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Abstract. The purpose of the paper is to present some simple examples that are
hyperbolic everywhere except at one point, but which do not admit SBR measures. Each
example has a fixed point at which the larger eigenvalue is equal to one and the smaller
eigenvalue is less than one.

§0 Introduction

Let f : M → M be a C2 Anosov diffeomorphism of a compact connected Riemannian
manifold, and let m denote the Riemannian measure on M . A result of Sinai (see e.g.
[S]) says that f admits a unique invariant Borel probability measure µ with the property
that µ has absolutely continuous conditional measures on unstable manifolds. This is the
invariant measure that is observed physically, for if φ : M → IR is a continuous function,
then for m -a.e.x ∈ M ,

1

n

n−1
∑

i=0

φ(f ix) →

∫

φdµ

as n → ∞. The dynamical system (f, µ) is “chaotic” in the following sense: it has posi-
tive Lyapunov exponents; its metric entropy is equal to the sum of its positive Lyapunov
exponents; (f, µ) is measure-theoretically isomorphic to a Bernoulli shift; and it has expo-
nential decay of correlations for Hölder continuous test functions. These results have been
extended to Axiom A attractors by Bowen, Ruelle, etc. (See e.g. [B].)

In this article we will refer to an invariant measure having absolutely continuous
conditional measures on unstable manifolds as a Sinai-Bowen-Ruelle measure or an SBR

measure. The work of Oseledec, Pesin and others allows us to extend this notion to
a nonuniform setting. (See [P] and [LS].) While some of the properties of SBR measures
carry over (see e.g. [LY], Part I), the question of existence of SBR measures in this broader
context remains poorly understood. We formulate this question more precisely: given a
diffeomorphism which appears to be hyperbolic in a large part of phase space, can one
decide whether or not it admits an SBR measure? So far there are very few results outside
of Axiom A, and these results involve delicate estimates. See e.g. [BC], [BY] for results
on the Hénon attractors.

The purpose of the paper is to present some very simple examples that are hyper-
bolic everywhere except at one point, but which do not admit SBR measures. Precise
statements of our results are given in §1. For now imagine slowly deforming a hyperbolic
toral automorphism near the origin O until its derivative has one eigenvalue equal to 1 and
the other eigenvalue less than 1. Our theorem says that for the resulting diffeomorphism,
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1
n

n−1
∑

i=0

δf ix → δO for almost every x with respect to Lebesgue measure. (δx denotes Dirac

measure at x.) This example can be made to be topologically conjugate to the original
toral automorphism, and so it is topologically “chaotic”. From the statistical point of view,
however, it is totally deterministic in the sense that for almost every initial condition, the
trajectory spends nearly one hundred percent of its time arbitrarily near the origin O.

Our result can be thought of as a two dimensional version of the following result. Let
f : [0, 1] → [0, 1] be a piecewise C2, piecewise expanding map of the unit interval with
f ′ = 1 at a fixed point. Then f cannot admit a finite absolutely continuous invariant
measure. (See [PI].) The two dimensional situation is, however, not entirely identical to
that in one dimension, for clearly there exist area preserving diffeomorphisms with positive
Lyapunov exponents and nonhyperbolic fixed points. A more detailed analysis of whether
or not systems that are “almost Anosov” can admit SBR measures will be given in a
forthcoming paper by the first named author.

§1 Assumptions and Statements of Results

Let M be a C∞ two dimensional compact manifold without boundary, let m denote
the Riemannian measure on M , and let f ∈ Diff2(M). We assume throughout this paper
that f satisfies the following two conditions.

Assumption I.

1. f has a fixed point p, i.e. fp = p.
2. There exist a constant κs < 1, a continuous function κu with

κu(x)

{

= 1, at x = p ,
> 1, elsewhere,

and a decomposition of the tangent space TxM at every x ∈ M into

TxM = Eu
x ⊕ Es

x

such that

‖Dfxv‖ ≤ κs‖v‖, ∀v ∈ Es
x,

‖Dfxv‖ ≥ κu(x)‖v‖, ∀v ∈ Eu
x ,

and

‖Dfpv‖ = ‖v‖, ∀v ∈ Eu
p .

Assumption II. f is topologically transitive on M .

Definition 1.1. An f−invariant Borel probability measure µ on M is called an SBR

measure for f : M → M if
i) (f, µ) has positive Lyapunov exponents almost everywhere;
ii) µ has absolutely continuous conditional measures on unstable manifolds.
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We give the precise meaning of the second condition above.
Let ξ be a measurable partition of a measure space X, and let ν be a probability

measure on X. Then there is a family of probability measures {νξ
x : x ∈ X} with νξ

x

(

ξ(x)
)

=
1 such that for every measurable set B ⊂ X, x → νξ

x(B) is measurable and

νB =

∫

X

νξ
x(B)dν(x). (1.1)

The family {νξ
x} is called a canonical system of conditional measures for ν and ξ. (For a

reference, see e.g. [R].)
Suppose now that f : (M,µ) → (M,µ) has positive Lyapunov exponents almost

everywhere. Then for a.e. x, the unstable manifold W u(x) exists and is an immersed
submanifold of M (see [P]). A measurable partition ξ of M is said to be subordinate to

unstable manifolds if for µ -a.e. x, ξ(x) ⊂ W u(x) and contains an open neighborhood of x
in Wu(x). Let mu

x denote the Riemannian measure induced on W u(x). We say that µ has
absolutely continuous conditional measures on unstable manifolds if for every measurable
partition ξ that is subordinate to unstable manifolds, µξ

x is absolutely continuous with
respect to mu

x (written µξ
x << mu

x) for µ -a.e. x ∈ M . (For more details, see e.g. [LS]).
It is easy to verify that if µξ

x << mu
x for one measurable partition ξ subordinate

to unstable manifolds, then the same property holds for all other measurable partitions
subordinate to unstable manifolds.

We now state our results. Let f and M be as in the beginning of this section.

Theorem A. f does not admit SBR measures.

Theorem B. For m -a.e. x ∈ M ,

lim
n→∞

1

n

n−1
∑

i=0

δf ix = δp

where δz is the Dirac measure at z, and the above convergence is in the weak ∗ topology.

As a by-product of our proofs for Theorem A and Theorem B, we obtain the following.
Theorem C. f has an infinite invariant measure µ̄ with the following properties:
(i) if U is any open neighborhood of p in M , then µ̄(M\U) < ∞;
(ii) µ̄ has absolutely continuous conditional measures on weak unstable manifolds.

Remark 1.2. Weak unstable manifolds are defined in Proposition 2.2 (2). Note that
the definition of absolutely continuous conditional measures on unstable manifolds makes
sense even though µ̄ is a σ−finite measure.

One could think of µ̄ as an infinite SBR measure. In this paper, however, the term
“SBR measure” without any qualifications will always be reserved for probability measures.

§2. Preliminaries

Lemma 2.1. The maps x → {Eu
x} and x → {Es

x} are continuous.
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This is an easy consequence of the “gap” between κs and 1 = inf{κu(x) : x ∈ M}.
The proof is left to the reader.

We will use the following notation: for β > 0, Eu
x (β) = {v ∈ Eu

x : |v| ≤ β},
Es

x(β) = {v ∈ Es
x : |v| ≤ β}, and Ex(β) = Eu

x (β) × Es
x(β).

Proposition 2.2. There exist two continuous foliations Fu and Fs on M tangent to
Eu and Es respectively for which the following hold.

(1) The leaf of Fs through x, denoted by Fs(x), is the stable manifold at x, i.e.

Fs(x) = W s(x) = {y ∈ M : ∃C = Cy, s.t. d(fnx, fny) ≤ C(κs)n ∀n ≥ 0}.

(2) The leaf of Fu through x, denoted by Fu(x), is the unstable or “weak unstable”
manifold at x, i.e.

Fu(x) = {y ∈ M : lim
n→∞

d(f−nx, f−ny) = 0}.

(3) There exist constants β > 0 and D > 0 such that for all x ∈ M , if Fu
β (x) is

the component of Fu(x) ∩ expx Ex(β) containing x, then exp−1
x Fu

β (x) is the graph of a
function φu

x : Eu
x (β) → Es

x(β) with φu
x(0) = 0 and ‖φu

x‖C2 ≤ D. The analogous statement
holds for Fs

β(x).
Proof: These results follow from Theorem 5.5 and Theorem 5A.1 in [HPS]. We

indicate how Fu is obtained.
Let x ∈ M be fixed. If φ : Eu

x (β) → Es
x(β) is a function with φ(0) = 0 and Lip(φ) ≤ 1,

we let Gxφ : Eu
fx(β) → Es

fx(β) be the function defined by

graph(Gxφ) =
(

exp−1
fx ◦f ◦ expx(graphφ)

)

∩ Efx(β).

Note that Gxφ is always well defined, even though f is not uniformly hyperbolic. The
function φu

x in assertion (3) is then obtained as the pointwise limit as n → ∞ of

Gf−1x ◦ · · · ◦ Gf−n+1x ◦ Gf−nx(0),

where 0 represents the 0 function from Eu
f−nx

(β) to Es
f−nx

(β), and Fu(x) is defined to be

⋃

n≥0

fn
(

Fu
β (f−nx)

)

.

Remark 2.3. For convenience we will write W u(x) = Fu(x), W u
β (x) = Fu

β (x) etc.
and refer to W u(x) and W u

β (x) as the “unstable manifold” and “local unstable manifold”
respectively at x, even though points on these manifolds may not be contracted exponen-
tially in backwards time.

The Lipschitzness of the W s−foliation will be very important for us later on. We give
the form of the definition that will be used.

Definition 2.4. Let Σ1 and Σ2 be two W u−leaves, and let θ : Σ1 → Σ2 be a
continuous map defined by sliding along the W s−leaves, i.e. for x ∈ Σ1, θ(x) ∈ Σ2∩W s(x).
We say W s is Lipschitz if θ is Lipschitz for every (Σ1,Σ2; θ).

4



For y ∈ W s(x), let ds(x, y) denote the distance between x and y measured along
W s(x), and for z ∈ W u(x), let du(x, z) be defined similarly.

Proposition 2.5. The W s−foliation is Lipschitz. In fact, given D1 > 0, there exists
L1 > 0 such that for every (Σ1,Σ2; θ) with ds(x, θ(x)) < D1 ∀x ∈ Σ1, the Lipschitz
constant of θ is less than or equal to L1.

Proof: This result follows from the stronger statement that the map x → Es
x is C1,

which can be obtained using the same ideas in the proof of Theorem 6.3 in [HP]. We sketch
a more direct proof here for the convenience of the reader.

Let x1 ∈ Σ1, and let γ be an arbitrarily short segment in Σ1 containing x1. We will
argue that l(γ) ≈ l(θγ), where l denotes length and “≈” means “up to a constant”.

By taking a suitably large iterate of f , we may assume that fnγ and fn(θγ) are
very near each other, and l(fnγ) ≈ ds(fnx, fn(θx)) for x ∈ γ. Notice that ∀x ∈ γ,
ds(fn(x), fn(θx)) ≤ D1(κ

s)n ∀n > 0. Also,
∣

∣Dfn
x |Eu

x

∣

∣ ≥ 1 ∀n ≥ 0. Observe the following:

(1) l(fnγ) ≈ l(θ(fnγ));

(2)
∣

∣Dfn
x |Eu

x

∣

∣ ≈
∣

∣Dfn
θx|Eu

θx

∣

∣ ∀x ∈ γ;

(3) ∀y1, y2 ∈ γ,

∣

∣Dfn
y1
|Eu

y1

∣

∣

∣

∣Dfn
y2
|Eu

y2

∣

∣

≈
n−1
∏

i=0

(

1 ± const · d(f iy1, f
iy2)

)

≤
(

1 ± const · l(fnγ)
)n

≈
(

1 ± const · D1(κ
s)n

)n
≈ const.

(The proof of (3) uses the boundness of the C2 norms of φu
x. See Proposition 2.2.3).)

Combining (1)-(3), we get l(γ) ≈ l(θγ).

Lemma 2.1 and Proposition 2.2 imply that f has a local product structure, i.e. there
exist constants 0 < ε < β such that ∀y, z ∈ M with d(y, z) < ε, [y, z] := W u

β (y) ∩ W s
β(z)

and [z, y] := W u
β (z) ∩ W s

β(y) each contains exactly one point.

A rectangle R is a set in M such that y, z ∈ R implies [y, z], [z, y] ∈ R. If γu, γs are
segments of W u− and W s−leaves respectively, then [γu, γs] denotes the rectangle {[y, z] :
y ∈ γu, z ∈ γs} provided that everything makes sense. If R is a rectangle and x ∈ R, we
let W u(x,R) = W u

β (x) ∩ R and W s(x,R) = W s
β(x) ∩ R. If Q and R are two rectangles,

we say that fnQ u−crosses R if ∀x ∈ Q with fnx ∈ R, fnWu(x,Q) ∩ R = W u(fnx,R).

We record a simple fact that will be used in §4.

Proposition 2.6. W u(p) and W s(p) are both dense in M .

Proof: We only prove the proposition for W s(p).

Let P be a rectangle containing p and let R be any other rectangle, both with
nonempty interiors. Let R̂ be a strictly smaller rectangle lying in the interior of R. By the
topological transitivity of f , ∃n > 0 such that fnR̂ ∩ P 6= ∅. For n sufficiently large, fnR
is considerably longer than fnR̂ in the u−direction. We may therefore assume that fnR
u−crosses P . This implies that f−nW s(p, P ) ∩ R 6= ∅.
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§3. Distortion Estimates

The goal of this section is to prove the following.
Proposition 3.1. Given any small rectangle P containing p in its interior, there exist

constants δ > 0 and J > 1 such that if γ is a W u−segment with l(γ) ≤ δ and γ ∩ P = ∅,
then ∀y, z ∈ γ and n > 0,

J−1 ≤

∣

∣Df−n
z |Eu

z

∣

∣

∣

∣Df−n
y |Eu

y

∣

∣

≤ J.

We write yi = f−iy, zi = f−iz and γi = f−iγ. If Γ is a W u−segment in P , let
Γ̃ = {[p, x] : x ∈ Γ}. In what follows, the letter C will be used to denote a generic
constant, which is allowed to depend only on f .

Lemma 3.2. Let P+ be one of the components of fP\P , and let γ = W u(x, P+) for
some x ∈ P+. Assume that γi ⊂ P for i = 1, · · ·n − 1. Then for any y, z ∈ γ,

log

∣

∣Df−n
z |Eu

z

∣

∣

∣

∣Df−n
y |Eu

y

∣

∣

≤ C
du(y, z)

l(γ)
.

Proof: First, we have for j ≤ n,

log

∣

∣Df−j
z |Eu

z

∣

∣

∣

∣Df−j
y |Eu

y

∣

∣

= log

j−1
∏

i=0

(

1 +

∣

∣Df−1
zi

|Eu
zi
− Df−1

yi
|Eu

yi

∣

∣

∣

∣Df−1
yi |Eu

yi

∣

∣

)

≤ C

j−1
∑

i=0

∣

∣Df−1
zi

|Eu
zi
− Df−1

yi
|Eu

yi

∣

∣.

Using Proposition 2.2 (3) and the Lipschitzness of W s (Proposition 2.5), we see that

∣

∣Df−1
zi

|Eu
zi
− Df−1

yi
|Eu

yi

∣

∣ ≤ Cdu(zi, yi) ≤ Cl(γi) ≤ Cl(γ̃i).

Since the γ̃i are pairwise disjoint, we have

j−1
∑

i=1

l(γ̃i) ≤ l(W u(p, P )).

The arguments above tell us that ∀j ≤ n,

du(zj , yj)

l(γj)
≤ C

du(z, y)

l(γ)
.

We conclude that

log

∣

∣Df−n
z |Eu

z

∣

∣

∣

∣Df−n
y |Eu

y

∣

∣

≤ C
n−1
∑

j=0

du(zj , yj) ≤ C
du(z, y)

l(γ)
.
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Proof of Proposition 3.1:

Let 0 = n0 = n0 + k0 ≤ n1 < n1 + k1 < · · · < nt < nt + kt ≤ nt+1 = n be such that

γj ∩ P 6= ∅ ∀ni < j < ni + ki 1 ≤ i ≤ t,

and
γj ∩ P = ∅, otherwise.

Then

log

∣

∣Df−n
z |Eu

z

∣

∣

∣

∣Df−n
y |Eu

y

∣

∣

=
t

∑

i=1

log

∣

∣Df−ki
zni

|Eu
zni

∣

∣

∣

∣Df−ki
yni

|Eu
yni

∣

∣

+
t

∑

i=0

ni+1−1
∑

j=ni+ki

log

∣

∣Df−1
zj

|Eu
zj

∣

∣

∣

∣Df−1
yj |Eu

yj

∣

∣

.

Lemma 3.2 applied to the terms in the first series gives each a contribution of C ′du(yni
, zni

),
where C ′ is a constant depending on P . This is summable since du(yni

, zni
) decreases

exponentially in i. Each term in the second series is less than or equal to Cdu(yj , zj), so

we again have a geometric series.

§4 Proof of Theorem A

The following one-dimensional fact plays a key role.
Lemma 4.1. Let h : [−1, 1] → IR be a C2 map with h(0) = 0, h′(0) = 1 and h′(x) ≥ 1

∀x ∈ [−1, 1]. Let a0 ∈ [0, 1], and let ai = h−ia0 for i ≥ 1. Then
∞
∑

i=0

ai = ∞.

Proof: From the Taylor expansion of h, we know that for x > 0,

hx ≤ x + Lx2 (∗)

for some L. Increasing L if necessary, we may assume that a1 ≥ 1
L

. We will show that
ai ≥

1
Li

implies that ai+1 ≥ 1
L(i+1) . Suppose this is not true. Then

ai+1 + La2
i+1 <

1

L(i + 1)

(

1 +
1

i + 1

)

=
1

Li

(

1 −
1

i + 1

)(

1 +
1

i + 1

)

<
1

Li
≤ ai,

contradicting (∗) with x = ai+1.

With ai ≥
1
Li

∀i ≥ 1, the desired conclusion follows.

Before giving the proof of Theorem A, we recall some facts from general nonuniform
hyperbolic theory. Let f be an arbitrary C1+α diffeomorphism (not having anything to do
with the situation in this paper), and suppose that f preserves an SBR measure µ. Let ξ
be a partition subordinate to W u. Then it is proved in [L] that for µ -a.e. x, the density
ρx of µξ

x with respect to mx satisfies

ρx(z)

ρx(y)
=

∞
∏

i=0

∣

∣Df−1
zi

|Eu
zi

∣

∣

∞
∏

i=0

∣

∣Df−1
yi |Eu

yi

∣

∣
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for all y, z ∈ ξ(x). (In particular the quotient on the right makes sense.) The following is
also known to be true. Let {Λl} be the “Pesin sets”, i.e. sets on which fn has uniform
estimates. Then for every l, ∃δl > 0 such that W u

δl
(x) exists for every x ∈ Λl. Also,

∃Cl > 0 such that ∀x ∈ Λl,

C−1
l ≤

ρx(z)

ρx(y)
≤ Cl ∀y, z ∈ W u

δl
(x).

(See e.g. [P].)

We now return to the situation considered in this paper, i.e. f is again assumed to
satisfy Assumptions I and II.

Proof of Theorem A:

Suppose, to derive a contradiction, that f admits an SBR measure µ. Then there is a
rectangle R ⊂ M such that µ(R∩Λl) > 0 for some l, and W u(x,R) ⊂ W u

δl
(x) ∀x ∈ R∩Λl.

We fix a rectangle of the form P = [W u
δ (p),W s

δ (p)] and let Q = f−1P\P . Let ξ be
the partition of Q given by ξ(x) = W u(x,Q). An argument similar to that in Proposition
2.6 shows that fnR u−crosses Q for some n > 0. It follows from our discussion above that
there is a set Q̂ ⊂ Q ∩ fnR with µQ̂ > 0 such that

(i) x ∈ Q̂ =⇒ ξ(x) ⊂ Q̂; and
(ii) ∃C0 > 0 such that ∀x ∈ Q̂,

C−1
0 ≤

ρx(z)

ρx(y)
≤ C0 ∀y, z ∈ W u(x,Q).

Let
Q(i) = {y ∈ Q̂ : f jy ∈ P for j = 1, · · · , i},

and let γ̃(i) be the projection of Q(i) onto W u(p, P ) by sliding along W s. Then the density
estimate above together with the Lipschitzness of the W s−foliation gives

µQ(i) ≥ Cl(γ̃(i)).

Using the facts that f iQ(i), i = 1, 2, · · ·, are pairwise disjoint subsets of P , and µ is an
invariant measure, we have

µP ≥
∞
∑

i=1

µ(f iQ(i)) =
∞
∑

i=1

µQ(i) ≥ C
∞
∑

i=1

l(γ̃(i)).

Lemma 4.1 applied to f |W u
β
(p) tells us that this sum diverges, contradicting µ(M) = 1.

§5 Proofs of Theorems B and C

We first construct some neighborhoods of p that are convenient to work with. For a
closed rectangle R, let ∂sR = {x ∈ R : x /∈ int W u(x,R)}.
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Lemma 5.1. There exist rectangles P of the form P = [γu, γs] satisfying the follows:
(1) γu and γs are segments of W u(p) and W s(p) respectively such that p lies in the

interiors of γu and γs;
(2) there is a compact segment Ŵ s ⊂ W s(p) with fŴ s ⊂ Ŵ s such that ∂sP ⊂ Ŵ s

and
(

Ŵ s\W s(p, P )
)
⋂

int P = ∅;

(3) there is a compact segment Ŵu ⊂ W u(p) with analogous properties.
Moreover, the diameter of P can be chosen arbitrarily small.

Proof: Use the fact that W u(p) and W s(p) are dense in M . See Lemma 2.6.

We fix P as above, and consider the first return map g : M\P → M\P . That is, for
x ∈ M\P , if τ(x) is the smallest positive integer with f τ(x)x ∈ M\P , then gx = f τ(x)x.
Note that g is not defined on a set of Lebesgue measure 0 on M\P , but this will not
concern us.

Lemma 5.2. There exists a g−invariant Borel probability measure µ with the prop-
erty that µ has absolutely continuous conditional measures on the unstable manifolds of
f .

Proof: Let L = W u(x, P+), where P+ is one of the components of fP\P and
x ∈ P+. Let mL be the Lebesgue measure on L and let gn

∗ mL be the push-forward of mL,
i.e., (gn

∗ mL)(E) = mL(g−nE). We may take µ to be any accumulation point in the weak ∗

topology of 1
n

n−1
∑

i=0

gi
∗mL.

The g−invariance of µ is clear. To show that it has absolutely continuous conditional
measures, it suffices to consider rectangles R in M\P with small diameters. We assume
also that int R ∩ Ŵ s = ∅, where Ŵ s is as in Lemma 5.1. The significance of the second
condition is as follows: giL is the disjoint union of W u−segments, each one of which begins
and ends at some point in gjŴ s for some j ≥ 0. Since fŴ s ⊂ Ŵ s, each component of
giL that intersects R u−crosses R. Let ρi denote the density of gi

∗mL with respect to
Lebesgue measure on giL. Then by Proposition 3.1, ∃J > 0 (independent of i) such that
for all x, y in the same component of giL ∩ R,

J−1 ≤
ρi(x)

ρi(y)
≤ J.

This bound on densities is passed on to the limit measure µ.

Proof of Theorem C:

Let Qi = {x ∈ M\P : τ(x) = i}, where τ is the return time to M\P . Define

µ̄ =
∞
∑

i=1

i−1
∑

j=0

f j
∗ (µ|Qi

).

Then µ̄ is clearly f−invariant.

Let U be a neighborhood of p. Then M\U is contained in M\
(

n
⋂

i=−n

f iP
)

for some

large n, and this latter set clearly has finite µ̄−measure. This proves that µ̄ is at most
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σ−finite. It cannot be finite because it has absolutely continuous conditional measures on
unstable manifolds, and Theorem A says that f does not admit SBR measures.

Recall that m denotes the Lebesgue measure on M . We now study the asymptotic
behavior of trajectories starting at x for m -a.e.x.

Lemma 5.3. Let g and µ be as in Lemma 5.2. Then (g, µ) is ergodic.
Proof: We will follow the two standard steps in the proof of ergodicity of SBR

measures for hyperbolic systems without discontinuities. The first step is to use Hopf’s
argument to show that given a rectangle R, m -a.e.x ∈ R is “future-generic” with respect to
some ergodic measure µR, with µR possibly depending on R. (“Future-genericity” means

that 1
n

n−1
∑

i=0

φ ◦ gi(x) →
∫

φdµR as n → +∞ for every continuous function φ : M → R.

“Past-genericity” is defined similarly.) The second step is to show that µR = µ for all R.
Let R ⊂ M\P be a rectangle. Note that when we use the word “rectangle” or

the symbol “W u(x,R)” in this paper, we are always referring to the stable and unstable
manifolds of f — which are not necessarily stable and unstable manifolds of g! First we
need to argue that for suitable R, W u(x,R) is indeed a local unstable manifold of g, in the
sense that ∀y ∈ W u(x,R), d(g−nx, g−ny) → 0 as n → ∞. This is true if int R ∩ Ŵ s = ∅,
for this condition will guarantee that ∀n ≥ 0, f−nWu(x,R) is either entirely in P or it
does not intersect P . Similarly, W s(x,R) is a local stable manifold of g if R ∩ Ŵu = ∅.

We recall Hopf’s argument (see, e.g. [A]) for a rectangle R with the properties in the
last paragraph. Since the conditional measures of µ are absolutely continuous on unstable
manifolds (Lemma 5.2), there exists L = W u(x,R) such that mu

x -a.e. y ∈ L is generic
(both future and past) with respect to some ergodic measure νy. All the νy’s are in fact
identical because as n → +∞, d(g−ny, g−nz) → 0 ∀y, z ∈ L. We call this common
measure µR. Now if y is future generic with respect to µR, then z is future generic with
respect to µR ∀z ∈ W s(y,R). It then follows from the Lipschitzness of the W s−foliation
(Proposition 2.5) that m -a.e. z ∈ R is future generic with respect to µR.

To carry out the second step, it suffices to observe that if R1 and R2 are rectangles
with the properties above, then ∃n > 0 such that gnR1 ∩ R2 6= ∅.

Proof of Theorem B:

We will show that given arbitrarily small numbers α > 0 and ε > 0, there exist
neighborhoods P2 ⊂ P1 of p with diamP1 ≤ α such that for m -a.e.x ∈ M\P2,

#{0 ≤ k ≤ n : fnx ∈ M\P1}

#{0 ≤ k ≤ n : fnx ∈ P1\P2}
< ε

for all sufficient large n.
To see this, let P1 be a rectangle of the type in Lemma 5.1. Let g1 : M\P1 → M\P1

and µ1 be as in Lemma 5.2, and let µ̄ be the infinite measure in the proof of Theorem
C. Let P2 be chosen small enough that µ̄(M\P1) ≤ εµ̄(P1\P2). Then µ2 := µ̄|M\P2

is
invariant under the first return map g2 : M\P2 → M\P2, and (g2, µ2) is ergodic. The

Birkhoff Ergodic Theorem applied to (g2, µ2) completes the proof.
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