EXPONENTIAL MIXING OF TORUS EXTENSIONS OVER
EXPANDING MAPS

JIANYU CHEN AND HUYI HU

ABSTRACT. We study the mixing property for the skew product F : T¢ x T¢ —
T¢ x T¢ given by F(z,y) = (Tx,y + 7(x)), where T : T — T% is a C®
uniformly expanding endomorphism, and the fiber map 7 : T¢ — Tf is a
C® map. We apply the semiclassical analytic approach to get the dichotomy:
either F' mixes exponentially fast or 7 is an essential coboundary. In the former
case, the Koopman operator F of F has spectral gap in some Hilbert space
that contains all L2(T? x T*) functions, and in the latter case the system is
semiconjugate to an expanding endomorphism crossing a torus rotation.

0. INTRODUCTION.

In this paper we study the mixing properties for torus extension of expanding
maps. The systems F' we consider are of the form of skew products with expanding
T : T¢ — T? on the base and torus rotations with rotation vectors 7(z), x € T¢, on
the fibers T*. (See (1.2) for the maps.) We obtain a dichotomy: either such a system
has exponential decay of correlations with respect to the smooth invariant measure,
or the rotation function 7(z) over T? is an essential coboundary. The latter implies
that the system is semiconjugate to an expanding endomorphism crossing a torus
rotation, or simply semiconjugate to a circle rotation, and therefore cannot be weak
mixing (Theorem 3 (iii)) or stably ergodic.

The methods we use to get exponential mixing is the semiclassical analytic ap-
proach. Instead of the Ruelle-Perron-Frobenius transfer operators acting on some
Holder function space, we study the dual operator, Koopman operator ﬁ, given by
F ¢ = ¢oF, acting on certain distribution space. By Fourier transform along T, the
fiber direction, the operator can be decompose to a family of operators {ﬁ,,},,eze,
where v is the frequency. Such operators can be regarded as Fourier integral op-
erators. Using semiclassical analysis theory we can obtain that the spectral radius
of 1:“1, is strictly less than 1 for all v = 0, and uniformly less than 1 for all v with
|v| large whenever 7 is not an essential coboundary, while 1 is the only eigenvalue
of ﬁo on the unit circle and it is simple. Hence the operator F has a spectral gap,
and the system has exponential decay of correlations.

Dolgopyat established exponential mixing property for compact group extensions
of expanding maps under a generic condition called infinitesimally completely non-
integrability (see [3]). Faure used semiclassical analysis in [5] to obtain exponential
mixing for a simpler but intuitive model - a circle extension of an expanding map
of T - under a so-called partially captive condition. For the low dimensional case,
the dichotomy similar to that in Theorem 1 was obtained by Butterley and Eslami
recently in [1] and discontinuities are allowed at a finite set for maps T" and 7 there.
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Naud showed in [9] that such skew product cannot mix super-exponentially, not
even for analytic observables.

Similar results were also obtained in the context of suspension semiflows over
linear expanding maps. Pollicott [12] used Dolgopyat’s estimates [2] to show that
the generic suspension semiflows is exponentially mixing. Tsujii [15] constructed
an anisotropic Sobolev space on which the transfer operator has spectral gap.

This paper is organized as the following. The setting and statements of results
are given in Section 1. In Section 2 we introduce some notions and results from
classical and semiclassical analysis, including Fourier transform, Sobolev spaces,
Pseudo-differential operators, Fourier Integral Operators, Egorov’s Theorem, and
L?-continuity theorems. This section is not necessary for the reader who is familar
with the theory. We prove the theorems of the paper in Section 3 based on Propo-
sition 3.1 and 3.2, which give the spectral radius of the Koopman operator, the
dual operator of the transfer operator. The propositions are proved in Section 4,
using classical and semiclassical analysis. A key estimates in the proof, stated in
Lemma 5.1, is postponed in Section 5.

1. STATEMENT OF RESULTS.

Let T = R/Z, and let T : T¢ — T¢ be a C* uniformly expanding map such that

(1.1) vi= (z,glefSTd |D,T(v)| > 1,
where ST is the unit tangent bundle over T¢. It is well known that 7" has a unique
smooth invariant probability measure du(x) = h(x)dx, where the density function
h e C* (T4 R*). Further, T' is mixing with respect to .

Given a function 7 € C®(T¢,T%), we define the skew product F : T¢ x T —
T¢ x T¢ by

2 (3) = (5 oz

which preserves the product measure dA = du(x)dy.

The mixing property of the system (T F,dA) is quantified by the rates of
decay of correlations. We say that the skew product F' is exponentially mizing
with respect to the smooth measure A for the observables ¢ € L*(T4+) and ¢ €
C(T4**), a > 0, if there exists p € [0,1) such that the correlation function

quoF”-wdA—qudAJz/}dA

satisfies Cp (¢, ¥; F,dA) < Cyyp™ for all n = 1, where Cy > 0 is a constant
depending on ¢ and .

Certain cohomological conditions might give obstructions to the exponential mix-
ing property.
Definition 1.1. A function 7 € C®(T% T*) is called a (directional) essential
coboundary if there exist v € Z\{0}, c € T and a measurable function v : T* — T
such that

(1.3) v-t(z) =c+u(z) —u(Tz), p—ae. z.

Cn<¢a¢; F7 dA) =

Remark 1.2. By Livsic theory (see [7] for example), we actually have u € C* (T4, T).

Our main result is the following.
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Theorem 1. Let (T4 F,dA) be the skew product as described above. We have
the following dichotomy:

(1) FEither the system is exponentially mizing;
(2) Or 7(z) is an essential coboundary.

Remark 1.3. The second case is very rare in the sense that the set consisting of all
functions that are essential coboundaries is a countable union of finite and positive
codimension subspaces in C® (T, T*). It means that the first case that the system
is exponentially mixing is generic.

Parry and Pollicott [10] showed that (T*¢ F,dA) is not mixing if and only
if 7(z) is an essential coboundary. In other words, Theorem 1 asserts that F' is
exponentially mixing whence it is mixing. If d = ¢ = 1, the result is proved by
Butterley and Eslami in [1]. They allow the circle expansion T" and the rotation 7
have finite number of discontinuities.

We shall follow the semiclassical analytic approach in [5] to prove Theorem 1.
Instead of the Ruelle-Perron-Frobenius transfer operators acting on some Holder
function space, we study the dual operator - Koopman operator - acting on certain
distribution space.

More precisely, recall that the Koopman operator ol L2(T+¢ dA) — L2(T+ dA)
defined by }?‘qb = ¢ o F is a unitary operator. Note that dA is equivalent to
the Lebesgue measure dxdy, we instead study the action of F on L2(T+4) =
L2(T9+¢ dxdy) as well as D' (T9**), the space of distributions on T4+,

We say that the operator F from a Banach space to itself has spectral gap if the
spectrum

(1.4) Spec(F) = {1} U K,
where 1 is a simple eigenvalue and K is a compact subset of the open disk {z € C:
|z| < 1}.

Theorem 2. If 7(x) is not an essential coboundary, there is an F-invariant Hilbert
subspace L2(T4+) c W < D'(T*) such that F|W has spectral gap.

We will specify the construction of the Hilbert space W in Subsection 2.3 (see
(2.4)), prove this theorem in Subsection 3.3, and then show how Theorem 2 implies
Theorem 1 in Subsection 3.4.

Remark 1.4. 1t is well known that l?’|L2 (T4*+*) does not have spectral gap. We get
the result of the theorem since the norm in W is weaker than that in L?(T4+*).

Next we characterize the dynamical properties of F when 7(x) is an essential
coboundary. The behaviors of the system in the T become very simple, as we see
in part (iii) of the next theorem.

A foliation £ of a smooth manifold M is of dimensional m if the leaves of L are
m dimensional submanifolds. For a smooth dynamical system (F, M), a foliation
L of M is F invariant if F' preserves the leaves, that is, F/(£(z)) = L(F(z)) for any
z € M, where L(z) is the leaf of £ containing z.

Let IT: T? x T* — T¢ denote the natural projection.

A smooth dynamical system (F, M) is semiconjugate to a smooth system (G, N)
if there is a smooth map 7 : M — N such that mo F' = G o.
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Theorem 3. Let F : T¢ x T — T x T’ be defined as in (1.2). The following
conditions are equivalent.
(i) 7(x) is an essential coboundary.
(ii) There is an F invariant d + ¢ — 1 dimensional foliation £ of T% x T* such
that restricted to each leave L(z), z € T% x T, 1l| () is a covering map.
(iii) F is semiconjugate to a diffeomorphism G = T x R. : T4 x T — T4 x T
through a map m = id xmy, where R. is a circle rotation with rotation
number ¢ € T, and m : T — T is a continuous map. Further, F is
semiconjugate to the circle rotation R. : T — T.
(iv) F is not weak mizing.

Remark 1.5. It is easy to see that if £ = 1, then the leaves of the foliation L are
unstable manifolds, and restricted to each leaf L(z), the natural projection 11|z :
L(z) — T4 is finite to one.

2. SEMICLASSICAL ANALYSIS: PRELIMINARIES

In this section we introduce some notions and basic properties in semiclassical
analysis which we are going to use. The distribution spaces and Sobolev spaces
will be used in construction of the Hilbert space W in Theorem 2. The pseudo-
differential operators (PDO) and Fourier integral operators (FIO) will be used to
prove Proposition 3.1 and 3.2, where the Egorov’s theorems and theorems for L2-
continuity are also used. For more information and details on this subject, one can
see in standard references (e.g. [4, 14, 16]).

2.1. Distribution spaces. Let D(T%+¢) = C®(T9*¢). Its dual space D'(T+) is
the space of distributions on T+, If ¢ € D(T**) < D/(T*¥) and 1 € D(T+),
then the action of ¢ on % is given by standard L?-paring, i.e.,

(680 = e pz = | | 0 dady,

Since FD(T ) = D(T), we define F* : D(T4) — D(T4¢) by the duality
(F*i,¢pyp2 = (P, Fpyp» for all ¢, € D(T4H). One can check that [™* is exactly
the RPF (Ruelle-Perron-Frobenius) transfer operator over F : T4+¢ — T+ that
is,

s _ w<y)
= N G P

Then we extend £ on D'(T4+%) via duality again by
(W, F)p.pr = (F*,¢)ppr, forall € D(TH), ¢ € D(T*H),

2.2. Fourier transforms. The Fourier transform of ¢ € D(T4) is defined by

(21) 5 = [ pleian, gezt
Td
The inverse transform is given by

o@) = 3 pe)e? e, peTd
£ezd
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Let w be the counting measure over the lattice Z? on R4, i.e., w(&) = Z d(§—n)

nezd
for £ € R?. Then the above equation becomes
(2.2) o) = | BOPdue), e
R
2.3. Sobolev spaces. Denote (§) = 4/1 + [¢]?, and introduce s-inner product
(2.3) (o, )s = D (OPBEU(E), @, v e D(TY).
¢ezd

The Sobolev space H*(T?) is the completion of D(T?) under (-, -),.

Proposition 2.1. Sobolev spaces have the following properties:

(i) D(T9) < H*(T9) < D'(T?) for any s € R;

(i) HO(T?) = L3(T%), and H*(T%) = {y : Dip € LA(T%), for any || < s} if
se N, where D2y are weak derivatives of ¢;

(iii) H*(TY) < H(T%) if s > §;

(iv) C*(T?) < H*(TY), and if s > &, then H*(T?) = Cs=275(T4) for any small
e >0,

(v) the dual space of H*(T%), s > 0, is H=*(T%), and the dual action is exactly
the standard L?-paring.

The Hilbert space W that we will use in Theorem 2 is of the form
(2.4) W= H*(TY) ® L*(T%), s<0.
Remark 2.2. By Proposition 2.1(ii) and (i), we have L?(T%) = H*(T9) if s < 0.
Since L?(T%) ® L?(T*) = L?(T**), by part (i) L*(T+) c W < D/(T4+).

For technical treatments, we will also use a different but equivalent inner product
on H*(T?). (See Subsection 4.1.)
2.4. Pseudo-differential operators. The cotangent bundle over T¢ can be iden-
tified as T*T? ~ T¢ x R<.

Choose a Planck’s constant h € (0,1].

Let wy be the counting measure over the lattice (AZ)9. Note that w; = w is the
same as introduced in Subsection 2.2.

Definition 2.3. A (complez-valued) function a € C*(T*T9) is called a symbol of
order m € R if for any o, B € N&, there is a constant Cag > 0 such that

|0902a(,€)| < Capl&)™ ! for any (v,€) e T*TY,
where (&) = /1 + [€]2. We denote the space of symbols of order m by S™.

Definition 2.4. Given a symbol a € S™, the linear operator Opy(a) : D(T?) —
D(TY) defined by

Opp(a)p(x) =f ] a(z, €)™ & @) p(y)dydw (€)

(2.5) T

~ [ alwhgemE e oty dydut)
THTd

is called an h-scaled pseudo-differential operator (PDO) of order m corresponding
to the symbol a € S™. We denote the space of h-scaled PDOs of order m by OPrS™.
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The formula with 7 = 1 in (2.5) gives the definition of classical pseudo-differential
operator Op(a) = Op;(a). We denote OPS™ = OP;S™. In this way, the h-scaled
PDO with symbol a € S™ can be regarded as the classical PDO with symbol
ap € S™, that is, Op;(a) = Op(ap), where ap(z, &) = a(z, hE).

We see by (2.1) and (2.2), that if a(z,&) = 1, then Op(a) = Id; and if a(z,§) =

0

127, then Op(a) = P
x
By standard duality argument, we extend Opy,(a) : D'(T¢) — D'(T¢). Moreover,

Opy(a) : H3(T4) — H*~™(T?) is a bounded operator if a € S™. Some properties
about symbols and PDOs are stated in Subsection 2.6-2.8.

2.5. Fourier integral operators.

Definition 2.5. An h-scaled Fourier integral operator (FIO) ®5, : D(T?) — D(T?)
with amplitude a € S™ and phase S € C®(T? x (R4\{0})) is of the form

() :J a(z, €)™ T S@O =Y oy dyduwp(€)

THTd
= f a(z, h€)e*™ @O =vE () dydw (€),
T*Td

where the phase function S(x,&) satisfies the following conditions:
(1) S(z,€) is homogeneous of degree 1 in & for all €] # 0;
2

‘ ‘ oS
(2) S(z,€) is non-degenerate, that is, det (6%8&) # 0.

The classical Fourier integral operator ® = ® : D(T9) — D(T?) is the one with
h=1.

Remark 2.6. (i) If we take S(x,&) = x - &, then @y, becomes an h-scaled pseudo-
differential operator.

(ii) If a(z, &) = a(z), a function independent of &, and S(x,&) = R(x) - for any
map R: T — T, then ®rp(x) = a(x)p(R(x)) by (2.1) and (2.2).

By standard duality argument, we can extend ®j : D'(T¢) — D’(T?). Further,
®p, 0 H¥(T?) — H*~™(T?) is a bounded operator if its amplitude a € S™.

Definition 2.7. The canonical transformation associated to an h-scaled FIO with
phase S is the transformation (x,&) — (y,n) given by

05(z, n) 05(x,m)
(2.6) y=Bn) oot
on oz
In other words, the phase function S serves as the generating function of the canon-
ical transformation.

2.6. Principal symbol and symbol calculus. If m < m/, then S™ < $™ and
OP4S™ < OPRS™ . Set S~ =), _p S™. If a € S~%, then Opy,(a) is a smoothing
(and hence compact) operator.

meR

Definition 2.8. A symbol ag € S™ is called a classical principal symbol of Op(a) €
OPS™ if a —apg € S™ ! and ag(x,€) is homogeneous in & of degree m for all
(x,€) € T*T? with |€| sufficiently large.
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A symbol ag € S™ is called a semiclassical principal symbol of Opy,(a) € OP,S™
if ap — (ag)n € AS™ as h — 0, that is, for any o, € N&, there is Cop > 0 and
hap > 0 such that for all (x,&) € T*T¢ and h € (0, hag],

10507 (a(w, h¢) — o, h))| < Cagh(e)™ 17,

Note that usually the classical principal symbol for Op(a) and the semiclassical
principal symbol for Opy(a) do not coincide. Also, principal symbol is not unique
in S™ but unique in the quotient class S™/S™~1.

Theorem 2.9. For classical PDOs, we have the following.
(1) Adjoint: If A e OPS™ has a principal symbol ag, then the adjoint operator
A* € OPS™ has a principal symbol ag.
(2) Composition: If A€ OPS™ has a principal symbol ay and B € OPS™ has
a principal symbol by, then the compositions Ao B, Bo A € OPS™ ™" both
have a principal symbol agbg.
(8) Inverse: If A € OPS™ has a principal symbol ag and is invertible, then
A=l e OPS™™ has a principal symbol aal.
The above rules are also true for semiclassical PDOs when A € OPRS™ with a
semiclassical principal symbol ag and B € OP,S™ with a semiclassical principal
symbol by .

2.7. Egorov’s Theorem. We first state the original version of Egorov’s theorem
in [4] for the invertible case.

Theorem 2.10. Let A € OPS™ with principal symbol ag, and ® be a classical
FIO with amplitude b € S° and phase S. Let F(x,&) = (y,m) be the canonical
transformation associated to ®, and assume that there is a domain Q < T*T? such
that F : Q — F(Q) is bijective. Then the operator ®*A®|r) € OPS™ has a

principal symbol @y such that
0%S
det < Ee 5)

For our purpose, we need the following version of Egorov’s theorem.

Theorem 2.11. Let A € OPS™ with principal symbol ag, and ® be a classical FIO
with amplitude b € S° and phase S. Let F(z,€) = (y,m) be the canonical transfor-
mation associated to ®, and assume that F is a surjective local diffeomorphism with
finite inverse branches. Then the operator ®* A® € OPS™ has a principal symbol
(2.7) @y = ), a9

ao such that
028
det ( )
Fe.&)=(.m) 0wt

Proof. Given an inverse branch G of F, denote Qg = G(T*T?). By Theorem 2.10,
P*AD = ) d*AB|g, € OPS™
g

-1

ao(y,n) = o(F(x,€)) = ao(z, &) b(x, &)

-1

has a principal symbol of the form in (2.7). O

Remark 2.12. We can easily adapt the proof of Theorem 2.10 and 2.11 in the
semiclassical situation and show that the semiclassical principal symbol of O} APy,
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is still given by (2.7), where A € OPrS™ has a semiclassical principal symbol ag
and ®y, is the h-scaled FIO with amplitude b e S° and phase S.

2.8. L?-Continuity. We first state a version of L?-continuity for a classical PDO
of order 0 established in [6].

Theorem 2.13. If a(z,&) € S°, then Op(a) : L*(T¢) — L2?(T9) is a bounded
operator. Moreover, for any € > 0, there is a decomposition

Op(a) =K+ R
such that K : L*(T%) — L2(T9) is a compact operator and

|R|r2—r2 < suplimsup |a(x,&)| + e = suplimsup |ao(x,&)| + &,
T |- T |¢|>0

where ag is a principal symbol of Op(a).

For a semiclassical PDO of order 0, we need a version of Carderon-Vaillancourt
theorem established in [8].

Theorem 2.14. If a(x,&) € S°, then Op,(a) : L?(T?) — L2*(T?) is a bounded
operator. Moreover, let ag € SO be a semiclassical principal symbol of Op,(a), then
as h — 0,

I0pr(a)lz2—re < sup Jao(z,§)[ + hC(a,d),
(2,8)eT*Td

where the constant C(a,d) only depends on the C*-norms of the symbol a, 0 < k <
2d.

3. SPECTRAL GAP AND COBOUNDARY: PROOF OF THE THEOREMS

3.1. Decomposition of Koopman operator. In this subsection we decompose
the Koopman operator F-w-w according to fiberwise Fourier expansion, where
W = H*(T%) ® L%(T) is given in (2.4).
Given ¢ € W, we write the Fourier series expansion along T‘-direction as
dx,y) = D) dul(a)e®™,
veZt

where the Fourier coefficients are defined by
o) = [ dlope = rdy e BT, vert
T

Note that for each Fourier mode v € Z¢,
ﬁ(gby (.,L,)eiQTI'V'y) _ [¢y (Tx)eiQTFV‘T(x)]eiQTFV'y7
and it can be shown that ¢, (Tx)e’?™ 7(®) ¢ H*(T%).} This observation suggests an
F-invariant decomposition

W= H*(T") ® L*(T) = D H;,

veZt

LThis fact is easy to show for s € N U {0}, and hence is also true when s is a negative integer
by duality. For the general case, treat H® as the interpolation between Hls! and HlsI+1  See
Section 4.2 in [14] for details.
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where HS = {p(z)e2™Y . o € H*(T4)} ~ H*(T¢). Correspondingly, we decom-
pose F' = @, F,, where each F, = F|HS =~ F|H*(T%) acts by

(3.1) F,p(z) = o(Tx)e?™ @), @ e H¥(TY).
In the case when s < 0, using the fact that H*(T?) is the dual space of H—*(T%)
via L?-paring, we get

e*’LZTFl/'T(y)

—s (mnd
ey VY VT

(3.2) i) = )]
Ty=z

In other words, ﬁ*|H‘s(Td) is the RPF transfer operator over T : T — T¢ for

the complex potential function —log|Jac(T)| — i27v - 7. In the case when v = 0,

we have that ﬁg‘h = h, that is, the density function h(z) of u w.r.t. dx is provided

by the eigenvector corresponding to the leading simple eigenvalue 1 of ﬁ'(;“ See [13]

for more details. R

We shall use the fact F§h = h in the following particular form:

Z Aly) =1, forall z e T¢,
Ty=x
where

(3:3) Aly) L)

~ [Jac(T)(y)| h(Ty)"

Similarly, we have for all n € N,
2 An(y) =1, forall z e T
Try=x
where

(3.4) An(y) )

~ [Jac(T™)(y)| A(T7y)

3.2. Spectral gap. Recall that the notion of spectral gap is given right before
Theorem 2 is stated (see (1.4)).

According to the decomposition of F:w— W, the spectral gap property follows
from the following propositions. The proof of the propositions will be given in the
next section, using the classical and semiclassical analysis theory.

Proposition 3.1. Let s < 0 and v € Z*. There are C; > 0 and p; € (0,1) such
that F, : H*(T9) — H*(T?) can be written as

ﬁu = Ku + Ru;
where K, is a compact operator and
(3.5) |R2H*(TY)] < Cipt, neN.

Proposition 3.2. Let s < 0 and assume that T is not an essential coboundary.
There are py € (0,1) and vy > 0 such that for any v € Z* with |v| = vy, the spectral
radius

(3.6) Sp(E, [H*(T)) < po.
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Remark 3.3. (i) The quasi-compactness property is well known for Ruelle-Perron-
Frobenius transfer operator on Holder function spaces over expanding maps. Propo-
sition 3.1 can be regarded as its dual version. The estimate in (3.5) shows that the
essential spectral radius of ]3,, is no more than py;

(ii) Proposition 3.2 shows that the operator F,|H®(T%) is essentially a contraction
when the Fourier mode v is very large, since the spectral radius of IA?V 18 no more
than ps.

3.3. Proof of Theorem 2. Recall that the space W = H*(T%)® L?(T*) is defined
n (2.4), where s < 0.

Lemma 3.4. The spectral radius Sp(F,|H*(T%)) < 1 for v e Z-.

Proof. The proof is similar as in [6], as we sketch here.
Choose p3 € (0,1) such that max{p1, p2} < ps < 1, where p; and py are given in
Proposition 3.1 and 3.2 respectively. By Proposition 3.1, we can rewrite

F,=K,+R,=(K:+K>+R,=K!+(K>+R,) =K.+ R,

such that the spectral radius of R], is less than ps. This can be done by defining
K} and K2 to be the spectral projection of K, outside and inside the circle {z :
|z| = p3} respectively. K} has finite rank since K, is compact. The general Jordan
decomposition of K} can be written

k d; di—1
Kg Z <)\ Z vz] ®w’bj + 2 ,UZJ ®w1(3+1)>

i=1 j=1 j=1

where d; is the dimension of the Jordan block associated with the eigenvalue \;,
with v;; € H*(T?) and w;; € H~*(T?). We arrange eigenvalues such that [A| >
[Ag| = - = Akl

Now if |A\;| > 1, we can choose ¢, 1) € D(T%) such that vy (1) # 0 and w1y (¢) # 0
since D(T9) is dense in both H*(T¢) and H~*(T%). On one hand,

(W, F' o) -+ s < Yleol@|co.
On the other hand,

|0, E ) e e | = [0 ()™ 0) o e = |(&, (RL)" @) e e .
The second term converges to 0 since ||(R,)"|H*(T%)| = O(p%), while the first term

= U Y pda
Td

k min(n,d;—1) n d;—r B
BT W (K" P)r-e,me| = Z Z (T))‘?Tzvij(w)wiuw)(@)

Jj=1

has a leading growth |\;|"|v11(¥)||w11(¢)| — o0 as n — oo, which is a contradic-
tion. Therefore, all eigenvalues of K} are of modulus no more than 1, and so are
eigenvalues of F),. O

Lemma 3.5. If 7 is not an essential coboundary, then the spectral radius Sp(ﬁy |H*(T%)) <
1 for v e Z'\{0}. Moreover, 1 is the only eigenvalue of Fo on the unit circle, which
s simple with eigenspace of constant functions.
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Proof. The proof is essentially due to Pollicott [11]. Let A be an eigenvalue of F),
with modulus 1, and ¢ € H*(T%) < H*~2-1(T%) be a corresponding eigenvector
such that ﬁl,go = A\p. It is sufficient to show that v = 0, A = 1, and ¢ is a constant
function.

By duality, there is 1 € H=5+%+1 < C1(T%) such that F¥ = M. Let A = ei2e
for some ¢ € T, and set ¢ = %, where h(z) is the density function of p w.r.t. dz.
By the definition of F* in (3.2) and A(y) in (3.3), we have

(3-8) Y, Aly)e? e T (y) = P(a).

Ty=x
Now choose z such that |¢(2)| obtains maximum. Since 2ry—- Aly) = 1, we must
have |¢(y)| = |[¢(2)| for all y € T~1(2). By induction, we get that |[{(y)| = [1(2)]
for all y € J°_, T7"(z). Since T is mixing, the set | J_, 77"(z) is dense in T,
and hence [t(x)| = [1(2)] is constant. Thus (3.8) is a convex combination of points
of a circle which lies on the circle. From this we deduce that

e2rle=v Wl (y) = P(Ty)

for all y € T, and hence

veot(y) =c+ % arg Y (y) — 2i arg p(Ty).
Yy T

Since 7 is not an essential coboundary, we must have v = 0. By integrating w.r.t.
du, we also have ¢ = 0 and argy = constant. Thus, A = 1 and ¢ = constant. [

Now we are ready to prove the spectral gap property for Fw—w.

Proof of Theorem 2. To sum up, by Proposition 3.1, 3.2 and Lemma 3.4, 3.5, we
have Spec(ﬁ'o) = {1} UKy, where 1 is an simple eigenvalue of Fp and Ky is a compact
subset of the open unit disk. Thus, there is ps € (0,1) such that Ky < {z € C :
|z| < pa}. Also,

Sp(ﬁ' ) < pa, forall |v| =1y,
“l<1, forall0< |y <,

A~

where v, is given in Proposition 3.2. Hence we can assume that (J,_o Spec(F),) is
inside {z € C : |2| < p4} (by enlarging p4 if necessary). Adding the spectrums of
{F,}, ez together, we get that F' = @F, has spectrum

~

Spec(F) = {1} U K,
where K = Ko U J, -0 Spec(F,) c {ze C: |2| < pa}. O

3.4. Proof of Theorem 1. Now we use Theorem 2 to prove Theorem 1. What we
need to do is to show that if F' : W — W has a spectral gap, then it is exponentially
mixing. In the proof we regard the observables ¢ and 1) as elements in YW and W'
respectivly, and use the fact that the dual action is standard L?-paring.

Proof of Theorem 1. Since F:W —>Whasa spectral gap, we can write F=P+N
such that

(1) P is a 1-dimensional projection, i.e., P? = P ;

(2) N is a bounded operator with spectral radius Sp(N) < 1;

(3) PN =NP =0.
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From the proof of Theorem 2, we know that 1 is the greatest simple eigenvalue for
FO with eigenvector 1 as well as for F0 with eigenvector h, and therefore, P = 1®Ah.
Further, Sp(N) < ps < 1, then there is Ca > 0 such that HN"H < Cypy for alln € N.

Suppose ¢ € L”(']I‘d”) and 1 € C%(T**) are given. Pick s € [~a,0) and let
W = H—%(T%) ® L*(T*). Then the dual space of W is W' = H—%(T¢) @ L*(T*).
Note that C®(T%*) = W' and L®(T%**) < L?(T%*) c W. We have ¢ € W and
1 € W'. Hence,

f (60 F™YbdA =(bh, F™(3))wr

=(h, P(@))wrw + (VRN ($))w
=1 Q@ h(1h, ) + (Vh, N ()

:fz/;dAqudA + (wh,/\f”@)w',w-

That is, the correlation function

Cu(9, 93 F,dA) = |(h, N" (@) wrw| < [N [[hlw 6w < Coupi
where Cy 4 = Co[[h|wr[[6]w-

Remark 3.6. Using some Sobolev inequalities, it is not hard to get that |Yh|w <
Csl[¢loalblcr and [dlw < Cal¢lr=, and hence Cy,y < Cs||@] on 9] -

3.5. Proof of Theorem 3. Now we show the characters of the system in the case
that 7(s) is an essential coboundary.

Proof of Theorem 3. (i)=(ii). Suppose 7(x) is an essential coboundary. For any
(z,y) € T? x T*, we define

L(z,y)={' y)eT¢xT vy +u(@) =v-y+u(z)},

where v € Z\{0} and u : T — T is given by Definition 1.1. Since u is a smooth
map, L£(z,y) is a smooth d + ¢ — 1 dimensional manifold, and {L(z,y) : (z,y) €
T x T’} form a foliation of T? x T*.

For (z',y') € L(x,y), the definition of F' gives

F(z,y) = (Tz,y +7(z)) and F(',y) = (Ta',y + 7(2")).
By (1.3) we get
v-(y+7@)+uTz)=v-y+v-7(z) +u(Tz) =v -y+c+ux)
and similarly v - (¢ + 7(2')) + w(Tz') = v -y’ + ¢ + u(a’). Hence we obtain
vy + 7)) +uT2) =v-(y + 7(x)) + u(Tz).
By definition of £, we get F(z',y’) € L(F(z,y)), that is, the foliation is F invariant.
(1)=(iii). Define a continuous map 7 : T¢ x T¢* — T x T by 7(z,y) = (z,v -y +
u(z)) and a diffeomorphism G : T? x T — T x T by G(z,y) = (Tz,y + c), where
both v and ¢ are given by Definition 1.1. So by (1.3) we have
7T(F(.1?, y)) :F(T.Z‘, Y+ T(.’L‘)) = (Tx, v (y+7(x) + u(Tm))
=Tz, v-y+c+ulx) =Gz, v-y+u) =G(r(z,y)).
It is obvious that the map G = T' x R, : T? x T — T% x T is semiconjugate to
the circle rotation R.: T — T.
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(ii)=(iii). Let p € T¢ be a fixed point of T. Restricted to {p} x T, the leaves
of the foliation £ become (¢ — 1) dimensional tori, and F : {p} x T* — {p} x T*
preserve the leaves. Hence the quotient space T’/ ~ is a circle T, where y ~ 3/ if y
and " are in the same leave of Ly, 7e. Let 7|y ure 1 {p} ¥ T — {p} x T be the
quotient map, and G|,y x1 : {p} x T — {p} x T be the map induced by F. Clearly
T|{pyxT 18 continuous and G|y 7 is a rotation, denoted by R., where c € T.

T (pyxt and Gl 1 can be extended to map 7 : T¢ x T — T x T and G :
T4xT — T¢x T in a natural way such that 7 = idpa ><7T|{p}><'[[‘ and G = T'x R,., where
71 is a map from T* to T. That is, for any (z,y) € T¢xT¢, let 3 € L(z, y)n({p}xT?),
and define 7(z,y) = (2, 7| <1 (¥')); and for any (z,7) € T x T define G(z,7) =
(Tz,Gipyxr(y)) = (T, Re(y)). Tt is easy to check that mo G = F o,

(iii)=(iv). This is because the circle rotation is not weak mixing.

(iv)=>(i). If the map is not mixing, it cannot be exponentially mixing. Then we
use the dichotomy in Theorem 1. O

4. SPECTRUMS OF F,: PROOF OF PROPOSITION 3.1 AND 3.2

We shall use the classical formulation to prove Proposition 3.1, and the semi-
classical one to prove Proposition 3.2.

4.1. The spaces and operators. We first construct a particular symbol on 7*T¢
as follows. Choose

max{1, 2| D7}

4.1
(4.1) R > —

)

where v is given in (1.1), and let go € C*(R™) be such that

1 t<R
4.2 t)y=+"" ’
(4.2 0(0) { i

and go(t) is strictly increasing for ¢ € [R,0). Set g(¢) = go(|¢]) for € € RY. Given
5 < 0, define a symbol

(4.3) Xs(@,€) = h(z)2g(€)* € S°,

where h(z) is the density function of p w.r.t. dz.
Denote A; ;, = Opp(As) € OPrS® and Ay = Ag ;1. We define a parameter family
of inner products on H*(T%) by

(osdn, = Nspps Asphdre, e HY(T?), he (0,1].

It is easy to check that every inner product in this family is equivalent to the stan-
dard one (-, -)s defined in (2.3) since As(z, &) = (£)*® for || large. When equipped
with the inner product (-, s ,, H*(T?%) is denoted by Hj, ,(T?) instead. The
Sobolev space Hy, , is unitarily equivalent to the L? space, that is,

AsnHa,, (T = L*(T?), or Hy,,(T%) = AJ}L*(TY).



14 JIANYU CHEN AND HUYI HU

4.2. Proof of Proposition 3.1. Recall that F, is given in (3.1).

Proof of Proposition 3.1. In Definition 2.5, we choose i = 1, and choose ampli-
tude a(z,&) = €™ 7 ¢ SO and phase S(z,¢) = Tz - & Then by (3.1) and
Remark 2.6(ii), we have

~

Fupla) = ala,)p(Ta) = | emrr@emmeevely(g)ayue

for any v € Z*. The canonical transformation (z,¢) ~— (y,7) associated to F, is
given by
y="Tz, n=[DT)]""¢
With A; = A, constructed in the previous subsection, we get the following
commutative diagram

Hy, (T4 —T Hy (17

s

A J l As

LA(T9) —2— [(TY),
where Q, = ASJ?'VAS_I. Denote P, = Q*@Q),. Then we have
P, = QiQu = (AT [ Fr(AAO B | AT" 5 LA(TY) — L3(T).

Note that /P, and ﬁ'y share the same spectrum in modulus.

Denote by p(z, ) the principal symbol of P, (see Subsection 2.6 for definition).
By Theorem 2.9 and L2-continuity theorem (Theorem 2.13), the operator P, :
L?(T?%) — L?(T?) is of order 0 and hence bounded such that P, = K + R, where
K is compact. By Lemma 4.1 below, the definition of g in the previous subsection,
and the definition v in (1.1), we get

|R|L2— 12 < suplimsup |p(x,&)| + ¢
T g0

. g(D, 1))\
= sup lim sup Aly) ( +e
t 2s
<sup Z A(y) lim sup <(DyT)§|> +e€
v l€|—o0 €
< sup Z AWy +e=79* + e
z =Ty

Choose ¢ small enough such that p; := 4/72% + ¢ < 1. By polar decomposition,
Q, = +/P,U, for some unitary operator U, : L?(T¢) — L2?(T¢). By spectral
theorem, @, also has a similar decomposition @, = K; + R; such that K is
compact and | R;| < p;. By unitary equivalence between @, : L?(T%) — L2(T%)
and F, : Hy (T%) — Hx_(T9), there is a similar decomposition F, = K, + R, such
that K, is compact, and |R,|Ha,(T¢)| < p1. Choose C; > 0 such that

1 lella, d
< = < 4/C; forany ¢ e H*(TY),
VO el

then we have
| Ry H*(TY)| < Cy| R} Ha, (T%)| < Cy[|Ry|Ha, (TY)|™ < Cip}-
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This completes the proof of Proposition 3.1. O

Lemma 4.1. P, € OPS° has a principal symbol

o) = 3 A (L)

=Ty

where A(y) is defined in (3.3).

Proof. Note that A has a principal symbol A;. By Theorem 2.9, A*¥ € OPS* has a
principal symbol g, and A1, (A71)* € OPS~* both have a principal symbol At

Further, A*A, € OPS?* has a principal symbol A\2. Then by Egorov’s theorem 2.11,
F¥(A*A,)F, € OPS?s has a principal symbol

a0(:’4777) = 2 )‘E(CE7€)

y=Tz,
n=[(D=T)"17"¢

Az, (D.T)'n)
[Jac(T) ()|

ei271'u~7'(a:)

2
| det(D,T)!|~*

|
hd

y=Tz

Use the composition rule again and recall the definition of A in (4.3), we have
P, € OPS? with a principal symbol

. Az, (D,T)'n) 1
ply.n) = Zj} Tac(T) @) 2(y7)

Z 1 h(z) g((D,T)tn)s
7o ac(T)(@)| hly)  g(n)*

Z A(z) (g((DwT)tn))zs |

Ve g(n)
This is what we need. O

4.3. Proof of Proposition 3.2. While we use the classical formulation to prove
Proposition 3.1, we use the semiclassical one to show Proposition 3.2. The key step
of the proof is the estimate stated and proved in Lemma 5.1 in the next section.

1
Proof of Proposition 3.2. Let v € Z*\{0}. Take h = o
v

In Definition 2.5, we choose amplitude a(z, &) = 1 € S° and phase function
v

(4.4) Sy(x,€) = Tz - €+ — - 7(x).

v
Then by Remark 2.6(ii), F, is an h-scaled FIO of the form
Fup(e) = p(Te2rer) = [ c2rRITeS oy ),
T*Td
Inductively, we have
ﬁ:gﬂ(.&?) :SD(Tnm)eiQﬂ'wZ;;é T(T*z)

= f ei%%{[T"w'ﬁJrﬁ'ZZ;é T(Tkx)]iy'g}(p(y)dydwh(f),
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where the phase function now is

n—1

Syn(®,&) =T"z £+ ﬁ ' Z 7(T*x).

k=0
The canonical transformation (z,&) — (y,n) associated to FI" is given by

y=Trz, 1= [(DT")]7E = Wyn(2)],

where
(4.5) W,,,n(x)zwn(:c)~ﬁ and Wn(x)zi(Dka)t[DT%T]t.
k=0

The following commutative diagram

i
Hy, ,(T%) —*— Hy,,(T7)

As,hl l/\s,n

A1) % 121
suggests that we study the operator
Py = (@ Q1 = (A0 [(F1)* (AL pAen) ER ALk E2(TY) — L3(T)

since the spectral radius

(46)  Sp(F[Hn, , (T%) = Sp(@ILATY) = lim /| P, ,[L2(T4)]|

By Lemma 4.2 below, for all n € N and v € Z*\{0}, ]S,j,n € OPS? has a principal
symbol P, (z,£) given by (4.7). By Theorem 2.14 and Lemma 5.1 in the next
section, we know that there exist ng € N and py < 1 such that

~ - - Cd
1Py [L2(TH < sup  Prno(2,€) + hCq < Po + —
(2,€)eT*Td 4

for some constant Cy > 0. Choose v > 0 such that

. C
p2 = 2"{/Po + ¢ <1,
"

then sup HPl, o L2(T9)|| < p3™. By (4.6) and the subadditivity of the sequence

vz

{H]BWLULZ (T%) |} nen, we have the spectral radius
Sp(E,|H* (1)) = Sp(B|H, ,(T) = lm X/| P, L2(T)] < po.
This completes the proof of Proposition 3.2. (]

Lemma 4.2. For eachn e N and v € Z*\{0}, JBWL € OPSY has a principal symbol

((DyT™)'€ + Wy,n@)))%
9(&) ’

W, (y) is given in (4.5).

(4.7) Pon(@.8) = D An( (

rz=Tn"y
14

where A, (y) is given in (3.4) and W, ,(y) = 7
v
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Proof. Note that A;p € OPpS® has a principal symbol A;. By Theorem 2.9,
A%, € OP,S® has a principal symbol A, and A;,li, (A;h) € OP,S™° both have a
principal symbol A\;!. Further, A:hAs,h € OPS?% has a principal symbol \2. By
Remark 2.12 for Egorov’s theorem, (ﬁ'ﬁ)*(A;“ﬁAsﬁ)ﬁ'ﬁ € OPpS?® has a principal
symbol

ag(y,m) = > Xo(x,€) - 12 [ det(D,T™)"| 7

y=T"x,
n:[(Dan)t]71[5_Wv,n(1)]

A2z, (DT™) ' + Wy (2))

[Jac(T™)(z)|

|
hd

y=T"zx

By composition rule again, 13%” € OP;S° has a principal symbol

~ _ /\3(337 (DzTn)tﬁ + WI/,’R(‘T)) 1
Penlyin) = ; Jac(T7) ()] X2(y.m)
-y 1 h(z) g((DaT™)'n + Wy n(x))*
ST [Jac(T)(@)] h(y) g(n)*
B (DL T™) e + Wy () )
o, ZT:H Al ( g9(n) ) '
This is what we need. (I

5. THE PRINCIPAL SYMBOL: PROOF OF LEMMA 5.1

The estimates given in Lemma 5.1 in the section is the most important step to
obtain the radius of the spectrum of F,|H*(T¢) strictly less than 1.

Lemma 5.1. If 7(x) is not an essential coboundary, then there exists ng € N such
that

(51) 150 = sup sup ﬁu,no (1‘,5) <1
VEZA\ [0} (2,€)eT*T4

Proof. Given v € Z*\{0} and z € T?, we consider the affine map F,, : R — R?¢
given by

(5.2) Foul€) = (DT + [Dzﬂtﬁ,
and the n-th iterates
(5.3) H Fyrhe (DT + W, ().

Therefore, we can rewrite (4.7) as

pl/nxé~ ZA

rz=Tn"y

[ 9(Fpy(€) rs
9(8)
By Sublemma 5.3 below, for any v € Z‘\{0}, there is ng(r) > 0 such that

sup ﬁv,no(u) (mvf) <L
(z,£)eT*Td
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We can strength it as follows. By Sublemma 5.2 below, p, n,)(7,&) < 1 implies
that there is y € T~ "(z) such that \f;f‘;,(”) (€)] > R. Since .7-"3%(”) (€) depends on =z

v
v

continuously, there is (v) > 0 such that \]::,‘);V) (€)] > R whenever DIRRD
’ v v

g(v). Moreover, by proof of Sublemma 5.2, we know that
Fp, @1 = 17> R
for any n = ng(v). By Sublemma 5.2 again, we have

sup ’ﬁu/,n(xaf) < ]-7
(.6)eT*Td

for any |[V//|V'| —v/|v]| < e(v) and n = ng(v).

Since all {v/|v|}, ;e lies on the unit (¢ — 1)-sphere S~!, which is compact, there
are vy, va, . .., vy, € Z* such that the finite collection of open balls { B(v;/|v;|,e(v;) }1<j<k
covers S‘~1. Therefore, we obtain (5.1) if we set

ng = max{no(v1),...,n0(vk)}
Then we can obtain what we need. O

Sublemma 5.2. Let v e Z%\{0}.
(1) Pyn(x,€) <1 for allneN and (z,£) € T*T4;
(2) Pun(z,§) <1 if and only if there is y € T~"x such that |F},(§)] > R. In
other words, Pyn(z,&) = 1 if and only if |.7:fy(§)| < R for anyy e T "x
and 0 < k < n.

Proof. First recall that >, A,(y) =1, and every A, (y) is positive.

rz=T"y
Given ¢ € R? with |¢| > R, we observe that all iterates FF,(€) will be outside
2||D
the interval [—R, R]. Indeed, by the choice of R in (4.1), we have |£| > ’y| _7’1H So
by (5.2)
v ol + 1
7€) > (D,TEl - Dyl ] > 2lel = 1D7] > lel - L5 el = L2l

and hence for all k > 0,
k
y+1
7,01 (50 414> R

By the definition of g(§) defined in (4.2), the quotient

gFr (1% | T 1 if |7 (6 < Rforall 0 <k <n;
RASLANTS4
[ 9(&) }

<1 otherwise.

g fﬁ,y(@)rs

In either case, we always get [ (
9(¢)

Prn@&) = Y Auly [g(g] S Ay

rz=Tn"y z=T"y

< 1 and hence
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Now clearly, Py, (z,€) = 1if and only if we are in the first case, that is, |7}, (£)| < R
for any y e T7"z and 0 < k < n. O

Next we show that

Sublemma 5.3. Suppose T(x) is not an essential coboundary. Then for any v €
ZA\{0}, there is ng(v) € N such that

sSup ﬁll,no(l/) (xv g) <1
(z,£)eT*Td

Proof. Let us argue by contradiction. If

sup  Pun(z,§) =1
(@,€)eT*Td

for all n € N, then according to the proof of Sublemma 5.2, we actually have

Su Pvn(2,€) = max Py (z,§) = 1.
(w,E)GYE)*poV’n( 9= o g gy P (@)

So for each n € N, there is (z,,,&,) € T? x [ R, R] such that P, (2, &) = 1
Using (5.3) and then Sublemma 5.2 (2), we get that

(&) = (DT 60 + Wos )] = |(D, T (60 + W) | < B

for any y € T~"(z,) and 1 < k < n, where
N k—1 , y
(5.4)  Worly) = (DT Worly) = 3 [(DijTk_J)t]_l[DTfyT]tﬂ
7=0
By (1.1), we have

R
~k

(5.5) En + Woi(y)| < e WeT @), 1<k<n

We would like to rewrite Wy,k(y) in terms of x,, as follows. Suppose the degree
of the expanding endomorphism 7 : T¢ — T% is N. We denote

(5.6) N ={i=(i1,42,...,0n): 3, =0,1,...,N =1}, 1<n<o0.

Let Tf1 Tf1 Tgl 1 be the inverse branches of T. Given z € T% and i€ X, for
any 1 < k < n, we denote T T = T_ . Tglx So Ti_kx is well defined whenever
k<n< oo

For all z € T?, ie X% and 1 < k < n < 0, we define

& k
() Vi) = 31 D | @] = B D1

Since for any z € T¢,

0
v .
(5.8) Dy, 7)™ [DT;_ij]tp‘ < |D7le Zy 7 >0 ask— o,

j=k Jj=k

and the convergence is uniform, V, x(i,z) can be defined for i € £ and k& = co.
We denote V,,(i,2) = V, (i, z) in this case.
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Comparing (5.4) and (5.7), we see ka(y) = V,k(i,x) whenever y = T; " (x).
Therefore, we can rewrite (5.5) as
. R
|£n + Vy,k(la xn)‘ < K
for any i € ¥% and 1 < k < n. Since {(2,,&,)} lies in the compact region T¢ x
[—R, R], there is an accumulation point (x*,£*). By taking n — o0 and k — o0 in
the above inequality, we get V, (i,2*) = —&*, regardless of the choice for i € X%.
For x € T4, take w € {0,1,...,N — 1} such that such that x = T,,;1(Tz). For
any i€ X%, we can check directly using (5.7), to get

(5.9) (D1, T)'V, (wi, ) = Vo (1, T, ) + [DTJIZT]tﬁ.

By Claim 1 below we know that V,(i,z) is independent of i. Hence, we can
define a function V,, : T — R¢ by
(5.10) Vo (z) = V,(i,z), for any ie X%,

if z € T9. Replacing = by Tz in (5.9), we get
;v

(5.11) (D TV, (T(z)) = Vi, (z) + [Da7] o

By Claim 2, the function u : T¢ — T given by

1
u(zx) = J Vi (txq, tas, ... teg) dt
0

is well-defined. Integrating (5.11), we get
u(Tz) = u(z) + ﬁ -7(z) +c
v

for some constant ¢ € T, which contradicts to the fact that 7(x) is not a directional
essential coboundary. O

Claim 1. For any x € T?, V,,(i,z) is independent of i, that is, V,,(i,z) = V,, (', x)
for alli,i' € 5.

Proof. Take x = x* and using the fact V, (i,2*) = —£* in (5.9), we can get

Vo (1, T 'a*) = —(Dio1,uT)1E* — [Dmlw*ﬂtﬁ.

The right hand side is independent of i, and hence, V,, (i, T, *2*) = V,,(0, T, 1z*),
where 0 = (0,0,...) e £%.

Inductively, one can show that V, (i,z) = V,,(0,z) for all z € | J;_, T~ "(z*) and

thus for all x € T?, since the set Uf=1 T~"z* is dense in T<. ]

Claim 2. For any x = (z1,29,...,24) € T¢ = (R/Z)? and 1 < k < d,

1
J\ Vy(xl,...7l'k_1,t7l'k+1,...,xd) dt = 0.
0
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Proof. By (5.10) and (5.7), we rewrite for arbitrary M € N,

V,(z) = NLM >} VL(i0,2)

iexd!
1 . 1 . .
== > Vou(io, z) + NI > Vi (30, 2) — Vi, (10, 2)]
iexsy iex
1 M v 1 -1 1 . .
=i 2 Z D, W T(Tij LT () |+ N7 Z [V, (i0,2) — V, (10, 2)].
J=1liex] ies

For the first term, we have

1
J Z D, |:V| 'T(Ti.l--~Till($1;-~-,xk—17t,xk+17~-~,l’d))] dt
0 - 14 7
N

v _ _
- . Z [T(T-_l ...Till(xl,...,xk_l,l,mk+1,...,xd))

| ~ L
ieXy
—1 —1
_T(,Tij TZl (561,...,$k_1,0,$k+1,...,1‘d))]
Since (z1,...,Tk-1,0,Zp41,...,2q) and (z1,...,Tk-1,1,Tp41,...,2q) are the same
s md —1 —1 s J
point in T and both {sz T (xh...,xk,l?O,xk+17...,md) cie X)) and
{Ti;1 . ..Tgl(xl,...,xk,l, L, Zp41,...,2q) : 1 € BN} are the sets of all jth preim-

ages of the point. Hence they are the same on T?. Since T is a function on T¢, the
right hand side of the equality must be 0.

On the other hand, by (5.8) the convergence V,, 5 (i0, z) — V,,(i0, z) is uniform
inias M — oo. By choosing M large enough, the integral of V,(z) is arbitrary
small and hence 0. O
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