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Abstract

We give an example of a sequential dynamical system consisting of

intermittent-type maps which exhibits loss of memory with a polynomial

rate of decay. A uniform bound holds for the upper rate of memory loss.

The maps may be chosen in any sequence, and the bound holds for all

compositions.

0 Introduction

The notion of loss of memory for non-equilibrium dynamical systems was intro-
duced in the 2009 paper by Ott, Stenlund and Young [2]; they wrote:

Let ρ0 denote an initial probability density w.r.t. a reference measure m, and

suppose its time evolution is given by ρt. One may ask if these probability distribu-

tions retain memories of their past. We will say a system loses its memory in the

statistical sense if for two initial distributions ρ0 and ρ̂0,
∫ |ρt − ρ̂t|dm → 0.

In [2] the rate of convergence of the two densities was proved to be expo-
nential for certain sequential dynamical systems composed of one-dimensional
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piecewise expanding maps. Coupling was the technique used for the proof.
The same technique was successively applied to time-dependent Sinai billiards
with moving scatterers by Stenlund, Young, and Zhang [5] and it gave again
an exponential rate. A different approach, using the Hilbert projective metric,
allowed Gupta, Ott and Török [4] to obtain exponential loss of memory for
time-dependent multidimensional piecewise expanding maps.

All the previous papers prove an exponential loss of memory in the strong
sense, namely ∫

|ρt − ρ̂t|dm < Ce−αt.

In the invertible setting, Stenlund [1] proves loss of memory in the weak-sense
for random composition of Anosov diffeomorphisms, namely

|
∫

f ◦ Tndµ1 −
∫

f ◦ Tndµ2| < Ce−αt

where f is a Hölder observable, Tn denotes the composition of n maps and
µ1 and µ2 are two probability measures absolutely continuous with respect to
the Riemannian volume whose densities are Hölder. It is easy to see that loss
of memory in the strong sense implies loss of memory in the weak sense, for
densities in the corresponding function spaces and f ∈ L∞.

A natural question is: are there examples of time-dependent systems exhibit-
ing loss of memory with a slower rate of decay, say polynomial, especially in the
strong sense? We will construct such an example in this paper as a (modified)
Pomeau-Manneville map:

Tα(x) =

{
x + 3α

21+α x1+α, 0 ≤ x ≤ 2/3
3x− 2, 2/3 ≤ x ≤ 1

0 < α < 1. (0.1)

We use this version of the Pomeau-Manneville intermittent map because the
derivative is increasing on [0,1), where it is defined, and this allows us to sim-
plify the exposition. We believe the result remains true for time-dependent
systems comprised of the usual Pomeau-Manneville maps, for instance the ver-
sion studied in [3]. We will refer quite often to [3] in this note. As in [3], we
will identify the unit interval [0, 1] with the circle S1, in such a way the map
becomes continuous.

We will see in a moment how an initial density evolves under composition
with maps which are slight perturbations of (0.1). To this purpose we will define
the perturbations of the usual Pomeau-Manneville map that we will consider.

The perturbation will be defined by considering maps Tβ(x) as above with
0 < β∗ ≤ β ≤ α∗. Note that Tβ = Tα on 2/3 ≤ x ≤ 1. The reference measure

∗The strictly positive lower bound β∗ is necessary to prevent the growth to infinity of the
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will be Lebesgue (m). If β∗ ≤ βk ≤ α is chosen, we denote by Pβk
the Perron-

Frobenius (PF) transfer operator associated to the map Tβk
.

Let us suppose φ, ψ are two observables in an appropriate (soon to be
defined) functional space; then the basic quantity that we have to control is

∫
|Pβn

◦ · · ·Pβ1(φ)− Pβn
◦ · · · ◦ Pβ1(ψ)|dm. (0.2)

Our goal is to show that it decays polynomially fast and independently of the
sequence Pβn

◦ · · · ◦ Pβ1 : we stress that there is no probability vector to weight
the βk. Note that, by the results of [12], one cannot have in general a faster
than polynomial decay, because that is the (sharp) rate when iterating a single
map Tβ , 0 < β < 1.

In order to prove our result, Theorem 1.6, we will follow the strategy used
in [3] to get a polynomial upper bound (up to a logarithmic correction) for the
correlation decay. We introduced there a perturbation of the transfer operator
which was, above all, a technical tool to recover the loss of dilation around the
neutral fixed point by replacing the observable with its conditional expectation
to a small ball around each point. It turns out that the same technique allows
us to control the evolution of two densities under concatenation of maps if we
can control the distortion of this sequence of maps. The control of distortion
will be, by the way, the major difficulty of this paper.

Note that the convergence of the quantity (0.2) implies the decay of the
non-stationary correlations, with respect to m:

|
∫

ψ(x)φ ◦ Tβn
◦ · · · ◦ Tβ1(x)dm−

∫
ψ(x)dm

∫
φ ◦ Tβn

◦ · · · ◦ Tβ1(x)dm| ≤

||φ||∞||Pβn
◦ · · · ◦ Pβ1(ψ)− Pβn

◦ · · · ◦ Pβ1(1(
∫

ψdm))||1
provided φ is essentially bounded and 1(

∫
ψdm) remains in the functional space

where the convergence of (0.2) takes place. In particular, this holds for C1 ob-
servables, see Theorem 1.6.

Conze and Raugy [7] call the decorrelation described above decorrelation
for the sequential dynamical system Tβn

◦ · · · ◦ Tβ1 . Estimates on the rate of
decorrelation (and the function space in which decay occurs) are a key ingredient
in the Conze-Raugy theory to establish central limit theorems for the sums∑n−1

k=0 φ(Tβk
◦ · · · ◦Tβ1x), after centering and normalisation. The question could

be formulated in this way: does the ratio
∑n−1

k=0 [φ ◦ Tβk
◦ · · · ◦ Tβ1(x)− ∫

φ ◦ Tβk
◦ · · · ◦ Tβ1dm]

||∑n−1
k=0 φ ◦ Tβk

◦ · · · ◦ Tβ1 ||2
second derivative in (2.7); on the other hand several estimates are true for any 0 < β ≤ α and
we will follow that when no confusion arises.
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converge in distribution to the normal law N (0, 1)?

It would be interesting to establish such a limit theorem for the sequential
dynamical system constructed with our intermittent map (0.1). Besides the
central limit theorem, other interesting questions could be considered for our
sequential dynamical systems, for instance the existence of concentration in-
equalities (see the recent work [9] in the framework of the Conze-Raugy theory),
and the existence of stable laws, especially for perturbations of maps Tα with
α > 1/2, which is the range for which the unperturbed map exhibits stable
laws [10].

We said above that we did not choose the sequence of maps Tβ according to
some probability distribution. A random dynamical system has been considered
in the recent paper [8] for similar perturbations of the usual Pomeau-Manneville
map. To establish a correspondence with our work, let us say that those au-
thors perturbed the map Tα by modifying again the slope, but taking this time
finitely many values 0 < α1 < α2 < · · · < αr ≤ 1, with a finite discrete law.
This random transformation has a unique stationary measure, and the authors
consider annealed correlations on the space of Hölder functions. They prove
in [8] that such annealed correlations decay polynomially at a rate bounded
above by n1− 1

α1 .

As a final remark, we would like to address the question of proving the loss
of memory for intermittent-like maps, but with the sequence given by adding a
varying constant to the original map, considered to act on the unit circle (addi-
tive noise). This problem seems much harder and a possible strategy would be
to consider induction schemes, as it was done recently in [11] to prove stochastic
stability in the strong sense.

NOTATIONS. We will index the perturbed maps and transfer operators
respectively as Tβk

and Pβk
with 0 < β∗ ≤ βk ≤ α, the number β∗ > 0 being

arbitrary. Since we will be interested in concatenations like Pβn
◦Pβn−1 ◦· · ·◦Pβm

we will use equivalently the following notations

Pβn
◦ Pβn−1 ◦ · · · ◦ Pβm

= Pn ◦ Pn−1 ◦ · · · ◦ Pm.

We will see that very often the choice of βk will be not important in the construc-
tion of the concatenation; in this case we will adopt the useful notations, where
the exponent of the P ’s is the number of transfer operators in the concatenation:

Pβn
◦ Pβn−1 ◦ · · · ◦ Pβm

:= Pn−m+1
m

Pn
k = Pk+n−1 ◦ Pk+n−2 ◦ · · · ◦ Pk

In the same way, when we concatenate maps we will use the notations Tn◦Tn−1◦
· · · ◦ Tm instead of Tβn

◦ Tβn−1 ◦ · · · ◦ Tβm
. We let T

k
denote the concatenation
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of k (possibly) different maps Tl, whenever the sequence of this concatenation
does not matter.

Finally, for any sequences of numbers {an} and {bn}, we will write an ≈ bn

if c1bn ≤ an ≤ c2bn for some constants c2 ≥ c1 > 0. The first derivative will be
denoted as either T ′ or DT and the value of T on the point x as either Tx or
T (x).

1 The cone, the kernel, the decay

Thanks to a general theory by Hu [6], we know that the density f of the ab-
solutely continuous invariant measure of Tα in the neighborhood of 0 satisfies
f(x) ≤ constant x−α, where the value of the constant has an expression in terms
of the derivative of T at 0 and of the value of f in the pre-image of 0 different
from 0. We will construct a cone which is preserved by the transfer operator of
each Tβ , 0 < β ≤ α, and the density of each Tβ will be the only fixed point of a
suitable subset of that cone.

We define the cone of functions

C1 := {f ∈ C0(]0, 1]); f ≥ 0; f decreasing; Xα+1f increasing}

where X(x) = x is the identity function.

Lemma 1.1. The cone C1 is invariant with respect to the operators Pβ , 0 <

β ≤ α < 1.

Proof. Put T−1
β (x) = {y1, y2}, y1 < y2; put also χβ = 3βyβ

1
21+β . Then a direct

computation shows that

Xα+1Pβf(x) =
f(y1)yα+1

1 (1 + χβ)α+1

1 + (1 + β)χβ
+ f(y2)

(
3y2 − 2

y2

)α+1
yα+1
2

3
.

The result now follows since the maps x → xα+1f(x), x → χβ , x → y1, x → y2

are increasing. The fact that α ≥ β implies the monotonicity of χ → (1+χ)α+1

1+(1+β)χ .

We now denote m(f) =
∫ 1

0
f(x)dx and recall that for any 0 < β < 1 we have

m(Pβf) = m(f).

Lemma 1.2. Given 0 < α < 1, the cone

C2 := {f ∈ C1 ∩ L1
m; f(x) ≤ ax−α m(f)}

is preserved by all the operators Pβ , 0 < β ≤ α, provided a is large enough.
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Proof. Let us suppose that
∫ 1

0
fdx = 1; then we look for a constant a for which

Pβf(x) ≤ ax−α. Using the notations in the proof of the previous Lemma and
remembering that xα+1f(x) ≤ f(1) ≤ ∫ 1

0
fdx = 1, we get

Pβf(x) =
f(y1)
T ′β(y1)

+
f(y2)
T ′β(y2)

≤ ay−α
1

T ′β(y1)
+

y−α−1
2

T ′β(y2)
=

{(
x

y1

)α 1
T ′β(y1)

+
1
a

xα

yα+1
2 T ′β(y2)

}
ax−α,

but
(

x

y1

)α 1
T ′β(y1)

+
1
a

xα

yα+1
2 T ′β(y2)

≤ (1 + χβ)α

1 + (1 + β)χβ
+

1
a
(
3
2
yα−β
1 χβ(1 + χβ)α ≤

(1 + χβ)α

1 + (1 + β)χβ
+

1
a
(
3
2
)αχβ , (∗)

where the last step is justified by the fact that β ≤ α and 0 ≤ χβ ≤ 1/2. By
taking the common denominator one gets

(∗) ≤ 1 + {β + [(α− β) + 2αa−1(β + 2)]}χβ

1 + (1 + β)χβ
.

We get the desired result if (α − β) + 2αa−1(β + 2) ≤ 1, which is satisfied
whenever

a ≥ 2α(2 + α)
1− α

.

Remark 1.3. The preceding two lemmas imply the following properties which
will be used later on.

1. ∀f ∈ C2, infx∈[0,1] f(x) = f(1) ≥ min{a; [α(1+α)
aα ]

1
1−α }m(f).

2. For any concatenation Pm
1 = Pm◦· · ·◦P1 we have Pm

1 1(x) ≥ min{a; [α(1+α)
aα ]

1
1−α }.

See the proof of Lemma 2.4 in [3] for the proof of the first item, the second
follows immediately from the first.

Remark 1.4. Using the previous Lemmas it is also possible to prove the exis-
tence of the density in C2 for the unique a.c.i.m. by using the same argument
as in Lemma 2.3 in [3].

We now take f ∈ C2 and define the averaging operator:

Aεf(x) :=
1
2ε

∫

Bε(x)

fdm
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where Br(x) denotes the ball of radius r centered at the point x ∈ S1, and
define a new perturbed transfer operator by

Pε,m := Pnε
m Aε = Pβm+nε−1 ◦ · · · ◦ Pβm

Aε

where nε will be defined later on. It is very easy to see that

Lemma 1.5.
||Pε,mf − Pnε

m f ||1 ≤ c||f ||1ε1−α

where c is independent of β.

Proof. By linearity and contraction of the operators Pβ we bound the left hand
side of the quantity in the statement of the lemma by

∫ |Aεf − f |dx and this
quantity gives the prescribed bound as in Lemma 3.1 in [3].

It is straightforward to get the following representation for the operator
Pε,m :

Pε,mf(x) =
∫ 1

0

Kε,m(x, z)f(z)dz

where
Kε,m(x, z) :=

1
2ε

Pnε
m 1Bε(z)(x).

We now observe that standard computations (see for instance Lemma 3.2 in
[3]). It allows us to show that the preimages an := T−n

α,1 1 verify an ≈ 1

n
1
α

; here

T−1
α,1 denotes the left pre-image of T−1

α , a notation which we will also use later
on. Those points are the boundaries of a countable Markov partition and they
will play a central role in the following computations; notice that the factors
c1, c2 in the bounds c1

1

n
1
α
≤ an ≤ c2

1

n
1
α

depend on α and therefore on β, but we
will only use the an associated to the exponent α; in particular we will denote
by cα the constant c2 associated to Tα; the dependance on α, although implicit,
will not play any role in the following.

We will prove in the next section the following important fact.

• Property (P). There exists γ > 0 such that for all ε > 0, x, z ∈ [0, 1] and
for any sequence βm, · · · , βm+nε−1, if nε = [ 3cα

2εα ] then

Kε,m(x, z) ≥ γ.

We now show how the positivity of the kernel implies the main result of this
paper.
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Theorem 1.6. Suppose ψ, φ are in C2 for some a with equal expectation
∫

φdm =∫
ψdm. Then for any 0 < β∗ ≤ α < 1 and for any sequence Tβ1 , · · · , Tβn , n > 1,

of maps of Pomeau-Manneville type (0.1) with β∗ ≤ βk ≤ α, k ∈ [1, n], we have
∫
|Pβn ◦ · · · ◦Pβ1(φ)−Pβn ◦ · · · ◦Pβ1(ψ)|dm ≤ Cα(||φ||1 + ||ψ||1)n− 1

α +1(log n)
1
α ,

where the constant Cα depends only on the map Tα, and || · ||1 denotes the L1
m

norm.
A similar rate of decay holds for C1 observables φ and ψ on S1; in this case

the rate of decay has an upper bound given by

Cα F(||φ||C1 + ||ψ||C1)n−
1
α +1(log n)

1
α

where the function F : R→ R is affine.

One can ask what happens if we relax the assumption that all βn must lie in
an interval [β?, α] with 0 < β? < α < 1. For instance, if the sequence βn satisfies
βn < 1 and βn → 1, does the quantity ‖Pn

1 φ− Pn
1 ψ‖1 go to 0 for all φ, ψ in C1

with
∫

φ =
∫

ψ? Similarly, what can we say when βn → 0? It follows from our
main result that the decay rate of ‖Pn

1 φ − Pn
1 ψ‖1 is superpolynomial, but can

we get more precise estimates for particular sequences βn, like βn = n−θ or βn =
e−cnθ

, θ > 0? We can also ask whether there is, in the case where βn ∈ [β?, α]
covered by our result, an elementary proof for the decay of ‖Pn

1 φ− Pn
1 ψ‖1.

Proof of Theorem 1.6. We begin to prove the first part of the theorem for C2

observables. We let nε = [ 3cα

2εα ] and write n = knε + m. We add and subtract
to the difference in the integral a term composed by the product of the first m

usual PF operators and the product of k averaged operator Pε, each composed
by nε random PF operators; precisely we use the notation introduced above to
get:

(LM) :=
∫
|Pβn ◦ · · · ◦ Pβ1(φ)− Pβn ◦ · · · ◦ Pβ1(ψ)|dm =

∫
|Pn

1 (φ)− Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (φ)

+Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (φ)

−Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ψ)

+Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ψ)− Pn

1 (ψ)|dm.

Thus
(LM) ≤ ||Pn

1 (φ)− Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (φ)||1+

||Pn
1 (ψ)− Pε,m+1+(k−1)nε

◦ · · · ◦ Pε,m+1P
m
1 (ψ)||1+

||Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (φ− ψ)||1.
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We now treat the first term I in φ on the right hand side ( the terms in ψ

being equivalent), and we consider the last term III after that. We thus have:

I = ||Pnε

m+1+(k−1)nε
· · ·Pnε

m+1P
m
1 (φ)− Pε,m+1+(k−1)nε

◦ · · · ◦ Pε,m+1P
m
1 (φ)||1.

To simplify the notations we put




R1 := Pε,m+1,
...
Rk := Pε,m+1+(k−1)nε

,

and 



Q1 := Pnε
m+1,

...
Qk := Pnε

m+1+(k−1)nε
,

which reduce the above inequality to

I = ||(Qk · · ·Q1 − Rk · · ·R1)Pm
1 (φ)||1.

By induction we can easily see that

Qk · · ·Q1 − Rk · · ·R1 =
k∑

j=1

k−j−1∏

l=0

Rk−l(Rj −Qj)
j−1∏

l=0

Qj−l−1

with R−1 = 1 and Q0 = 1; by setting φm := Pm
1 (φ) and φ̃m = Pm

1 (φ− ψ), we
have therefore to bound by the quantity

k∑

j=1

||
k−j−1∏

l=0

Rk−l(Rj −Qj)
j−1∏

l=0

Qj−l−1φm||1.

We now observe that Qj−l−1φm ∈ C2; moreover ||Rmg||1 ≤ ||g||1 ∀g ∈ C2, 1 ≤
m ≤ k. Then we finally get, by invoking also Lemma 1.5,

I ≤ ||Qk · · ·Q1φm − Rk · · ·R1φm||1 ≤
k∑

j=1

c||φm||1ε1−α ≤ ck||φ||1ε1−α.

We now look at the third term III which could be written as, by using the sim-
plified notations introduced above: III = ||Rk · · ·R1φ̃m||1. By using Property
(P) and by applying the same arguments as in the footnote 6 in [3], one gets

||Rk · · ·R1φ̃m||1 ≤ e−γk||φ− ψ||1.
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In conclusion we get

(LM) ≤ ckε1−α(||φ||1 + ||ψ||1) + e−γk(||φ||1 + ||ψ||1) ≤

c
n

nε
ε1−α + eγ e−γ n

nε (||φ||1 + ||ψ||1) ≤ Cα (||φ||1 + ||ψ||1)n1− 1
α (log n)

1
α

having chosen ε = n−
1
α

(
log n( 1

α−1)
3αcα

α
γ2α

) 1
α

.

In order to prove the second part of the theorem for C1 observables, we invoke
the same argument as at the end of the proof of Theorem 4.1 in [3]. We notice in
fact that if ψ ∈ C1 then we can choose λ, ν ∈ R such that ψλ,ν(x) = ψ+λx+ν ∈
C2, the dependance of the parameters with respect to the C1 norm being affine.
For instance λ and ν could be chosen in such a way to verify the following
constraints: 0 > λ > −||ψ′||∞; ν > max{ (1+α)||ψ||∞+||ψ′||∞−λ(2+α)

1+α , 1+a
a−1 ||ψ||∞−

aλ
2 }.

2 Distortion: proof of Property (P)

The main technical problem is now to check the positivity of the kernel; we will
follow closely the strategy of the proof of Proposition 3.3 in [3]. We recall that

2ε Kε,m(x, · ) = Pnε
m 1J(x)

where J is an interval which we will take later on as a ball of radius ε.
By iterating we get (we denote with T−1

l,k , k = 1, 2, the two inverse branches
of Tl):

2ε Kε,m =
∑

lnε

· · ·
∑

l1

1J(T−1
1,l1

· · ·T−1
nε,lnε

x)

|T ′1(T−1
1,l1

· · ·T−1
nε,lnε

x)T ′2(T
−1
2,l2

· · ·T−1
nε,lnε

x) · · ·T ′nε
(T−1

nε,lnε
x)| =

∑

lnε

· · ·
∑

l1

1J(xnε)
|T ′1(xnε

)T ′2(T1xnε
) · · ·T ′nε

(Tnε−1 · · ·T1xnε
)|

where xnε = T−1
1,l1

· · ·T−1
nε,lnε

x ranges over all points in the preimage of x ∈
Tnε ◦ · · · ◦ T1J. The quantity on the right hand side is bounded from below by

2ε Kε,m ≥ 1Tnε◦···◦T1(J)(x) inf
z∈J

1
|T ′1(z)T ′2(T1z) · · ·T ′nε

(Tnε−1 · · ·T1z)| .

We also notice that for 0 ≤ x ≤ 2/3, Tαx ≤ Tβx; moreover we observe that, as a
function of α, the first derivative of Tα is decreasing in some interval near zero.
In fact, if we differentiate T ′α w.r.t. α and we impose that such a derivative be
negative, we obtain the condition that log(3/2)(α + 1) + 1 + (α + 1) log x < 0,
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which is satisfied if we restrict to values of x for which x < 2
3e−

1
α+1 . We put ad

the pre-image of T−d
α,11 closest to 2

3e−
1

α+1 on the left.
Let us now take the number δ = max{ad, ad−1 − ad}. Any interval J of

length larger or equal to δ will cover all of the circle in a few steps or it will
cross the point 2/3. In the latter case, call J ′ the image of J with |J ′| > |J |,
where | · | denotes the length. We denote by J ′r, J

′
l the portion of J ′ respectively

on the right and on the left side of the point 2/3 respectively. If |J ′r| > ad,2−2/3,
where ad,2 := T−1

α,1ad (notice that the right branches are the same for all β ≤ α),
then in a finite number of steps (uniform in β), the image of J ′r,, and therefore
of J, will cover all the circle. Otherwise we have to wait again a finite number of
steps, still independent of β, for which the image of J ′l will have a length larger
than 1/3 and therefore its successive image will cover all the circle. We have
thus shown that having fixed an interval J of length ≥ δ, we can find a uniform
n0 (for the choice of the maps Tβ , β > 0), for which 1Tn0◦···◦T1J(x) = 1,∀x ∈ S1.

Since the inverse of the derivative of all the Tβ are bounded from below by 1/3,
we could conclude that for any interval of length at least δ, there are constants
n0 and c0 such that (Pn0 ◦ · · · ◦P11)(x) ≥ c0 and therefore we have the same for
any power n ≥ n0 thanks to item 2 of Lemma 1.3. We have therefore to control
the ratio

inf
z∈J

1
|T ′1(z)T ′2(T1z) · · ·T ′m(Tm−1 · · ·T1z)|

where m is now the time needed for the interval J to became an interval of length
δ. We proceed as in the proof of Proposition 3.3 in [3]; we call Id = (0, ad] the
intermittent region and Hd the complementary set, the hyperbolic region.
Case J ⊂ Id.

We first compute such a distortion estimate when the interval J is in the
intermittent region Id. Let us call ∆k := (ak+1, ak−1) the union of two adjacent
elements of the Markov partition associated to Tα. We suppose now that J

contains at most one ak for k > 4, so that J ⊂ ∆k. We will establish a one-
to-one correspondence between the Tβ concatenations of J and the Tα iterates
of ∆k. Since Tαx ≤ Tβx whenever x ≤ 2/3, we have, provided we stay in the
intermittent region:





T1J ∩∆k+1 = ∅,
T2 ◦ T1J ∩∆k = ∅,
...
Tl ◦ Tl−1 ◦ · · · ◦ T1J ∩∆k−l+2 = ∅.

We now follow the itinerary of J for m times in the intermittent region; notice
that if a, b are two points in J :

D(Tm ◦ · · · ◦ T1)(a)
D(Tm ◦ · · · ◦ T1)(b)

≤
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exp
m−1∑

j=0

T ′′m−j(ξm−j)|Tm−j−1 ◦ · · · ◦ T1a− Tm−j−1 ◦ · · · ◦ T1b| (2.3)

where ξm−j ∈ Tm−j−1 ◦· · ·◦T1J ⊂ Tm−j−1 ◦· · ·◦T1∆k. Going to the last iterate
and coming back we have (we set for simplicity |∆|m = |Tm−1 ◦ · · · ◦ T1J |):

(2.3) ≤ exp
m−1∑

j=0

T ′′m−j(ξm−j)|∆|m
D(Tm−1 ◦ · · · ◦ Tm−j)(ηm,j)

(2.4)

where ηm,j belongs to (Tm−1 ◦ · · · ◦T1J). Now we observe that the set Tm−j−1 ◦
· · · ◦T1J , which is the m− j− 1 random concatenation of J , is disjoint from the
m − j − 1 deterministic iterate of TαJ, which is the interval ∆k−(m−j−1)+2 =
Tm−j−1

α ∆k = (ak+(m−j−1)+3, ak+(m−j−1)+1). Since the second derivatives and
the first derivatives are respectively decreasing and increasing w.r.t. the variable
x ∈ (0, 2/3), and by change of variable l = k −m− j, we have

(2.3) ≤ exp
k−m∑

l=k−1

T ′′l (al+2)|∆|m
DTl−1(al+2) · · ·DT1(ak−m)

.

By monotonicity of the first derivative of T with respect to the parameter α,
we could substitute all the derivative of Tβ in the denominator of the previous
inequality with T ′α computed in the same points. This plus the useful bound,
for this kind of maps: T ′α(al+1) ≥ |al−al+1|

|al+1−al+2| , give us under iteration

T ′α(al+2)T ′α(al+1) · · ·T ′α(ak−m) ≥ c3|al+2 − al+3|−1 (2.5)

where c3 = |ad − ad−1|. By substituting into (2.3) we get

(2.3) ≤ exp{
k−m∑

l=k−1

c3
T ′′l (al+2)|∆|m
|al+2 − al+3|−1

}.

Since |al+2 − al+3|−1 ≈ l
1
α +1 and T ′′β (al) ≈ l−

β−1
α we have that the series above

is summable with sums c4, so that

D(Tm ◦ · · · ◦ T1)(a)
D(Tm ◦ · · · ◦ T1)(b)

≤ exp{c5|Tm−1 ◦ · · · ◦ T1J |} (2.6)

with c5 = c4c3.

Case J ⊂ Hd.
We now take J ⊂ Hd and follow its orbit until it enters the intermittent

region. Since we are going to use distortion arguments and the mean value
theorem, we should take care of the situation when J or one of its iterates
crosses the point 2/3 where the maps are not anymore differentiable. Let us call
J̃ the iterate Tk ◦· · ·◦T1J (possibly with k = 0 which reduces to consider simply
J), which crosses the point 2/3. If the right portion of J̃ , call it J̃r, has length
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|J̃r| > ad,2 − 2/3, then, by the previous argument above, a few more iterates of
J̃r, and therefore of J , will cover the entire circle.

The other case, |J̃r| ≤ ad,2− 2/3, will be treated later; actually it splits into
two subcases. As we will see, in one of these two cases, which we will call the
easy one, we could apply the same argument as below, so that we could restrict
ourselves to use the mean value theorem until the image of J meets the point
2/3; suppose it happens for n1 steps. By calling a, b two points in J we have by
standard estimates:

D(Tn1 ◦ · · · ◦ T1)(a)
D(Tn1 ◦ · · · ◦ T1)(b)

≤

exp
n1−1∑

l=0

supξ T ′′n1−lξ

infξ T ′n1−lξ
|Tn1−l−1 ◦ · · · ◦ T1a− Tn1−l−1 ◦ · · · ◦ T1b|. (2.7)

Since 0 < β∗ ≤ β ≤ α, the ratio supξ T ′′β ξ

infξ T ′βξ and the quantity [T ′β(x)]−1 will be
uniformly bounded, in β and for x ∈ Hd, respectively by a positive constants D

and 0 < r < 1. This immediately implies that

D(Tn1 ◦ · · · ◦ T1)(a)
D(Tn1 ◦ · · · ◦ T1)(b)

≤ exp { c2|Tn1−1 ◦ · · · ◦ T1J |}

where c2 = D
1−r and finally

inf
z∈J

1
|T ′1(z) · · ·T ′n1

(Tn1−1 · · ·T1z)| ≥
|J |

|Tn1 ◦ · · · ◦ T1J | exp {−c2|Tn−1 ◦ · · · ◦ T1J |} .

(2.8)
We now procced as in the last part of the proof of Proposition 3.3 in [3].
We shall first consider two cases not covered by the previous analysis. The

first happens when some iterate of J , call it J̃ , crosses the point 2/3 and the
initial interval J was in the hyperbolic region. This was treated above. We
were left with the situation when the right part of J̃ , J̃r (we will similarly call
J̃l the left part), had length smaller that ad,2 − 2/3. Suppose first that J̃l is a
larger portion of J̃ , for instance the length of J̃l is larger than 1/3 of the length
of J̃ . Then by loosing just a factor 1/3 we could continue the iteration by
only considering the orbit of J̃l. This is equivalent to consider the iterates of an
interval of length 1/3|J | with the right hand point placed at the fixed point 1 and
moving in the hyperbolic region: this is the easy case anticipated above since it
completely fits with the distortion computations in the hyperbolic region. We
then consider the case whenever J̃r has length larger than 1/3 of the length of
J̃ . We first notice that this situation is equivalent to the orbit of an interval of
the same length as J̃r with the left hand point placed again at the fixed point
0. We now treat this case together with the more general situation of some
iterates of J , call it again J̃ , which falls in the intermittent region and crosses
at least two boundary points ak. Notice first that since the first derivative of
Tα(x) is a decreasing function of α (provided we remain in the region (0, ad)),
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and an increasing function of x, whenever T k−d
α (ak+1, ak) = (ad+1, ad), then

|Tβk−d
◦ · · · ◦ Tβ1(ak+1, ak)| ≥ δ. We therefore cut J̃ into pieces ∆k− , · · · ,∆k+ ,

such that each of them contains two boundary points and the union of them is of
size larger than |J̃ |/3. For these intervals ∆k, the distortion in the intermittent
region described above gives, for any choice of the composed transfer operators:

Pk−d ◦ · · · ◦ P11∆k
≥ 1∆1,··· ,k−d

e−c5 |∆k|

where ∆1,··· ,k−d is the Tk−d · · ·◦T1 image of J̃ , of length larger than δ. By taking
now l = n0 + k+ − d we have

Pl ◦ · · · ◦ P11J̃ ≥
k+∑

k=k−

Pl+d−k ◦ · · · ◦ Pk−d+1 ◦ Pk−d · · · ◦ P11∆k
≥

k+∑

k=k−

c0e
−c5 |∆k| ≥ c0e

−c5
|J̃ |
3

.

Putting it together.
We have now a complete control of the distortion in both the intermittent

and the chaotic regions: we call I and II the situations when the random iterates
of the interval J stay respectively in the hyperbolic region by spending there a
time nj , j ≥ 1, and in the intermittent region by spending a time mj , j ≥ 1 and
covering each time at most one boundary point of the ak. We call III the third
situation described above where the iterate of J covers more than one boundary
point ak: note that whenever the iterate of J follows in this situation, it will
surely grows more than δ before leaving the intermittent region. We therefore
get after t = n1 + m1 + ... + np + l iterations, where l = n0 if the third case III

never occurs and l = n0 if III happens:

Pt ◦ · · · ◦ P11J̃ ≥

P l
np+mp−1+np−1+np−2+mp−2···n1+m1+1 ◦ P

np

mp−1+np−1+np−2+mp−2···n1+m1+1

◦Pmp−1
np−1+np−2+mp−2···n1+m1+1 ◦ · · · ◦ Pn2

n1+m1+1 ◦ Pm1
n1+1 ◦ Pn1

1 1J̃ ≥

|J |c0

3
exp{−c5 − c2|Tnp+···+m1+n1

J | − · · · − c5|Tm1+n1
J | − c2 − |Tn1

J |} ≥

|J |c0

3
exp{−(c5 + c2)(1 + rnp + rnp+np−1 + · · ·+ rnp+np−1+···+n2)} ≥

|J |c0

3
exp{−(c5 + c2)r

1− r
} := γ|J |.

Since the first derivatives of all the Tβ is strictly increasing on the circle, the
supremum over all possible values of t = n1 + m1 + ... + np + l associated to
intervals J of size 2ε, will be attained when case III will happen at the be-
ginning with J located around 0, and in this case we should consider one third
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of the length of such an interval (see above), which means we should consider
the iterates of the interval (0, 2ε/3). This implies ad+t ≤ 2ε/3 which in turn
provides the value for nε = nε = [ 3cα

2εα ].
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