C expf

1

4

�

A;B

(jij + jjj+ jkj)gknk

�N

:

Hene by the notation of Corollary 5.3 we obtain

X

i

A

�(i+1)

b

�

A

i

n

=� S

K

1

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

+ S

K

2

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

�B

�1

S

K

3

(A

�1

R

3

; n; fB

�1

; A

�1

g; fAC; Bg);

where K

1

= f(k

1

; k

2

; k

3

) 2 Z

3

: k

1

� 0; k

2

� k

1

+1; k

3

� 0g, K

2

= f(k

1

; k

2

; k

3

) 2

Z

3

: k

1

� �1; k

2

� k

1

; k

3

� 0g and K

3

= f(k

1

; k

2

) 2 Z

2

: k

2

� 0g.

By iterating bakwards and applying the same reasoning, we obtain

X

i

A

�(i+1)

b

�

A

i

n

=S

K

0

1

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

�S

K

0

2

((AC)

�1

R

1

; n; fB

�1

; A

�1

; C

�1

g; fC; A;Bg)

+B

�1

S

K

0

3

(A

�1

R

3

; n; fB

�1

; A

�1

g; fAC; Bg);

whereK

0

1

= f(k

1

; k

2

; k

3

) 2 Z

3

: k

1

� 0; k

2

� k

1

+1; k

3

� �1g,K

0

2

= f(k

1

; k

2

; k

3

) 2

Z

3

: k

1

� �1; k

2

� k

1

; k

3

� �1g and K

0

3

= f(k

1

; k

2

) 2 Z

2

: k

2

� �1g.

Then aording to part (3) of Corollary 5.3, the needed estimate for R� with

respet to R follows if in at least one of the union of half-spaes K

+

=

S

3

i=1

K

i

and K

�

=

S

3

i=1

K

0

i

the dual ation satis�es some polynomial lower bound for

every n = n

min

.
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Write A and B in blok diagonal forms as stated in proof of Corollary 5.3. In

ase An ,! 2(A), let n

1

be the largest projetion of n to some neutral blok J

0

for A. Then

kn

1

k � Cknk:

Let the Lyapunov exponent of B on this blok be �. For all j; i; k the Lyapunov

exponent of C

j

A

i

B

k

on J

0

is k�. Then if � � 0, on the half-spae K

+

we obtain

kC

j

A

i

B

k

nk � Cjjj

�N

jij

�N

jkj

�N

kn

1

k � C

1

jijkj

�N

knk 8k � 0

and

kC

j

A

i

B

k

nk � Cjjj

�N

jij

�N

exp(k�=2)kn

1

k � C

1

jijj

�N

knk

onK

�

for k < 0 if � < 0. Thus the polynomial estimate needed for the appliation

of part (3) of Corollary 5.3 is satis�ed for suh n.

In ase An ,! 1(A), let n

1

and n

2

be the largest projetions of n to some

bloks J

1

and J

2

with positive Lyapunov exponent �

1

and negative Lyapunov

exponent �

2

respetively. Let �

1

and �

2

be orresponding Lyapunov exponents

of B on the two bloks. Then

kn

1

k � Cknk; kn

2

k � Cknk:

For all j; i; k the Lyapunov exponent of C

j

A

i

B

k

on J

1

is �(j; i; k)

+

= i�

1

+ k�

1

and is �(j; i; k)

�

= i�

2

+ k�

2

on J

2

. Next, we need to show that

f(j; i; k) : �(j; i; k)

+

� 0g

[

f(j; i; k) : �(j; i; k)

�

� 0g (5.30)

overs either K

+

or K

�

. This boils down to require k(

�

1

�

1

�

�

2

�

2

) � 0. Namely, for

any (j; i) 2 Z

2

, (j; i; k) belongs to the union in (5.30) if k(

�

1

�

1

�

�

2

�

2

) � 0 and this

is true for k � 0 or for k � 0 depending on the sign of

�

1

�

1

�

�

2

�

2

. Therefore we

obtain

kC

j

A

i

B

k

nk � Cjijkj

�N

knk (5.31)

in K

+

or in K

�

.

Now hoose the half-spae in whih the estimate (5.31) holds, that is hoose

one of the sums �S

K

1

+ S

K

2

� S

K

3

or S

K

0

1

� S

K

0

2

+ S

K

0

3

. Then the assumptions

of (3) of Corollary 5.3 are satis�ed for one of the sums above; and therefore the

estimate for follows:

kR�k

C

r

� C

r

kR

1

; R

2

; R

3

k

r+�

1

(5.32)

for any r � 0 and �

1

> N + 2 + [�

A;B;C

℄, where �

A;B;C

=

N+1

�

�

�

�
logkA;B;ACk

�

�

�
.

(3) Estimates for R!. By (5.17) and (5.21) we obtain

�

A

(! ��

C


) = �

C

R� �R

1

: (5.33)
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De�ne

R!

def

= ! ��

C


 and

R 

def

=  ��

B


:

By using Lemma 5.6 to equation (5.33) we obtain

kR!k

C

r

� C

r

k�

C

R� �R

1

k

C

r+�
� C

r

kR

1

; R

2

; R

3

k

C

r+�+�

1

(5.34)

for any r � 0.

(4) Estimates for R In (5.19), substituting ! by �

C


+R! and  by �

B


+R 

we get

AR �R ÆAC = R

3

+BCR� �R� ÆB +BR! ÆA:

Again, Lemma 5.6 implies that

kR k

C

r

� C

r

kR

3

+R� Æ B +BCR� +BR! Æ Ak

r+�

3

� C

r

kR

1

; R

2

; R

3

k

C

r+�+�

1

+�

3

(5.35)

where �

3

> N + 2 + [�

A

�1

;AC

℄.

Let Æ = � + �

1

+ �

3

. Then the onlusion follows from (5.20), (5.32), (5.34)

and (5.35).

In fat �,  , ! play the roles of R

A

, R

B

and R

C

in (5.2). The following lemma

shows that R

1

; R

2

; R

3

annot be large if �+R is a Heisenberg group ation. It

is in fat quadratially small with respet to R.

Lemma 5.8. If

e

� = �+R is a C

1

Heisenberg group ation on T

N

then for any

r � 0

kR

1

; R

2

; R

3

k

C

r

� C

r

k�;  ; !k

C

r

k�;  ; !k

C

r+1
: (5.36)

Proof. The estimates for R

1

an R

2

follow the same way as in the proof of Lemma

4.7 in [DK℄. We just need to show the estimate for R

3

. Note that

e

�

A

Æ

e

�

B

=

e

�

B

Æ

e

�

C

Æ

e

�

A

(A+ �) Æ (B +  ) = (B +  ) Æ (C + !) Æ (A+ �):

Then

� Æ B +A 

= Æ ! Æ (A+ �) + CA+ C� +B! Æ (A+ �) +BC� + � Æ B � � Æ (B +  ):

Therefore,

R

3

= � ÆB +A �  Æ AC �B! Æ A�BC�

=  Æ ! Æ (A+ �) + CA+ C� �  Æ AC

+ � ÆB � � Æ (B +  ) +B! Æ (A+ �)�B! Æ A:
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The estimate (5.36) for C

r

norms follows similarly (see for example [[La℄, Ap-

pendix II℄):

kR

3

k

C

r

� C

r

k ; ! Æ (A+ �) + C�k

C

r

k ; ! Æ (A+ �) + C�k

C

r+1

+ C

r

k ; �k

C

r

k ; �k

C

r+1
+ C

r

k!; �k

C

r

k!; �k

C

r+1

� C

r

k�;  ; !k

C

r

k�;  ; !k

C

r+1
:
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