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Abstract. For a smooth Z2?—action on a C* compact Riemannian manifold M, we
discuss its ergodic properties which include the decomposition of the tangent space of M
into subspaces related to Lyapunov exponents, the existence of Lyapunov charts, and the
subaddtivity of entropies.

60 Introduction

In this paper we discuss some ergodic properties of commuting diffeomorphisms on a
C*° compact Riemannian manifold concerning Lyapunov exponents and entropies. Let M
be a compact C*° Riemannian manifold without boundary, f,g € Difo(M ) with fg = gf,
where fg denote the composition of f and ¢. In fact f and g generate a smooth Z?—action
on M. We will give a decomposition of the tangent space of M into subspaces related to the
Lyapunov exponents of both actions f and ¢, and construct a family of Lyapunov charts.
We will show that for almost every x in M, if f and g have same unstable subspace, then
they have same unstable manifold at . We will investigate the subaddtivity of entropies of
commuting diffeomorphisms, i.e. the entropy of the composition fg is less than or equal to
the sum of the entropies of f and g. In the circumstances for measure-theoretic entropies
the subaddtivity always holds whenever the measure is invariant under the actions f and g,
and becomes additive if the unstable subspace of one map does not intersect with the stable
subspace of another map at almost every point, but for topological entropies additional
condition is needed to obtain the subaddtivity.

We denote by M(M, f) the set of f—invariant Borel probability measures on M. It
is known by many authors (for example, see Proposition 1.2 for the proof,) that f and g
have common invariant measures, i.e. M(M, f) N M(M,g) # 0. We let M(M, f,g) =
M(M, f) N M(M, g).

Throughout the paper, we always assume that M is a compact C'"*° Riemannian manifold
without boundary, f and g are C? diffeomorphism on M with fg = gf, p is an f— and
g—invariant Borel probability measure on M, i.e. p € M(M, f,g).

Let T, M be the tangent space of M at x € M. The diffeomorphism f induces a map
Dfy : T,M — Ty, M. It is well known (see [O]) that there exists a measurable set I'y with
vy =1,VveM(M,f),such that for all x € 'y, uw € T, M, the limit

.1 n

exists and is called Lyapunov exponent of u at z. Let A\i(z, f) > -+ > A\p(q,5) (2, f) denote

all Lyapunov exponents of f at z with multiplicities m1(z, f), -+, My(a,5) (2, f) respectively,
r(z,f)
and T, M = & E;(z, f) be the corresponding decomposition of tangent space at x € M.
i=1



Similarly, for diffeomorphism g we have Lyapunov exponents Ay (z,9) > -+ > Ap(z,¢) (2, 9)

with multiplicities m1(z, g),- -+, My(4,q)(, g) respectively, and the corresponding decomposi-
r(z,9)

tion T,M = @ E;(x,g9).
=1

Suppose f and g are commuting diffeomorphisms. The spectrum {\;(z, f), m;(x, f)} of
f is f—invariant. We will show that it is also g—invariant, i.e. Yu € E;(z, f),

x(g7, Dgzu, f) = x(x,u, f) = Xi(=, ).

and therefore Dg, F;(x, f) = E;(gx, f). Thus we can redecompose each F;(z, f) according
to diffeomorphism g and get the following.

Theorem A. let M be a C*° compact Riemannian manifold without boundary, f,g €
Diff?(M) with fg = gf. Then there exists a measurable set I' with f*¢'T' =T,V s,t € Z
and uI' =1,V p € M(M, f,g), satisfying that for all x € ', there is a decomposition of the

tangent space into
r(z,f) r(z,9)

T.M= P P Eijx)

=1 g=1

such that V s,t € Z, if E;j(x) # {0}, then ¥ 0 # u € E;;(z),
s 1 S n
Jim_—log [ D(f*g")3ull = shi(e, f) + X, 9).
and if (ilajl) 7£ (i27.j2) 11]1( ) 7é {0} Elzjz( ) 7£ {0}7 then

1 S S n
Jim —log [sin(Es,, ((£°9")" ), Eunjo ((£79")"2))| = 0.

Moreover, ¥V s,t € Z,

D(f°g")«(Eij(x)) = Eij(f°g'z),

Ai(fsgt'raf):)‘i(wvf% Aj(fsgtx7g):)‘j<xvg)'

Probably, this result is known. However, because of its importance for our discussion,
we state it here and give the proof in §2 for completeness. In particular, if we take s = 1 and
t = 0, then we have

1
lim —log || Dfiull = Ai(z, f), V0#ué€ Ejx),
n—oo N,

.1 ) n n
lim —log|sin(E;, j, (f"x), Eiyj, (f"x))| = 0.

n—oo n

and D fy Eyj(x) = Eij(fz), Ni(fz, f) = Ni(=, ), and A;(fz,g) = Aj(z,g). Symmetrically, we
have similar results concerning diffeomorphism g, if we take s = 0 and ¢ = 1. The explicit
statement is given in Proposition 2.8.

By the definition of Lyapunov exponents, given v > 0, V n,k € Z, ||Dfrulle= (=)
and ||Dgkulle %9 v € E;;(x), are dominated by C(z)*1e™|ju| and C(z)*'e* |ul],
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respectively. We will show in §3 that C(x) can be chosen such that C(f*'z),C(¢F1x) <
C(z)e?. This is a generalization of Pesin’s theory ([P]) to commuting diffeomorphisms.

Based on the facts we can construct a family of Lyapunov charts, on which the maps f
and g, induced by f and g respectively, act approximately to the linear maps with eigenvalues
e?i(@F) and e*i(#:9) respectively. The result is stated in Proposition 4.1.

Let 5@, f) = @ Bile ), E'e,f) = @ Eilw f), and if Ai(a, ) = 0 for
Xi(z,f)<0 Ai(z,f)>0
some i then let E°(z, f) = F;(z, f). Also, let E*¢(z, f) = E*(x, f) ® E°(x, f), E"(z, f) =
EY(x, f) ® E°(x, f). The unstable manifold for diffeomorphism f, say, is defined by

1
w"(z, f) ={y € M : limsup Elogd(f_"x, f"y) < 0},
which is f—invariant. It is easy to see by the definition that it is also g— invariant. From
Theorem A we know that E“(x, f) = E%(x,g) or E*°(z, f) = E*(x,g) is equivalent to
E¥(x, f)NE*(z,g) = {0} = E"(z,g) N E*(x, f). If it holds at some = € I", we will prove in
§5 that the unstable manifolds w"(z, f) and w*(x, g) coincide at z.

The next topic in this paper is concerning the relationship among the entropies of f,
g and fg. We will prove that if f and g are C? diffeomorphisms on a smooth compact
manifold preserving a Borel probability measure 1, then h,(fg) < h,(f) + hu(g). It is not
true for general measure preserving transformations on a probability space. There are some
unpublished counterexamples, for instance, due to D. S. Ornstein and B. Weiss, and due to
J.-P. Thouvenot, of two commuting measure preserving automorphisms S, 1" of probability
space (X, B,v) with h,(S) = h,(T) = 0, but such that h,(ST) > 0. However, in the smooth
dynamical systems the subadditivity of measure-theoretic entropies holds.

From Ledrappier and Young’s formula relating entropies, exponents and dimensions,
we know that the entropy of a diffeomorphism on a smooth manifold is determined by the
behavior of the map on its unstable manifold. If two commuting diffeomorphisms have same
family of unstable manifolds, i.e. w"(z, f) = w"(z,g), p—a.e., then we can construct an
increasing partition subordinate to the unstable manifolds (see §6 ), and use it to get equality
in above subadditivity formula. We combine the two results in the following theorem which
we will prove in §7 and §9.

Theorem B. Let M be a C'*° compact Riemannian manifold without boundary, f,g €
Diff?(M), and fg = gf. Then

hu(fg) < hu(f) +hu(g), Vue MM, f,g),

where h,(-) denotes the measure-theoretic entropy. Moreover, if E*(z, f) N E*(x,g) = {0}
and E*(z, f) N E"*(x,g9) = {0}, u — a.e, then the equality holds.

For topological entropies the the answer to the question whether h(fg) < h(f) + h(g)
is also negative in general. L. Wayne Goodwyn has a counterexample for the case, i.e. there
exists a compact metric space X and two homeomorphisms S and 7" with ST = T'S such
that h(S) = h(T) = 0 and h(ST) > O(see [G]). Since topological entropy is the supremum
of measure-theoretic entropy, from Theorem B we can prove the formula if some additional
hypotheses are given on diffeomorphism fg.



Theorem C. Let M,f,g is same as in Theorem B. If for fg, one of the following
conditions holds:

i) fg € Diff>*(M), or

ii) fg is expensive, or

iii) fg has finite number of ergodic measures with maximal entropy,
then

h(fg) < h(f) + h(g).

This theorem will be proved in §10. In the section we will also present a counterexample
to show that if f and g are homeomorphisms on a compact smooth manifold, then the result
of Theorem C fails. We don’t know whether the result still holds if the additional hypotheses
on fg are removed.

§1. Ergodicity

In this section we will give the definition of ergodicity and discuss the properties for two
commuting continuous maps on a compact metric space.

For a map T from a set X to itself, we denote by Fix(7T') the set of fixed points of T

Proposition 1.1. If T" and S are commuting maps on a set X, then S(Fix(T")) C Fix(T).
Proof.  Take x € Fix(T'). Since T'(Sz) = S(T'z) = Sz, we have Sz € Fix(T).

Let M(X) be the set of Borel probability measures on a compact metric space X, and
T be a map on X. T induces a map T on M(X) by putting T*u = po T~ 1, Vu € M(X).
Thus Fix(T*) = M(X,T).

Proposition 1.2. If T and S are commuting continuous maps on a compact metric
space X, then M(X,T) N M(X,S) # 0.

Proof. By Proposition 1.1, S*(M(X,T)) C M(X,T). Since M(X,T) is a nonempty
compact convex set in weak * topology and S* is continuous, we know that S* has a fixed
point in M(X,T).

We write M(X,T,S) = M(X,T) N M(X,S). Since both M(X,T) and M(X,S) are
convex sets, M(X,T,5) is convex.

Definition. Suppose T' and S are continuous maps on a compact metric space X with
TS = ST. A measure p € M(X,T,S) is said to be (T, S)—ergodic if for any measurable set
B with y(T7'BAB) =0 = u(S™*BAB), u(B) =0 or u(B) = 1.

(T, S)—ergodicity shares some properties with those of single transformation. For exam-
ple, we give the following propositions whose proof is parallel to the case of one transformation
(See [W], Chapter 1 and 6).

Proposition 1.3. p is (T, S)—ergodic iff any measurable function ¢ on X with ¢(Tz) =
¢(x) = ¢(Sz), p — a.e. is constant p — a.e.

Proof.  7=" is based on the fact that for such function ¢, the set {z : ¢(x) > C},
C € IR, is invariant under the actions T and S. ”<" holds because the characteristic function
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x5, where B is a set with u(T"*BAB) = 0 = u(S™'BAB), satisfies xp(Tx) = x5(z) =
xB(Sz), 1 — a.e. and equals to 1 or 0 almost everywhere. |

Proposition 1.4. u is (T, S)—ergodic iff p is an extreme point of M(X, T, S).
Proof.  Suppose p is not (T, S)—ergodic. We can find a measurable set E with TE =
E=SEand 0 < u(E) < 1. Let

() = p( ﬂE)) 1ia() = p(-NX\E)
H(E) n(X\E)
Then p = ppy + (1 — p)pe, where p = p1(F). So pu can be expressed as a convex combination
of py, pz € M(X,T,S) and is not an extreme point of M(X, T, S).

Suppose p is (T, S)—ergodic, and g = puy + (1 — p)ue for some py, ue € M(X,T,S)
and p € (0,1). Then p; is absolutely continuous with respect to p, and the Radon-Nikodym
derivative ¢ = duq /dp satisfies that ¢(Tz) = ¢(z) = ¢(Sx), u — a.e. So it must follow that
¢(x) = 1, p — a.e, because [y ¢dp = 1. Thus, p = py. Similarly, p = pp. Hence p is an

extreme point of M(X,T,S5). |

Proposition 1.4 shows the existence of (7, S5)—ergodic measure and gives rise to the
possibility of (T, S)—ergodic decomposition.
Notice if T" and S commute, then so do T and T'S.

Proposition 1.5. Suppose T" and S are homeomorphisms on X.

)M(X,T,TS) = M(X,T,S).

ii) p is (T, S)—ergodic iff p is (T, T'S)— ergodic.

Proof. 1) is clear. ii) follows from i) and Proposition 1.4. i

We denote by £(X, T) the set of ergodic measures under action 7. Then by our notation,
M(E(X,T)) is the set of Borel probability measures on £(X,T). It is known that for any
v e M(X,T), there exists a unique element 7 € M(E(X,T)), such that v has the ergodic
decomposition ([W],Chapter 6)

V= / Vedm(Ve), (A)
£(X,T)

It means that V ¢ € C(X),
o(z)dv(X) = P(x)dve(x))dm(ve). AA

In fact, given any m € M(E(X,T')), this formula can determine a unique T'—invariant measure
von X as well. Thus we obtaina 1—1map 7: M(X,T) — M(E(X,T)) defined by 7(v) = 7.

Now we give following remarks which may be helpful for understanding (7', S)—ergodic
measures. Here we need assume that both 7" and S are homeomorphisms on a compact
metric space X.

Remark 1.6. S* induces a map S** = (S*)* on the set M(E(X,T)) by S**(v) =
vo (S*)~L.



Proof.  S* is invertible. By Proposition 1.1, S*(M(X,T)) = M(X,T). Since S* is
affine and £(X,T) is the set of extreme points of M(X,T), S*(E(X,T)) = E(X,T). Then
the result follows. i

Remark 1.7.

i) pe M(X,T) is S—invariant iff T(p) is S*—invariant. In other words, p € Fix(S*) iff
7(p) € Fix(S*).

ii) p is (T, S)—ergodic iff 7(u) is ergodic with respect to S*.

Proof. i) Denote m = 7(u). Since S* is affine and maps (X, T) to itself, we have that

S [ S = [ pedn(($) ) = [ st )
£(X,T) E(X,T)

£(X,T)

Comparing it with (A) we know that S*u = p iff S** 7 = 7.
ii) Notice that i) means 7(M(X,T,S)) = M(E(X,T),S*). Since 7 is 1 — 1 and affine,
the extreme points of the two sets are corresponding under the action 7. |

§2. Lyapunov Exponents

From now on we back our discussion on the smooth dynamical systems. The suppositions
on M, f, g and p are as before. Recall that I'; is a subset of M such that fI'y =T'¢, vI'y =1,
VveM(M,f), and for any z € I'y,

1
x(z,u, f) = lim —log || Dflu ||, Vu € T, M.
n—oo N

Lemma 2'1' X(gqugwuu f) = X(x7u7f)
Proof. There exists C' > 0 such that Vx € M,u € T, M,

C™H lull<]| Dgzu [|< C |l u]l.

Thus
CH | Dfju ||| DgproDfiu |< C || Dfu |l
So
.1 n .1 n .1 n
lim —log || Dfy,Dg.u [|= lim ﬁlog | DggnaDfru||= lim ﬁlog | Dfiul] . i
n—oo M n—oo n—oo

We know that the set I'y and the spectrum {\;(x, f), m;(x, f)} are f—invariant, and
Df.(Ei(x, f)) = Ei(fz,f),i=1,---,r(x, f). From above lemma we have the following.

Corollary 2.2.

i) The set I'y is g—invariant, i.e. gI'y =1T'.

ii) The spectrum {\;(x, f),m;(z, f), i=1,---,r(x, f)} is g—invariant.

111) ng(EZ‘(IL’,f)):EZ‘(gIL‘,f), izl,"',T<$,f).

Next proposition is a special case of Theorem A.
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Proposition 2.3. There exists a measurable set I'y with fI'y =1y = gI'y and ul'y =1,
Vue M(M,f, qg), satistying that for all x € T'y, there is a decomposition of tangent space
into

r(z,f) r(z,g9)

rar='@ @ it
i=1 j=1
such that if E;;(x) # {0}, then V 0 # u € E;;(x),
. 1 n : 1 n
Jim —log{|Dfrull = Xi(e, ), lim —log || Dgzull = Xi(z, f),
and

" : n n 1 : n n
hm - log |Sln( lel(f ) 1272 (f ))| = Oa hm - log |Sln(Ei1j1 (g .CL’), Eizjz (g LU))| - 0

n—oo n n—oo n

Moreover,the following invariant properties hold.

1) D foEij(x) = Eij(fr), DgeEij(x ) = Eij(gx),

i) Ni(fz, f) = Xi(z, [) = Nigz, f), Ai(fz,9) = Aj(z, 9) = Aj(92, 9).

Proof.  For any point « € I'y, let TxM = Ei(z,f)® @ Ey(q,5)(, f) be the decompo-
sition of tangent space for diffeomorphism f. By Corollary 2.2, Dg.(FE;(z, f)) = E;(gz, f).
Restricted on {E;(x, )}, {DgZ}} is a cocycle on M with respect to g (see [Ru]), where we take
Ei(x, f) ={0}if i > r(x, f) or z is not in I'y. Now we use the Multiplicative Ergodic Theo-
rem for each i to get a subset I'® C T, such that V 2 € T'(9), after relabelling the subscript, if
necessary, F;;(z) has desired properties. Since for each 4, uI'¥ =1,V u € M(M, f, g), and

by Corollary 2.2.i), fT) =T we can take I'y = () T'®. |

The Proof of Theorem A.
First we claim that V s,t € Z, i=1,---,r(x, f),j=1,---,r(x,g), the set
A’Y:{x: Eluerij(x>73t X(I U:cafs t)_S)‘(m f) ( )>47}

satisfies pA, = 0 for all p € M(M, f,g).
Suppose it is not true. Then there exists a p € M(M, f, g) with A, > 0. Choose [ > 0
such that the sets

A ={z € Ay ID(f5g") ]| > 1Y |ua || exp n(x(@, us, £2g") — ), ¥n > 0},
A" ={z € A, + | Dgtmull < Uullexpn(th; (z,9) + ), Yu € By(), n > 0}

have measure larger than 2 14.,. Then A’'NA” # (). By Poincaré Recurrence Theorem we can

take x € A’NA” such that there exists a sufficient large integer n > % with fs"x € A'NA"
and
I Df2 ul| < JJullexpn(shi(z, f) +7), Vu € E;j(x).

Since Df:"u € E;;(f*"z) and f*"zx € A",
ID(f°g")ull = IDgFtn, D ull <UD fi"ull expn(th;(f "z, g) + )
< |ull expn(shi(z, f) +tA;(z, ) + 27)
< l_1||UH €xXp n(X(ac,m fsgt) - 7)7 ‘v’u S EZ](.I‘)
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In particular, take u = u,, then

ID(f*9")2ug | < I H|ug | exp n(x(z, ug, f5g") — 7).

This contradicts the fact x € A’.
Similar claim for the set

B, ={x: Ju, € Eij(x), s.t. x(x,uz, f5g") — shi(x, f) — t\;(z,g) < 47}

is also true. It is easy to see by the claims that for any u € M(M, f,g), p—a.e.x € M.V s,t €
Z, i=1,---,r(z, f), j=1,---,r(x,g), if E;j(x)# {0}, then V 0 # u € E;;(z),

: 1 S n
X(@,u, f°g") = lim —log [ D(f*g")zull = shi(x, f) +tA;(x, 9).

Using the same idea, with some modification, we can prove the result concerning the
equality

lim l log {Sin<Ei1j1 ((fsgt)nx), Eiij((fsgt)nx))‘ = 0.

n—oo n

The rest of the results of the theorem follow directly from Proposition 2.3. |

63. A Version of Pesin’s Theory

In this section we give a version of Pesin’s theory in the case of commuting diffeomor-
phisms. The main result is stated in Proposition 3.6.

Lemma 3.1. Let A(x) be a positive measurable function on I' such that there exist
positive measurable functions Py (x) and Py(x) on I' satisfying that for all z € T,

Py(z)e SUMHEDY < A((f1gM)x) < Py(2)eSIMHEDY vy ke Z.
Then a measurable function C' : T' — [1,00) can be found such that, ¥V = € T,
Cla) ™ < A(z) < C(a),

and

C(f*1z) < C(x)e®, C(gt'z) < C(x)e®,

Proof. For any x € T', except for finite number of pairs (n, k),
A((frgh)m)e8nl+kDY <1 A((frgk)m)~te8Unl+IkDy < 1.
Thus,
C(x) = max{1, A(f"g"z)e 8UnIHIEDY ~A(frghz)=te=8nHkDY vy ke Z}
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is a required function. |
Lemma 3.2. For any v > 0, there exists a measurable function ) : T' — [1,00) such
thatVn,ke Z,0#ue E;j(x),zel,i=1,---,r(z, f), j=1,---,r(x,9),

Q(l.)—l||u||€n/\i(w:f)+k)\j($,g)—3(|n\—|—|k|)'y < ||D(f"gk)xu||
< Q) [Juf| NN HA .9) 3 nlHE)

Proof.  In the proof we always assume that ||u|| = 1.
We assert that for each z € ', if |n| or |k| is sufficiently large, then

e=3InIHEDY < || D(frgh) e F) kX (.0) < (3nl+IED)

First we suppose n > k > 0.
Take | = I(x) > 0, such that V y € IEJ (frg")x, v € Eij(y), i = 1,--,r(x, f),
n,keZ
1= 1,"',7”(13,9),
1D fyoll < [lofle D+ |[Dgyo|| < fJuljet @0+,

By Theorem A,V 0 <t <1, ue E;x),

1 )
lim —log||D(f'g")5ull = Wi, f) + tA;(. 9).

We can choose a positive integer sg > [, such that Vs > so, [ >t > 0,

eslAi(m,f)—|—st)\j(:c,g)—(sl+st)’y < ||D(flgt)fcu|| < esl)\i(:c,f)+st>\j(m,g)—&—(sl—l—st)’y.

Denote Ny = Isg.
Take n > Ny. For 0 < k < n, we can write n = sl + p,k = ts + q, where 0 < p < [,
0 < ¢ < s. Notice that \;(z, f) and \;(z, g) are both f and g—invariant, we have
ID(f"g*)zull = ||Df? o Dg? o D(f'g")5ul
< ePQi(@NFY) | a(Ni(@.9) 1) | psli(@,f)+sth;(@,9)+(sl+st)y
— en)\i(w,f)—i-k:)\j(m,g)—l—(pl—i—ql—l—sl—i—st)'y

< en)"i (xvf)+k>‘j (xvg)_'_g(n"_k)'y .

Also, we can write n = sl — p,k =ts — g, where 0 < p <[, 0 < g < s. Then

ID(f'g")zull = | Df? 0 Dg? o D(f"g")zul
< PN @) L oaQs @9+ | D (7R ).

||D(f"gk)qu > e~ PN (@ N)+17) | g—a(X(z,9)+1y) | gslhi(@,f)+stA;(w,9)—(sl+st)y
— en)\i(:r,f)—l—k)\j(:I:,g)—(pl—i—ql—i—sl—i—st)'y

> en)\i (z,f)+kX;(z,9)—3(n+k)y )
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These inequalities show that in the case of n > k > 0, our assertion is true if n > Nj.
It is also true for the case k > n > 0 because we can find K; > 0 similarly such that the
inequality holds if £ > K. Since the iterations of f and g in positive and negative directions
are symmetrical, the assertion is true if one or two of n and k are negative.

Now we know that

Qz) = max{l,HD(fngk)IuH—lenki(m,f)-Fk‘/\j(w,g)—3(|"|+|k|)v,
DU g )sulle= o)) =307, ik € Z,u € By (a) ] = 1}

is a required function. |

Remark 3.3. In the proof of Lemma 3.2, Q(x) is chosen to be the minimal function
satisfying our requirement, i.e. ¥V x € T,

Q(z) =inf{g>1: g te3UnlFlEDY < HD(fngk)xuHe—n/\i(w,f)—kkj(w,g) < ge3nlHlkDy
Vn,k € Z,u € Ew(l')}

Lemma 3.4. For any v > 0, there exists a measurable function R : T' — [1,00), such
that V TL,]C € Z: Z'172.2 = 17 U ,T’(.TC, f)7 j17j2 = 17 e ,T(.T?,g), (ilvjl) 7é (i27j2>:

’Sin (Eml ((f"g")x), Eiyyy ((f”g’“)x)) ‘ > R(z)~le~3nl+Ik)

Proof.  The method is similar as in the proof for the left inequality of Lemma 3.2 if
we use

ax{ ’ Sin(EiLh (fﬁl?), Eizjz (f.il)))| } max{ | Sin(Ei1j1 (gSC), Eizjz (g.’])))| }
| sin(Ei j, (2), iy ()] 1 | sin(E;, j, (7), Eigj, (2))]

instead of Df, and Dg, respectively, where the maximums run over iy,io = 1,---,r(z, f),
j17j2 - ]-a o 77,.(3:.,9), (ilajl) 7& (i27j2)-
Lemma 3.5. The function Q(z) determined by the proof of Lemma 3.2 satisfies that

Q(figx) < Q(z)?e8IsHIY v s 1 c Z.
Proof. Take s,t € Z,V u € E;;(f'¢'x), where i =1,---,r(z, f), j=1,---,r(z,g). We
can choose v’ € E;;(z) with u = D(f*¢"),u’. By Lemma 3.2,
Q(x) Y |u||esNi @ N (@) =3Us 1Dy < ||| < Q(a)||u![|eH (=) Hti (@ 9)+3(Is[+[t)
Since V' n,k € Z, D(f"g") e grzte = D(f" 9" ),
Q(x)—lHu'||€(n+s)&(w,f)+(k+t)kj(x,g)—?»(\n+sl+|k+t|)v

< ||D(fngk)f59tmul| < Q(.T)Hul||6(n+8)/\i(x’f)+(k+t)>‘j(I’g)+3(‘n+s|+|k+t|)7.
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From these inequalities we have that

Q(x)_z ||u||en>\i(w7f)+k>\j(w,g)—3(|n\+|k|)v—6(|8\+|t|)7

< || D(f"g") s grau]| < Q()?||u|| e (@) FRA; (@) +3(InlH+ k)Y +6(Is|+]tD)y
By Remark 3.3 the value of Q at f®g'x must satisfy

Q(f*g'x) < Q(x)28sIHIth, 1

Proposition 3.6. Given M, f,g,I' as in Theorem A, then for any v > 0, there exists
a measurable function C' : T' — [1,00) such that
)Vn,ke Z,ue Eijj(z),i=1,---,r(z,f),j=1,---,r(z,9),

C(x) ™ |ul|e™: @ HHEXs @) =(nlHEDY < | D(fgF)ul| < C(z)||ul|e™: @A @)+ (Inl+IkDy

11) VilaiQ = 17’ te 7T(:E7f)7 jlaj2 = 17 T ,r(m,g), (ila.jl) 7£ (Z'27j2);
|Sin<Eilj1 (x)7Ei2j2 (:C))’ > C($>_1,

i) C(f*'z) < C(x)e?, C(g™'z) < CO(x)e?.
Proof. In Lemma 3.5 we replace s,t by —n,—k, respectively, then replace z by f"¢*x
to get
Q(z) < Q(f"g"w)?es MY,
i.e.
Q(fngk@) Z Q(m)6*3(|”|+|k|)7.

We let P(x) = /Q(x) and P2(z) = Q(x)?. By Lemma 3.1 there exists a measurable
function Cy(z) > 0 with Q(z) < C1(x) and C(f*lz) < Ci(z)edY, C1(gFz) < C1(x)e®.
Take

A(z) = max{|sin(E;, j, (2), Eiyj, ()]
1,02 =1, - ,7“(11]', f):jl:j? =1,-- ,T(CI]’,Q), (ilajl) 7& (7'27.72)}
By Lemma 3.4 and Lemma 3.1, there exists a measurable function Cy(xz) > 0 such that
A(z) > Co(x)~ and Co(fFlz) < Co(x)ed, Ca(gtlz) < Cox)e®.

Now we use 7 instead of 8y and put C(z) = max{Ci(z),C2(x)}. Then C(z) is a required
function. i

§4. Lyapunov Charts

We have already had the decomposition of tangent space into subspaces corresponding
Lyapunov exponents for both f and g. In this section we construct Lyapunov charts for the
diffeomorphisms by the same method used in [LY]. For simplicity our discussion just concerns
the difference and skips the rest.
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Let ((-,-) be the inner product on T, M given by the Riemannian structure and || - ||

be the induced norm. Let (-,-) and |,-| denote the usual inner product and norm in IR™
respectively. Also, for p > 0, let B(p) be the ball in IR™ centered at origin of radius p.
Let

A (z, f) = min{\;(z, f) : Ni(z, f) >0}, A_(z, f) = max{\;(z, ) : N\i(z, f) <0},

A)\(%,f) = mm{)\z(x, f) - )‘i-l-l(xv f)7 =1, 77'(377 f) - 1}7
and define Ay (z,g), AX(z,g) in similar way. Take
1 .
0<y= 7(13) < m mln{A)‘(x7f),A)‘($ag)a j:>‘:|:(x7f>v :t/\:t(xag)}a

where m = dim M. Next proposition shows the existence and properties of Lyapunov charts
for f and g.

Proposition 4.1. For the y defined as above, there exists a measurable functionl : I' —
[0,00) with I(f¥'z) < I(x)e?, I(g*'x) < I(x)e?, and a set of embedings ®, : B(l(z)~!) — M
at each point x € I' such that the following holds.

i) ®,(0) = z, and the preimages R;j(x) = D®,(0)"'(E;;(x)) of E;;(z) are mutually
orthogonal in IR™, where i =1,---,r(z, f), j=1,---,r(x,g).

ii) Let f, = @;; o f o ®, be the connecting map between the chart at x and the chart

at fx. g., (fg). and their inverses are defined similarly. Then (E)I = fgxgm = gfxfl, and

(fg):;1 = fg_fllxgmil = g;}le:;1
iii) For any 1 <i<r(z,f),l <j<r(x,g),and u € R;;(z),
J
’u|e>\i(w,f)—v < \DfI(O) ul < ’u|e>\i(w,f)+7,
lule 9= < DG, (0) u| < |ulet @9+,
|uleti (@A (@9)=r < !D(E)x(()) u| < |ulet@NTri@ 9+

iv) Let L(¥) be the Lipschitz constant of the function W. Then for Fy = fy, §a, (}\g/])x
and their inverses,

L(F.— DF.(0) <7,  L(DF) <I(z).
v) There exists a number A > 0 depending on 7 and the exponents such that Vx € T,
[ ul < Mul, (5wl < Mul, |(fo)Ftul < eMul, Vue Be @)™,
vi) For all u,v € B(l(x)~"), we have
K 'd(®uu, ®uv) < |u—v| < 1(2)d(Ppu, Do),

for some universal constant K.

We shall refer to any system of local charts {®, : =z € T} satisfying i) — vi) as
(v,1)—charts for f and g. Obviously, if {®, : x € T'} is a system of (v, 1)—charts for both f
and g, then it is a system for either f or g as well.
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The Proof of Proposition 4.1.

By Proposition 3.6 there exists a measurable function C' : I' — [1, 00) such that for all
x € I', we have the following.

i)Vn,ke Z,uwe Eijj(x),i=1,---,r(z,f),j=1,---,r(z,9),

C(z) " Hue™ s @HHrA @ =(nI+EDY < || D(f7g%)ul| < C(x)||u|e™s @HFrAi(@g)+(nl+IkDY
”) v2.17Z'2 =1, ,T((L‘, f)a Ji,j2=1,-- 7T(I79)7 (ilajl) 7£ (i27j2)7
[sin(Ei j, (2), By, (2))] = C(2) 7

iii)  CO(f*'z) < C(x)e?, C(gtlz) < C(x)e.
We define a new inner product ((-,-)) on T,,M. First, for u,v € E;;(x), let

+oo +oo
. «D(fngk)xua D(fngk):rv»
(ol = 20 D st ) - A Grg) + 20l T T

n=—oo0 k=—o0

Then we extend ((-,-))) to T,M by demanding that all subspaces {E;;(z)} be mutually
orthogonal with respect to (-, ). Let || - || be the corresponding norm. A calculation shows
that V 0 £ u € Eij(x),

lull < flull < CoC (@) [ull,

+o00o +o0o 1
where Co = (3. S0 e 2(n+ED7)3  and

n=—oo k=—00
e @0=2 < D frrf < fufje @D+,

@927 < [ Dggull < flufle =9+,

and then
[l @@ <D Dgaul] < fufed @@

r(z,f) r(z,9)

For arbitrary 0 # u € T, M, we can write w = ), > wu;;, where u;; € E;j(x). It is
i=1  j=1

lull <03 lugll <D 0> sl < mijul,
% J % 7

because there are at most m different subspaces E;;(x) in T, M. With similar argument in
[LY, Appendix| we obtain that

clear that

HUH > "uij"c(x)_m+17 Vi = 17' o ,7“(1', f)7 j: 17" : ,T(.T,g).

Therefore
r(z,f) r(z,9) r(z,f) r(z,g9)
full < > Y Jluil < CoCz) Y- D uigl < mCoCa)™ |lul.
=1 j=1 i=1 j=1
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Define a linear map L, : T, M — IR™ such that
(Lyu, Lyvy = {(u, v)), Yu,v € T, M,
and let ®, = exp, oL, !, then i)—iii) hold, if we use v instead of max{m~,4v}. To get

iv)—vi) we take [(x) = CC(z)™, where C is large enough and chosen in a way similar as in
[LY, Appendix|, and take K = 2m for vi). The proof is finished. |

Corollary 4.2. With above notation, V 0 < e < e™7,

Jo'Blee M(2)™h) € B(el(f2)™"), gz ' Blee M(x)™") C Blel(gz)™?).

Proof. 1t is Proposition 4.1.v). |
Now we introduce a new norm | -|" on IR™. For any v € IR™, we may write v =
r(z,f) r(z,g)
Z Vij, where Vij € Rij as Rij 7é {O} Then let
i=1 j=1
lv|" = max{|vij|, Vi=1,---,r(z,f), j=1,---,r(z,9)}

: 1
It is clear that —= lv

but the universal constant K = 2m may change to K = 2m+/m. From here on, we use | -
as the norm in IR™ and still write it as | - |.

| < |v|" < |v], where m = dim M, and Proposition 4.1 still holds for |- |',
|/

Suppose {®, : z € I'} is a system of (v,l)—charts for f. For =z € T, let R* =
L 1E%(x, f),R*¢ = L;'E*¢(x, f) and so on. Then IR™ = R® x R® x R%, or IR™ = R%¢ x R“.
By Proposition 4.1.ii), D®,(0) takes R*,R°,R® to E“(x, f),E(x, f),E*(x, f) respectively.
The u—coordinate of a point v € IR™ is denoted by v,. Other notations such as v., vs, Vs
are understood in obvious way. Clearly

o] = max{[vs|, |vel, [vul}-

We should remember that the notations v,,vs. depend on the diffeomorphism, but we will
not indicate it in our notation, because there is no ambiguity from context.

Corollary 4.3. Let z € T and 0 < € < e~*~7. We have the following.
i) If v,v" € B(el(x)™!) and |v —v'| = |v, — v),|, then

[fov = Jot'| = [(fov)u = (fat")ul = D720 — 0|,
i) If v,0" € B(el(xz)™!) and |v — v'| = |vs. — V.|, then

’fx_lv - fas_lvly = |<f~:p_1@>50 - (fac_lvl)sc, > 6_27’7) - U/‘-

Proof. It follows from Proposition 4.1.iii)-v). i
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§5. Unstable Manifold

Recall that the global unstable manifold of a diffeomorphism f at x is the set w"(z, f) =
{y € M : limsup = logd(f~ "z, f"y) < 0}.

n—oo

Let {®, : = € T'} be a system of (v,l)— charts for f. The local unstable manifold,
denoted by w¥(zx, f), of f at x associated with {®,} and « is defined to be the component
of w(x, f) N @, R(al(z)™!) that contains z. The ®;!— image of this set in the z—chart is
denoted by W¥(z, f).

The following result is well-known.

Proposition 5.1. For 0 < o <1 and x € T, W"(x, f) is the graph of a function
vl BY(al(z)™!) — B**(al(x)™")

with ¢/ (0) = 0 and || D) ||< &, where B%(3) and B*¢(j3) denote the balls centered at the

37
origin of radius (3 in R* and R*¢ respectively.

The family of global unstable manifolds {w"(x, f) : € I'} is f—invariant, that is,
fw(z, f) = w*(fx, f). If f and g commute, we have the following.

Lemma 5.2. fw"(z,g) = w"(fz,g).
Proof. There exists C' > 0,such that Va,y € M,

C~Yd(z,y) < d(fz, fy) < Cd(x,y).

Therefore

fur(z,g) = {y € M : limsup ~ logd(g "z, g~"(f 1)) < 0}

n—oo N

1
= {y € M : limsup —logd(g~"(fx),g "y) < 0}

n—oo N

= w(fz,g). 1

Now we consider the case that E“(x, f) = E%(x,g), un — a.e. Let {®, : z € T'} be a
system of (y,l)—charts for both f and g. Then by Proposition 5.1 there are two functions
) and 19 defined on the balls of radius al(z)~! centered at origin in R*, where R =
(D®,(0)) " E%(z, f) = (D®,(0))"'E%(z,g). The graphs of 1 and ¥J are W¥(z, f) and
W(x, g) respectively.

Lemma 5.3. Suppose E%(x, f) = E%(x,g), p—a.e. and 0 < a < e *~7. ThenV z € T,

i) foWe(, f) cWE(f e, f),  fr'Wi(z,g) C WE(f 2, 9);
ii) Vo € Wh(z, f) or WY(z,g),

2ol = (7" v)ul < Jol expl=n(As(x, f) - 27)]
Proof. 'We only need prove the result related to Wi (z,g). Take v €
trary. Then |v| < al(z)™!. By Proposition 4.1.v), |f- '] < e 7(z)~! < I(f~tz)71, ie.
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fw e B(I(f~'xz)~1). Tt is easy to know by Lemma 5.2 and Proposition 5.1 that flv e
WY (f~'z,g) for some 0 < o’ < 1. Thus, Proposition 5.1 gives that |f, 'v| = |(f; 'v)u]. By
Corollary 4.3.1), . B .

[l = fp-1afz ol = X072 f),

ie.
[foto] < e @D= 0] < Jole™ < al(f ).
Thus, |f;'v| € I(f'z)~" and i) holds. Continuing this process we obtain ii). i

Proposition 5.4. Suppose M is a C'*° compact Riemannian manifold without boundary,
f,g € Diff*(M) with fg = gf, and I is as in Theorem A. For any = € T, if E%(z, f) =
EY(x,g), then w"(z, f) = w"(x, g).

Proof. We only need show that for some 0 < a < ™=, W¥(x, f) = W¥(z, g).

Suppose it is not true. Then we can find u € W"(z, f), v € W¥(x, g), such that

lu —v| = |uge — vse| > 0.
where ug.,vs. are the sc—coordinates of v and v respectively. By Lemma 5.3, we have that
((fmu)] = |f ] < e O+ @H=29) |y | < e O+ @) =2
(f " 0)ul = [f 0] < e EDZy) < qemm e (e =27)

and fx_”u,f;_"v € B(al(f~"z)~1) for any n > 0. Applying Corollary 4.3.ii) repeatedly, we
get ~ .
[(fz " w)se — (fz "0)se| = e—2n7‘u —vl.

Without loss generality we may assume that A\, (z, f) > Ay (z,g). Since Proposition 5.1
implies |(f, "u)sc| < %\(f;”u)u\, we get V n >0,

](j‘}_nv)sc| > ‘(fx_nu)sc - (f%”v)sc| - |(fm_n“)86|
[(fe"v)ul |(fz " 0)ul

6_2n7|u — U| — %ae_n(x+(m7f)_27)

> co—n(hs (2.9)-27)

— oy — p|enOe o)1) %en<A+<x,g>—A+<x,f>>_

By our assumption, A (z,g) — Ay (z, f) < 0. Hence the right hand side in above inequality
tends to infinite as n — co. But by Proposition 5.1, |(f; "v)sc| < 3|(f;™v)u|. This is a

contradiction. |

§6. Local Entropies

Suppose v € M(M, f), but not necessary in M (M, g). Let B(xz,€) be a closed ball in
M centered at z of radius e. We call the set

Bu(z,6,f) = [ [ ' B(f'x,¢)
=0
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to be an (n, ¢, f)—ball of f at x € M. The local entropy h,(x, f) of f at x is defined as (see
[BK])

1
hy(z, f) = lim limsup —— log v B, (z, €, f)
n

=0 poco

1
= lim liminf ——log v B,,(z, €, f)
n

e—0 n—oo

which holds for v —a.e. z € M, and satisfies that h, (fz, f) = h,(z, f) and [ h,(z, f)dv(z) =

hy (f)-
Recall g*v = v o g~!. Since v is a fixed point of f* and f*g* = g¢*f*, by Proposition

1.1, g*v is also a fixed point of f*, ie. g*v € M(M, f).
Lemma 6.1. V v € M(M, f), hg=o(z, f) = h,(¢7 'z, f), v — a.e.x € M. Therefore,

hgv (f) = hu(f).
Proof. Since g € Diff*(M), there exists C' > 1, such that ¥V & € M, € > 0,

B(g~'z,C7'e) c g 'B(x,¢) C B(g 'z, Ce).

Hence
Bu(g7'z,C e, f) C g ' Bu(2,¢, f) C Bulg 'w,Ce, f).

So, by the definition of local entropy,

1
hg*u(mu f) = lim limsup - logy(glen(x,e, f))
n

=0 poco

1
= lim limsup; logvB, (g 'z, e, f) = hy(g 'z, £).

e~V n—oo

This is the first result. Also we have

By (f) = / hyeo (2, £)d(g"v) () = / ho(g~ ', f)du(g™'z) = / by, Fdv(y) = ho(f). |

Since V u € M(M, f,g), g*p = p, the following fact can be induced directly from Lemma
6.1.

Corollary 6.2. h,(x, f) is both f and g—invariant. Consequently, if ju is (f, g)—ergodic,
then h,(x, f) = h,(f), p—a.e ze€T.

Suppose a measure p is given. For § € (0,1), we denote by N,(¢,d, f) the minimal
number of (n,e¢, f)—balls covering a set of the measure more than or equal to 1 —§. A.
Katok has proved (see [K]) that if p is an ergodic measure for f, then for every ¢ € (0,1),
h(f) = 6lg]n lim sup + log Ny, (€, 6, f). Now we have same result for the measure 1 which is

(f,g)—ergodic.
Proposition 6.3. If i is an (f, g)—ergodic measure on M, thenV ¢ € (0,1),
- 1
h,(f) = lim hmsupﬁ log Ny, (€, 6, f).

=0 p oo
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Proof.  Take v > 0 arbitrary.
Since

1
hu(z, f) = lir%liminf——loguBn(a:,e, ), iw—ae €M,
€e— n—oo n

we can choose an € > 0 and an ng > 0 such that V n > ng, the set

—fw e M puBa(z,26, ) < exp—nllu(f) =) }
has measure larger than or equal to 5(1 + 4).

Let A/, be a set that can be covered by Nn(€,0, f) (n,e, f)—balls. A, N A, # () because
p(A, N A,) > 2(1—6). Thus N,(e,6, f) (n, €, f)—balls can cover A, N A,. On the other
hand, to cover A’ N A,, by (n,2e, f)—balls centered at points in A/ N A,,, the number of such
balls can not be less than 152 expn(h,(f) — 7). Since each (n, €, f)—ball whose intersection

with set A/ N A,, is nonempty must be contained in an (n, 2¢, f)—ball centered at a point in

Al N A,, we have
-0

No(e,6,f) > -

It is true for any n > ng. Hence

exp n(hu(f) - 7)'

1
limsupﬁlogNn(e, 8, f) = hu(f) =,

and therefore .
lim lim sup — logNn(e,d, f) > hu(f).

e—=0 nooo
The inequality in another direction can be obtained in similar way. |
In our discussion we only need the inequality with the proved direction.

Suppose p: M — IR, is a measurable function. Define an (n, p, f)—ball at x € M by
Bu(w,p, f) = (V[ 7'B(f'w.p(f'z) ).
i=0

Proposition 6.4. Let {p. : € > 0} be a family of functions on M satisfying that
1) 0 < pe <, VaeeM,
i) [log pedp < o0, Ve>0,
iii) p. monotonously decreases as € — 0.
Then

hy(z, f) = lim hmsup——loguB(a: Pes [y uw—ae x el

=0 nooo
Proof.  Clearly By, (z,pe, f) C Bn(z,e€, f). Hence

hy(z, f) < hm hmsup——loguB (z,pe, [)-

n—oo

By the results of Mané [M], Brin and Katok [BK],

hu(f) > /hm hmsup——loguB (z, pe, [)dp > /hu(x,f)du = h,(f).

e=0 nco

So the equalities hold everywhere and the result follows. |
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§7. The Subadditivity of Entropies of Commuting Diffeomorphisms

We devote this section to the proof of the first part of Theorem B. The method we use
here is estimating the number of (n,e)—balls which cover the set of measure more than or
equal to 1 — § for some constant § € (0,1).

Let {®, : z € T'} be a system of (v,)—charts for both f and g. Recall that B(p) denote
the ball in IR™ centered at the origin of radius p, and the maps ®, and fm are defined on
B(I(z)~"). Sometimes we will omit the subscript z.

Forl>0,let Iy ={z el :l(x) <l}.

Lemma 7.1. Suppose y € Iy N f~"T; and 0 < ee” "7 < [~'. Let E C IR™.
i) If E C B(ee™?"), f'E C B(e),and f,E C B(I(f'y)~"), Yi=1,---,n, then
fiB C Bee ?"™D7), Vi=0,1,---,n.

ii) If E,f? E C B(ee™"), and fiE C B(I(f'y)™'), Vi=1,--+,n—1, then

fiE C B(ee ?™a{n=4i7) i = 0,1, ,n.

Proof. i) Suppose there is v € E with |f;v\ > ee2=)7 for some i € (0,n). If
|f§U| = |(f;v)u|; then by Corollary 4.3.),

|f;v| = |fn*i(f;'v)| > e(n*i)(/\+(x,f)*27)|fév| S 2(n—i)y | e—2(n—i)y _ ¢
If |f;v| = |(f;v)cs|, then by Corollary 4.3.ii),
lv| = |f_i(f;v)| > 6_2w|fév| > e 2 L ee 20T = o2,

Both cases are impossible. 3
ii) By part i), f?jE C B(ee=2("=97). Again, using part i) on the set fy E for f1, we get
f;E C B(ee~2"). The proof is finished by combining the inclusions. i

Take [ > 0 such that pI'; > 0. For any = € I';, let 7¢(x) be the smallest positive integer
k such that f*z € I';. By Poincaré Recurrence Theorem for p — a.e x € T, Tf(x) < 0o. We
extend 7¢(z) to M by putting 74(z) = 0 if z € M\I';.

For any € > 0, define a function p. ; : M — IR, by

pe,f(af) = min{e, l_2@_(>\+’>’)7'f (ac)}

Now log p., ¢ is integrable for any € > 0 because fl“z 7r(x) < 1. So the family of functions
{pe.f: € >0 } satisfies the conditions in Proposition 6.4.

Lemma 7.2. Let 0 < € < [72 and pe,t be defined as above. If y € I'y N f~"I";, then

N;q’;l [Bi(y, pe.s, f) N By, ee >™)] C B(ele 207y Wi =0,---,n.
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Proof.  Denote
E =@, [Bu(y, pe,s, f) N Bly, ee )]

Take v € F arbitrary and let z = ®,v.
Clearly d(y, z) < ee™ 2™, d(f"y, f"2) < pe.s(f"y) < e. Therefore by Proposition 4.1.vi),

ol = 01 (2)] < le, | fo] = |07, (F2)] < el
For 7 =1,---,n, we have that

d(f'y, ['2) < pe,s(f'y) = min{e, 17%e~ TNy
If fiy € Ty, then d(fy, fiz) <172 < I(fiy)~2 and therefore |fiv] = [®71(fi2)| < I(fiy)~"
Suppose fiy ¢ I';. Let j < i be the largest mteger such that fiy € Iy, then 7¢(fly) >i—j
and d(fly, f72) <172~ M0=0) < [(fiy)=2e~ A=) So we have

ol =195 (f2)] <U(fly)~tem M0,
Thus, by Proposition 4.1.v),
[fyol = IF 7 (Fpo)l < P2 ol SU(fry)~tem T <(fiy)

Now we know that E satisfies the conditions of Lemma 7.1.i) and our result follows. i

Lemma 7.3. Suppose 0 < € < 727227, Fory € I''n f~"I'; N (fg)~"Ty, if we set

A = Bu(Y, pe.s, [) N Bly,ee ) (\(f9) ™" [Bn((fg)”y, Peg-1,9" ) NB((fg)"y,ee>"7)],

then
A C Bn(deKa fg)a

where K is as in Proposition 4.1.vi).
Proof. Let
E=9"A.

By Lemma 7.2,V £k =0,1,---,n,
FyE C 3@, Bu(y: pess f) N By, ee™>")] C B(ele " 7H)7),

Similarly, since (fg)"§~ @, =g~ @t . (f9)", ¥ k=0,1,--,n,

(f9)"3, " E C G750 [Bal(£9)"Y: peg—1,97 ") N B((£9)"y, ee™>")] C B(ele 2"=H)),
Using n — k instead of k, and noticing (E)“gy‘(”"“) = (}\g/])kf;_k, we have
fiRE C B(ele™), (fg)*fr~"E C B(ele™), Vk=0,1,--,n. (%)
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Now we claim that V £ =0,1,---,n,
(E)zf;szE C B(EleiQ maX{kfi,i}’Y)’ Vi=0,1,---,k.

For k = 0, the claim is true because by (x) we have already had f;E C B(el). We
suppose the claim is true for £ — 1, i.e.

(:f\é)z‘f;z—k—HE - B(Ele—Qmax{k—i—l,i}f}/)’ Vi=01, - k—1.

Thus L o o
(f9)' fy "E C f ' B(ele ™ k=imbil7) v i =0,1,-- k- 1. ()

Since 0 < € < [72e 27 gle 2 max{b—i—Lilyved |—1g=2max{k—ii}y  Algo,
H(fa) 1 Fy) =1~ 5706 (fry) < U(fry)e=e <lehr < e?maxth=iidy,

Therefore ele=2maxtk—i=Litved < [((fg)'f*~Fy)~1. Now we can use Corollary 4.2 on the
right hand side in (**) and obtain that Vi =0,1,---,k — 1,

(F9)' fy M E C Bele ™ E=i=17eX) € BU((f9) /" Fy) ™). (%% %)

By Proposition 4.1, I(f*'z) < I(z)e. Hence y € Iy N f~"I'; implies that f"*y € Ijexy N
f~*T, c Ty N f~*I'y, where U :]ek“y. Also, ele 2% < (I')~!. Thus by (*) and (x * %) we
can use Lemma 7.1.ii) on the set fg?_kE for diffeomorphism fg to obtain that

(E)zf;szE c B(EleiQ maX{kfi,i}’Y)’ Vi=0,1,---,k,

i.e. the claim is true for k.
By induction the claim is true for £k = n. So

(FgV'E C B(ele™ 2=y © B(el),  Vi=0,1,---,n.
Thus,
(£9)'@yE = D), (fO)L E C D)y B(el) C B((fg)'y,elK),  Vi=0,1,---,m,
ie. | |
A=3,EC (fg)'B((f9)'y,elK), Vi=0,1,---,n.

The result follows from the definition of B, (y, elK, fg). |

The Proof of Theorem B (First Part).

Because the entropy map, which is defined on the set of invariant measures and has
values in [0, +00], is affine and any pu € M(M, f,g) has (f, g)—ergodic decomposition, we
only need prove the theorem if p is an (f, g)—ergodic measure.

Take v > 0 small sufficiently.

Take 6 € (0,1).
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Let {®, : = € T'} be a system of (v,l)—charts for both f and g. Let I', = {x € T :
[(x) <l1}. Fix an { > 1 such that uI'; > 1 — %. We define two families of functions {p. s} and
{pe,g-1} as above corresponding to f and g~ ! respectively.

Let

AL ={x €T uBu(w, pos ) > exp—k(hu(f) +7), Yk > n}.

n’67’y

Since pe, ¢ is decreasing as € — 0, by Proposition 6.4,

1
hy(f) = hy(z, f) > limsup—ﬁloguBn(zL‘,pe’f,f), u—a.e x el

n—oo

SoVe>0, uAfl ., —1,asn — co. Then I ny(e) > 0, such that ¥ n > ny(e),

n7€7,‘y

pAl o >1-—

n,e,y —

ol &>,

By the definition of AJ there are at most expn(h,(f) + ) disjoint (n, pc,f, f)—balls

n76’,y7

centered at points in Aflm. So the same number of (n,2p. ¢, f)—balls centered at points in

Al . can cover A . Suppose {By,(x,2pc . f) : @ € Sy} is a set of such balls. Then we

have that
U Bn(xa 2pe,f7 f) ) Afz,e,»ya
mGSf
|S¢| < expn(hu(f) + 7).
Similarly, for diffeomorphism g=!, ¥ € > 0, Iny(e) > 0, such that V n > n,(¢), we have
sets AY . and S, satisfying the following.

n767fy

pwAd o >1—

n,e,y —

ol &>,

U Bn(IL', 2p6,g—17971> ) A%,e;yv
TES,

|Sg| < exp n(h#(g) + ”7)-

We denote by N(«) the minimal number of balls of radius « covering M. Since dim M =
m, there exists a constant C' > 0 such that N(a) < Ca™™,V a > 0. Let Sy be a set such
that
U B(z,2c¢7) > M,
TE€SH

|So| = N(ZGB*Q”V) <C- (26672"7)#“.

Now we take 0 < € < 31727727, For each n > max{ny(e), ngy(e)}, let
A, =Af _NAY NN TN (fg) T

n?eﬁfy TL,E,’Y

Clearly, nA, >1—46. For any xy € Sy, x4 € Sy, ', 2" € S, if the intersection
A O By (,2pc 5, /) N B(a', 2e€™) [()(fg) ™" [Bn@g, 20eg-1,9" ") N B(a", 2ee")
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is not empty, then for any y in it, the intersection is contained in the set

Bu(y, 4pe.s, ) 0 By, dee™ ) (\(f9) ™ | Ba((f9)"y: 4peg1,97") 0 B((f9)"y, dee™2)]

Notice y € A, C ;N f~"I'; N (fg)~ "Iy, and 0 < 4e < [72e7*727, the result of Lemma 7.3
still holds if we use 4e instead of €. So the set is contained in B, (y, 4elK, fg).
There are at most

1S¢] - 1Sg] - 1S0f* < expn(hu(f) +7) - expn(hu(g) +7) - C - (2ee>"7) 2"
=C?- (2¢)7*™ -expn[hu(f) + hu(g) + (4m + 2)9]

different such intersections. Each one is contained in an (n,4elK, fg)—ball. Since these
intersections cover A,,, and pA, > 1— 4, we have

N, (4elK, 6, fg) < C? - (2¢) 2™ - expn[h,(f) + hu(g) + (4m + 2)4].

Thus,

1
hu(fg) = lim limsup — log Ny, (4l K, 8, fg) < hy(f) + hu(g) + (4m + 2)y.

n—oo N

Since v is arbitrary, we get
hiu(f9) < hu(F) + hu(9). I

§8. A Partition Subordinating to W"—foliations

In this section we assume that E“(z, f) = E“(x,g), u — a.e. By Proposition 5.4, we
have w*(zx, f) = w*(x, g), p — a.e. Therefore it can be written as w*(x). We will construct
a measurable partition n subordinating to w" and increasing under the action of diffeomor-
phisms f and g, so that we can compute entropies of the diffeomorphisms and get the proof
of the equality part in Theorem B.

In our discussion we also assume that p is an (f, g)—ergodic measure on M.

A measurable partition & of M is a partition of M such that, up to a set of measure zero,
the quotient space M /¢ is separated by a countable number of measurable sets(see[Ro]).

A measurable partition £ of M is said to be subordinate to the w"—foliation if for
p— aex, {(z) C w*(x) and {(z) contains a neighborhood of x open in the submanifold
topology of w*(x)(see [LY]).

For two partitions & and &, we say & refines &3, denoted by & > &, if &(x) C
& (x), b — a.e. We say that a partition & is f—increasing if f€ < &, g— increasing is defined
analogously. £ is said to be (f, g)—increasing, if £ is both f— and g—increasing.

Let B" be the biggest sub—o—algebra whose elements are unions of entire w*—manifold.

Proposition 8.1. There is a measurable partition n on M with the following properties.
i) n is subordinate to w"—foliation.

ii) n is (f, g)—increasing, i.e. fn <mn and gn <.
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iii) Both \/ f~"n and \/ g~*n are the partition into points (mod 0).
n=0 k=0

oo oo
iv) The biggest o—algebra contained in (| () f~"g *n is B*.
n=0 k=0

To prove the proposition we introduce some lemmas.

Lemma 8.2. Let pg > 0, 0 < a < 1 and v be a finite non-negative Borel measure on
[0, po]. Then the Lebesgue measure of the set

La={p: 0<p<po, 3 D vilp—a"** p+a"]) <o)
n=0 k=0

is equal to pyg.
Proof. The idea is similar to the proof of Proposition 3.2 in [LS]. The modification is
replacing set N, , in the proof by set

v(0.0)), I

Na,n,k = {p 1 0<p<po, V([:O - an—l—k’p_i_an—f—k]) > n2k2

Lemma 8.3. There is a constant b > 0, such that Vx € I', for Lebesgue almost every
choice of p, 0 < p < I(z)~ ', u — a.e.y € M, the inequality
d(f"g *y,0B(z, p))e TR+ @72 <t

holds at most for finite number of pairs (n, k), where Ay (z) = min{ Ay (z, f), A\ (z,9)}.
Proof.  Take b > 0 such that d(z,0B(zx,p)) < 7 implies |d(x, z) — p| < br whenever
0<7T<p<l(x)?!
Define a non-negative Borel measure v on IR by v(A4) = p{y € M : d(z,y) € A} for any
Borel set A C IR. Thus, by Lemma 8.2, we get, applied a = e~ +®) =27 that

P={p: 0<p<li(zx Z Zu{y e M: |d(z,y) — p| < e~ TROE@=21 < 0}
n=0 k=0

has Lebesgue measure [(x)~!. Since p is f— and g—invariant,

P={p: 0<p<i(x Z Z ply € M : |d(z, f7"g " y)—p| < e”FHOHEIZ2Y < o0},
=0 k=
From the choice of b, Vp € P

ZZ {ye M: d(f g *y,0B(z,p)) < be—<”+’“><*+<”‘2”}<oo-
n=0 k=0

By Borel-Cantelli Lemma, except for finite number of pairs (n, k),
1
wly € M= d(f7"g ™"y, 0B(x, p))eTHOHD72) < S} = 0.
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This finishes the proof of the lemma.
Define a metric d(-,-) on M by
_ S du@) (Y, 2), if y, z € w*(x) for some x € M,
du(y, 2) = { 00, otherwise,

where d,(z) (-, ) is a metric on w" () induced by the Riemannian structure on w"(x). Clearly,
dy(+,-) is independent of the choice of x € M.
Lemma 8.4. For0 < a <1, z € T, if y € w¥(z), then Vn,k > 0,

dw ("9 y, f7g7F2) < 2K1(2)dy(y, z)e” TR+ @)727),

Proof.  Take a system of (,l)—charts {®, : z € '} for both f and g. Let v = ®_ 1y,

then v € W¥(z). By Lemma 5.3,
|<f—n§—k)zv| < |U|e—nA+(z,f)—kk+(z»g)—2(n+k)v < |U|€—(n+k)(k(z)—2v)'

By Proposition 4.1.vi) and Lemma 5.1, dy, (f "¢ %y, f"g %2) < 2K|(f~"§%),v| and |v| <
I(z)d(y, z) <I(z)dw(y, z). Hence the result follows. i

The Proof of Proposition 8.1.

Take I > 0 with ul'; > 0.
Fix 0 < a < 1. Take x € T'; such that Vp > 0, u(B(x,p) NT;) > 0.
Let
Sx.p)= |J wiy)nB(=p).
yelNB(z,p)

Thus V 0 < p < §I71, if two points 21,22 € S(x,p) are not in the same local leaf w(y) N
B(z, p) for some y € 'y N B(x, p), then d, (21, 22) > 2p.
For any 0 < p < %l_l we construct a partition £, of M defined by all the sets

5():{wﬂw05@m% if y € S(z, p);
Y M\S(z, p), otherwise,

and then put

Mo = \/ \/ fngkgp'

n=0 k=0

Since u( J U f"g*S(z, p)) = 1, it follows that u —a.e.z € T, n,(z) C w*(z). It is also

n=1k=1
clear that 7, satisfies the properties ii)—iv) in the proposition. To complete the proof we

have to choose a p > 0 such that ; — a.e.z,n,(2) contains an open neighborhood of z in the

submanifold topology of w(z).
Let

Bp=1(z)"" - inf {a, iK—ldu—"g—’“z, OB(z, p))e"THOH=20) g1 py.
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By Lemma 8.3, there is a p > 0 such that 3,(z) >0, u —a.e. z € M.
Now we only need prove that Vz € I, if y € w"(2),dw(y,2) < B,(2), then y € n,(2). In
this circumstances, y € w¥(z) and by Lemma 8.4, ¥V n, k > 0,

dw(f gy, f"g7F2) < 2K1(z)e” (TR 72) g (),

We have following cases to consider.
i) Both f~"g~*y and f~"g~*2 belong to S(x,r). By the choice of 3,(z),

dw(f"g "y, f"g7%2) < 2p.

So the two points in the same local leaf of S(z, p). Therefore &,(f"g " y) = &,(f g *2).
ii) Neither f~"g~*y nor f~"g~*z belongs to S(z,7). By the construction of £,, we
have ép(f_ng_ky) = fp(f_ng_ky)-
iii) One of f~"g %y and f~"g~%z belongs to S(x,r) but the other does not. By the
choice of ,(2),

duw ("9 y, f"g7 2) < <d(f g "2,0B(x, p)).

l\DI»—t

It is impossible.
Hence V n, k > 0, we always have &,(f g *y) = £,(f g7 %2). So y € n,(2). |

We fix p > 0 such that n = \/ \/ fg*¢, is the measurable partition of M satisfying
n=0 k=0
Proposition 8.1.

Lemma 8.5. Let n be a partition constructed as above. Then

hu(fym) = hu(f), - hulg,n) = hu(g)-

Proof. We only prove the first equality.

For any f—invariant measure v, h,(f,n) = H,(n|fn) = [,, —logv(n(z)|fn(z))dv(z),
where v(-|n(x)) is the system of conditional measures Wlth respect to the o— algebra generated

by part1t10n n. By (AA) in §1 we have h,,(f, fE(M £ e (f,n)dm(pe). Similarly, h, (f) =
Jos bz, fdv(x) 1mphes hu(f) = fg(M £ Me(f)dﬂ(ue) Therefore we only need show that
T ae fiey by (fin) = e(f)-

For m — a.e. pie, pe( U U frg*S(x,p)) = 1. Since p. € E(M, f), we can take k =
n=0 k=0

k(ie) such that u.( |J f"g*S(z,p)) = 1. Denote 1. = \/ frg*¢,, then 7, is a partition
n=0

constructed as same as in the proof of Lemma 3.1.1 in [LY] So we have h,_(f,ne) = hyu. (f)
(see [LY], Corollary 5.3).

Now we need prove that h,_(f,7.) = hy, (f,n). The argument is similar to the prove of

Lemma 3.1.2 in [LY]. Notice . < n and fn. < 7., we have

P (fsn) = Ry, (f,me V) = by, (fone V f™0) = Hyy(ne V ™0l fne Vv £ )
= Hy, (el fne vV [ ) + Hy, (nel f~"ne V 7).
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As n — oo, the first term increases monotonously and tends to H,, (ne|fne) = hu, (f,ne),
while the second term decreases and goes to 0. Since the formula is true for any n > 0, this
finishes the proof.

§9. The Condition for Equality
We will prove the rest part of Theorem B in the section. First we consider a special
case, for 4 —a.e,x € M, E*(x, f) = E*(x, g).

Proposition 9.1. If E*(z, f) = E*(x,g), p — a.e. then h,(fg) = h,(f) + hu(g).
Proof.  Take partition n as in the proof of Proposition 8.1. Since fn < n and gn <,
by Lemma 8.5, we have

hu(f9) = hyu(fg,m) = Hu(nlfgn) = Hu(nV gnlfgn)
= H,(gnlfgn) + Hu(nlgn Vv fgn) = H,(nlfn) + Hu(nlgn) = hu(f) + hu(9)-

Then the result follows from the first part of Theorem B. |
Now we consider the general case, E*(z, f)NE®(x,g) = {0} = E*(z, f)NE“(x, g), p—a.e.
Lemma 9.2. Suppose E*(x, f) N E*(x,g) = {0} and E*(z, f) N E"(z,g) = {0}, n — a.e.

Then there exists an N > 0, such that V n > N,

hu(f"g) > hu(fn)a hu(fgn) = hu(gn)-

Proof. Take Ny > 0, such that
Nf : A)‘(‘/Baf) > /\1(33,9),

where AX(z, f) = min{\;(z, f) — N\it1(z, f) : i=1,---,s(x, f) — 1} is as in §4.

Let u(z, f) = min{i : \j(z,f) > 0}, in other words, u(z, f) is defined such that
Au(z, ) (T, f) is the smallest nonnegative exponent of f. wu(z,g), u(z, f"g) are understood
in similar way.

For any n > Ny, if we denote the Lyapunov exponents of f"g by Ai(z, f"g) > -+ >
Ar(z,frg) (T, fg), then by Theorem A and the supposition of the lemma, ¥V 1 < p < u(z, f"g),
J1<i<u(x, f),1<j<u(z,g) with

/\p(xafng) = ﬂ)\Z(IE7f) =+ )‘J(mmg)

By the choice of Ny we know that nA;, (z, f) + Aj, (z,9) > nAi, (z, f) + Aj,(z, g) if and only
u(z,f"g)
if i1 > ig, or i1 = i3 and j; > jo. Thus the decomposition E*(z, f"g) = @ Ey(z, f"g)
u=1

of unstable part in tangent space can be written as

u(z,f) u(z,g)
Eu(xafng) = @ @ Ez](x)v
=1 j=1
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where E;;(x) = Ey(x, fg), if nAi(x, f) + Xj(x, 9) = Ap(x, fPg) for some 1 < p < u(zx, f"g),
and otherwise E;;(x) = {0}. The Ledrappier-Young’s formula relating entropy, exponents

and dimensions is
u(z,f)

hu(xaf): Z )‘Z(xaf)’yl(x7f)7

1=1

where v;(z, f) denotes a notion of fractional dimension defined as follows.
Let w®(z,f) = {y € M : limsup%logd(f*”x, f™y) < —=X\i(z, f)} for each i with

n—oo

Xi(z, f) > 0, which is a C? immersed submanifold of M with dimension ) dim E(x, f), and
s<i

7 be a partition subordinating to {w(?(z, f)}. Denote by B (x,€) the ball in w® (z, f)
centered at z of radius € in the distance induced by the Riemannian structure on w(® (z, f).
For each i = 1,- -, u(z, f) with X\;(z, f) > 0, define

(4) (4)
o log (B (2, €)[n' (2))
e—0 lOg €

5i(xa f) =

Y

where the limits in the right hand side exist u— a.e. € M and are independent of the
choice of 1 (See [LY], §7). And then let

’Yi(x;f):6i(m7f)_5i—1(xaf)7 izl,"’,U(I’,f),

where we regard do(, f) = 0, and 6,4, ) (2, f) as any fixed constant between d,,(5, r)—1(2, f)
and dim M if A\, 5y(z, f) = 0. v3(x, g) and v;(z, f"g) are defined similarly.

For any 1 <14 < u(x, f), let p; be the smallest number such that X\, (z, f"g) > nX;(z, f),
and let po = 0. It means that if p; < p < p;11, then A\ (z, f"g) = nXi(z, f) + Aj(x, g) for
some 1 < j < wu(z,g). Thus w®(z, f) = wP) (z, frg) and 6;(x, f) = ,,(z, fg). So

pi
Yi(z, [) = 0p, (2, f"g) — 0p,_, (z, ["g) = Z (@, ["9)
p=pi—1+1
except for i = U(I,f) as )‘u(:c,f)(xaf) = 0. Put ’Y’L](x) = /7P(x7 fng) if E’Lj( ) = (:L‘,fng),

(2,9)
and v;;(z) = 0 if E;;(z) = {0}. Above formula shows that v;(x, f) = Z 7vi;j(x). Now the

Ledrappier-Young’s formula for diffeomorphism f¢g can be expressed as

u(z,f"g) u(, f) u(x,9)
hu(e, f9) = > M@, [P, ffg) = Y Y iz, f) + X, 9))y; ().
p=1 =1 j=1
Therefore
u(w, f) u(z,9) u(,f)

m fn Z Z n)‘ x f %J ) Z n)\i($,f)%($) :nh’u<f)'

=1 j=1 =1
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Similarly we have Ny > 0, such that V n > Ng, h,(fg") > h,(¢"). Then N = max{Ns, Ny}
is a required number.
The Proof of Theorem B (Second Part).

Notice for any n > 0, E*(z, f*g) = E"(z, fg™), u — a.e. because of the supposition of
the theorem. By Proposition 9.1 and Lemma 9.2, if n is large sufficiently, then

hulf9) = a9 F9™) = — < hul"9) + hulfg")
> () + 9] = — () + P9
Since n is arbitrary, h,(fg) = h,(f) + hu(g). i

§10. Topological Entropy

By applying Theorem B, we can get similar result for topological entropies of commuting
diffeomorphisms. We will use the relationship between topological entropies and measure-
theoretic entropies, i.e. h(f) = max{h,(f) : v € M(M, f)}. Next proposition is in fact a
generalization of Theorem C.

Proposition 10.1. Suppose M is a compact C*° Riemannian manifold without bound-
ary, f and g are commuting diffeomorphisms in Diff>(M). IfV a > 0, 30 < 3 < a, such
that the set

Vs ={ve M(M, fg) : h(fg) > h(fg) — 5}

is compact in weak * topology, then

h(fg) < h(f) + h(g).

Proof.  Since entropy map v — h,(fg) is affine, Vg is a convex set. So V3 is a nonempty
convex set which is compact in weak * topology. By Lemma 6.1, f*V3 C V3. So f* has a
fixed point in Vg, i.e. Vg N M(M, f) # 0.

Take p € Vg N M(M, f), then p € M(M, f, fg). By Corollary 1.5, p € M(M, f,g).
Hence hy(fg) < hu(f) + hu(g) < h(f) 4+ h(g). Also, p € Vg, so h(fg) < hu(fg) + B <
h(f)+ h(g) + B. Since 0 < § < a and « is arbitrary, our result follows.

Now we consider two important cases, i.e. the entropy map of fg is upper semi-
continuous and the set of measures with maximal entropy of fg is a finite dimensional simplex.

Corollary 10.2. Suppose the entropy map of fg is upper semi-continuous, i.e. Yy €
M(M, fg) and B > 0, there exists a neighborhood U of vy in M(M, fg) such that v € U

implies h, (fg) < hu,(fg) + B. Then h(fg) < h(f) + h(g).
Proof.  Since entropy map v — h,(fg) is upper semi-continuous, ¥ a > 0, V,, the

preimage of [h(fg) — a, h(fg)] under the entropy map of fg, is compact. |

Corollary 10.3. If the set of measures with maximal entropy of f g is a finite dimensional
simplex, then h(fg) < h(f) + h(g).

29



Proof.  This is because the set Vo = {v € M(M, fg) : h,(fg) = h(fg)} is compact. |

The Proof of Theorem C.
i) and ii) are from Corollary 10.2 plus [N] and [W] (Chapter 8) respectively, and iii) is

Corollary 10.3. |

We end this paper by a counterexample of two commuting homeomorphisms f and g
with zero entropies on a smooth manifold M = S x S? whose composition has positive
entropy.

Example. Let S! = {0 € [0,2n] : {0} = {27} }. Take a homeomorphism « : S —
S1, such that a(0) = 0 and a(f) < 0,V 6 € (0,27). Hence a has unique fixed point 6 = 0.

Let S? = {(r,7) € [0,2] x [0,27] : {(r,0)} = {(r,27)},Vr € [0,2]; {(r,7)} = {(r,0)},VT €
0,27],7 = 0,2}. Take D = {(r,7) € S?: 0 <r < 1}. Define a homeomorphism 1) : $% — S2,
such that ¢)(D) = D, restricted on D, 9|p has positive entropy, and v¥|g2\p = id| g2\ p.

Define a continuous map 3 : (0,27) x [0,2] — [0,2], such that V8 € (0,2x), 5(6,-) =
Bo(+) : [0,2] — [0,2] is a homeomorphism, and for any r € [0,1], Bo(r) < Or, if 0 € [0,7];
Bo(r) < (2m — O)r, if 6 € [r,27]. Then we use 3y define a family of homeomorphisms Gy on
S? by putting .

Bo(r,7) = (Be(r), ), v (r,7) € S%

Now we take M = S x S2. Define f,g: M — M by

f(evv) - (a(9)7ﬁa(9)d)ﬁg_l(v) )7
9(970) = (ail(e)vﬁa—l(G)ﬁa_l(v) )7
for any 6 € S1\{0}, v = (r,7) € S?, and
f(0,v) = (0,v) = g(0,v), Yo € §2.

Clearly, both f and g are homeomorphisms under a suitable choice of 3y.
For 6 € S1\{0}, v € S?,

f9(0,v) = f(a=1(0), Ba-1(0)85 ' (v) )
= (0404—1(9%ﬁaorl(a)1#5;711(9)5(1*1(0)59_1(U) ) = (0, 8oy H(v) ),
9£(8,0) = g((0), BagoyBy " (v) )
= (@7 a(0), Ba-1a(6)54 (9 BateyBy ' (v) ) = (0, BewBy ' (v) ),
and
fg(0,v) = (0,v) = gf(0,v), Vove S

So fg = ¢gf holds on M.

The nonwandering set for f and g are Q(f) = {(0,v) : v € 52} = Q(g), and flos) =
id = gla(g)- So h(f) = 0= h(g). But for any § # 0, restrict to the set {(0,v) : v € S?}, fg
is conjugate to 1. Therefore h(fg) > h()) > 0.

Since the support of any f— or g—invariant measure g must be contained in the set
{(0,v) : v € S?}, h,(fg) should equal to zero if p € M(M, f,g). It means that the example
does not violate Theorem B, though f, g are not diffeomorphisms.
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