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Abstract. For a smooth ZZ2−action on a C∞ compact Riemannian manifold M , we
discuss its ergodic properties which include the decomposition of the tangent space of M
into subspaces related to Lyapunov exponents, the existence of Lyapunov charts, and the
subaddtivity of entropies.

§0 Introduction

In this paper we discuss some ergodic properties of commuting diffeomorphisms on a
C∞ compact Riemannian manifold concerning Lyapunov exponents and entropies. Let M
be a compact C∞ Riemannian manifold without boundary, f, g ∈ Diff2(M) with fg = gf ,
where fg denote the composition of f and g. In fact f and g generate a smooth ZZ2−action
on M . We will give a decomposition of the tangent space of M into subspaces related to the
Lyapunov exponents of both actions f and g, and construct a family of Lyapunov charts.
We will show that for almost every x in M , if f and g have same unstable subspace, then
they have same unstable manifold at x. We will investigate the subaddtivity of entropies of
commuting diffeomorphisms, i.e. the entropy of the composition fg is less than or equal to
the sum of the entropies of f and g. In the circumstances for measure-theoretic entropies
the subaddtivity always holds whenever the measure is invariant under the actions f and g,
and becomes additive if the unstable subspace of one map does not intersect with the stable
subspace of another map at almost every point, but for topological entropies additional
condition is needed to obtain the subaddtivity.

We denote by M(M,f) the set of f−invariant Borel probability measures on M . It
is known by many authors (for example, see Proposition 1.2 for the proof,) that f and g
have common invariant measures, i.e. M(M,f) ∩ M(M, g) 6= ∅. We let M(M,f, g) =
M(M,f) ∩M(M, g).

Throughout the paper, we always assume that M is a compact C∞ Riemannian manifold
without boundary, f and g are C2 diffeomorphism on M with fg = gf , µ is an f− and
g−invariant Borel probability measure on M , i.e. µ ∈M(M,f, g).

Let TxM be the tangent space of M at x ∈ M . The diffeomorphism f induces a map
Dfx : TxM → TfxM . It is well known (see [O]) that there exists a measurable set Γf with
νΓf = 1, ∀ ν ∈M(M,f), such that for all x ∈ Γf , u ∈ TxM , the limit

χ(x, u, f) = lim
n→∞

1
n

log ‖Dfn
x u‖

exists and is called Lyapunov exponent of u at x. Let λ1(x, f) > · · · > λr(x,f)(x, f) denote
all Lyapunov exponents of f at x with multiplicities m1(x, f), · · · ,mr(x,f)(x, f) respectively,

and TxM =
r(x,f)⊕
i=1

Ei(x, f) be the corresponding decomposition of tangent space at x ∈M .
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Similarly, for diffeomorphism g we have Lyapunov exponents λ1(x, g) > · · · > λr(x,g)(x, g)
with multiplicities m1(x, g), · · · ,mr(x,g)(x, g) respectively, and the corresponding decomposi-

tion TxM =
r(x,g)⊕
j=1

Ej(x, g).

Suppose f and g are commuting diffeomorphisms. The spectrum {λi(x, f),mi(x, f)} of
f is f−invariant. We will show that it is also g−invariant, i.e. ∀u ∈ Ei(x, f),

χ(gx,Dgxu, f) = χ(x, u, f) = λi(x, f).

and therefore DgxEi(x, f) = Ei(gx, f). Thus we can redecompose each Ei(x, f) according
to diffeomorphism g and get the following.

Theorem A. let M be a C∞ compact Riemannian manifold without boundary, f, g ∈
Diff2(M) with fg = gf . Then there exists a measurable set Γ with fsgtΓ = Γ, ∀ s, t ∈ ZZ
and µΓ = 1, ∀ µ ∈ M(M,f, g), satisfying that for all x ∈ Γ, there is a decomposition of the
tangent space into

TxM =
r(x,f)⊕
i=1

r(x,g)⊕
j=1

Eij(x),

such that ∀ s, t ∈ ZZ, if Eij(x) 6= {0}, then ∀ 0 6= u ∈ Eij(x),

lim
n→∞

1
n

log ‖D(fsgt)n
xu‖ = sλi(x, f) + tλj(x, g),

and if (i1, j1) 6= (i2, j2), Ei1j1(x) 6= {0}, Ei2j2(x) 6= {0}, then

lim
n→∞

1
n

log
∣∣sin(Ei1j1((f

sgt)nx), Ei2j2((f
sgt)nx))

∣∣ = 0.

Moreover, ∀ s, t ∈ ZZ,
D(fsgt)x(Eij(x)) = Eij(fsgtx),
λi(fsgtx, f) = λi(x, f), λj(fsgtx, g) = λj(x, g).

Probably, this result is known. However, because of its importance for our discussion,
we state it here and give the proof in §2 for completeness. In particular, if we take s = 1 and
t = 0, then we have

lim
n→∞

1
n

log ‖Dfn
x u‖ = λi(x, f), ∀ 0 6= u ∈ Eij(x),

lim
n→∞

1
n

log |sin(Ei1j1(f
nx), Ei2j2(f

nx))| = 0.

and DfxEij(x) = Eij(fx), λi(fx, f) = λi(x, f), and λj(fx, g) = λj(x, g). Symmetrically, we
have similar results concerning diffeomorphism g, if we take s = 0 and t = 1. The explicit
statement is given in Proposition 2.8.

By the definition of Lyapunov exponents, given γ > 0, ∀ n, k ∈ ZZ, ‖Dfn
x u‖e−nλi(x,f)

and ‖Dgk
xu‖e−kλj(x,g), u ∈ Eij(x), are dominated by C(x)±1e±nγ‖u‖ and C(x)±1e±kγ‖u‖,
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respectively. We will show in §3 that C(x) can be chosen such that C(f±1x), C(g±1x) ≤
C(x)eγ . This is a generalization of Pesin’s theory ([P]) to commuting diffeomorphisms.

Based on the facts we can construct a family of Lyapunov charts, on which the maps f̃
and g̃, induced by f and g respectively, act approximately to the linear maps with eigenvalues
eλi(x,f) and eλj(x,g) respectively. The result is stated in Proposition 4.1.

Let Es(x, f) =
⊕

λi(x,f)<0

Ei(x, f), Eu(x, f) =
⊕

λi(x,f)>0

Ei(x, f), and if λi(x, f) = 0 for

some i then let Ec(x, f) = Ei(x, f). Also, let Esc(x, f) = Es(x, f) ⊕ Ec(x, f), Euc(x, f) =
Eu(x, f)⊕ Ec(x, f). The unstable manifold for diffeomorphism f , say, is defined by

wu(x, f) = {y ∈M : lim sup
n→∞

1
n

log d(f−nx, f−ny) < 0},

which is f−invariant. It is easy to see by the definition that it is also g− invariant. From
Theorem A we know that Eu(x, f) = Eu(x, g) or Esc(x, f) = Esc(x, g) is equivalent to
Eu(x, f)∩Esc(x, g) = {0} = Eu(x, g)∩Esc(x, f). If it holds at some x ∈ Γ, we will prove in
§5 that the unstable manifolds wu(x, f) and wu(x, g) coincide at x.

The next topic in this paper is concerning the relationship among the entropies of f ,
g and fg. We will prove that if f and g are C2 diffeomorphisms on a smooth compact
manifold preserving a Borel probability measure µ, then hµ(fg) ≤ hµ(f) + hµ(g). It is not
true for general measure preserving transformations on a probability space. There are some
unpublished counterexamples, for instance, due to D. S. Ornstein and B. Weiss, and due to
J.-P. Thouvenot, of two commuting measure preserving automorphisms S, T of probability
space (X,B, ν) with hν(S) = hν(T ) = 0, but such that hν(ST ) > 0. However, in the smooth
dynamical systems the subadditivity of measure-theoretic entropies holds.

From Ledrappier and Young’s formula relating entropies, exponents and dimensions,
we know that the entropy of a diffeomorphism on a smooth manifold is determined by the
behavior of the map on its unstable manifold. If two commuting diffeomorphisms have same
family of unstable manifolds, i.e. wu(x, f) = wu(x, g), µ−a.e., then we can construct an
increasing partition subordinate to the unstable manifolds (see §6 ), and use it to get equality
in above subadditivity formula. We combine the two results in the following theorem which
we will prove in §7 and §9.

Theorem B. Let M be a C∞ compact Riemannian manifold without boundary, f, g ∈
Diff2(M), and fg = gf . Then

hµ(fg) ≤ hµ(f) + hµ(g), ∀µ ∈M(M,f, g),

where hµ(·) denotes the measure-theoretic entropy. Moreover, if Eu(x, f) ∩ Es(x, g) = {0}
and Es(x, f) ∩ Eu(x, g) = {0}, µ− a.e, then the equality holds.

For topological entropies the the answer to the question whether h(fg) ≤ h(f) + h(g)
is also negative in general. L. Wayne Goodwyn has a counterexample for the case, i.e. there
exists a compact metric space X and two homeomorphisms S and T with ST = TS such
that h(S) = h(T ) = 0 and h(ST ) > 0(see [G]). Since topological entropy is the supremum
of measure-theoretic entropy, from Theorem B we can prove the formula if some additional
hypotheses are given on diffeomorphism fg.
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Theorem C. Let M ,f ,g is same as in Theorem B. If for fg, one of the following
conditions holds:

i) fg ∈ Diff∞(M), or
ii) fg is expensive, or

iii) fg has finite number of ergodic measures with maximal entropy,
then

h(fg) ≤ h(f) + h(g).

This theorem will be proved in §10. In the section we will also present a counterexample
to show that if f and g are homeomorphisms on a compact smooth manifold, then the result
of Theorem C fails. We don’t know whether the result still holds if the additional hypotheses
on fg are removed.

§1. Ergodicity

In this section we will give the definition of ergodicity and discuss the properties for two
commuting continuous maps on a compact metric space.

For a map T from a set X to itself, we denote by Fix(T ) the set of fixed points of T .

Proposition 1.1. If T and S are commuting maps on a set X, then S(Fix(T )) ⊂ Fix(T ).
Proof. Take x ∈ Fix(T ). Since T (Sx) = S(Tx) = Sx, we have Sx ∈ Fix(T ).

Let M(X) be the set of Borel probability measures on a compact metric space X, and
T be a map on X. T induces a map T ∗ on M(X) by putting T ∗µ = µ ◦ T−1,∀µ ∈ M(X).
Thus Fix(T ∗) = M(X,T ).

Proposition 1.2. If T and S are commuting continuous maps on a compact metric
space X, then M(X,T ) ∩M(X,S) 6= ∅.

Proof. By Proposition 1.1, S∗(M(X,T )) ⊂ M(X,T ). Since M(X,T ) is a nonempty
compact convex set in weak ∗ topology and S∗ is continuous, we know that S∗ has a fixed
point in M(X,T ).

We write M(X,T, S) = M(X,T ) ∩M(X,S). Since both M(X,T ) and M(X,S) are
convex sets, M(X,T, S) is convex.

Definition. Suppose T and S are continuous maps on a compact metric space X with
TS = ST . A measure µ ∈M(X,T, S) is said to be (T, S)−ergodic if for any measurable set
B with µ(T−1B4B) = 0 = µ(S−1B4B), µ(B) = 0 or µ(B) = 1.

(T, S)−ergodicity shares some properties with those of single transformation. For exam-
ple, we give the following propositions whose proof is parallel to the case of one transformation
(See [W], Chapter 1 and 6).

Proposition 1.3. µ is (T, S)−ergodic iff any measurable function φ on X with φ(Tx) =
φ(x) = φ(Sx), µ− a.e. is constant µ− a.e.

Proof. ”⇒” is based on the fact that for such function φ, the set {x : φ(x) > C},
C ∈ IR, is invariant under the actions T and S. ”⇐” holds because the characteristic function
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χB , where B is a set with µ(T−1B4B) = 0 = µ(S−1B4B), satisfies χB(Tx) = χB(x) =
χB(Sx), µ− a.e. and equals to 1 or 0 almost everywhere.

Proposition 1.4. µ is (T, S)−ergodic iff µ is an extreme point of M(X,T, S).
Proof. Suppose µ is not (T, S)−ergodic. We can find a measurable set E with TE =

E = SE and 0 < µ(E) < 1. Let

µ1(·) =
µ(· ∩ E)
µ(E)

, µ2(·) =
µ(· ∩X\E)
µ(X\E)

.

Then µ = pµ1 +(1− p)µ2, where p = µ1(E). So µ can be expressed as a convex combination
of µ1, µ2 ∈M(X,T, S) and is not an extreme point of M(X,T, S).

Suppose µ is (T, S)−ergodic, and µ = pµ1 + (1 − p)µ2 for some µ1, µ2 ∈ M(X,T, S)
and p ∈ (0, 1). Then µ1 is absolutely continuous with respect to µ, and the Radon-Nikodym
derivative φ = dµ1/dµ satisfies that φ(Tx) = φ(x) = φ(Sx), µ− a.e. So it must follow that
φ(x) = 1, µ − a.e, because

∫
X
φdµ = 1. Thus, µ = µ1. Similarly, µ = µ2. Hence µ is an

extreme point of M(X,T, S).

Proposition 1.4 shows the existence of (T, S)−ergodic measure and gives rise to the
possibility of (T, S)−ergodic decomposition.

Notice if T and S commute, then so do T and TS.

Proposition 1.5. Suppose T and S are homeomorphisms on X.
i) M(X,T, TS) = M(X,T, S).

ii) µ is (T, S)−ergodic iff µ is (T, TS)− ergodic.

Proof. i) is clear. ii) follows from i) and Proposition 1.4.

We denote by E(X,T ) the set of ergodic measures under action T . Then by our notation,
M(E(X,T )) is the set of Borel probability measures on E(X,T ). It is known that for any
ν ∈ M(X,T ), there exists a unique element π ∈ M(E(X,T )), such that ν has the ergodic
decomposition ([W],Chapter 6)

ν =
∫
E(X,T )

νedπ(νe), (∆)

It means that ∀ φ ∈ C(X),∫
X

φ(x)dν(X) =
∫
E(X,T )

(
∫

X

φ(x)dνe(x))dπ(νe). (∆∆)

In fact, given any π ∈M(E(X,T )), this formula can determine a unique T−invariant measure
ν on X as well. Thus we obtain a 1−1 map τ : M(X,T ) →M(E(X,T )) defined by τ(ν) = π.

Now we give following remarks which may be helpful for understanding (T, S)−ergodic
measures. Here we need assume that both T and S are homeomorphisms on a compact
metric space X.

Remark 1.6. S∗ induces a map S∗∗ = (S∗)∗ on the set M(E(X,T )) by S∗∗(ν) =
ν ◦ (S∗)−1.
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Proof. S∗ is invertible. By Proposition 1.1, S∗(M(X,T )) = M(X,T ). Since S∗ is
affine and E(X,T ) is the set of extreme points of M(X,T ), S∗(E(X,T )) = E(X,T ). Then
the result follows.

Remark 1.7.
i) µ ∈M(X,T ) is S−invariant iff τ(µ) is S∗−invariant. In other words, µ ∈ Fix(S∗) iff

τ(µ) ∈ Fix(S∗∗).
ii) µ is (T, S)−ergodic iff τ(µ) is ergodic with respect to S∗.
Proof. i) Denote π = τ(µ). Since S∗ is affine and maps E(X,T ) to itself, we have that

S∗µ =
∫
E(X,T )

S∗µedπ(µe) =
∫
E(X,T )

µedπ((S∗)−1µe) =
∫
E(X,T )

µed(S∗∗π)(µe).

Comparing it with (∆) we know that S∗µ = µ iff S∗∗π = π.
ii) Notice that i) means τ(M(X,T, S)) = M(E(X,T ), S∗). Since τ is 1 − 1 and affine,

the extreme points of the two sets are corresponding under the action τ .

§2. Lyapunov Exponents

From now on we back our discussion on the smooth dynamical systems. The suppositions
on M , f , g and µ are as before. Recall that Γf is a subset of M such that fΓf = Γf , νΓf = 1,
∀ ν ∈M(M,f), and for any x ∈ Γf ,

χ(x, u, f) = lim
n→∞

1
n

log ‖ Dfn
x u ‖, ∀u ∈ TxM.

Lemma 2.1. χ(gx,Dgxu, f) = χ(x, u, f).
Proof. There exists C > 0 such that ∀x ∈M,u ∈ TxM ,

C−1 ‖ u ‖≤‖ Dgxu ‖≤ C ‖ u ‖ .

Thus
C−1 ‖ Dfn

x u ‖≤‖ DgfnxDf
n
x u ‖≤ C ‖ Dfn

x u ‖ .

So

lim
n→∞

1
n

log ‖ Dfn
gxDgxu ‖= lim

n→∞

1
n

log ‖ DgfnxDf
n
x u ‖= lim

n→∞

1
n

log ‖ Dfn
x u ‖ .

We know that the set Γf and the spectrum {λi(x, f),mi(x, f)} are f−invariant, and
Dfx(Ei(x, f)) = Ei(fx, f), i = 1, · · · , r(x, f). From above lemma we have the following.

Corollary 2.2.
i) The set Γf is g−invariant, i.e. gΓf = Γf .

ii) The spectrum {λi(x, f),mi(x, f), i = 1, · · · , r(x, f)} is g−invariant.
iii) Dgx(Ei(x, f)) = Ei(gx, f), i = 1, · · · , r(x, f).

Next proposition is a special case of Theorem A.
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Proposition 2.3. There exists a measurable set Γ1 with fΓ1 = Γ1 = gΓ1 and µΓ1 = 1,
∀ µ ∈ M(M,f, g), satisfying that for all x ∈ Γ1, there is a decomposition of tangent space
into

TxM =
r(x,f)⊕
i=1

r(x,g)⊕
j=1

Eij(x)

such that if Eij(x) 6= {0}, then ∀ 0 6= u ∈ Eij(x),

lim
n→∞

1
n

log ‖Dfn
x u‖ = λi(x, f), lim

n→∞

1
n

log ‖Dgn
xu‖ = λj(x, f),

and

lim
n→∞

1
n

log |sin(Ei1j1(f
nx), Ei2j2(f

nx))| = 0, lim
n→∞

1
n

log |sin(Ei1j1(g
nx), Ei2j2(g

nx))| = 0.

Moreover,the following invariant properties hold.
i) DfxEij(x) = Eij(fx), DgxEij(x) = Eij(gx).

ii) λi(fx, f) = λi(x, f) = λi(gx, f), λj(fx, g) = λj(x, g) = λj(gx, g).
Proof. For any point x ∈ Γf , let TxM = Ei(x, f)⊕· · ·⊕Er(x,f)(x, f) be the decompo-

sition of tangent space for diffeomorphism f . By Corollary 2.2, Dgx(Ei(x, f)) = Ei(gx, f).
Restricted on {Ei(x, f)}, {Dgn

x} is a cocycle on M with respect to g (see [Ru]), where we take
Ei(x, f) = {0} if i > r(x, f) or x is not in Γf . Now we use the Multiplicative Ergodic Theo-
rem for each i to get a subset Γ(i) ⊂ Γ, such that ∀ x ∈ Γ(i), after relabelling the subscript, if
necessary, Eij(x) has desired properties. Since for each i, µΓ(i) = 1, ∀ µ ∈ M(M,f, g), and

by Corollary 2.2.i), fΓ(i) = Γ(i), we can take Γ1 =
r(x,f)⋂
i=1

Γ(i).

The Proof of Theorem A.
First we claim that ∀ s, t ∈ ZZ, i = 1, · · · , r(x, f), j = 1, · · · , r(x, g), the set

Aγ = {x : ∃ux ∈ Eij(x), s.t. χ(x, ux, f
sgt)− sλi(x, f)− tλj(x, g) > 4γ}

satisfies µAγ = 0 for all µ ∈M(M,f, g).
Suppose it is not true. Then there exists a µ ∈M(M,f, g) with µAγ > 0. Choose l > 0

such that the sets

A′ = {x ∈ Aγ : ‖D(fsgt)n
xux‖ ≥ l−1‖ux‖ expn(χ(x, ux, f

sgt)− γ), ∀n ≥ 0},

A′′ = {x ∈ Aγ : ‖Dgtn
x u‖ ≤ l‖u‖ expn(tλj(x, g) + γ), ∀u ∈ Eij(x), n ≥ 0}

have measure larger than 1
2µAγ . Then A′∩A′′ 6= ∅. By Poincaré Recurrence Theorem we can

take x ∈ A′∩A′′ such that there exists a sufficient large integer n > 2 log l
γ with fsnx ∈ A′∩A′′

and
‖Dfsn

x u‖ ≤ ‖u‖ expn(sλi(x, f) + γ), ∀u ∈ Eij(x).

Since Dfsn
x u ∈ Eij(fsnx) and fsnx ∈ A′′,

‖D(fsgt)n
xu‖ = ‖Dgtn

fsnxDf
sn
x u‖ ≤ l‖Dfsn

x u‖ expn(tλj(fsnx, g) + γ)

≤ l‖u‖ expn(sλi(x, f) + tλj(x, g) + 2γ)

< l−1‖u‖ expn(χ(x, u, fsgt)− γ), ∀u ∈ Eij(x).
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In particular, take u = ux, then

‖D(fsgt)n
xux‖ < l−1‖ux‖ expn(χ(x, ux, f

sgt)− γ).

This contradicts the fact x ∈ A′.
Similar claim for the set

Bγ = {x : ∃ux ∈ Eij(x), s.t. χ(x, ux, f
sgt)− sλi(x, f)− tλj(x, g) < 4γ}

is also true. It is easy to see by the claims that for any µ ∈M(M,f, g), µ−a.e.x ∈M ,∀ s, t ∈
ZZ, i = 1, · · · , r(x, f), j = 1, · · · , r(x, g), if Eij(x) 6= {0}, then ∀ 0 6= u ∈ Eij(x),

χ(x, u, fsgt) = lim
n→∞

1
n

log ‖D(fsgt)n
xu‖ = sλi(x, f) + tλj(x, g).

Using the same idea, with some modification, we can prove the result concerning the
equality

lim
n→∞

1
n

log
∣∣sin(Ei1j1((f

sgt)nx), Ei2j2((f
sgt)nx))

∣∣ = 0.

The rest of the results of the theorem follow directly from Proposition 2.3.

§3. A Version of Pesin’s Theory

In this section we give a version of Pesin’s theory in the case of commuting diffeomor-
phisms. The main result is stated in Proposition 3.6.

Lemma 3.1. Let A(x) be a positive measurable function on Γ such that there exist
positive measurable functions P1(x) and P2(x) on Γ satisfying that for all x ∈ Γ,

P1(x)e−6(|n|+|k|)γ ≤ A((fngk)x) ≤ P2(x)e6(|n|+|k|)γ , ∀ u, k ∈ ZZ.

Then a measurable function C : Γ → [1,∞) can be found such that, ∀ x ∈ Γ,

C(x)−1 ≤ A(x) ≤ C(x),

and
C(f±1x) ≤ C(x)e8γ , C(g±1x) ≤ C(x)e8γ .

Proof. For any x ∈ Γ, except for finite number of pairs (n, k),

A((fngk)x)e−8(|n|+|k|)γ ≤ 1, A((fngk)x)−1e−8(|n|+|k1|)γ ≤ 1.

Thus,

C(x) = max{1, A(fngkx)e−8(|n|+|k|)γ , A(fngkx)−1e−8(|n|+|k|)γ , ∀ n, k ∈ ZZ}
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is a required function.

Lemma 3.2. For any γ > 0, there exists a measurable function Q : Γ → [1,∞) such
that ∀ n, k ∈ ZZ, 0 6= u ∈ Eij(x), x ∈ Γ, i = 1, · · · , r(x, f), j = 1, · · · , r(x, g),

Q(x)−1‖u‖enλi(x,f)+kλj(x,g)−3(|n|+|k|)γ ≤ ‖D(fngk)xu‖
≤ Q(x)‖u‖enλi(x,f)+kλj(x,g)+3(|n|+|k|)γ .

Proof. In the proof we always assume that ‖u‖ = 1.
We assert that for each x ∈ Γ, if |n| or |k| is sufficiently large, then

e−3(|n|+|k|)γ ≤ ‖D(fngk)xu‖e−nλi(x,f)−kλj(x,g) ≤ e3(|n|+|k|)γ .

First we suppose n ≥ k ≥ 0.
Take l = l(x) > 0, such that ∀ y ∈

⋃
n,k∈ZZ

(fngk)x, v ∈ Eij(y), i = 1, · · · , r(x, f),

i = 1, · · · , r(x, g),

‖Dfyv‖ ≤ ‖v‖eλi(x,f)+lγ , ‖Dgyv‖ ≤ ‖v‖eλj(x,g)+lγ .

By Theorem A, ∀ 0 ≤ t ≤ l, u ∈ Eij(x),

lim
s→∞

1
s

log ‖D(f lgt)s
xu‖ = lλi(x, f) + tλj(x, g).

We can choose a positive integer s0 > l, such that ∀s > s0, l ≥ t ≥ 0,

eslλi(x,f)+stλj(x,g)−(sl+st)γ ≤ ‖D(f lgt)s
xu‖ ≤ eslλi(x,f)+stλj(x,g)+(sl+st)γ .

Denote NI = ls0.
Take n ≥ NI . For 0 ≤ k ≤ n, we can write n = sl + p, k = ts + q, where 0 ≤ p < l,

0 ≤ q < s. Notice that λi(x, f) and λj(x, g) are both f and g−invariant, we have

‖D(fngk)xu‖ = ‖Dfp ◦Dgq ◦D(f lgt)s
xu‖

≤ ep(λi(x,f)+lγ) · eq(λj(x,g)+lγ) · eslλi(x,f)+stλj(x,g)+(sl+st)γ

= enλi(x,f)+kλj(x,g)+(pl+ql+sl+st)γ

≤ enλi(x,f)+kλj(x,g)+3(n+k)γ .

Also, we can write n = sl − p, k = ts− q, where 0 ≤ p < l, 0 ≤ q < s. Then

‖D(f lgt)s
xu‖ = ‖Dfp ◦Dgq ◦D(fngk)xu‖

≤ ep(λi(x,f)+lγ) · eq(λj(x,g)+lγ)‖D(fngk)xu‖.

So
‖D(fngk)xu‖ ≥ e−p(λi(x,f)+lγ) · e−q(λj(x,g)+lγ) · eslλi(x,f)+stλj(x,g)−(sl+st)γ

= enλi(x,f)+kλj(x,g)−(pl+ql+sl+st)γ

≥ enλi(x,f)+kλj(x,g)−3(n+k)γ .
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These inequalities show that in the case of n ≥ k ≥ 0, our assertion is true if n ≥ NI .
It is also true for the case k ≥ n ≥ 0 because we can find KI > 0 similarly such that the
inequality holds if k ≥ KI . Since the iterations of f and g in positive and negative directions
are symmetrical, the assertion is true if one or two of n and k are negative.

Now we know that

Q(x) = max{1,‖D(fngk)xu‖−1enλi(x,f)+kλj(x,g)−3(|n|+|k|)γ ,

‖D(fngk)xu‖e−nλi(x,f)−kλj(x,g)−3(|n|+|k|)γ , ∀n, k ∈ ZZ, u ∈ Eij(x), ‖u‖ = 1}

is a required function.

Remark 3.3. In the proof of Lemma 3.2, Q(x) is chosen to be the minimal function
satisfying our requirement, i.e. ∀ x ∈ Γ,

Q(x) = inf{q ≥ 1 : q−1e−3(|n|+|k|)γ ≤ ‖D(fngk)xu‖e−nλi(x,f)−kλj(x,g) ≤ qe3(|n|+|k|)γ

∀n, k ∈ ZZ, u ∈ Eij(x)}.

Lemma 3.4. For any γ > 0, there exists a measurable function R : Γ → [1,∞), such
that ∀ n, k ∈ ZZ, i1, i2 = 1, · · · , r(x, f), j1, j2 = 1, · · · , r(x, g), (i1, j1) 6= (i2, j2),∣∣∣sin(

Ei1j1((f
ngk)x), Ei2j2((f

ngk)x)
)∣∣∣ ≥ R(x)−1e−3(|n|+|k|)γ .

Proof. The method is similar as in the proof for the left inequality of Lemma 3.2 if
we use

max
{ | sin(Ei1j1(fx), Ei2j2(fx))|

| sin(Ei1j1(x), Ei2j2(x))|

}
, max

{ | sin(Ei1j1(gx), Ei2j2(gx))|
| sin(Ei1j1(x), Ei2j2(x))|

}
instead of Dfx and Dgx respectively, where the maximums run over i1, i2 = 1, · · · , r(x, f),
j1, j2 = 1, · · · , r(x, g), (i1, j1) 6= (i2, j2).

Lemma 3.5. The function Q(x) determined by the proof of Lemma 3.2 satisfies that

Q(fsgtx) ≤ Q(x)2e6(|s|+|t|)γ , ∀ s, t ∈ ZZ.

Proof. Take s, t ∈ ZZ, ∀ u ∈ Eij(f tgtx), where i = 1, · · · , r(x, f), j = 1, · · · , r(x, g). We
can choose u′ ∈ Eij(x) with u = D(fsgt)xu

′. By Lemma 3.2,

Q(x)−1‖u′‖esλi(x,f)+tλj(x,g)−3(|s|+|t|)γ ≤ ‖u‖ ≤ Q(x)‖u′‖esλi(x,f)+tλj(x,g)+3(|s|+|t|)γ .

Since ∀ n, k ∈ ZZ, D(fngk)fsgtxu = D(fn+sgk+t)xu
′,

Q(x)−1‖u′‖e(n+s)λi(x,f)+(k+t)λj(x,g)−3(|n+s|+|k+t|)γ

≤ ‖D(fngk)fsgtxu‖ ≤ Q(x)‖u′‖e(n+s)λi(x,f)+(k+t)λj(x,g)+3(|n+s|+|k+t|)γ .
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From these inequalities we have that

Q(x)−2‖u‖enλi(x,f)+kλj(x,g)−3(|n|+|k|)γ−6(|s|+|t|)γ

≤ ‖D(fngk)fsgtxu‖ ≤ Q(x)2‖u‖enλi(x,f)+kλj(x,g)+3(|n|+|k|)γ+6(|s|+|t|)γ .

By Remark 3.3 the value of Q at fsgtx must satisfy

Q(fsgtx) ≤ Q(x)2e6(|s|+|t|)γ .

Proposition 3.6. Given M,f, g,Γ as in Theorem A, then for any γ > 0, there exists
a measurable function C : Γ → [1,∞) such that

i) ∀n, k ∈ ZZ, u ∈ Eij(x), i = 1, · · · , r(x, f), j = 1, · · · , r(x, g),

C(x)−1‖u‖enλi(x,f)+kλj(x,g)−(|n|+|k|)γ ≤ ‖D(fngk)xu‖ ≤ C(x)‖u‖enλi(x,f)+kλj(x,g)+(|n|+|k|)γ ,

ii) ∀i1, i2 = 1, · · · , r(x, f), j1, j2 = 1, · · · , r(x, g), (i1, j1) 6= (i2, j2),

|sin(Ei1j1(x), Ei2j2(x))| ≥ C(x)−1,

iii) C(f±1x) ≤ C(x)eγ , C(g±1x) ≤ C(x)eγ .
Proof. In Lemma 3.5 we replace s,t by −n,−k, respectively, then replace x by fngkx

to get
Q(x) ≤ Q(fngkx)2e6(|n|+|k|)γ ,

i.e.
Q(fngkx) ≥

√
Q(x)e−3(|n|+|k|)γ .

We let P1(x) =
√
Q(x) and P2(x) = Q(x)2. By Lemma 3.1 there exists a measurable

function C1(x) > 0 with Q(x) ≤ C1(x) and C1(f±1x) ≤ C1(x)e8γ , C1(g±1x) ≤ C1(x)e8γ .
Take

A(x) = max{| sin(Ei1j1(x), Ei2j2(x))| :
i1, i2 = 1, · · · , r(x, f), j1, j2 = 1, · · · , r(x, g), (i1, j1) 6= (i2, j2)}.

By Lemma 3.4 and Lemma 3.1, there exists a measurable function C2(x) > 0 such that
A(x) ≥ C2(x)−1 and C2(f±1x) ≤ C2(x)e8γ , C2(g±1x) ≤ C2(x)e8γ .

Now we use γ instead of 8γ and put C(x) = max{C1(x), C2(x)}. Then C(x) is a required
function.

§4. Lyapunov Charts

We have already had the decomposition of tangent space into subspaces corresponding
Lyapunov exponents for both f and g. In this section we construct Lyapunov charts for the
diffeomorphisms by the same method used in [LY]. For simplicity our discussion just concerns
the difference and skips the rest.
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Let 〈〈·, ·〉〉 be the inner product on TxM given by the Riemannian structure and ‖ · ‖
be the induced norm. Let 〈·, ·〉 and |·, ·| denote the usual inner product and norm in IRm

respectively. Also, for ρ > 0, let B̃(ρ) be the ball in IRm centered at origin of radius ρ.
Let

λ+(x, f) = min{λi(x, f) : λi(x, f) > 0}, λ−(x, f) = max{λi(x, f) : λi(x, f) < 0},

∆λ(x, f) = min{λi(x, f)− λi+1(x, f), i = 1, · · · , r(x, f)− 1},

and define λ±(x, g), ∆λ(x, g) in similar way. Take

0 < γ = γ(x) ≤ 1
200m

min{∆λ(x, f),∆λ(x, g),±λ±(x, f),±λ±(x, g)},

where m = dimM . Next proposition shows the existence and properties of Lyapunov charts
for f and g.

Proposition 4.1. For the γ defined as above, there exists a measurable function l : Γ →
[0,∞) with l(f±1x) ≤ l(x)eγ , l(g±1x) ≤ l(x)eγ , and a set of embedings Φx : B̃(l(x)−1) →M
at each point x ∈ Γ such that the following holds.

i) Φx(0) = x, and the preimages Rij(x) = DΦx(0)−1(Eij(x)) of Eij(x) are mutually
orthogonal in IRm, where i = 1, · · · , r(x, f), j = 1, · · · , r(x, g).

ii) Let f̃x = Φ−1
fx ◦ f ◦ Φx be the connecting map between the chart at x and the chart

at fx. g̃x, (f̃g)x and their inverses are defined similarly. Then (f̃g)x = f̃gxg̃x = g̃fxf̃x and

(f̃g)−1
x = f̃−1

g−1xg̃
−1
x = g̃−1

f−1xf̃
−1
x .

iii) For any 1 ≤ i ≤ r(x, f), l ≤ j ≤ r(x, g),and u ∈ Rij(x),

|u|eλi(x,f)−γ ≤ |Df̃x(0) u| ≤ |u|eλi(x,f)+γ ,

|u|eλj(x,g)−γ ≤ |Dg̃x(0) u| ≤ |u|eλj(x,g)+γ ,

|u|eλi(x,f)+λj(x,g)−γ ≤ |D(f̃g)x(0) u| ≤ |u|eλi(x,f)+λj(x,g)+γ .

iv) Let L(Ψ) be the Lipschitz constant of the function Ψ. Then for Fx = f̃x, g̃x, (f̃g)x

and their inverses,
L(Fx −DFx(0)) ≤ γ, L(DFx) ≤ l(x).

v) There exists a number λ > 0 depending on γ and the exponents such that ∀x ∈ Γ,

|f̃±1
x u| ≤ eλ|u|, |g̃±1

x u| ≤ eλ|u|, |(f̃g)±1
x u| ≤ eλ|u|, ∀u ∈ B̃(e−λ−γ l(x)−1).

vi) For all u, v ∈ B̃(l(x)−1), we have

K−1d(Φxu,Φxv) ≤ |u− v| ≤ l(x)d(Φxu,Φxv),

for some universal constant K.

We shall refer to any system of local charts {Φx : x ∈ Γ} satisfying i) − vi) as
(γ, l)−charts for f and g. Obviously, if {Φx : x ∈ Γ} is a system of (γ, l)−charts for both f
and g, then it is a system for either f or g as well.

12



The Proof of Proposition 4.1.
By Proposition 3.6 there exists a measurable function C : Γ → [1,∞) such that for all

x ∈ Γ, we have the following.
i) ∀n, k ∈ ZZ, u ∈ Eij(x), i = 1, · · · , r(x, f), j = 1, · · · , r(x, g),

C(x)−1‖u‖enλi(x,f)+kλj(x,g)−(|n|+|k|)γ ≤ ‖D(fngk)xu‖ ≤ C(x)‖u‖enλi(x,f)+kλj(x,g)+(|n|+|k|)γ .

ii) ∀i1, i2 = 1, · · · , r(x, f), j1, j2 = 1, · · · , r(x, g), (i1, j1) 6= (i2, j2),

|sin(Ei1j1(x), Ei2j2(x))| ≥ C(x)−1.

iii) C(f±1x) ≤ C(x)eγ , C(g±1x) ≤ C(x)eγ .
We define a new inner product 〈〈〈·, ·〉〉〉 on TxM . First, for u, v ∈ Eij(x), let

〈〈〈u, v〉〉〉 =
+∞∑

n=−∞

+∞∑
k=−∞

〈〈D(fngk)xu, D(fngk)xv〉〉
exp 2[nλi(x, f) + kλj(x, g) + 2(|n|+ |k|)γ]

.

Then we extend 〈〈〈·, ·〉〉〉 to TxM by demanding that all subspaces {Eij(x)} be mutually
orthogonal with respect to 〈〈〈·, ·〉〉〉. Let ||| · ||| be the corresponding norm. A calculation shows
that ∀ 0 6= u ∈ Eij(x),

‖u‖ ≤ |||u||| ≤ C0C(x)‖u‖,

where C0 = (
+∞∑

n=−∞

+∞∑
k=−∞

e−2(|n|+|k|)γ)
1
2 , and

|||u|||eλi(x,f)−2γ ≤ |||Dfxu||| ≤ |||u|||eλi(x,f)+2γ ,

|||u|||eλj(x,g)−2γ ≤ |||Dgxu||| ≤ |||u|||eλj(x,g)+2γ ,

and then
|||u|||eλi(x,f)+λj(x,g)−4γ ≤ |||Dfgx ·Dgxu||| ≤ |||u|||eλi(x,f)+λj(x,g)+4γ .

For arbitrary 0 6= u ∈ TxM , we can write u =
r(x,f)∑
i=1

r(x,g)∑
j=1

uij , where uij ∈ Eij(x). It is

clear that
‖u‖ ≤

∑
i

∑
j

‖uij‖ ≤
∑

i

∑
j

|||uij ||| ≤ m|||u|||,

because there are at most m different subspaces Eij(x) in TxM . With similar argument in
[LY, Appendix] we obtain that

‖u‖ ≥ ‖uij‖C(x)−m+1, ∀i = 1, · · · , r(x, f), j = 1, · · · , r(x, g).

Therefore

|||u||| ≤
r(x,f)∑
i=1

r(x,g)∑
j=1

|||uij ||| ≤ C0C(x)
r(x,f)∑
i=1

r(x,g)∑
j=1

‖uij‖ ≤ mC0C(x)m‖u‖.
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Define a linear map Lx : TxM → IRm such that

〈Lxu, Lxv〉 = 〈〈〈u, v〉〉〉, ∀u, v ∈ TxM,

and let Φx = expx ◦L−1
x , then i)−iii) hold, if we use γ instead of max{mγ, 4γ}. To get

iv)−vi) we take l(x) = CC(x)m, where C is large enough and chosen in a way similar as in
[LY, Appendix], and take K = 2m for vi). The proof is finished.

Corollary 4.2. With above notation, ∀ 0 < ε < e−γ ,

f̃±1
x B̃(εe−λl(x)−1) ⊂ B̃(εl(fx)−1), g̃±1

x B̃(εe−λl(x)−1) ⊂ B̃(εl(gx)−1).

Proof. It is Proposition 4.1.v).

Now we introduce a new norm | · |′ on IRm. For any v ∈ IRm, we may write v =
r(x,f)∑
i=1

r(x,g)∑
j=1

vij , where vij ∈ Rij as Rij 6= {0}. Then let

|v|′ = max{|vij |, ∀i = 1, · · · , r(x, f), j = 1, · · · , r(x, g)}.

It is clear that 1√
m
|v| ≤ |v|′ ≤ |v|, where m = dimM , and Proposition 4.1 still holds for | · |′,

but the universal constant K = 2m may change to K = 2m
√
m. From here on, we use | · |′

as the norm in IRm and still write it as | · |.

Suppose {Φx : x ∈ Γ} is a system of (γ, l)−charts for f . For x ∈ Γ, let Ru =
L−1

x Eu(x, f),Rsc = L−1
x Esc(x, f) and so on. Then IRm = Rs ×Rc ×Ru, or IRm = Rsc ×Ru.

By Proposition 4.1.ii), DΦx(0) takes Ru,Rc,Rs to Eu(x, f),Ec(x, f),Es(x, f) respectively.
The u−coordinate of a point v ∈ IRm is denoted by vu. Other notations such as vc, vs, vsc

are understood in obvious way. Clearly

|v| = max{|vs|, |vc|, |vu|}.

We should remember that the notations vu,vsc depend on the diffeomorphism, but we will
not indicate it in our notation, because there is no ambiguity from context.

Corollary 4.3. Let x ∈ Γ and 0 < ε < e−λ−γ . We have the following.
i) If v, v′ ∈ B(εl(x)−1) and |v − v′| = |vu − v′u|, then

|f̃xv − f̃xv
′| = |(f̃xv)u − (f̃xv

′)u| ≥ eλ+(x,f)−2γ |v − v′|.

ii) If v, v′ ∈ B(εl(x)−1) and |v − v′| = |vsc − v′sc|, then

|f̃−1
x v − f̃−1

x v′| = |(f̃−1
x v)sc − (f̃−1

x v′)sc| ≥ e−2γ |v − v′|.

Proof. It follows from Proposition 4.1.iii)-v).
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§5. Unstable Manifold

Recall that the global unstable manifold of a diffeomorphism f at x is the set wu(x, f) =
{y ∈M : lim sup

n→∞
1
n log d(f−nx, f−ny) < 0}.

Let {Φx : x ∈ Γ} be a system of (γ, l)− charts for f . The local unstable manifold,
denoted by wu

α(x, f), of f at x associated with {Φx} and α is defined to be the component
of wu(x, f) ∩ ΦxR(αl(x)−1) that contains x. The Φ−1

x − image of this set in the x−chart is
denoted by Wu

α (x, f).
The following result is well-known.

Proposition 5.1. For 0 < α ≤ 1 and x ∈ Γ, Wu(x, f) is the graph of a function

ψf
x : Bu(αl(x)−1) −→ Bsc(αl(x)−1)

with ψf
x(0) = 0 and ‖ Dψf

x ‖≤ 1
3 , where Bu(β) and Bsc(β) denote the balls centered at the

origin of radius β in Ru and Rsc respectively.

The family of global unstable manifolds {wu(x, f) : x ∈ Γ} is f−invariant, that is,
fwu(x, f) = wu(fx, f). If f and g commute, we have the following.

Lemma 5.2. fwu(x, g) = wu(fx, g).
Proof. There exists C > 0,such that ∀x, y ∈M ,

C−1d(x, y) ≤ d(fx, fy) ≤ Cd(x, y).

Therefore

fwu(x, g) = {y ∈M : lim sup
n→∞

1
n

log d(g−nx, g−n(f−1y) ) < 0}

= {y ∈M : lim sup
n→∞

1
n

log d(g−n(fx), g−ny) < 0}

= wu(fx, g).

Now we consider the case that Eu(x, f) = Eu(x, g), µ − a.e. Let {Φx : x ∈ Γ} be a
system of (γ, l)−charts for both f and g. Then by Proposition 5.1 there are two functions
ψf

x and ψg
x defined on the balls of radius αl(x)−1 centered at origin in Ru, where Ru =

(DΦx(0))−1Eu(x, f) = (DΦx(0))−1Eu(x, g). The graphs of ψf
x and ψg

x are Wu
α (x, f) and

Wu
α (x, g) respectively.

Lemma 5.3. Suppose Eu(x, f) = Eu(x, g), µ− a.e. and 0 < α < e−λ−γ . Then ∀ x ∈ Γ,
i) f̃−1

x Wu
α (x, f) ⊂Wu

α (f−1x, f), f̃−1
x Wu

α (x, g) ⊂Wu
α (f−1x, g);

ii) ∀v ∈Wu
α (x, f) or Wu

α (x, g),

|f̃−n
x v| = |(f̃−n

x v)u| ≤ |v| exp[−n(λ+(x, f)− 2γ)].

Proof. We only need prove the result related to Wu
α (x, g). Take v ∈ Wu

α (x, g) arbi-
trary. Then |v| ≤ αl(x)−1. By Proposition 4.1.v), |f̃−1

x v| ≤ e−γ l(x)−1 ≤ l(f−1x)−1, i.e.
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f̃−1
x v ∈ B(l(f−1x)−1). It is easy to know by Lemma 5.2 and Proposition 5.1 that f̃−1

x v ∈
Wu

α′(f
−1x, g) for some 0 < α′ < 1. Thus, Proposition 5.1 gives that |f̃−1

x v| = |(f̃−1
x v)u|. By

Corollary 4.3.i),
|v| = |f̃f−1xf̃

−1
x v| ≥ eλ+(x,f)−2γ |f̃−1

x v|,

i.e.
|f̃−1

x v| ≤ e−(λ+(x,f)−2γ)|v| ≤ |v|e−γ ≤ αl(f−1x).

Thus, |f̃−1
x v| ∈ l(f−1x)−1 and i) holds. Continuing this process we obtain ii).

Proposition 5.4. SupposeM is a C∞ compact Riemannian manifold without boundary,
f, g ∈ Diff2(M) with fg = gf , and Γ is as in Theorem A. For any x ∈ Γ, if Eu(x, f) =
Eu(x, g), then wu(x, f) = wu(x, g).

Proof. We only need show that for some 0 < α < e−λ−γ , Wu
α (x, f) = Wu

α (x, g).
Suppose it is not true. Then we can find u ∈Wu(x, f), v ∈Wu(x, g), such that

|u− v| = |usc − vsc| > 0.

where usc,vsc are the sc−coordinates of u and v respectively. By Lemma 5.3, we have that

|(f̃−n
x u)u| = |f̃−n

x u| ≤ e−n(λ+(x,f)−2γ)|u| ≤ αe−n(λ+(x,f)−2γ),

|(f̃−n
x v)u| = |f̃−n

x v| ≤ e−n(λ+(x,f)−2γ)|v| ≤ αe−n(λ+(x,f)−2γ)

and f̃−n
x u,f̃−n

x v ∈ B(αl(f−nx)−1) for any n > 0. Applying Corollary 4.3.ii) repeatedly, we
get

|(f̃−n
x u)sc − (f̃−n

x v)sc| ≥ e−2nγ |u− v|.

Without loss generality we may assume that λ+(x, f) ≥ λ+(x, g). Since Proposition 5.1
implies |(f̃−n

x u)sc| ≤ 1
3 |(f̃

−n
x u)u|, we get ∀ n ≥ 0,

|(f̃−n
x v)sc|

|(f̃−n
x v)u|

≥ |(f̃−n
x u)sc − (f̃−n

x v)sc| − |(f̃−n
x u)sc|

|(f̃−n
x v)u|

≥
e−2nγ |u− v| − 1

3αe
−n(λ+(x,f)−2γ)

αe−n(λ+(x,g)−2γ)

= α−1|u− v|en(λ+(x,g)−4γ) − 1
3
en(λ+(x,g)−λ+(x,f)).

By our assumption, λ+(x, g) − λ+(x, f) ≤ 0. Hence the right hand side in above inequality
tends to infinite as n → ∞. But by Proposition 5.1, |(f̃−n

x v)sc| ≤ 1
3 |(f̃

−n
x v)u|. This is a

contradiction.

§6. Local Entropies

Suppose ν ∈ M(M,f), but not necessary in M(M, g). Let B(x, ε) be a closed ball in
M centered at x of radius ε. We call the set

Bn(x, ε, f) =
n⋂

i=0

f−iB(f ix, ε)
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to be an (n, ε, f)−ball of f at x ∈M . The local entropy hν(x, f) of f at x is defined as (see
[BK])

hν(x, f) = lim
ε→0

lim sup
n→∞

− 1
n

log νBn(x, ε, f)

= lim
ε→0

lim inf
n→∞

− 1
n

log νBn(x, ε, f)

which holds for ν−a.e. x ∈M , and satisfies that hν(fx, f) = hν(x, f) and
∫
hν(x, f)dν(x) =

hν(f).
Recall g∗ν = ν ◦ g−1. Since ν is a fixed point of f∗ and f∗g∗ = g∗f∗, by Proposition

1.1, g∗ν is also a fixed point of f∗, i.e. g∗ν ∈M(M,f).

Lemma 6.1. ∀ ν ∈ M(M,f), hg∗ν(x, f) = hν(g−1x, f), ν − a.e.x ∈ M . Therefore,
hg∗ν(f) = hν(f).

Proof. Since g ∈ Diff2(M), there exists C > 1, such that ∀ x ∈M , ε > 0,

B(g−1x,C−1ε) ⊂ g−1B(x, ε) ⊂ B(g−1x,Cε).

Hence
Bn(g−1x,C−1ε, f) ⊂ g−1Bn(x, ε, f) ⊂ Bn(g−1x,Cε, f).

So, by the definition of local entropy,

hg∗ν(x, f) = lim
ε→0

lim sup
n→∞

1
n

log ν(g−1Bn(x, ε, f))

= lim
ε→0

lim sup
n→∞

1
n

log νBn(g−1x, ε, f) = hν(g−1x, f).

This is the first result. Also we have

hg∗ν(f) =
∫
hg∗ν(x, f)d(g∗ν)(x) =

∫
hν(g−1x, f)dν(g−1x) =

∫
hν(y, f)dν(y) = hν(f).

Since ∀ µ ∈M(M,f, g), g∗µ = µ, the following fact can be induced directly from Lemma
6.1.

Corollary 6.2. hµ(x, f) is both f and g−invariant. Consequently, if µ is (f, g)−ergodic,
then hµ(x, f) = hµ(f), µ− a.e. x ∈ Γ.

Suppose a measure µ is given. For δ ∈ (0, 1), we denote by Nn(ε, δ, f) the minimal
number of (n, ε, f)−balls covering a set of the measure more than or equal to 1 − δ. A.
Katok has proved (see [K]) that if µ is an ergodic measure for f , then for every δ ∈ (0, 1),
hµ(f) = lim

ε→0
lim sup

n→∞
1
n logNn(ε, δ, f). Now we have same result for the measure µ which is

(f, g)−ergodic.

Proposition 6.3. If µ is an (f, g)−ergodic measure on M , then ∀ δ ∈ (0, 1),

hµ(f) = lim
ε→0

lim sup
n→∞

1
n

logNn(ε, δ, f).
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Proof. Take γ > 0 arbitrary.
Since

hµ(x, f) = lim
ε→0

lim inf
n→∞

− 1
n

logµBn(x, ε, f), µ− a.e. x ∈M,

we can choose an ε > 0 and an n0 > 0 such that ∀ n > n0, the set

An = {x ∈M : µBn(x, 2ε, f) ≤ exp−n(hµ(f)− γ) }
has measure larger than or equal to 1

2 (1 + δ).
Let A′n be a set that can be covered by Nn(ε, δ, f) (n, ε, f)−balls. A′n ∩An 6= ∅ because

µ(A′n ∩ An) ≥ 1
2 (1 − δ). Thus Nn(ε, δ, f) (n, ε, f)−balls can cover A′n ∩ An. On the other

hand, to cover A′n∩An by (n, 2ε, f)−balls centered at points in A′n∩An, the number of such
balls can not be less than 1−δ

2 expn(hµ(f)− γ). Since each (n, ε, f)−ball whose intersection
with set A′n ∩An is nonempty must be contained in an (n, 2ε, f)−ball centered at a point in
A′n ∩An, we have

Nn(ε, δ, f) ≥ 1− δ

2
expn(hµ(f)− γ).

It is true for any n > n0. Hence

lim sup
n→∞

1
n

logNn(ε, δ, f) ≥ hµ(f)− γ,

and therefore
lim
ε→0

lim sup
n→∞

1
n

logNn(ε, δ, f) ≥ hµ(f).

The inequality in another direction can be obtained in similar way.

In our discussion we only need the inequality with the proved direction.

Suppose ρ : M → IR+ is a measurable function. Define an (n, ρ, f)−ball at x ∈M by

Bn(x, ρ, f) =
n⋂

i=0

f−iB(f ix, ρ(f ix) ).

Proposition 6.4. Let {ρε : ε > 0} be a family of functions on M satisfying that
i) 0 < ρε ≤ ε, ∀ x ∈M ,

ii)
∫

log ρεdµ <∞, ∀ ε > 0,
iii) ρε monotonously decreases as ε→ 0.

Then

hµ(x, f) = lim
ε→0

lim sup
n→∞

− 1
n

logµB(x, ρε, f), µ− a.e. x ∈ Γ.

Proof. Clearly Bn(x, ρε, f) ⊂ Bn(x, ε, f). Hence

hµ(x, f) ≤ lim
ε→0

lim sup
n→∞

− 1
n

logµBn(x, ρε, f).

By the results of Mañé [M], Brin and Katok [BK],

hµ(f) ≥
∫

lim
ε→0

lim sup
n→∞

− 1
n

logµBn(x, ρε, f)dµ ≥
∫
hµ(x, f)dµ = hµ(f).

So the equalities hold everywhere and the result follows.

18



§7. The Subadditivity of Entropies of Commuting Diffeomorphisms

We devote this section to the proof of the first part of Theorem B. The method we use
here is estimating the number of (n, ε)−balls which cover the set of measure more than or
equal to 1− δ for some constant δ ∈ (0, 1).

Let {Φx : x ∈ Γ} be a system of (γ, l)−charts for both f and g. Recall that B̃(ρ) denote
the ball in IRm centered at the origin of radius ρ, and the maps Φx and f̃x are defined on
B̃(l(x)−1). Sometimes we will omit the subscript x.

For l > 0, let Γl = {x ∈ Γ : l(x) < l}.

Lemma 7.1. Suppose y ∈ Γl ∩ f−nΓl and 0 < εe−2nγ < l−1. Let E ⊂ IRm.
i) If E ⊂ B̃(εe−2nγ), f̃n

y E ⊂ B̃(ε),and f̃ i
yE ⊂ B̃(l(f iy)−1), ∀i = 1, · · · , n, then

f̃ i
yE ⊂ B̃(εe−2(n−i)γ), ∀i = 0, 1, · · · , n.

ii) If E,f̃n
y E ⊂ B̃(εe−2nγ), and f̃ i

yE ⊂ B̃(l(f iy)−1), ∀i = 1, · · · , n− 1, then

f̃ i
yE ⊂ B̃(εe−2 max{n−i,i}γ), ∀i = 0, 1, · · · , n.

Proof. i) Suppose there is v ∈ E with |f̃ i
yv| > εe−2(n−i)γ for some i ∈ (0, n). If

|f̃ i
yv| = |(f̃ i

yv)u|, then by Corollary 4.3.i),

|f̃n
y v| = |f̃n−i(f̃ i

yv)| ≥ e(n−i)(λ+(x,f)−2γ)|f̃ i
yv| > e2(n−i)γ · εe−2(n−i)γ = ε.

If |f̃ i
yv| = |(f̃ i

yv)cs|, then by Corollary 4.3.ii),

|v| = |f̃−i(f̃ i
yv)| ≥ e−2iγ |f̃ i

yv| > e−2iγ · εe−2(n−i)γ = εe−2nγ .

Both cases are impossible.
ii) By part i), f̃ i

yE ⊂ B̃(εe−2(n−i)γ). Again, using part i) on the set f̃n
y E for f−1, we get

f̃ i
yE ⊂ B̃(εe−2iγ). The proof is finished by combining the inclusions.

Take l > 0 such that µΓl > 0. For any x ∈ Γl, let τf (x) be the smallest positive integer
k such that fkx ∈ Γl. By Poincaré Recurrence Theorem for µ− a.e x ∈ Γl, τf (x) <∞. We
extend τf (x) to M by putting τf (x) = 0 if x ∈M\Γl.

For any ε > 0, define a function ρε,f : M → IR+ by

ρε,f (x) = min{ε, l−2e−(λ+γ)τf (x)}.

Now log ρε,f is integrable for any ε > 0 because
∫
Γl
τf (x) ≤ 1. So the family of functions

{ρε,f : ε > 0 } satisfies the conditions in Proposition 6.4.

Lemma 7.2. Let 0 < ε < l−2 and ρε,f be defined as above. If y ∈ Γl ∩ f−nΓl, then

f̃ i
yΦ−1

y

[
Bn(y, ρε,f , f) ∩B(y, εe−2nγ)

]
⊂ B̃(εle−2(n−i)γ), ∀i = 0, · · · , n.
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Proof. Denote
E = Φ−1

y

[
Bn(y, ρε,f , f) ∩B(y, εe−2nγ)

]
.

Take v ∈ E arbitrary and let z = Φyv.
Clearly d(y, z) ≤ εe−2nγ , d(fny, fnz) ≤ ρε,f (fny) ≤ ε. Therefore by Proposition 4.1.vi),

|v| = |Φ−1
y (z)| ≤ εle−2nγ , |f̃n

y v| = |Φ−1
fny(fnz)| ≤ εl.

For i = 1, · · · , n, we have that

d(f iy, f iz) ≤ ρε,f (f iy) = min{ε, l−2e−(λ+γ)τf (fiy)}.

If f iy ∈ Γl, then d(f iy, f iz) ≤ l−2 ≤ l(f iy)−2 and therefore |f̃ i
yv| = |Φ−1(f iz)| ≤ l(f iy)−1.

Suppose f iy /∈ Γl. Let j < i be the largest integer such that f jy ∈ Γl, then τf (f jy) ≥ i− j
and d(f jy, f jz) ≤ l−2e−(λ+γ)(i−j) ≤ l(f jy)−2e−(λ+γ)(i−j). So we have

|f̃ j
yv| = |Φ−1

fjy(f jz)| ≤ l(f jy)−1e−(λ+γ)(i−j).

Thus, by Proposition 4.1.v),

|f̃ i
yv| = |f̃ i−j(f̃ j

yv)| ≤ e(i−j)λ|f̃ j
yv| ≤ l(f jy)−1e−(i−j)γ ≤ l(f iy)−1.

Now we know that E satisfies the conditions of Lemma 7.1.i) and our result follows.

Lemma 7.3. Suppose 0 < ε < l−2e−λ−2γ . For y ∈ Γl ∩ f−nΓl ∩ (fg)−nΓl, if we set

∆ = Bn(y, ρε,f , f) ∩B(y, εe−2nγ)
⋂

(fg)−n
[
Bn((fg)ny, ρε,g−1 , g−1) ∩B((fg)ny, εe−2nγ)

]
,

then
∆ ⊂ Bn(y, εlK, fg),

where K is as in Proposition 4.1.vi).
Proof. Let

E = Φ−1
y ∆.

By Lemma 7.2, ∀ k = 0, 1, · · · , n,

f̃k
yE ⊂ f̃k

y Φ−1
y [Bn(y, ρε,f , f) ∩B(y, εe−2nγ)] ⊂ B̃(εle−2(n−k)γ).

Similarly, since (f̃g)ng̃−kΦ−1
y = g̃−kΦ−1

(fg)ny(fg)n, ∀ k = 0, 1, · · · , n,

(f̃g)ng̃−k
y E ⊂ g̃−kΦ−1

(fg)ny[Bn((fg)ny, ρε,g−1 , g−1) ∩B((fg)ny, εe−2nγ)] ⊂ B̃(εle−2(n−k)γ).

Using n− k instead of k, and noticing (f̃g)ng̃
−(n−k)
y = (f̃g)kf̃n−k

y , we have

f̃n−k
y E ⊂ B̃(εle−2kγ), (f̃g)kf̃n−k

y E ⊂ B̃(εle−2kγ), ∀ k = 0, 1, · · · , n. (∗)
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Now we claim that ∀ k = 0, 1, · · · , n,

(f̃g)if̃n−k
y E ⊂ B̃(εle−2 max{k−i,i}γ), ∀ i = 0, 1, · · · , k.

For k = 0, the claim is true because by (∗) we have already had f̃n
y E ⊂ B(εl). We

suppose the claim is true for k − 1, i.e.

(f̃g)if̃n−k+1
y E ⊂ B̃(εle−2 max{k−i−1,i}γ), ∀ i = 0, 1, · · · , k − 1.

Thus
(f̃g)if̃n−k

y E ⊂ f̃−1B̃(εle−2 max{k−i−1,i}γ), ∀ i = 0, 1, · · · , k − 1. (∗∗)

Since 0 < ε < l−2e−λ−2γ , εle−2 max{k−i−1,i}γeλ < l−1e−2 max{k−i,i}γ . Also,

l((fg)ifn−ky) = l(f−(k−i)gi(fny)) ≤ l(fny)e(k−i)γeiγ ≤ lekγ ≤ le2 max{k−i,i}γ .

Therefore εle−2 max{k−i−1,i}γeλ < l((fg)ifn−ky)−1. Now we can use Corollary 4.2 on the
right hand side in (∗∗) and obtain that ∀ i = 0, 1, · · · , k − 1,

(f̃g)if̃n−k
y E ⊂ B̃(εle−2 max{k−i−1,i}γeλ) ⊂ B̃(l((fg)ifn−ky)−1). (∗ ∗ ∗)

By Proposition 4.1, l(f±1x) ≤ l(x)eγ . Hence y ∈ Γl ∩ f−nΓl implies that fn−ky ∈ Γlekγ ∩
f−kΓl ⊂ Γl′ ∩ f−kΓl′ , where l′ = lekγ . Also, εle−2kγ < (l′)−1. Thus by (∗) and (∗ ∗ ∗) we
can use Lemma 7.1.ii) on the set f̃n−k

y E for diffeomorphism fg to obtain that

(f̃g)if̃n−k
y E ⊂ B̃(εle−2 max{k−i,i}γ), ∀ i = 0, 1, · · · , k,

i.e. the claim is true for k.
By induction the claim is true for k = n. So

(f̃g)iE ⊂ B̃(εle−2 max{n−i,i}γ) ⊂ B̃(εl), ∀ i = 0, 1, · · · , n.

Thus,

(fg)iΦyE = Φ(fg)iy(f̃g)i
yE ⊂ Φ(fg)iyB̃(εl) ⊂ B((fg)iy, εlK), ∀ i = 0, 1, · · · , n,

i.e.
∆ = ΦyE ⊂ (fg)−iB((fg)iy, εlK), ∀ i = 0, 1, · · · , n.

The result follows from the definition of Bn(y, εlK, fg).

The Proof of Theorem B (First Part).
Because the entropy map, which is defined on the set of invariant measures and has

values in [0,+∞], is affine and any µ ∈ M(M,f, g) has (f, g)−ergodic decomposition, we
only need prove the theorem if µ is an (f, g)−ergodic measure.

Take γ > 0 small sufficiently.
Take δ ∈ (0, 1).

21



Let {Φx : x ∈ Γ} be a system of (γ, l)−charts for both f and g. Let Γl = {x ∈ Γ :
l(x) ≤ l}. Fix an l > 1 such that µΓl > 1− δ

5 . We define two families of functions {ρε,f} and
{ρε,g−1} as above corresponding to f and g−1 respectively.

Let
Af

n,ε,γ = {x ∈ Γ : µBk(x, ρε,f , f) ≥ exp−k(hµ(f) + γ), ∀k ≥ n}.

Since ρε,f is decreasing as ε→ 0, by Proposition 6.4,

hµ(f) = hµ(x, f) ≥ lim sup
n→∞

− 1
n

logµBn(x, ρε,f , f), µ− a.e. x ∈ Γ.

So ∀ ε > 0, µAf
n,ε,γ → 1, as n→∞. Then ∃ nf (ε) > 0, such that ∀ n > nf (ε),

µAf
n,ε,γ ≥ 1− δ

5
.

By the definition of Af
n,ε,γ , there are at most expn(hµ(f) + γ) disjoint (n, ρε,f , f)−balls

centered at points in Af
n,ε,γ . So the same number of (n, 2ρε,f , f)−balls centered at points in

Af
n,ε,γ can cover Af

n,ε,γ . Suppose {Bn(x, 2ρε,f , f) : x ∈ Sf} is a set of such balls. Then we
have that ⋃

x∈Sf

Bn(x, 2ρε,f , f) ⊃ Af
n,ε,γ ,

|Sf | ≤ expn(hµ(f) + γ).

Similarly, for diffeomorphism g−1, ∀ ε > 0, ∃ng(ε) > 0, such that ∀ n > ng(ε), we have
sets Ag

n,ε,γ and Sg satisfying the following.

µAg
n,ε,γ ≥ 1− δ

5
.⋃

x∈Sg

Bn(x, 2ρε,g−1 , g−1) ⊃ Ag
n,ε,γ ,

|Sg| ≤ expn(hµ(g) + γ).

We denote by N(α) the minimal number of balls of radius α covering M . Since dimM =
m, there exists a constant C > 0 such that N(α) < Cα−m, ∀ α > 0. Let S0 be a set such
that ⋃

x∈S0

B(x, 2εe−2nγ) ⊃M,

|S0| = N(2εe−2nγ) < C · (2εe−2nγ)−m.

Now we take 0 < ε < 1
4 l
−2e−λ−2γ . For each n > max{nf (ε), ng(ε)}, let

An = Af
n,ε,γ ∩Ag

n,ε,γ ∩ Γl ∩ f−nΓl ∩ (fg)−nΓl.

Clearly, µAn ≥ 1− δ. For any xf ∈ Sf , xg ∈ Sg, x′, x′′ ∈ S, if the intersection

An ∩Bn(xf , 2ρε,f , f) ∩B(x′, 2εe−2nγ)
⋂

(fg)−n
[
Bn(xg, 2ρε,g−1 , g−1) ∩B(x′′, 2εe−2nγ)

]
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is not empty, then for any y in it, the intersection is contained in the set

Bn(y, 4ρε,f , f) ∩B(y, 4εe−2nγ)
⋂

(fg)−n
[
Bn((fg)ny, 4ρε,g−1 , g−1) ∩B((fg)ny, 4εe−2nγ)

]
.

Notice y ∈ An ⊂ Γl ∩ f−nΓl ∩ (fg)−nΓl, and 0 < 4ε < l−2e−λ−2γ , the result of Lemma 7.3
still holds if we use 4ε instead of ε. So the set is contained in Bn(y, 4εlK, fg).

There are at most

|Sf | · |Sg| · |S0|2 ≤ expn(hµ(f) + γ) · expn(hµ(g) + γ) · C2 · (2εe−2nγ)−2m

= C2 · (2ε)−2m · expn[hµ(f) + hµ(g) + (4m+ 2)γ]

different such intersections. Each one is contained in an (n, 4εlK, fg)−ball. Since these
intersections cover An, and µAn > 1− δ, we have

Nn(4εlK, δ, fg) ≤ C2 · (2ε)−2m · expn[hµ(f) + hµ(g) + (4m+ 2)γ].

Thus,

hµ(fg) = lim
ε→0

lim sup
n→∞

1
n

logNn(4εlK, δ, fg) ≤ hµ(f) + hµ(g) + (4m+ 2)γ.

Since γ is arbitrary, we get
hµ(fg) ≤ hµ(f) + hµ(g).

§8. A Partition Subordinating to Wu−foliations

In this section we assume that Eu(x, f) = Eu(x, g), µ − a.e. By Proposition 5.4, we
have wu(x, f) = wu(x, g), µ − a.e. Therefore it can be written as wu(x). We will construct
a measurable partition η subordinating to wu and increasing under the action of diffeomor-
phisms f and g, so that we can compute entropies of the diffeomorphisms and get the proof
of the equality part in Theorem B.

In our discussion we also assume that µ is an (f, g)−ergodic measure on M .
A measurable partition ξ of M is a partition of M such that, up to a set of measure zero,

the quotient space M/ξ is separated by a countable number of measurable sets(see[Ro]).
A measurable partition ξ of M is said to be subordinate to the wu−foliation if for

µ − a.e.x, ξ(x) ⊂ wu(x) and ξ(x) contains a neighborhood of x open in the submanifold
topology of wu(x)(see [LY]).

For two partitions ξ1 and ξ2, we say ξ1 refines ξ2, denoted by ξ1 ≥ ξ2, if ξ1(x) ⊂
ξ2(x), µ − a.e. We say that a partition ξ is f−increasing if fξ ≤ ξ, g− increasing is defined
analogously. ξ is said to be (f, g)−increasing, if ξ is both f− and g−increasing.

Let Bu be the biggest sub−σ−algebra whose elements are unions of entire wu−manifold.

Proposition 8.1. There is a measurable partition η on M with the following properties.
i) η is subordinate to wu−foliation.

ii) η is (f, g)−increasing, i.e. fη ≤ η and gη ≤ η.
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iii) Both
∞∨

n=0
f−nη and

∞∨
k=0

g−kη are the partition into points (mod 0).

iv) The biggest σ−algebra contained in
∞⋂

n=0

∞⋂
k=0

f−ng−kη is Bu.

To prove the proposition we introduce some lemmas.

Lemma 8.2. Let ρ0 > 0, 0 < a < 1 and ν be a finite non-negative Borel measure on
[0, ρ0]. Then the Lebesgue measure of the set

La = {ρ : 0 ≤ ρ ≤ ρ0,
∞∑

n=0

∞∑
k=0

ν([ρ− an+k, ρ+ an+k]) <∞}

is equal to ρ0.
Proof. The idea is similar to the proof of Proposition 3.2 in [LS]. The modification is

replacing set Na,n in the proof by set

Na,n,k = {ρ : 0 ≤ ρ ≤ ρ0, ν([ρ− an+k, ρ+ an+k]) >
ν([0, ρ])
n2k2

}.

Lemma 8.3. There is a constant b > 0, such that ∀x ∈ Γ, for Lebesgue almost every
choice of ρ, 0 < ρ < l(x)−1, µ− a.e.y ∈M , the inequality

d(f−ng−ky, ∂B(x, ρ))e(n+k)(λ+(x)−2γ) < b−1

holds at most for finite number of pairs (n, k), where λ+(x) = min{λ+(x, f), λ+(x, g)}.
Proof. Take b > 0 such that d(z, ∂B(x, ρ)) ≤ τ implies |d(x, z) − ρ| ≤ bτ whenever

0 < τ < ρ ≤ l(x)−1.
Define a non-negative Borel measure ν on IR by ν(A) = µ{y ∈M : d(x, y) ∈ A} for any

Borel set A ⊂ IR. Thus, by Lemma 8.2, we get, applied a = e−(λ+(x)−2γ), that

P = {ρ : 0 ≤ ρ ≤ l(x)−1,
∞∑

n=0

∞∑
k=0

µ{y ∈M : |d(x, y)− ρ| < e−(n+k)(λ+(x)−2γ)} <∞}

has Lebesgue measure l(x)−1. Since µ is f− and g−invariant,

P = {ρ : 0 ≤ ρ ≤ l(x)−1,
∞∑

n=0

∞∑
k=0

µ{y ∈M : |d(x, f−ng−ky)−ρ| < e−(n+k)(λ+(x)−2γ)} <∞}.

From the choice of b, ∀ρ ∈ P ,

∞∑
n=0

∞∑
k=0

µ{y ∈M : d(f−ng−ky, ∂B(x, ρ)) <
1
b
e−(n+k)(λ+(x)−2γ)} <∞.

By Borel-Cantelli Lemma, except for finite number of pairs (n, k),

µ{y ∈M : d(f−ng−ky, ∂B(x, ρ))e(n+k)(λ+(x)−2γ) <
1
b
} = 0.
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This finishes the proof of the lemma.

Define a metric dw(·, ·) on M by

dw(y, z) =
{
dw(x)(y, z), if y, z ∈ wu(x) for some x ∈M ;
∞, otherwise,

where dw(x)(·, ·) is a metric on wu(x) induced by the Riemannian structure on wu(x). Clearly,
dw(·, ·) is independent of the choice of x ∈M .

Lemma 8.4. For 0 < α < 1, z ∈ Γ, if y ∈ wu
α(z), then ∀n, k ≥ 0,

dw(f−ng−ky, f−ng−kz) ≤ 2Kl(z)dw(y, z)e−(n+k)(λ+(x)−2γ).

Proof. Take a system of (γ, l)−charts {Φz : z ∈ Γ} for both f and g. Let v = Φ−1
z y,

then v ∈Wu
α (z). By Lemma 5.3,

|(f̃−ng̃−k)zv| ≤ |v|e−nλ+(z,f)−kλ+(z,g)−2(n+k)γ ≤ |v|e−(n+k)(λ(z)−2γ).

By Proposition 4.1.vi) and Lemma 5.1, dw(f−ng−ky, f−ng−kz) ≤ 2K|(f̃−ng̃−k)zv| and |v| ≤
l(z)d(y, z) ≤ l(z)dw(y, z). Hence the result follows.

The Proof of Proposition 8.1.
Take l > 0 with µΓl > 0.
Fix 0 < α < 1. Take x ∈ Γl such that ∀ρ > 0, µ(B(x, ρ) ∩ Γl) > 0.
Let

S(x, ρ) =
⋃

y∈Γl∩B(x,ρ)

wu
α(y) ∩B(x, ρ).

Thus ∀ 0 < ρ < α
4 l
−1, if two points z1, z2 ∈ S(x, ρ) are not in the same local leaf wu

α(y) ∩
B(x, ρ) for some y ∈ Γl ∩B(x, ρ), then dw(z1, z2) > 2ρ.

For any 0 < ρ < α
4 l
−1 we construct a partition ξρ of M defined by all the sets

ξρ(y) =
{
wu

α(y) ∩ S(x, ρ), if y ∈ S(x, ρ);
M\S(x, ρ), otherwise,

and then put

ηρ =
∞∨

n=0

∞∨
k=0

fngkξρ.

Since µ(
∞⋃

n=1

∞⋃
k=1

fngkS(x, ρ)) = 1, it follows that µ− a.e.z ∈ Γ, ηρ(z) ⊂ wu(z). It is also

clear that ηρ satisfies the properties ii)−iv) in the proposition. To complete the proof we
have to choose a ρ > 0 such that µ− a.e.z, ηρ(z) contains an open neighborhood of z in the
submanifold topology of wu(z).

Let

βρ = l(z)−1 · inf
n≥0

{α, 1
4
K−1d(f−ng−kz, ∂B(x, ρ))e(n+k)(λ+(z)−2γ),K−1ρ}.
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By Lemma 8.3, there is a ρ > 0 such that βρ(z) > 0, µ− a.e. z ∈M .
Now we only need prove that ∀z ∈ Γ, if y ∈ wu(z), dw(y, z) < βρ(z), then y ∈ ηρ(z). In

this circumstances, y ∈ wu
α(z) and by Lemma 8.4, ∀ n, k ≥ 0,

dw(f−ng−ky, f−ng−kz) ≤ 2Kl(z)e−(n+k)(λ+(z)−2γ) · βρ(z).

We have following cases to consider.
i) Both f−ng−ky and f−ng−kz belong to S(x, r). By the choice of βρ(z),

dw(f−ng−ky, f−ng−kz) ≤ 2ρ.

So the two points in the same local leaf of S(x, ρ). Therefore ξρ(f−ng−ky) = ξρ(f−ng−kz).
ii) Neither f−ng−ky nor f−ng−kz belongs to S(x, r). By the construction of ξρ, we

have ξρ(f−ng−ky) = ξρ(f−ng−ky).
iii) One of f−ng−ky and f−ng−kz belongs to S(x, r) but the other does not. By the

choice of βρ(z),

dw(f−ng−ky, f−ng−kz) ≤ 1
2
d(f−ng−kz, ∂B(x, ρ)).

It is impossible.
Hence ∀ n, k ≥ 0, we always have ξρ(f−ng−ky) = ξρ(f−ng−kz). So y ∈ ηρ(z).

We fix ρ > 0 such that η =
∞∨

n=0

∞∨
k=0

fngkξρ is the measurable partition of M satisfying

Proposition 8.1.

Lemma 8.5. Let η be a partition constructed as above. Then

hµ(f, η) = hµ(f), hµ(g, η) = hµ(g).

Proof. We only prove the first equality.
For any f−invariant measure ν, hν(f, η) = Hν(η|fη) =

∫
M
− log ν(η(x)|fη(x))dν(x),

where ν(·|η(x)) is the system of conditional measures with respect to the σ−algebra generated
by partition η. By (∆∆) in §1 we have hµ(f, η) =

∫
E(M,f)

hµe
(f, η)dπ(µe). Similarly, hν(f) =∫

M
hν(x, f)dν(x) implies hµ(f) =

∫
E(M,f)

hµe
(f)dπ(µe). Therefore we only need show that

π − a.e. µe, hµe(f, η) = hµe(f).

For π − a.e. µe, µe(
∞⋃

n=0

∞⋃
k=0

fngkS(x, ρ)) = 1. Since µe ∈ E(M,f), we can take k =

k(µe) such that µe(
∞⋃

n=0
fngkS(x, ρ)) = 1. Denote ηe =

∞∨
n=0

fngkξρ, then ηe is a partition

constructed as same as in the proof of Lemma 3.1.1 in [LY]. So we have hµe(f, ηe) = hµe(f)
(see [LY], Corollary 5.3).

Now we need prove that hµe
(f, ηe) = hµe

(f, η). The argument is similar to the prove of
Lemma 3.1.2 in [LY]. Notice ηe ≤ η and fηe ≤ ηe, we have

hµe(f, η) = hµe(f, ηe ∨ η) = hµe(f, ηe ∨ fnη) = Hµe(ηe ∨ fnη|fηe ∨ fn+1η)

= Hµe(ηe|fηe ∨ fn+1η) +Hµe(ηe|f−nηe ∨ fη).
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As n → ∞, the first term increases monotonously and tends to Hµe(ηe|fηe) = hµe(f, ηe),
while the second term decreases and goes to 0. Since the formula is true for any n > 0, this
finishes the proof.

§9. The Condition for Equality

We will prove the rest part of Theorem B in the section. First we consider a special
case, for µ− a.e, x ∈M , Eu(x, f) = Eu(x, g).

Proposition 9.1. If Eu(x, f) = Eu(x, g), µ− a.e. then hµ(fg) = hµ(f) + hµ(g).
Proof. Take partition η as in the proof of Proposition 8.1. Since fη ≤ η and gη ≤ η,

by Lemma 8.5, we have

hµ(fg) ≥ hµ(fg, η) = Hµ(η|fgη) = Hµ(η ∨ gη|fgη)
= Hµ(gη|fgη) +Hµ(η|gη ∨ fgη) = Hµ(η|fη) +Hµ(η|gη) = hµ(f) + hµ(g).

Then the result follows from the first part of Theorem B.

Now we consider the general case, Eu(x, f)∩Es(x, g) = {0} = Es(x, f)∩Eu(x, g), µ−a.e.

Lemma 9.2. Suppose Eu(x, f)∩Es(x, g) = {0} and Es(x, f)∩Eu(x, g) = {0}, µ− a.e.
Then there exists an N > 0, such that ∀ n > N ,

hµ(fng) ≥ hµ(fn), hµ(fgn) ≥ hµ(gn).

Proof. Take Nf > 0, such that

Nf ·∆λ(x, f) > λ1(x, g),

where ∆λ(x, f) = min{λi(x, f)− λi+1(x, f) : i = 1, · · · , s(x, f)− 1} is as in §4.
Let u(x, f) = min{i : λi(x, f) ≥ 0}, in other words, u(x, f) is defined such that

λu(x,f)(x, f) is the smallest nonnegative exponent of f . u(x, g), u(x, fng) are understood
in similar way.

For any n ≥ Nf , if we denote the Lyapunov exponents of fng by λ1(x, fng) > · · · >
λr(x,fng)(x, fng), then by Theorem A and the supposition of the lemma, ∀ 1 ≤ p ≤ u(x, fng),
∃ 1 ≤ i ≤ u(x, f), 1 ≤ j ≤ u(x, g) with

λp(x, fng) = nλi(x, f) + λj(x, g).

By the choice of Nf we know that nλi1(x, f) + λj1(x, g) > nλi2(x, f) + λj2(x, g) if and only

if i1 > i2, or i1 = i2 and j1 > j2. Thus the decomposition Eu(x, fng) =
u(x,fng)⊕

u=1
Ep(x, fng)

of unstable part in tangent space can be written as

Eu(x, fng) =
u(x,f)⊕

i=1

u(x,g)⊕
j=1

Eij(x),
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where Eij(x) = Ep(x, fng), if nλi(x, f) + λj(x, g) = λp(x, fng) for some 1 ≤ p ≤ u(x, fng),
and otherwise Eij(x) = {0}. The Ledrappier-Young’s formula relating entropy, exponents
and dimensions is

hµ(x, f) =
u(x,f)∑

i=1

λi(x, f)γi(x, f),

where γi(x, f) denotes a notion of fractional dimension defined as follows.
Let w(i)(x, f) = {y ∈ M : lim sup

n→∞
1
n log d(f−nx, f−ny) ≤ −λi(x, f)} for each i with

λi(x, f) > 0, which is a C2 immersed submanifold of M with dimension
∑
s≤i

dimEs(x, f), and

η(i) be a partition subordinating to {w(i)(x, f)}. Denote by B(i)(x, ε) the ball in w(i)(x, f)
centered at x of radius ε in the distance induced by the Riemannian structure on w(i)(x, f).
For each i = 1, · · · , u(x, f) with λi(x, f) > 0, define

δi(x, f) = lim
ε→0

logµ(B(i)(x, ε)|η(i)(x))
log ε

,

where the limits in the right hand side exist µ− a.e. x ∈ M and are independent of the
choice of η (See [LY], §7). And then let

γi(x, f) = δi(x, f)− δi−1(x, f), i = 1, · · · , u(x, f),

where we regard δ0(x, f) = 0, and δu(x,f)(x, f) as any fixed constant between δu(x,f)−1(x, f)
and dimM if λu(x,f)(x, f) = 0. γi(x, g) and γi(x, fng) are defined similarly.

For any 1 ≤ i ≤ u(x, f), let pi be the smallest number such that λpi
(x, fng) ≥ nλi(x, f),

and let p0 = 0. It means that if pi ≤ p < pi+1, then λp(x, fng) = nλi(x, f) + λj(x, g) for
some 1 ≤ j ≤ u(x, g). Thus w(i)(x, f) = w(pi)(x, fng) and δi(x, f) = δpi

(x, fng). So

γi(x, f) = δpi
(x, fng)− δpi−1(x, f

ng) =
pi∑

p=pi−1+1

γp(x, fng)

except for i = u(x, f) as λu(x,f)(x, f) = 0. Put γij(x) = γp(x, fng) if Eij(x) = Ep(x, fng),

and γij(x) = 0 if Eij(x) = {0}. Above formula shows that γi(x, f) =
u(x,g)∑
j=1

γij(x). Now the

Ledrappier-Young’s formula for diffeomorphism fng can be expressed as

hµ(x, fng) =
u(x,fng)∑

p=1

λp(x, fng)γp(x, fng) =
u(x,f)∑

i=1

u(x,g)∑
j=1

(nλi(x, f) + λj(x, g))γij(x).

Therefore

hµ(x, fng) ≥
u(x,f)∑

i=1

u(x,g)∑
j=1

nλi(x, f)γij(x) =
u(x,f)∑

i=1

nλi(x, f)γi(x) = nhµ(f).
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Similarly we have Ng > 0, such that ∀ n > Ng, hµ(fgn) ≥ hµ(gn). Then N = max{Nf , Ng}
is a required number.

The Proof of Theorem B (Second Part).
Notice for any n > 0, Eu(x, fng) = Eu(x, fgn), µ − a.e. because of the supposition of

the theorem. By Proposition 9.1 and Lemma 9.2, if n is large sufficiently, then

hµ(fg) =
1

n+ 1
hµ(fng · fgn) =

1
n+ 1

[hµ(fng) + hµ(fgn)]

≥ 1
n+ 1

[hµ(fn) + hµ(gn)] =
n

n+ 1
[hµ(f) + hµ(g)].

Since n is arbitrary, hµ(fg) = hµ(f) + hµ(g).

§10. Topological Entropy

By applying Theorem B, we can get similar result for topological entropies of commuting
diffeomorphisms. We will use the relationship between topological entropies and measure-
theoretic entropies, i.e. h(f) = max{hν(f) : ν ∈ M(M,f)}. Next proposition is in fact a
generalization of Theorem C.

Proposition 10.1. Suppose M is a compact C∞ Riemannian manifold without bound-
ary, f and g are commuting diffeomorphisms in Diff2(M). If ∀ α > 0, ∃ 0 ≤ β ≤ α, such
that the set

Vβ = {ν ∈M(M,fg) : hν(fg) ≥ h(fg)− β}

is compact in weak ∗ topology, then

h(fg) ≤ h(f) + h(g).

Proof. Since entropy map ν → hν(fg) is affine, Vβ is a convex set. So Vβ is a nonempty
convex set which is compact in weak ∗ topology. By Lemma 6.1, f∗Vβ ⊂ Vβ . So f∗ has a
fixed point in Vβ , i.e. Vβ ∩M(M,f) 6= ∅.

Take µ ∈ Vβ ∩M(M,f), then µ ∈ M(M,f, fg). By Corollary 1.5, µ ∈ M(M,f, g).
Hence hµ(fg) ≤ hµ(f) + hµ(g) ≤ h(f) + h(g). Also, µ ∈ Vβ , so h(fg) ≤ hµ(fg) + β ≤
h(f) + h(g) + β. Since 0 ≤ β ≤ α and α is arbitrary, our result follows.

Now we consider two important cases, i.e. the entropy map of fg is upper semi-
continuous and the set of measures with maximal entropy of fg is a finite dimensional simplex.

Corollary 10.2. Suppose the entropy map of fg is upper semi-continuous, i.e. ∀ν0 ∈
M(M,fg) and β > 0, there exists a neighborhood U of ν0 in M(M,fg) such that ν ∈ U
implies hν(fg) ≤ hν0(fg) + β. Then h(fg) ≤ h(f) + h(g).

Proof. Since entropy map ν → hν(fg) is upper semi-continuous, ∀ α ≥ 0, Vα, the
preimage of [h(fg)− α, h(fg)] under the entropy map of fg, is compact.

Corollary 10.3. If the set of measures with maximal entropy of fg is a finite dimensional
simplex, then h(fg) ≤ h(f) + h(g).
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Proof. This is because the set V0 = {ν ∈M(M,fg) : hν(fg) = h(fg)} is compact.

The Proof of Theorem C.
i) and ii) are from Corollary 10.2 plus [N] and [W] (Chapter 8) respectively, and iii) is

Corollary 10.3.

We end this paper by a counterexample of two commuting homeomorphisms f and g
with zero entropies on a smooth manifold M = S1 × S2 whose composition has positive
entropy.

Example. Let S1 = {θ ∈ [0, 2π] : {0} = {2π} }. Take a homeomorphism α : S1 →
S1, such that α(0) = 0 and α(θ) ≤ θ, ∀ θ ∈ (0, 2π). Hence α has unique fixed point θ = 0.

Let S2 = {(r, τ) ∈ [0, 2]× [0, 2π] : {(r, 0)} = {(r, 2π)},∀r ∈ [0, 2]; {(r, τ)} = {(r, 0)},∀τ ∈
[0, 2π], r = 0, 2}. TakeD = {(r, τ) ∈ S2 : 0 ≤ r ≤ 1}. Define a homeomorphism ψ : S2 → S2,
such that ψ(D) = D, restricted on D, ψ|D has positive entropy, and ψ|S2\D = id|S2\D.

Define a continuous map β̃ : (0, 2π) × [0, 2] → [0, 2], such that ∀θ ∈ (0, 2π), β̃(θ, ·) =
β̃θ(·) : [0, 2] → [0, 2] is a homeomorphism, and for any r ∈ [0, 1], β̃θ(r) ≤ θr, if θ ∈ [0, π];
β̃θ(r) ≤ (2π − θ)r, if θ ∈ [π, 2π]. Then we use β̃θ define a family of homeomorphisms βθ on
S2 by putting

βθ(r, τ) = (β̃θ(r), τ), ∀ (r, τ) ∈ S2.

Now we take M = S1 × S2. Define f, g : M →M by

f(θ, v) = (α(θ), βα(θ)ψβ
−1
θ (v) ),

g(θ, v) = (α−1(θ), βα−1(θ)β
−1
θ (v) ),

for any θ ∈ S1\{0}, v = (r, τ) ∈ S2, and

f(0, v) = (0, v) = g(0, v), ∀v ∈ S2.

Clearly, both f and g are homeomorphisms under a suitable choice of β̃θ.
For θ ∈ S1\{0}, v ∈ S2,

fg(θ, v) = f(α−1(θ), βα−1(θ)β
−1
θ (v) )

= (αα−1(θ), βαα−1(θ)ψβ
−1
α−1(θ)βα−1(θ)β

−1
θ (v) ) = (θ, βθψβ

−1
θ (v) ),

gf(θ, v) = g(α(θ), βα(θ)ψβ
−1
θ (v) )

= (α−1α(θ), βα−1α(θ)β
−1
α(θ)βα(θ)ψβ

−1
θ (v) ) = (θ, βθψβ

−1
θ (v) ),

and
fg(0, v) = (0, v) = gf(0, v), ∀ v ∈ S2.

So fg = gf holds on M .
The nonwandering set for f and g are Ω(f) = {(0, v) : v ∈ S2} = Ω(g), and f |Ω(f) =

id = g|Ω(g). So h(f) = 0 = h(g). But for any θ 6= 0, restrict to the set {(θ, v) : v ∈ S2}, fg
is conjugate to ψ. Therefore h(fg) ≥ h(ψ) ≥ 0.

Since the support of any f− or g−invariant measure µ must be contained in the set
{(0, v) : v ∈ S2}, hµ(fg) should equal to zero if µ ∈ M(M,f, g). It means that the example
does not violate Theorem B, though f , g are not diffeomorphisms.
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