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ABSTRACT. We show that there exists a C*° volume preserving topologi-
cally transitive diffeomorphism of a compact smooth Riemannian manifold
which is ergodic (indeed is Bernoulli) on an open and dense subset G of not
full measure and has zero Lyapunov exponent on the complement of G.

1. INTRODUCTION.

It is shown in [7, 11, 22, 23] that on any manifold M and for any sufficiently
large r one has what can be viewed as a discrete version of the classical KAM
theory phenomenon in the volume preserving category — there are open sets
of volume preserving C" diffeomorphisms of M all of which possess positive
measure sets of codimension-1 invariant tori; on each such torus the diffeo-
morphism is C' conjugate to a Diophantine translation; all of the Lyapunov
exponents are zero on the invariant tori. It is expected that the set of invari-
ant tori is surrounded by “chaotic sea”, i.e., outside this set the Lyapunov
exponents are nonzero and the system has at most countably many ergodic
components. It has since been an open problem to find out to what extend
this picture is true.

A first step towards understanding this picture is to establish “essential” co-
existence of completely chaotic and regular non-chaotic behavior for the class
of volume preserving systems in the spirit of the results mentioned above. To
this end in this paper we prove the following result.

Main Theorem. Given a > 0, there exists a compact smooth Riemannian
manifold M of dimension 5 and a C*° diffeomorphism P : M — M preserving
the Riemannian volume m such that

(1) ||P—1Id||cr <« and P is homotopic to 1d;
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(2) P is ergodic on an open and dense subset G C M and m(9) < m(M);
in particular, P is topologically transtive on M; furthermore, P|G is a
Bernoulli diffeomorphism;

(3) the Lyapunov exponents of P are nonzero for almost every x € G;

(4) the complement G° = M\ G has positive volume, P|G° = 1d and the
Lyapunov exponents of P on G¢ are all zero.

In our example the set G¢ is the direct product of a 3-dimensional smooth
compact manifold and a Cantor set of positive volume in a two dimensional
torus and thus has codimension two. By modifying our construction one can
obtain a C'*° diffeomorphism P of a compact smooth Riemannian manifold of
dimension 4, which is close to the identity map and has nonzero Lyapunov
exponents on an open and dense set G of positive but not full volume and
zero exponents on its compliment. The latter is the direct product of a 3-
dimensional smooth compact manifold and a circle and thus has codimension
one and P has countably many ergodic components (see [6]).

Coexistence of elliptic islands and “chaotic sea” is one of the most interest-
ing phenomena in dynamical systems and very few results are known in this
direction. Przytycki [19] and Liverani [16] studied a one-parameter family f,,
—e < a < g, of area preserving diffeomorphisms for which the map f; lies
on the boundary of the set of Anosov diffeomorphisms. This example demon-
strates a route from uniform hyperbolicity (corresponding to —e < a < 0) to
non-uniform hyperbolicity (corresponding to @ = 0) and then to coexistence
of regular and chaotic behavior, i.e., the appearance of an elliptic island (for

0<a<e).
An example of a billiard dynamical system — the so-called “mushroom bil-
liards” — with coexistence of “elliptic islands” and “chaotic sea” was con-

structed by Bunimovich in [3]. However, this case differs substantially from
the smooth case due to the presence of singularities.

In [10], Fayad obtained a weaker version of our theorem: only some but not
all Lyapunov exponents for P are zero on §°. Ensuring that all Lyapunov
exponents are zero is a substantially more difficult problem and we use a
completely different techniques than in [10] to make it happen. The matter is
that if all Lyapunov exponents in G¢ are zero, then a typical trajectory that
originates in G will spend long time in the vicinity of G¢ where contraction
and expansion rates are very small. This should be compensated by even
longer periods of time that the trajectory should spend away from §G¢ thus
gaining sufficient contraction and expansion and ensuring nonzero Lyapunov
exponents.

Let us briefly outline our construction. It starts with a C'*° volume preserv-
ing diffeomorphism T of a compact smooth 5-dimensional manifold M. The
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map 7T is close to and homotopic to the identity and indeed is the identity
on an invariant compact subset of positive volume. On its compliment G the
map 7' is partially hyperbolic with one-dimensional stable, one-dimensional
unstable subspaces and 3-dimensional center subspace along which dT" acts as
an isometry and hence has zero Lyapunov exponents. These subspaces are
integrable to three transverse one-dimensional stable, one-dimensional unsta-
ble and 3-dimensional central invariant foliations of §. Since this set is open,
partial hyperbolicity appears in its weaker pointwise form (see Section 2 for
the definition of pointwise partial hyperbolicity).

Pointwise partially hyperbolic maps on compact manifolds were introduced
in [5]. They have properties that are pretty much similar to those of uniformly
partially hyperbolic systems: 1) stable and unstable subspaces are integrable
to continuous stable and unstable foliations that are uniformly transverse to
each other; 2) Lyapunov exponents along stable (unstable) subspaces are neg-
ative (positive); 3) any sufficiently small perturbation of a pointwise partially
hyperbolic map is also pointwise partially hyperbolic. These properties fail
to be true if one considers, as we do, pointwise partially hyperbolic maps on
open subsets thus providing one of the major obstacles for our construction.
To overcome this problem we only consider small perturbations of T that are
gentle, i.e., they coincide with T" outside a neighborhood of the Cantor set G°.
For those perturbations the above three properties hold. However, the final
map P is not a gentle perturbation of T" and additional arguments are needed
to establish these properties for P.

Our next step is to perturb 7" gently to a C'* volume preserving diffeomor-
phism (), which is concentrated in an open set, which is “far away” from the
Cantor set. We arrange this perturbation in such a way that the average Lya-
punov exponents of () in the central direction are positive for points in G while
the Lyapunov exponents on the compliment G¢ of G are all zero. Our construc-
tion of the map @ is built upon some ideas from [21, 8, 14, 2, 9] but requires
substantial modifications and new arguments due to nonuniform hyperbolicity
of the map T'. Note that the restriction Q|9 is not ergodic.

Finally, we perturb ) to a C'"*° volume preserving diffeomorphism P, which
is pointwise partially hyperbolic on § and, similarly to the maps 7" and @,
possesses three transversal continuous one-dimensional stable, one-dimensional
unstable and 3-dimensional central invariant foliations. In doing so we first
construct a sequence of small perturbations P, of () such that each P, coincides
with T" outside some open invariant subset U, C G (hence, P, is a gentle
perturbation of T') and has the accessibility property on WU,. The sets U, are
nested and exhaust G and the sequence P, converges to the desired map P. In
constructing the maps P, we use some techniques developed in [8, 14].
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Although the map P is not a gentle perturbation of T" (it coincides with 7" on
the Cantor set only) we shall prove that P has the three properties described
above. Furthermore, we show that P has the accessibility property on G via
its stable and unstable foliations and that the average Lyapunov exponents
of P|§ in the central direction remain positive and in fact, central Lyapunov
exponents are positive on a subset of positive volume. We then show that P|SG
is ergodic and indeed, is a Bernoulli diffeomorphism. To achieve this we extend
the argument in [4] to the case of maps that are pointwise partially hyperbolic
on open sets. This implies that P has four positive and one negative Lyapunov
exponents on § while the Lyapunov exponents on the Cantor set §¢ are all zero.

In Section 2 we provide some background information and introduce some
basic notations. In Section 3 we describe our construction of the map P and
prove our result subject to two propositions. In the remaining sections we
present the proofs of these propositions and other supporting statements.

2. PRELIMINARIES

See [17, 1] for more details.

Let f be a diffeomorphism of a compact smooth Riemannian manifold M
and A C M an f-invariant compact subset. The map f is said to be uniformly
partially hyperbolic on A if for every z € A the tangent space at z admits an
invariant splitting

(2.1) T.M = E*(x) ® E°(x) @ E*(x)
into strongly stable E°(x) = E5(x), central E°(x) = E$(x), and strongly unsta-

ble £ (x) = EY}(x) subspaces. More precisely, there are numbers 0 < A < X' <
1 </ < p such that for every x € A,

ldfvll < Alloll, v e Ex),

Nl < lldfoll < ploll, v € E(w),

plloll < lldfvll, v e E'(x).
Given z € A, one can construct a strongly stable local manifold V*(z) =
V#(z) and a strongly unstable local manifold V*(x) = V*(x) at x. This local
manifolds have uniform size, i.e., there are numbers r > 0 and D > 0 such

that for every x € A there are smooth functions ¢* : B'(r) — T,M, i = s or u
(here B'(r) C E*(x) is the ball centered at zero of radius ) such that

p(0) =0, dp(0) =0, max{|dp(a)]:a€ B'(r)} <A,

and

V'(z) = exp,{(a, ¢(a)) : a € B'(r)}.
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We define the strongly stable and strongly unstable global manifolds at x by

W (@) = Wiz) = [J /(v (@),
n>0
W?(z) = =J @)
n>0
We denote by B(x,r) the ball centered at the point x of radius r. Further, we
adopt the following notation: for a smooth submanifold V' C M and a point

x € V we denote by By (x,r) the ball in V' centered at = of radius r (with
respect to the intrinsic Riemannian metric). We also set

B(z,r) = Bj(x,r) = Bys(y)(z,7),
B“(z,r) = Bf(x,7) = Byug(z,7).

In this paper we need a weaker property than uniform partial hyperbolicity.
Let 8 € M be an f-invariant open subset. We say that f is pointwise partially
hyperbolic on § if for every x € § the tangent space at x admits an invariant
splitting (2.1) and there are continuous positive functions A(z) < N (z) <1 <
w(x) < p(zx), x € 8 such that

ldfvll < Alz) flvll, v e E*(x),
N(@) [Joll < lldfvll < w'(x) [Joll, v e E(x),
p() [[oll < fldfoll, v e E'(x).

Given a subset 8 we call a partition P of 8 a (9, q)-foliation with smooth leaves
or simply a foliation with smooth leaves if there exist continuous functions
d=0(x) >0, q¢=q(z) >0, and an integer k£ > 0 such that for each = € §8:

(1) there exists a smooth immersed k-dimensional manifold W (x) contain-
ing x for which P(z) = W(x) where P(z) is the element of the par-
tition P containing x. The manifold W (x) is called the global leaf
of the foliation at x; the connected component of the intersection
W(z) N B(xz,0(x)) that contains z is called the local leaf at z and
is denoted by V' (x);

(2) there exists a continuous map ¢, : B(z,q(z)) — C*(D, M) (where D is
the unit ball) such that V(y) is the image of the map ¢,(y) : D — M
for each y € B(x,q(x)); the number ¢(z) is called the size of V (z).

We say that a foliation with smooth leaves is absolutely continuous if for almost
every € 8§ and almost every y € B(x, ¢(x)) the conditional measure generated
on V(y) by volume m (with respect to the partition of B(z,q(z)) by local
leaves) is absolutely continuous with respect to the leaf volume my () on V (y).
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The strongly stable and strongly unstable global manifolds of a uniformly
partially hyperbolic diffeomorphism form two (6, ¢)-foliations of A with smooth
leaves where 0 and ¢ are constants. These foliations are absolutely continuous
and transversal at every point z € A.

Let W; and W5 be two continuous foliations with smooth leaves of a subset
8. Assume that these foliations are transversal at every point z € §. We say
that these foliations have the accessibility property if any two points z, 2 € 8
are accessible; this means that

(1) there exists a collection of points 21, ..., z, € 8 such that x = z1, y = z,
and zp € Wi(zx_1) fori=1or2and k=2,... n;

(2) the points zx_; and z; can be connected by a smooth curve v, C
Wi(zg—1) fori=1or2and k=2,...,n.

The collection of such points z, and curves ~; is called the leaf-wise path
connecting z and y. In particular, if W; and W, are the stable and unstable
foliations, then we say that f has the accessibility property and the leaf-wise
path is called the (u, s)-path or simply (u, s)-path.

It may not be true in general that a diffeomorphism, which is pointwise
partially hyperbolic on an open set §, has strongly stable and unstable local
manifolds at every point in 8. However, this is the case for all pointwise
partially hyperbolic diffeomorphisms that we construct and in fact their global
strongly stable and unstable manifolds form two transversal foliations with
smooth leaves.

A uniformly partially hyperbolic diffeomorphism f is called dynamically co-
herent if the subbundles E* = E¢® E*, E¢, and F* = E°® E° are integrable
to continuous foliations with smooth leaves W<, W¢ and W, called respec-
tively the center-unstable, center and center-stable foliations. Furthermore,
the foliations W€ and W*" are subfoliations of W, while W¢ and W* are
subfoliations of W,

The following result (see [12, 20]) shows that dynamical coherence is a robust

property.

Theorem 2.1. Suppose that f is a partially hyperbolic diffeomorphism. If the
center foliation W€ is smooth, then f is dynamically coherent. Moreover, any
diffeomorphism that is close to f in the C' topology is dynamically coherent.

Since both subbundle £* and E“ vary continuously with the map, so does
E*¢ and the corresponding center foliation W¢.
We denote by

1
A(z,v) = limsup — log ||df"v||
n

n—oo
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the Lyapunov exponent of a nonzero vector v at x € M and by \;(x) = \i(z, f),
1 =1,...,dimM, the values of the Lyapunov exponents at x. Note that the
functions A;(z, f) are invariant. We assume that these values are ordered so
that

Mz, f) > > Aima(@, £)-
We also denote by

(2.2) Lu(f) = /M > A, ) dm2),

where m is the Riemannian volume. We call this number the k-th average
Lyapunov exponent of f.

Consider a volume preserving C? diffeomorphisms f of a compact smooth
manifold M that is pointwise partially hyperbolic on an open set §. We say
that f has positive central exponents if there is an invariant set A C § of
positive volume such that for every = € A and every v € E¢(z) the Lyapunov
exponent A(z,v) > 0. The following result plays an important role in the proof
of our Main Theorem.

Theorem 2.2. Assume that the following conditions hold:

(1) f has strongly stable and unstable (6, q)-foliations W* and W* where
d =0(x) and g = q(x) are continuous functions on §;

(2) the foliations W* and W™ are absolutely continuous; more precisely,
any two points z1,zo € & can be connected in & via a W?* and W"
foliations;

(3) f has the accessibility property via the foliations W* and W*;

(4) f has positive central exponents.

Then f has positive central exponents at almost every point x € 8, f|8 is
ergodic and indeed, is a Bernoulli diffeomorphism.

Proof. In the case when f is uniformly partially hyperbolic on the whole man-
ifold M, has positive central exponents and the accessibility property this the-
orem was proved in [4]. We shall show how to extend the argument presented
there to our case.

Note that f is a C? volume preserving diffeomorphism, with nonzero Lya-
punov exponents on a set A of positive volume. Hence, it has at most count-
ably many ergodic components of positive volume in A. Each such component
contains the set

A = |J v,

yeVt(z)
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where x is a density point of A and V() is a center-unstable local manifold
at x. Since the strongly stable foliation W* is continuous, the set A(z) is
open in A and hence the set A itself is open (mod 0). We shall show that
the accessibility property of f in & and absolute continuity of strongly stable
and unstable foliations imply that the trajectory of almost every point in 8 is
dense. Clearly, this yields that A = 8§ (mod 0) and that f|8 is ergodic and
indeed, is a Bernoulli diffeomorphism.

To this end, it suffices to show that if U is an open set then the orbit of
almost every point enters U. To see this let us call a point good if it has a
neighborhood in which the orbit of almost every point enters U. We wish
to show that an arbitrary point p is good. Since f is accessible, there is a
(u, s)-path [zo, ..., 2] with zyp € U and z; = p. We shall show by induction
on j that each point z; is good. This is obvious for j = 0. Now suppose that
z; is good. Then z; has a neighborhood N such that Orb(z) N U # 0 for
almost every x € N. Let B be the subset of NV consisting of points with this
property that are also both forward and backward recurrent. It follows from
the Poincaré recurrence theorem that B has full measure in N. If € B, any
point y € W*(z) UW*(z) has the property that Orb(y) NU # (). The absolute
continuity of the foliations W* and W* means that the set

U @) v (z)
Tr€EB

has full measure in the set
U W @) uw(a).
rzeN

The latter is a neighborhood of z;;;. Hence z;;, is good. U

3. CONSTRUCTION OF THE MAP P: PROOF OF MAIN THEOREM

We describe a construction of the map P splitting it into several steps.

3.1. Step 1: A Special Flow T". Let A be an Anosov automorphism of the
torus X = T2 We denote by n4 the constant expanding rate of A along the
unstable direction.

Consider the special flow T% over A with a constant roof function. The flow
acts on the the manifold

N={(z,t):ze X, tec0,1]}/ ~,

where “~” is the identification (z,1) = (Az,0). We may choose the metric
on N in such a way that the expansion rate of T along the one-dimensional
unstable direction is tna at every point (z,t) € N. For each t # 0 the map
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T" is uniformly partially hyperbolic with one-dimensional stable EZ., one-
dimensional unstable E¥, and one-dimensional center Ef, subbundles (the
latter is the direction of the flow). These subbundles are integrable to smooth
stable W7, unstable W7, and center Wy, foliations of N.

3.2. Step 2: The Original Map 7. Set Y = T? and M = N x Y. We endow
M with the product metric and denote by m its Riemannian volume. We also
denote the fiber

(3.1) N, =N x {y}.
For our construction we choose:

(A1) a Cantor set C' C Y of positive measure whose complement G =Y \ C
is an open connected subset;

(A2) an open square Gy such that Gy C G

(A3) a C™ function k : Y — R satisfying: (1) k(y) =0ify € C and k(y) > 0
if y € G; (2) |grad k| < 1/4, and (3) k(y) = Ko for y € Uy, where kg is
a constant and U is a neighborhood of GGy whose choice is specified in
Subsection 5.1.

The set G in the Main Theorem is given by § = N x GG and is open, dense
and of positive but not full measure. We let §¢ be the complement of G.
We define a map 7': M — M by

T((z,t),y) = (T""(z,1),y),

where (z,t) € N and y € Y. The proof of the following proposition is imme-
diate.

Proposition 3.1. The map T is a C* wvolume preserving diffeomorphism of
M with the following properties:

(1) given 67 > 0, one can chose the function k such that ||T —1d ||cr < dr;
moreover, T' is homotopic to 1d;

(2) T preserves the fibers N;

(3) T is uniformly partially hyperbolic on any invariant subset N x A where
A C G is compact; moreover, T is dynamically coherent with the cenral
foliation Wi = W£, x Y

(4) T is pointwise partially hyperbolic on G with one-dimensional stable
E5(2), one-dimensional unstable E¥.(z) and 3-dimensional center ES(2)
subspaces; the subspaces E5.(z) and E¥(z) are integrable to strongly sta-
ble and unstable foliations W7 (z) and WH(z) with smooth leaves; these
foliations are uniformly transversal and their local leaves have uniform
size; in addition, these foliations are absolutely continuous;
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(5) T|S¢ = Id and dT, = 1d for any z € G°; in particular, the Lyapunov
exponents of T|G¢ are all zero;
(6) for every z € G the Lyapunov exponents of T are as follows:

M(z,T) = X(2,T) >0=X(2,T) = A3(2,T) = M\a(2,T)
> As(2,T) = No(2,T),

where X*(z,T) and X\°(z,T) correspond to the directions E¥, and E3,
respectively and Mo(2,T), A3(z,T) and A\y(z,T) correspond to the direc-
tion of the flow and the Y -direction respectively. Moreover, |\“(z,T)| =
|A*(2,T)|. Consequently,

where each i-th average Lyapunov exponents L;(-) is given by (2.2).

We say that a diffeomorphism F is a gentle perturbation of T if F'is C! close
to T" and the following conditions hold:

(1) F(9) = G and F is pointwise partially hyperbolic in G;

(2) the one-dimensional strongly stable and unstable subbundles for F' are
integrable to one-dimensional strongly stable and unstable foliations
with smooth leaves on G; the 3-dimensional central subbundle of F' is
integrable to a central foliation;

(3) F|§° =1d.
Further, if F? is a gentle perturbation of T that is sufficiently C" close to F,
then we say that F' is a gentle perturbation of F as well.

Let F be a diffecomorphism of M that is C* close to T. Assume that there
is an open set U such that U C § and F|U = T|U; in particular, U is invariant
under F. Then F is a gentle perturbation of 7" and in fact, F|U is uniformly
partially hyperbolic.

3.3. Step 3: The Perturbation (). We perturb the map 7" to a map () such
that it has one negative and four positive average Lyapunov exponents but is
not necessarily ergodic. We then perturb @) to a map P which is ergodic on GG
and has all the desired properties.

Given z € M, we choose a local coordinate system (s, u,t, a,b) such that

(3.2)  F*(2):=0/0s = Ei(2), F“(2) :=0/0u = E¥%(z), F'(z) :=0/ot
are the unstable, stable and central (flow) directions of T" respectively, and

(3.3) FY(2) := 0/0b, F4(2) :=/da
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are tangent to Y. We shall assume that in these coordinates the square Gq
has the form

(34) GO = Bpa (ao, CY()) X BFb(bo, Oé())

for some (ag, by) € Y and ap > 0.
The following statement describes some properties of the map @); its proof
is given in Section 4.

Proposition 3.2. Given dg > 0, one can construct a C'*° volume preserving
diffeomorphism () : M — M which satisfies:
(1) |Q —T||cr < dg and Q is homotopic to 1d;
(2) Q =T on the set N x (Y \ Gy); in particular, ) preserves N,-fibers if
y & Gy and is a gentle perturbation of T';
(3) @ satisfies Statements (3)—(5) of Proposition 3.1;
(4) for every z € § we have

EY®(2) = Ef*(2), det(dQ|ES™(z)) = det(dT|EF**(2)).

(5) L1(Q) < L2(Q) < L3(Q) < Ly(Q) = Ly(T') and L5(Q) = 0 where L;(+)
is given by (2.2).

3.4. Step 4: The Final Perturbation P. Our next step is to perturb the
map () to a map P that is pointwise partially hyperbolic on the open set G,
and hence possesses two transversal stable and unstable foliations W3 and Wp
of §. Furthermore, we shall ensure that P has two transversal strongly stable
and unstable foliations W and W§ of G and satisfies the accessibility property
on this set via these foliations. We shall also show that P can be constructed
in such a way that the Lyapunov exponents of P on G¢ are all zero and that
fM Ai(z, P)dm >0 fori =1,2,3,4.

In order to construct the map P we choose two sequences of open subsets
U,, U, CG,n=1,2,... such that

(A4) Go C Uy;
(A45) U, c U, CU, CU, CUpy € G and |-, U, = G;
(A6) U, and U, are connected sets for any n 2_1.

We set

(3.5) Uy =NxU,, U,=NxU,.

We will construct a sequence of diffeomorphisms {F,}, whose limit is the
desired map P. The following statement is proven in Section 5.

Proposition 3.3. Given a number op > 0, one can find two sequences of
positive numbers {6, } and {0, } with §, < 5p/2™ and 6, < d(C,U,)? as well as
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a sequence of C'°° wvolume preserving diffeomorphisms P, : M — M such that
form>1
(1) ||Py — Po-1llen < 0, and P, is homotopic to 1d;
(2) P.(U,) =WU,, P, =T on M\WU,, and P, = P,_1 onWU,_s; in particular,
P, is a gentle perturbation of T';
(3) P, satisfies Statements (3)-(5) of Proposition 3.1;
(4) for every z € M we have

Efet(z) = Eg“b(z), det(dP,|Ef™(2)) = det(dQ|Eg“b(z));
(5) forallzeU;, j=1,...,n and i = u,s,c,
Z(Ep,_,(2), Bp, (2)) < 0;/2"7;

(6) if the number dg > 0 (see Proposition 3.2) is sufficiently small, then
each map P, is stably accessible in the following sense: let P* be a C?
volume preserving diffeomorphism of M that is a gentle perturbation of
T; assume that for all z € W,, and t = u, s, c

(Bl (2), B () < 0
then any two points z1, zo € ﬁn are accessible via a (u, s)ps-path in G;
in particular, P, has the accessibility property on WU,.

Statement (1) and (2) of this proposition implies that the limit P = lim P,

n—o0

exists. We shall show that the map P has all the desired properties.

3.5. Step 5: Proof of the Main Theorem. By Proposition 3.3 (1), we have
for any k£ > 1 and any n > k,

||Pn _Pn—1||Ck < ||Pn _Pn—1||Cn < 5p/2n

It follows that P, converges to P in the C* topology. Since k is arbitrary,
P is a C* diffeomorphism. Clearly, P preserves volume and ||[P —Id| < o
it 67, 0g and dp are small enough. In addition, since P = P,;; on U,, by
Proposition 3.3 (1), P is homotopic to Id on W, for any n. The first statement
of the Main Theorem follows.

By Proposition 3.3, each diffeomorphism P, is pointwise partially hyperbolic
on U and uniformly partially hyperbolic on U,. By Theorem ?? in the Ap-
pendix, if the sequence 9,, decreases sufficiently fast, the limit diffeomorphism
P is pointwise partially hyperbolic on U.

We now claim that the one-dimensional strongly stable £} and unstable E
subbundles are integrable to invariant strongly stable W3 and unstable Wp
foliations with smooth leaves, which are transversal and absolutely continu-
ous. Recall that the “start-up” map 7" has strongly stable and unstable local
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manifolds V3(z) and V}(z) respectively at each z € U. Moreover, these local
manifolds are of uniform size, say larger than a certain number 4r > 0.

By Proposition 3.3(3), P,|U;, = T|U;, and thus V¥ (z) = Vi(z) for all
z € U\U,, w = s,u. On the other hand, each P, is a perturbation of P, 1
on the compact set U, on which both P, and P,_; are uniformly partially
hyperbolic if 4, is sufficiently small. Furthermore, if 7, is the size of V¥ ()
for z € U,, one can arrange that 7, /r,_; > 27'/?" and thus by induction we
obtain that the size of local manifolds for P,|U, is bigger than r. Therefore,
given z € U, we obtain that the size of V3 (2) has a lower bound r > 0, which
is independent of z and n.

We can describe the local stable manifold at a point z € U in the following
way

Vi, (2) = exp {(v, ¢, (v) - v e B(0,7)},
where o5, : Bi(0,r) — Ef(z) is a C' map satisfying ¢, (0) = 0 and
dipy, (0) = 0. The C'-norm of each v}, is small provided 6, are sufficiently
small. We may assume that the sequence of maps 13 converges in the ct
topology to a map %, so that the local stable manifold through z for P is
given by

Vi) = exp (v, ¥p () 1 v e B0, )},
Clearly, T,V3(z) = E%(z) and hence V3(2) is a strongly stable manifold of size
at least r. Ina similar fashion we can obtain strongly unstable local manifolds
for P. Since P is nonuniformly partially hyperbolic on U, by Theorem 8.6.1
in[1], we obtain that its strongly stable and unstable foliations are absolutely
continuous.

We shall now show that the Lyapunov exponent A\}(z) in the direction E3(2)

is negative at almost every point z € G. Indeed, let Z C G be the set of points
at which A%(z) = 0. If m(Z) > 0 then

n—1

1 )
0:/ A;(z)dm:/ lim —log [ [ Ar(P'(2))
z z "o N =0

~ lim © /Z ilogAP(Pi(z))dm(z)

n—oo N,

_ /Z log Ap(2) dm(=) < 0

(recall that Ap(2) is the contraction coefficient along F7(z)). This contradic-
tion proves our claim. Similarly, one can prove that the Lyapunov exponent
A% (2) in the direction E}(z) is positive at almost every point z € G.
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Our next step is to show that the map P has the accessibility property on
G via its invariant foliations W3 and W§. Indeed, by Proposition 3.3 (6), for
any n > k and any z € Uy, i = s, u,c,

A}, (2), By (2)) < 061~ 5,5) < b

Taking the limit as n — oo yields for ¢ = s, u, ¢ and any z € Uy,

(3.6) L(Bp(2), By, (2) < by

Hence, by Proposition 3.3 (6), the map P has the accessibility property on Uy.
Since k is arbitrary, we obtain that the map P has the accessibility property
on §.

To prove that the map P has nonzero central Lyapunov exponents almost
everywhere we let ¢ = L4(Q) — L3(Q) > 0. By semicontinuity of L; with
respect to the map, we may take dp in Proposition 3.3 so small that L3(P) <
Ls3(Q) + ¢/2. Note that by Proposition 3.3 (4), for all n > 1,

Li(P,) = / log | det (AP, | EX®(2))] dm
9

:/Slog | det(dQ|E4**(2))| dm = L(Q).

Since P, converges to P in the C* topology, by Proposition 3.3 (4), we have
that L4(P,) — L4(P) as n — oo and hence Ly(P) = L4(Q). It follows that
Ly(P)— L3(P) > ¢/2 > 0. Therefore,

//\4(Z,P)dm(z) > /2 > 0.
g

It follows that there is a subset A C G of positive volume such that \y(z) >
0 for every z € A. Hence, \y(2) > A3(2) > Ay(2) > 0. Thus the map
P has positive central exponents at every point in a set of positive volume.
Since P is volume preserving, the total sum of the Lyapunov exponents is zero
at every point. Therefore, A\5(z, P) < 0 at every point in A. Since P has
the accessibility property and its strongly stable and unstable foliations are
absolutely continuous, by Theorem 2.2, we obtain that P has positive central
exponents at almost every point in G, P|G is ergodic and indeed, is a Bernoulli
diffeomorphism.

It follows from Proposition 3.3 (3) and the fact that 6, < d(C,U,)?, that
P =1d on the set N x C' and that dP, = Id for all z € N x C. In other words,
all Lyapunov exponents at every point in the set N x C' are zero. Since this
set has positive volume this completes the proof of the Main Theorem.
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4. CONSTRUCTION OF THE MAP (): PROOF OF PROPOSITION 3.2

We use an approach which is similar to the one in [14] and obtain @ as a
result of three consecutive perturbations. First, we perturb the map T to a
diffeomorphism S via a gentle perturbation hg so that S = hg o T' preserves
the fibers N, y € G and has two positive average Lyapunov exponents in
the E¥ subbundle, i.e, L1(S) < Ly(S) (see Lemma 4.1). Next, we perturb S
to a diffeomorphism R via a gentle perturbation hg so that R = hr o S has
three positive average Lyapunov exponents, i.e., Li(R) < Ls(R) < L3(R) (see
Lemma 4.2). Finally, we obtain the desired map ) as a perturbation of R via
a gentle perturbation hg so that Q) = hg o R satisfies

L1(Q) < Ly(Q) < L3(Q) < La(Q)

(see Lemma 4.6), or equivalently, [, \(z,Q)dm(z) > 0.

Given 6 > 0 and k£ = S, R, @, the perturbations h; are concentrated on
pairwise disjoint small open subsets € C Gy such that [|hr — Id|c2 < ¢ and
hi, = Id outside €. It follows that Q = T" outside Qg Qr | Q0.

To effect our construction we choose periodic points ¢, p', p® and p® of the
Anosov automorphism A, which are close to each other and whose orbits are
pairwise disjoint. Let V3(q), Vi(q), Vi(p') and Vi(p'), i = t,a,b be stable
and unstable local manifolds at these periodic points. We may assume that
each intersection Vi(q) N V3(p') and V¥ (p') N V3i(q) consists of exactly one
point, which we denote by [g, p’] and [p’, q] respectively. Consider the closed
quadrilateral path with the collection of points ¢, [q,p'], p%, [p’, q] and ¢, and
let

(@) =Vil@)UVila), ~(p)=Vip)UVilp').
Given positive numbers v and ¢ whose choice will be specified later (see (4.4)),
we set for i =t,a,b,

Q(v) = ( U BN(Tt(pi,O),VD x G,

t€[0,7(p")]

a2 =( U Bx((x.1).0)) x .
(z.)€(v(a) x[0,7())U(v(p?) x[0,7(p?)])
owo)= (U 2m)u( U 2@).
i=t,a,b i=t,a,b

where 7(q) and 7(p’) are the periods of ¢ and p' and Bx((z,t)),r) is the ball
in N of radius r centered at the point (x,t). Finally, we set

(4.2) Qo(v,0) = Qv,0) N Yo
(recall that Gy is defined in (A2) and is in the form of (3.4)).
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Given dg > 0, choose the number 6 > 0 according to Sublemma 4.5 below
and an integer ky > 0 such that

(43) 7T/2]€0 < 0.

Now choose positive numbers v and o to ensure that the measure of the set
Qo(v,0) is so small that

(4.4) 20kom(Qp(v,0)) < 1.

4.1. Construction of the map S.

We obtain the map S as a small perturbation of the map 7" via a perturbation
hg, which is a small rotation in the E% subbundle at every point of a small
subset of G = N x G,. This approach is an elaboration of the approach
developed in [21, 8] for some uniformly partially hyperbolic systems.

To this end we observe that by the construction of the map T for every
z € Gy the expansion rate in the Ef-direction at z, |dT'|EY|, is a constant. We
denote this constant by 7. Choose a C* function ¢» = ¢(r) : Rt — R* such
that

(1) ®(r) = ¢y > 0 if r € [0,0.9];
(2) w(r) > 0if r €[0,1) and 3(r) = 0 if r > 1;
(3) ll¥ller < 1.
Given Ny > 20kg, choose a point (xg,tg) € N and a number ¢; > 0 such that
BN((.I‘(), to), 261) N PI'OjN(Q()) = @’
F7E(Bx((wo, to), 2€1)) N Bx((2o, t0), 261) = 0, k=1,..., N,

where Projy is the projection onto N, i.e., Projy(z,t,y) = (z,t) and kg is
defined by (A3) (see Subsection 3.2). Set

Qg = Bx((20,10), €1) x Go.
Our choice of €, guarantees that Qg N Qg =0 and for k =1,..., Ny,
(4.5) T75(Qs) N Qg = 0.

To define the desired map hg we switch from the coordinate system (s, u, t, a, b)
(see (3.2) and (3.3)) in Qg to the cylindrical coordinate system (r,6,s,a,b)
originated at zy = (o, to, ag, bo), where u = rcos and t = rsin .

Given 7 > 0, define the map hg = hg, on {0g as a small rotation in the
(u, t)-subspace. More precisely, we set

@6)  hslr0.s,0.0) = (r. 6+ radev(S)u(yu(Dypl), s a

- )
€1 €1 %) Qo
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(here g is defined in (3.4)). We extend the map hg = hg, to the whole
manifold M by letting it to be the identity outside of (2g. It is easy to see that
hs is a C'*° volume preserving diffeomorphism satisfying:

(1) [|hsr —1d[jcr — 0 as 7 — 0;
(2) dhs preserves E¥ bundle;
(3) det(dhs|E¥(z)) =1 for any z € M.

We define the map S = S; =T o hg, and we set
(47) = 0.90&0, Gl = Bpa(ao, al) X BFb(bo,al).
The following statement describes some properties of the map S.

Lemma 4.1. Giwen dg > 0, there exist T > 0 such that the map S = S; is a
C* diffeomorphism with the following properties:

(1) |S =T||cr < ¢ and S is homotopic to 1d;

(2) S =T on the sets N x (Y \ Go) and Qq; in particular, S is a gentle
perturbation of T';

(3) S satisfies Statements (3)—(5) of Proposition 3.1;

(4) for every z € M,

Eg'(2) = Ey'(2), det(dS|Eg'(z)) = det(dT| By’ (2));
(5) for any y1,ys € Gy,
Projy(S(x,t, 1)) = Projn(S(x,t,52));
(6) L1(S) < Ly(T) and hence,
Ly(S) < La(S) = L3(S) = La(S) = La(T), Ls(5) = 0;
(7) there exist a number Ag and a set Ig = Projy(Ils) x Gy such that
m(Ilg) > 20kem(Ils N Qg) > 0,

and for any z € llg the map S has two positive Lyapunov exponents
Ai(2,8) > Xa(2,8) > A along the E¥ = E¥ subbundle.

Proof. Statements (1)—(5) follow easily from the construction of the map hg.
In particular, .S is dynamically coherent in view of Theorem 2.1. It remains to
prove Statements (6) and (7).

We prove that there exists 75 > 0 such that for any 7 € (0, 7],

Since on the complement of Gy we have S = T, this implies that L;(S) < L,(T).
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We outline the proof of (4.8) referring the reader to the proof of Proposition
5.1 in [8] for details. Since E¥¢ (z) is one-dimensional, it is easy to see that

Ll(ST|90):/ Al(z,ST)dm(z):/ log |dS;(2)|Eg (2)] dm(z).

S0 So
Since the perturbation hg = hg, preserves the E¥ subbundle, we can write

dhs ;| BY!(2) = ( éé; 3 5%2 3 ) ’

where
2ﬁ2
— 72rppy cos? O + O(1%),

A=A(r,z) =1—7rp,sinf cosf —
B = B(1,2) = —1p — 1rp,sin® 0 — 7rpp, sinf cos 0 + O(73),

C =C(1,2) = p + Trp, cos® 0 — T°rpp, sinf cos § + O(7?),
72ﬁ2
D =D(r,z) =14 1rp,sinf cosf —

— 72rpp,sin® 6 + O(72),
and

plr.s.0.0) = et (S o (L ),

€1 Qp Qp
Recall that the expanding rate n = na of dT" along E“(T) is constant for all
z € Gp. By the choice of the coordinate systems, we can write

ut _ n O
dT]ET(z)(O 1).
Since dS; = dT o dhg,, we have

ut _ TIA(ﬂ Z) nB(T, Z)
dST(Z>|ES-,- (2) = (Cv<7_7 2) D(r,2) )"
Denote by e, (z) the unique number such that the vector v, (z) = (1,e,(2))* €
E¢ (z), where * denote the transpose of the vector. Repeating the arguments
in the proof of Lemma B.7 in [8], one can show that

Ll(ST|90):/ logndm(z) — / log[D(,2) — nB(T, 2)e-(S70(2))] dm(z).

S0 Yo

Now we compute the first and second derivatives of L; with respect to 7. To
apply the arguments in [8], we use the Fubini theorem

/90 )= /G /N - dmy(z, t)dm” (y),



COEXISTENCE OF ZERO AND NONZERO LYAPUNOV EXPONENTS 19

where the fiber N, is given by (3.1) and m’yV ,mY denote the Lebesgue measures
on N, and on Y respectively. Hence, applying the same arguments in the proof
of Lemma B.8 in [8] one can show that

dLl(ST|9D) D, dm(z) —0
dT 7=0 90 T
and
d2L1(ST|90) o /N2 y , 0e,(2)
dr2 =0 - /90 |:(D7') o DTT + 27787' or (ST(Z)> L dm(z)

Similar to Lemma B.9 in [8], this integral can be wrriten as the sum

/ [D(0,w)? — D(0, w) + 2B.(0, w)C.(0, )] dm(=)

/Z L 9B.(0,2)C.(0, T~ (2)) dm(2).

The first term is bounded above by

—(1—e) /9 Fm(z) - - /9 dm(z)

To estimate the second term, we notice that for any ¢ > 1, ¢; > 0 and y € G,

/Q zBT(o,z)cT(o,T—i(z))dm;”(m)g}l /Q (7 + 1272) dm? (x.1),

Y Y

where €, = Q@ NN,. This allow us to choose Ny > 0 large enough such that
for all y € Gy,

Z / 2B,(0,2)C(0, T7(z ))dm (x,t) < 110/ (P +1*p7) dm;/(x,t).

zNo

By (4.5), for k =1,..., Ny we have

/ 2B,(0, 2)C,(0, T(2)) dm? (., £) = 0.

We conclude that
d?L1(S;|90) 9 -9 1 2 ~2
A S e < (= - - — d 0.
drr o= (10 1) /90’) m=) = 1o /gor prim(z) <

It follows that there exists 7y > 0 such that (4.8) hold for any 7 € (0, 7).
Therefore, L1(S;) < Ly (T).
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Note that for any y € Y the fibers N,, are S.-invariant and that the subbun-
dles Eutab Fue and B4 are preserved by the perturbation hg. Furthermore,
since det(dhs | E¥(z)) = 1, we have for i = ut, uta, utab,

det(dS;|EL) = det(dT|EL).

Hence, the three smallest Lyapunov exponents remain unchanged and so does
the sum of the two largest ones. This implies that L;(S;) = L;(T) fori = 3,4,5
and hence,

LI(ST> < LQ(ST> = L3(ST> = L4(ST> = L4(T)
and Ls(S;) = 0. This proves Statement (6) of the lemma.

To prove Statement (7) we first notice that for any y € G1, the arguments

similar to the above ones yield

dLl(ST’Ny) dle(STp\fy)

dr 7=0 N 07 dr? 7=0 <0

It follows that if 75 > 0 is small enough, then L;(S;|N,) < Li(T|N,) for any
7 € (0,70). Let us fix such a 7. There is a subset of N, on which S; has
two positive Lyapunov exponents A\;(z,S;) > Ao(z,5;) > 0. Given Ag > 0,
consider the level set IIg(y) = {z € N, : XAo(2,.57) > Ag}. If Ag is sufficiently
small this set has positive Lebesgue measure. Set 15 = IIg(y) x G, where the
set (1 is defined by (4.7). Clearly, I1g is invariant under S;. Since Ny > 20k,
we obtain by (4.4) that 20kom(I1sNQs) < m(Ilg). Furthermore, by Statement
(5) and definition of IIg, for any z € IIg we have that \y(z,S;) > Ag and the
lemma follows. O

4.2. Construction of the map R.

We shall obtain the map R as a small perturbation of the map S by a
diffecomorphism hg, i.e., R = hr o S. We use some ideas from [2, 9] and
construct hp as a composition of rotations in the F®-subspace along pieces of
orbits so that the total rotation is /2. This allows us to interchange the F*-
and F“-directions making the Lyapunov exponents along these directions to
be close to each other.

Let us briefly outline the construction. It starts with a choice of the Rokhlin-
Halmos tower for S within an invariant set I of positive measure where at
every point the map S has two positive Lyapunov exponents along the E¥-
subspace. The tower of height 7K + k( consists of disjoint subsets called floors,
where K > 0 is a given number and kg is given by(4.3). We then consider a
subtower I' C TV of height 2K + k. The number K should be sufficiently large
to ensure that the kg floors in the middle of I' are disjoint from 2g and €2
and consist of “good” points z in the sense that every vector v € EY-subspace
expands by about e* times under dS? and contracts by about e~* under dS~*
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for any ¢ > K/2. We then approximate these kg floors by finitely many sets
of a special type — in our global coordinate system these sets are cylinders.
We obtain the perturbation hg as a composition of finitely many maps where
each of these maps rotates the core of the corresponding cylinder by the angle
7/2ko in the F'-subspace at each level so that the total rotation is 7/2.

Now consider a “good” orbit, which starts at a point z on the bottom of
the subtower I', and a vector v € E"(z). If v is close to the E“!-subspace,
then the length of the ut-component of dR¥v = dS™v becomes at least about
e times longer than the length of v. Since dS does not contract vectors in
the E“*-subspace very much during the remaining ko + K steps, the length of
the ut-component stays about the same. If v is close to the Ef-subspace, the
length of the a-component of v does not change under the map dR¥ = dS¥.
During the next kg iterations the vector dR* v is rotated by 7/2 degree into the
E'-subspace. During the next K iterations the length of the vector becomes at
least about eX* times longer. It follows that every vector in E“!%(z) expands
by about e®* times under dR***% . Thus we obtain a set on which R has
three positive Lyapunov exponents.

To effect this construction let A = Ag and II = IIg be as in Statement (7) of
Lemma 4.1. Given K > 0, let

N = N(K) ={z € 1 :log||dS*(z,v)|| — kA > —0.1k),
(4.9) log [|dS™" (2, v)|| + kX < 0.1k
for all v € E&(2), |lv]| =1 and all |k| > 0.5K},

and let also

ko—1

(4.10) A=AEK)= () ST(N(K)),

where ky > 0 is given by (4.3). Note that m(A'(K)) — m(II) as K — oo and
hence, m(A(K)) — m(Il) as K — oo. Therefore, given a number dg > 0, we
can choose K so large that

(4.11) KX\ > max{bkoA, 10log2, —10kglog(l —dg)},
(4.12) Am(IT) + 401log(1 — dg)m(IT \ A) > 0,
(4.13) 20m(IT\ A) < m(II).

Note that if z € A(K) then for n > 0.5K and v € E¥(z),

1dS™ (2, v)| > ™ [v].
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Set
ko—1
(4.14) A=A\ ST (Qu )
=0
(recall that 2y and Qg are given by (4.2) and (4.4) respectively). By Lemma 4.1 (7),
(4.15) m(Qs NII) < m(I1)/20k,.

Furthermore, by choosing the numbers v and o in (4.1) appropriately, we may
assume that

(4.16) m(o N 1I) < m(II)/20k.
Combining (4.13), (4.14), (4.16) and (4.15), we find that
m(A*) > (1 — 0.05) — 0.05 — 0.05)m(IT) > 0.8m(IL).

By the Rokhlin-Halmos Lemma (see [15]), given K > 0, one can choose a
measurable set IV C II such that SY(I")NTY = () for any —K < i < 6K +ko—1,
1 # 0 and

6K +ko—1
(4.17) m( U S’(F’)) > 0.9m(I0).
i=—K
Set
To={S(2): 2€T,0<j<5K—1,5(z) € A*, S"(2) ¢ A* fori < j}.

In other words, Iy is the set of first entries to A* of trajectories {S%(z)}2% ™
with z € IV. By Lemma 4.1 (5), both sets A and II are of the form

A = Projy(A) x Gy, II = Projy(Il) x G4
and hence so is the set Iy, i.e., ['g = Projy(Iy) x G;. Let

K+ko—1

(4.18) I;=STy), I'= |J I.
i=—K

Clearly, the sets {I';} are pairwise disjoint for i = —K,..., K + ko — 1. We
approximate the set I'g by finitely many disjoint sets y; of the form

on = BFu(Uj,’f’}) X BFs(Sj77’;-,) X BFm((tj,aj),rj) X BFb(bo,Oél),
where

/ " ki ;
2% = (U, 85,5, a5,05) € M, 15 2 g, g 2™, j =1, ).
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Fori=—-K,...,K+ky—1, let

J

j=1
We can choose the sets Xy; in such a way that
YiiNYy =0
for (i,7) # (k, 1), =K < i,k < K + ko, 1 < j,1 < J and that
i N (QUQs) =10

for 0 <i<ky—1,0<75 < J. It follows that for i = 1,..., kg, the set A, is
an approximation of I'; and T'; N (Qo U Qg) = 0. We may assume that for each
i=0,... ko,

(4.19) m(IAA;) < 0.05 max{m(I;), m(A;)}.

Note that each set ¥;; is a cylinder in the form described in Sublemma 4.5
below. Applying this sublemma with A = ¥;;, we obtain a map p;; and a
subcylinder ¥, C X5 such that ||p;; — Id || < dqg and

(4.20) m(S)/m(Sy) > 3/4.

/

Furthermore, restricted to 3J;;, the map p;; is the rotation by the angle 7 /2kq
along the F'* x Fsubspace and is the identity outside ¥;;. In fact, by the
construction of the sets ¥i; (see Sublemma 4.5 below), we can assume that
S(3;) =%y fori=0,...,k — 1. Let

J
ko—1 J

(4.21) Q= J AL A=z
i=0 Jj=1

Hence, by (4.20) and by definition of A; and A, we have
(4.22) m(AL)/m(A;) > 3/4.

Then define hr = p;; on ¥;;, and hr = Id otherwise. Clearly, hp is a C
volume preserving diffeomorphism. Moreover, dhg preserves EX* bundle and
det(dhgp|E¥*(z)) =1 for any z € M. We define the map R = hgo S. Some of
the properties of R are described in the following lemma.

Lemma 4.2. The following statements hold:
(1) |R—Tllcr < g and R is homotopic to 1d;
(2) R =T on the sets N x (Y \ Go) and Qq; in particular, R is a gentle
perturbation of T';
(3) R satisfies Statements (3)-(5) of Proposition 3.1;
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(4) for any (a,b) € Go, the set N x I,, where I, = {(a’,b) : d €
Bra(ag, ap)}, is R-invariant and for y ¢ Gy the set N, is R-invariant;
(5) for every z € M,

ER"(z) = Eg"(2) = Ep"(2),
det(dR|E%(2)) = det(dS|E4(2)) = det(dT|E¥(2));

(6) for ag = 0.9aq, ¢y = (a,V'),y2 = (a,V") € Bpa(ag, a1) X Bps(bo, ) we
have PrOijBFa(ao,ozl)R(xv t, a, b,) = PrOijBFa(ao,aﬂR(xv t, a, bl/); where
PrOjny Bpa(ag,a1) i the projection onto the set N X Bra(ag, ay) given by
PrOijBFa (ao,a1)<'r7 t7 a, b) = (.T, tv CL);

(7) La(R) < L3(R) and hence,

Li(R) < Ly(R) < L3(R) = La(R) = Ls(T), Ls(R) = 0;

(8) there exist a number A\g > 0 and a subset Ilp = (Pr0jxy . (ag,00) 1 LR) X
Brpo(by, ) of positive measure such that m(Ilg) > 20kom(I1g N ;) for
1=R,S, and at any z € lIg, R has three positive Lyapunov exponents
A (z, R), A2(z, R), A3(z, R) > AR along the E¥* = E¥* subbundle.

Proof. Statements (1)—(6) follows immediately from the construction of hg.
In particular, the fact that as = 0.9a; follows from Statement (4) of Sub-
lemma 4.5.

Now we prove Statements (7) and (8).

Set Ay = AjN A, where Af is given by (4.21), and A is given by (4.10) (we
shall see later that Af is not empty and indeed has positive measure). Then
set

U =R7A;, Us = Ao \ A,
Us=R"((AgNA)\Af), Uy=R"(Ag\ A).
Let U =U, UU,UU3UU; and R = R? : U — U be the first return map
where 3 = (3(z) is the first return time of the point z € U to U under R. By
Poincarés Recurrence Theorem, the map R is defined for almost every z € U.
In the proof below, for any z € U, we shall assume that v € E¥%(z) = E&(z).
Let A*(E%%(2)) denote the exterior power of F¥4(z) and
N(dRIEg" (2)) « N*(E5"(2)) — A(E5" (R(2)))
be the exterior power of dR|E%(z). It is easy to see that if there exists ¢ > 1
such that ||dRv|| > ¢||v|| for any v € E¥(z), then
I (dR|Eg" (=
[N (dR|Eg" (=

il
(4.23) A 2 ©
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First we consider the case when z € U;. Then ((z) > 2K + ky. By Sub-
lemma 4.3 below and (4.11),
log ||[dR.v|| > 0.9KX — 0.5log 2 + log ||v]| > 0.85K X + log ||v]|.
Hence,
log |43 (dR|E2(2))]| — log | A2(dRIE(2))]] > 0.85KA.

Note that by definition, I'y C A*. Since X;; N (2 UNs) =0 for 0 <i < ko — 1
and 0 < j < J, we have that A{fNA = Aj NA* D Ay NTy. Hence, by (4.22)
and (4.19),

m(Ur) =m(Ag) = m(A; N A) = m(Ag NTo) = m(Ag) —m(Ag\ To)

3

>m(Ay) — m(Ag \ To) > =m(Ag) — 0.05m(Ag) = 0.7m(Ay).

e~ w

It follows that
/U (log [IN*(dR|Eg" (2))|| — log [|A*(dR|E&"(2))]]) dm(z)
>0.85K A - 0.7m(A).

Now we consider the case when z € U,. Note that [|dR — dT'[|cx < dq
and E4%(z) = E%%(z) for all z. Then R|Uy = R*|U, and

log [[dR.v]| > kolog(1 — dq) + log [|v]|.
In addition, by definition of Aj and (4.22),

(4.24)

m(Us) =m0\ A5) < m(A | A) < Tm(Ag)
We conclude that
/U (log | \*(dR| B4 (2)) — log |IA*(dR| B2 (2)]]) dm(=)
> ko fog(l — 0g) - 0.25m(Ay).

If 2 € Us, then z € R*(A) C A’, where A’ is defined in (4.9), and §(z) > K.
Hence, R*(z) = S*(z) for 0 < k < 3(z) and
dR|E%(2) = dSP®) | E¥(2).

Therefore if v € E¢'(2), then [[dR.v| > 0.9K\|v|, and if v € E¢(z), then
|dRv|| = [|dSP@v|| = ||v||. Tt follows that ||[dR.v|| > ||v|| for any v € E¥(z).
Hence, by (4.23) with ¢ = 1, we have

(4.25)

(4.26) /U (log [IN*(dR|Eg™ (2))]| — log | \*(dR|E5" (2)]]) dm(z) = 0.
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Finally, let us consider the case z € Uy. Let ('(z) be the smallest positive
integer such that R%*)(z) € A for some 0 < 3'(2) < 3(z) and let () = 3(2)
if there is no such integer. Denote by

Uy=Un{z:0(z)—p(2)>05K}, U/ =U;n{z:6(z) - F'(2) <0.5K}.

Since 3(z) > K for z € U}, we have 5(z) < 24'(z). Note that by (4.9), if
n > 0.5K then ||[dSTv|| > |jv|| for any z € A and v € E¥(z). Also note that
R=SonTIl\Qg. If 2 € U; then

ldRol| = [dRIvl| = (1S 505 7 (R D0 | = [[dRI D).
Hence, by Statement (6) of the lemma,
log [dR.0] > log | RZE ()| > #(2) log(1 - 6g) + log o]
If 2 € U7 then
log [ dR.v]| > B(2) log(1 — dq) + log [[o]l > 26(=) log(1 — dg) + log o]
It follows that

/U (log [[A*(dR|ES"™ (2))]| — log [|\*(dR| ES" (2)]]) dm(z)

>2log(1 —dg) g B'(z)dm(z).

Furthermore, if z € Uy, then 2z, R(2),..., R¥®)~!(2) € II\ A. Hence, we obtain
fU4 B'(z)dm(z) < m(II'\ A) and therefore

(4.27) /U (log |A*(dR| E5" (2))]| — log | A*(dR| Eg" (2)]]) dm(2)

>2log(1 — dg)m(II\ A).
Note that the sets RE(U;), R7*(Us3) and R~* (Uy) form a partition of Ay and
hence, by (4.24)-(4.27), we have
/ (log [|\*(dR|ES"™ (2))I| — log IN*(dR| E§™ (2))]l) dm(2)
(4.28) Jy
>0.595AK'm(Ag) + 0.25kg log(1 — dg)m (Do) + 21og(1 — dg)m(I1\ A).

Using (4.11), and then Sublemma 4.4 and (4.12), we conclude that the right
hand side of (4.28) is greater than

0.57TAKm(Ag) + 2log(1 — og)m(II\ A)
>0.0627Am(IT) — 0.05\m(IT) > 0.0127\m(IT) > 0.
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Hence,
/UlogllA?’(deEgt“(Z))l|dm(Z) >/Ulogll/\2(dR|E7§m(Z))lldm(Z)'

Denote II' = U R(U). Clearly we have

1=—00

/UlOgH/\S(dR\E?m(Z))Hdm(z) = /H log | A°(dR|ES"(2))| dm(z)
= //()\1(2, R) + X\a(z, R) + A3(z, R)) dm(2)

and
/UlOgH/\Q(dR\E?m(Z))Hdm(z) = /H log | A*(dR|ES"(2))]| dm(2)

= //()\1(2, R) + Xo(z, R)) dm(2).

It follows that Ls(R|II") > Lo(R|II"), where L; is defined by (2.2). Since
R = S outside II', we obtain that L3(R) > Lo(R). Furthermore, there is an
R-invariant subset of IT" on which R has three positive Lyapunov exponents.
Note that the subbundles B4 and E¥® are preserved by dS and dR and that
det(dS|EL) = det(dT|E%L) for i = uta, utab. Hence, the two smallest Lyapunov
exponents remain unchanged, and so does the sum of the three largest ones.
This implies that L;(S;) = L;(T) for i = 4,5 and hence,

Li(R) < Ly(R) < L3(R) = Ly(R) = La(S) = L4(T) and Ls(R) = 0.

Statement (7) of the lemma follows.
To prove Statement (8) observe that the above argument applies to the sets

U = UﬂN X Bpa(ao,al) X BFb<bo,O{2)
and
1:[, = H,mN X BFa(CL(),O./l) X BFb(bo,OéQ).

Denote by Ai(z, R), A\a(z, R) and A3(z, R) the positive Lyapunov exponents of
z € Il'. Given Ag > 0, consider the level set

HR = {Z S ﬁ/ : )\1(2’, R),)\Q(Z,R),)\g(Z,R) > /\R}

If \g is sufficiently small, this set has positive Lebesgue measure. Note that
by (4.11), we have K > 5ky. Furthermore, by definition of sets I, 'y and
g, we have that every piece of an orbit visiting all set S*(I") with —K <
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1 < 6K + ko — 1 consecutively meets {0z exactly ko times. Moreover, (g is
contained in the union of these S*(I'"). Since R preserves volume, we have that
(HR) (7K+/{70) (HRQQR) > QOkDm(HRﬁQR).

Since Ny > 20ko, we obtain by (4.5), that m(Ilg) > 20kem(Ilg N Qg). This
completes the proof of the lemma. O

4.3. Sublemmas.
We shall prove now the technical sublemmas used in the previous subsection.

Sublemma 4.3. Let z € R (A}). Then for any v € E¥(z),
TEXGIERETNIE

Proof. Note that hp = Id on U ' . T'; and hence, RX(z) = S¥(z). Since dhg
preserves the subbundle E*(S), we have F¢(z) = E¥(z). Write v = v 40,
where v € E¥(z) and v* € E%(2).
2 2

We first consider the case ||[v*]] < \/T—HUH Note that |Jv"|| > gHUH Since

dSEv € B4 (SK(2)) and SE(2) € A, using (4.9) and (4.10), we find that
||UUt|| — HdS—K(dSKUut)H < ||dSKUUt||€_O'9K>\.

Hence,

\/§ O.9K)\.

ldR v = [[dS™vl| = dS™ o] > [l [l > Z= o

Note that at RX(2),..., RETh~1(2) the map dhg is a rotation and that dS|E%*(R!(z)) =
dT|E%e(R'(z)) is non-contracting for i = K,..., K + kg — 1. Therefore,
dRM|E%e(RE (2)) is non-contracting. Further, since

{Ri(z)}iﬁ:K+ko NQr =10
and RET*(2) € A/, we have that the map
dRB_(K+kO)|Egt(RK+kO(Z)) — dSﬁ_(K+k0)|Egt(RK+ko (2))
is expanding and the map
dR,@—(K-Hm) ’Egta(RK-i—k:o (Z))
is non-contracting. It follows that
ldRo|| =[[dR ST (dREFov) || = (| dSy, ) (dRE How)|

RK+k0 Z)
>[|dRE hoy|| > ||dRKv|| = ||dSEv]|| > \/T_HUHeO'gKA-
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2
We now consider the case ||v®]| > gHUH Note that dS¥v* € E4(S%(2)). By

construction of hr, we see that dR];OK(Z) rotates the vector in E% (S (z)) =
E!(SK(2)) by m/2. It means that

dRF oyt = dR™ (dS" ") € Eg'(R" T (2)).
Using the fact that RET%(z) € A we obtain
ldRw" || =[ldR S (R0 (2)0% | > [[dRK (AR Houe) |

RK+k0(Z
ZHdRK—i-kovaHeO.gK)\ > ||Ua||60,9K)\ > gHUH@O’gK)\.
This implies the desired result. 0

Sublemma 4.4. m(I'y) > 0.12K 'm(II) and hence, m(Ag) > 0.11K~'m(II).

Proof. Denote by
5K—1 6K +ko—1

= J s, T'= (J s
i=0 i=——K
(recall that I'" is given by the Rokhlin-Halmos Lemma in Subsection 4.2). Since
K > 5kg, we have that
m(I") __BK 5K 50
m(T) TK+k — TK+02K ~ 72

By (4.17),
m(I") > (50/72) - 0.9m(II) = 0.625m(I1).
For z € IV denote by O(z2) = {Q*(z) : i =0,...,5K + kg — 1} the piece of the
orbit from 0 to 5K — 1 that start at z. Let
I ={0():2el’, 0(z2)NA£0}, T, ={0(z) : zeT', O(z) N A = 0}.
Clearly {I"\, T} forms a partition of I” and I% C IT\ A. Therefore by (4.13),

m([y) =m (") —m(Dy) = m(I") = m(I1\ A)
>0.625m(I1) — 0.025m(II) = 0.6m(II).
Note that I'y consists of exactly one point from each orbit O(z) in I'y. It follows
that .
m(I'y) S 0.6m(I1)
5K — bHK

m(Ty) > > 0.12K *m(10).
By (4.19),

m(Ag) > m(Ty) —m(To\ Ag) > 0.95m(Tg) > 0.11K 'm(I).
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This is the desired result. O

Sublemma 4.5. For any 6 > 0, there is 6y > 0 such that for any 6 € [0, 6],
any positive numbers s,s', 8", 8" satisfying s', s",s" > s and any cylinder A C
R® of the form

A=A g om = Bi(z1,5") X By(22,8") X B3a((23, 24), 5) X Bs(25,5")
there exists a set A" C A of the form

A/ = A/ "o = Bl<21, 86) X BQ(ZQ, Sg) X 334((23, 2’4), So) X B5(Z5, 86”)

50,5(,50 50
and a C* map p : R> — R> with the following properties:
(1

p =1y on N where ry is the rotation
ro(21, 22, 23, 24, 25) = (21, 22, 23 080 — 24 8in 0, z38in O + z4 cos @, z5);

m(A")/m(A) > 3/4;
so/s,sy/s",s0/s", sy /s" > 9/10.

)
(
) p=1d outside A;
)
)
) llp=Td[jer <9

(2
(3
(4
(5

Proof. Due to the particular form of our cylinders there is a number k €
(0,1/10) such that for any r > 0 and 7/, r", 7" > r we have that

m(Ar(l—m),7”(1—/@),7"”(1—/{),7"”’(1—5))
m(Arr/r”r”’)
Consider a family of C'* functions ¢, = (,.(s) : Rt — R™, for » > 1 such that

(a) Gi(s) =1if s €[0,1 — k] and (1(s) =01if s > 1;
(b) ¢:(s)=1if s€[0,r—1)and (. (s) =C(s—r+1)if s >r—1.

Define the map p by p(2) = rg(r.s,¢ 57,5 (2), Wwhere

> 3/4.

22+ 23

9<7_7 S, Sla 3//7 S/”) = TCS’/S(Zl/sl)Cs”/s(Z2/3//)Cl (T)CS/"/S(’ZE)/S”/)?

and 7 ¢ s gy is given in Condition (1) of the sublemma. By construction, p
satisfies Statements 1 and 2. Statement 3 and 4 follows from the choice of the
number k and the definition of (; and (.. To obtain Statement 5, we first note
that if 7 = 0 then p = Id and that the C'! norm of p changes smoothly with 7.
It is also easy to check that the C! norm of the rotation is independent of the
choice of the size s if s = s” = s = s, and the C'! norm does not increase if
we increase s, s” and s". O
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4.4. Construction of the map Q).

We shall obtain the map ) as a small perturbation of the map R by a
diffeomorphism hg, i.e., Q = hg o R. The construction of hq is similar to the
construction of the map hp: it is a composition of rotations in the F*@-subspace
along pieces of orbits so that the total rotation is 7/2.

Let A = Ag and II = Ilg be as in Lemma 4.2 (8). Note that for any
z € II the map R has three positive Lyapunov exponents \;(z, R), A\ (z, R),
and A3(z, R) > X along the E¥%* = E¥® subbundle. Consider the set

N =N(K) = {z €1l :log | dRv| — kX > —0.1k\,
log [|dR;*v|| + kX < 0.1k,
for all v € E"(z, R), ||v|| = 1, and all |k| > 0.5K}
and define the set A and the number K > 0 similar to (4.10)-(4.13). Set

ko—1
A=A\ [ R UQsUQp).

i=0
Similar to (4.16), we may assume
m(Qo N 1II) < m(II)/20k.
Hence, by the choice of K, and Lemma 4.2 (4), we have
m(A*) > ((1— 0.05) — 0.05 — 0.05 — 0.05)m(II) = 0.8m(II).

We then construct the set IV, I'y in a way similar to the previous subsection
and set I'; = RY(T") for —K < i < K + ko — 1. Finally, we approximate I'y by
the sets of the form

Yoj = Bpu(u,t;) X Bps(s,t]) X Bpe(t, 1) X Bpar((a;,b;),75),

where 7%, 7" > 1y 07 > rint and set for i = —K, -+, K + ko — 1,
J
Yij = R'(2e5), A= U 3ij-
j=1

Define Qg = Ufigl A;. Applying Sublemma 4.5 to each set ¥;; we obtain a
map p;; and then set hg = p;; on each X;; and hg = Id otherwise. Finally,
define @) = hg o R.

Lemma 4.6. The map @) satisfies all the properties stated in Proposition 3.2.
In particular, L,(Q) < L2(Q) < L3(Q) < La(Q) = La(T).
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Proof. Statements (1)—(4) of Proposition 3.2 follow from the construction of
the map Q). The proof that L3(Q) < L4(Q) is the same as in the proof of
Lemma 4.2.

Note that the subbundle E# is preserved by both Q and T and that both
maps T and () are volume preserving. Hence the smallest Lyapunov exponents
remains unchanged, and so does the sum of the four largest ones. It follows that
Q has four positive Lyapunov exponents along the F%% = Fua® subbundle on
a set of positive measure. U

5. CONSTRUCTION OF THE MAPS P,: PROOF OF PROPOSITION 3.3

Recall that the map () is pointwise partially hyperbolic with one-dimensional
stable, one-dimensional unstable and 3-dimensional central subbundles. The
stable and unstable subbundles are integrable to (one-dimensional) transversal
stable and unstable foliations. The central subbundle corresponds to the flow
direction and two directions, F* and F°, in the Y-space and is integrable to a
smooth central foliation. However () does not have the accessibility property:
for (a,b) ¢ Gy the accessibility class of every point z = (u,s,t,a,b) is the
2-torus (X,t,a,b).

For each n, we construct the map P, to be a sufficiently small gentle pertur-
bation of () such that P, has the accessibility property on an invariant open
set U,,, and is stably accessible on an open set U,, (see (3.5)). These sets are
nested and exhaust the set G, and the sequence of maps P,, converges to a map
P that is accessible on G. In our construction we use methods similar to those
in [8] and [14], and we obtain each P, as a result of three gentle perturbations
ht, h* and h® that ensure accessibility in the flow direction and two directions
in Y respectively.

5.1. Construction of sets U,.
In our construction we will heavily exploit the fact that the 2-torus Y has
a global coordinate system. This will enable us to define the sets U,, in an
explicit and specific way, which will serve our goal. At this point we regard
the 2-torus Y as the square [0, 8] x [0, 8] whose opposite sides are identified.
For each n > 1, consider the partition of Y into squares
Z\(n): [i i+1:| % |:i j+1:|
on’  n on’ gn |
Without loss of generality we shall assume that the square Gy, constructed in

Subsection 3.2, is contained in some Z(Olj)o so that
d(Go,0Z D) > 1/2* and d(C, Z) ) > 2

0Jo
(here C'is the Cantor set constructed in (Al), see Subsection 3.2).

i,j=0,1,...,2"3 1.
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Consider the open squares

Z("):<i 1 141 1>x<i— I j+1 1)

j on ant+2’  9n on+2 on on+2’  9n on+2
va(n) _ 7 1 1+1 1 j 1 j +1 1
oo (2_11 o oan+5’  9n 2n+5> X (2_n o 2n+5’ 2n o 2n+5>'
Clearly, these squares have the same center as Z ) and Z Zl(]n ) ¢ Zi(j").

For n > 1 consider the set

= {yeY :dy,C)>1/2"2).

Since Gy C Y1, we let Y, be the connected component of Y,, that contains Gy.
Finally, consider the sets

U, =29 v, =2% and U, = ZzY

2070 20J0 2070

and for n > 1,

7o 7(n) _ (n) 17 _ (1)

.= U zvV uv.= U z) u= | z

200y, £0 200y, #0 Z{ 0y, #0
It is clear that the sets U, and U, satisfy Conditions (A4)—(A6) in Subsec-
tion 3.4. N R
Let 2, = {Z" - ﬂ"CLTV%l}de—{ZW Z" € Z,}. Relabeling

elements of Z, we shall denote them by Z Z,S,"), and we shall use the

notations Z ) and Z ) for the correspondmg squares contained in Z," ™) Thus
we have (see Figure 1)

U,=UaU( J 2 :n1UUZ
z{Vezn

Clearly, Zén) N Z](m) = 0 if (n,¢) # (m,j) and hence, the collection of sets
{Zén) :n=1,2....,0=1,...,k,} forms a countable partition of G up to a
set of measure 0 while the collection of sets {Zén) n=12....0=1,... k,}
forms a cover of G of multiplicity at most 4.

Note that the requirement d(Gy, 8Z§1)) > 1/2% yields that Gy N Z = () for
anyn>land l=1,... k,.

Lemma 5.1. There is a labeling of the squares {Zé")} by integers from 1 to
8 such that for any y € G, the labels of the squares Zén) containing y are all
different. In particular, Zfl) can be labelled by 1.
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Cantor set

FiGURE 1. Sets U,, and U,

Proof. For each odd number n > 0, we use 1, 2, 3, 4 to label the squares
{Zgl)} € Z, in such a way that Zi(;.l) and Z have the same label if i =
k(mod 2) and j = l(mod2). An alternative way of describing this process is

that we first label the 4 squares Z(f) inside of some Z"™" by the numbers 1

1)

to 4, and then translate the square 2,57_ to all other such squares. We then

let Zl(]n ) have the same labeling as Z-(;z). Clearly, for any y € G, the label of

the squares ZZ(]n ) with ZZ(]" )5 y are all different. Hence, we obtain a labeling
on Z, by restriction.

For even n > 0, we use numbers 5 to 8 to label the squares {ijn )} in a
similar way. Since any squares ZZ(]n ) e Z,, and Z,SHQ) € Z,4o are disjoint, we
obtain the desired labeling. O

5.2. Construction of maps P,.

Let ¢;, j = 1,...,8 be eight distinct periodic points of the Anosov automor-
phism A. There is ¢y > 0 such that Bx(Alq;,€0) N Bx(Alg;, €9) = () whenever
j # 7 and I = —1,0,1. For each ¢; we choose three distinct periodic points
p?,p?,p? € Bx(gj,€0/3) for A. We shall assume that ¢; = ¢ and p} = p' for
1t =t,a,b where ¢ and p* are chosen as in the beginning of Section 3.4.

Denote by [q;,pi] = V*(q;) N V*(p), i = t,a,b (where V* and V* are the
stable and unstable local manifolds respectively). For i = a,b,t and j =
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1,...,8 consider the closed quadrilateral (u, s)4-path ’yji. with the collection of
points q;, [q;, 5, ph, [P}, ¢s], and ¢;. In the case n = 1, we take 71, i = a,b,t
as introduced in the beginning of Section 4.

Recall that n = 74 is the expanding rate of A along its unstable direction.
Clearly, n~! is the contracting rate along the stable direction of A. Recall also
that x is the function in (A2) such that x = ko on U; and |grad x| < 1/4. We
have that the expanding rate of T|N, along Wy is nk(y) (here N, is given by
(3.1)).

For n > 1 let us choose a rectangle Zén) € Z,, and assume that it is labelled
by a number j. Consider the case n > 1 and let

n- =n-(n.0) = min{nk(y) 1 y € 2"}
and
(5.1) ol =aL() =d 5 ql), ol =al() =d} [4,p])
&l = du(n, 0) = ol (j)/n-(n, ), & = as(n,0) = ai(4)/n-(n,0),

where we write &,(n, £) instead of &(j,n, ) since j is determined by n and ¢
(see Figure 2).

VAu(p)

p_jra V*u(pa)

aj Vru(q_j)

VAu(pb)

VAs (q_))

FIGURE 2. Quadrilaterals

Next for e =t,a,band j =1,...,8 we set

I} = Bpu(pl, al) x Bps(p',al), I} = Bpu(ph,al) x Bp«(pl, d).
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We shall assume that the points pj- are chosen in such a way that all three
rectangles H;, 1 =1t,a,b, are pairwise disjoint. Hence, all the 24 rectangles H;,
1=1t,a,b, 7 =1,...,8 are pairwise disjoint.

Finally, we let

(52) &= e(n,£) = min{x(y )/2 ye 2V}, & =¢&(n,j) =5e(n,j)/6.
In the case n = 1, we have Z = U;. Choose I}, and [* such that

A (pia)) € Bx(ph,v/2),  A%(la1, pi]) € Bx(pi.v/2),
where v > 0 is given by (4.1). Then we set

a, = ay (1) = d(p5, A7 ([0S, ¢)), o = al(1) = d(pj. A%([a5,95]))
with other quantities and sets to be defined in a similar way.

To effect our construction of the maps P,, in addition to the squares Zz(J ),
Zl-(n) and Zi(j") constructed in the previous subsection, we need to consider for
n > 1 the following squares:

N s J 1 G+l 1y
Zij (271 - 2n+3’ on + 2n+3) X (2n - 2n+3’ on - 2n+3)
oy (11 i+l 1 i1 j+1 1

Zij = (27 T n T 2n+4> 8 <2_n o gn 2n+4)

as well as the following intervals:

7 5 5 T n n
I ( 2n+3’ 2n+3) L= Jn = (—9/2 +479/2 +4)7
c_ (a7 TN (3 3
2n+1’ 2n+1 oo T _2n+5’ on+s |7 n _2n+2’ on+2

K = (—1,1+%), K = (-1/16,1+41/16),
K=(0,1), K=(—1/32,1+1/32), K = (=1/4,1+1/4).
We have that

I,

oo

>(n) ~(n) ~(n) > (n) (n)
ZVczy ez czy) cz
with similar relations for I,, and .J,.
Fix n > 1 and choose C™ functions ¢’ and ¢ on R for i = a, b, t satisfying:

- ¢'(r) = const. for r € (—dy,, &,) and ¥'(r) = const for r € (—d;, &);
: ¢i(T) =0 for |r| > !, and ¢'(r) = 0 for |r| > o;
) Oiéz ' (T)dT = 0, and Yi(x) > 0 for any |z| < o;
e Cllen < Tand [[¢*()fen < 1.
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Further, choose C'* functions & and &y supported on K and I, respectively
such that:

- &(r) = const. for r € K, and &y (r) = const. for r € I;

- &(r) >0 for r € K and & (r) > 0 for r € I;

- &(r)y=0for r ¢ K and & (r) =0 for r ¢ I;;

- éellen, gy llen < 1.

Finally, choose C'* functions (; and (y supported on (—¢;,¢;) and I, respec-
tively such that:

- G(r) = const. for r € (—¢&, &) and Cy(r) = const. for r € I;

- G(r) > 0 for r € (&, €) and (y(r) > 0 for r € I,;;

- G(r) =0 for r ¢ (e,€) and (y(r) =0 for r ¢ I,;;

I¢llen < 1.
Let (ag, bo) = (ag(n, ), bg(n,l)) be the center of the square Zén).

In this section we shall use the coordinate system z = (u, s,t,a,b) = (x,t,a,b)

introduced in (3.2) and (3.3) with the origin at (p§, 1/2, ag, bp). In this coordi-
nate system the interval K is in the symmetric form (—3/4,3/4). Define

Q= M—{z—(:c'rab) rell, |r] <e, (a, I;)EZ(H)}

(recall that j labels the square Z ) and for each 8 > 0 a vector field X =
Xﬁ,n,@ by

(53) Xa(z) = ﬁCY(lA))Ct(r)wa<8) (—6;/(66)/ ¢a(7—)d7—7 07 Oa £Y(d>¢a(u)7 O)a
0
(here & denotes the derivative of &-). The choice of €; guarantees that 7'(2*)N
Q% = (. Tt is clear that X is constant on the set
O = {z = (x,r,a, l;) cx € ﬁj, Ir| < &, (d,i)) € Z(”)}.

We define the map hy, = hj,, on Q% to be the time-1 map of the flow
generated by X, and we set h;, , = Id on the complement of Q. It is easy to
see that the Vector field X is dlvergence free, the differential dhy, , preserves
Ert, and det(dhy, ,|E7(2)) = 1.

Then we use the same coordinate system as above but with the origin at
(p’]’-, 1/2,a9,by). Define

P =, ={z=(z,1,a,b): zell, [r| <e, (a,0) € 2"}
and for each § > 0 a vector field X = X}, by

(5.4) X'(=) = B (@)G(r)e'(s) (¢ (b) / C)dr. 0,0, 0, & (D)dw).



38 HUYI HU, YAKOV PESIN, ANNA TALITSKAYA

Let hl , = hj, , on Q° be the time-1 map of the flow generated by X and let
h? ;= 1d on the complement of Q. It is clear that X? is divergence free, dh!,
preserves Ei’, and det(dh?, |Ey(z)) = 1.
Now we use the coordinate system but with the origin at (p},1/2, ao, bo).
Define
Q=0 ,={2=(x,r,y): velll,re K, ye ZMy
and for each 3 > 0 a vector field X* = X§ , by

53) X'() = A6 (@r () (~60) [ o rar, 0, o). 0. o)

We define the map Ay, , = hj;,, , on Q' to be the time-1 map of the flow generated
by X', and we set hj,, = Id on the complement of Q°. Obviously, X" is
divergence free, dh;, , preserves Ef and det(dh;, |Ef'(2)) = 1.

Our construction guarantees that all {Q%,z} are pairwise disjoint. For n =
1,2,... define h, = hg, by

b t b t
hon =g nn, © Mgk, © Mg, © - 0 hgn10hG, 0h

n,l:

Then we let P, = hg, 11 0 Q) and define P, inductively by setting P,, = hg, » ©
P,_; for some suitable choice of {3,} which will be determined inductively
later.

5.3. Properties of maps F,: Proof of Proposition 3.3.

Statements (2) and (4) of Proposition 3.3 and the fact that the map P, is
homotopic to the identity follow directly from the construction.

Note that the unperturbed map 7T is uniformly partially hyperbolic on each
set U,, with smooth 3-dimensional central foliation and is dynamically coherent.
Note also that for each n > 0, by choosing 3, in (5.3)-(5.5) sufficiently small,
we can ensure that ||h, — Id || is arbitrarily small. Hence, we can choose a
positive sequence {4/} such that ¢/, < §7/2""! and if h,, and P, satisfy

(5.6) Py — Poillcn < 0, and ||y — Id ||on < &,

then Statement (3) of the proposition holds. In particular, P, is pointwise
partially hyperbolic on an open set G; it is uniformly partially hyperbolic on
U,, with 3-dimensional central foliation and is dynamically coherent. It remains
to show how to choose sequences of positive numbers 9,, and 6,, such that P,
also satisfies Statements (5) and (6) of the proposition.

We denote by W§ (z) the center manifold of P, at the point z € M. Suppose

a square Zé”) is labelled by a number j. Let ¢; be the periodic point chosen as
in the previous subsection and zy = 29(n, ) = (g;,1/2,ap(n,¥),bo(n,£)). We
denote by W§ (20, K, Zg(n)) the connected component of W§ (29) N (X x K x
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Zé")) that contains z,. We shall also use similar notations W§ (2o, K, Zé
etc. Note that for all £ and n,

W, (20, K, Z") = W (20, K, Zy") = Wi (20, K, Z(").

Recall that 'yj is the quadrilateral (u, s)4-path with the collection of points g,
g5, 05), 15, %, q;], and ¢; (for @ = a,b,t and j = 1,...,8) introduced in the
beginning of Subsection 5.2. In particular, v = ~* is given in the beginning of
Section 4.

Foranyn>1,¢=1,...,k,, and j =1,...,8 such that the label of Z} is j,
we consider a quadrilateral (u, s)p,-path 7§ with the initial point z; such that

Projx7§ = 7§. More precisely, 7§ = {z1,..., 25} where
VP (21) NVES(PS, 1/2, ao, bo),
(5.7) Vi, (22) NV (D, 1/2, a0, bo),
24 = Vg, (23) NVE (21),
= V5, (21) N Ve (=)

This path defines a map © = ©% = Oy, , 5, , given by ©(z1) = z5. Note that
24 € VES(z1) and 25 € V5 (24). Hence, 25 € V5°(21). Since also z5 € VE°(21),
we obtain that z; € V5 (21). This implies that © maps W§ (20, K, Z}) into
itself.

We contract the (u,s)p,-path 7§ to a line segment. Namely, let o : [0, 1] —
Vi (21) be a parametrization by the arc length of the part of the curve V3 (21)
from z; to z9 so that ¢(0) = 2z; and o(1) = 2z5. For each 7 € [0, 1], the new
path 7¢(7) = {21(7),..., 25(7)} is such that z1(7) = 21, 22(7) = o(7) and z;(7)
for i = 3,4,5 are obtained in the way similar to (5.7). Thus we obtain a map
O, = 0%, ,p,, given by O.(21) = z5. It maps Wg (20, K, Z7) into W, (20)
and depends continuously on 7 € [0, 1].

Clearly, 75(1) = 7% and hence, ©F, , p = O, p . Furthermore, the path
77(0) degenerates to a path on Vj5 (21) that starts from z; = 25, goes to 23 = 24
and then returns to z; = 2z;. Hence, ©y = Id.

We stress that O , » depends only on Ay, ,, since 7§ consists of stable and

n,0)
unstable leaves of (g;,1/2,y) and (p§,1/2,y) with y € Z}”) that are not per-
turbed by any other perturbations h¢, , if (n',¢') # (n,¢). On the other hand,
if 7 € (0,1), then ©2  , p may depend on other perturbations b o

By using the paths fyj’? and ’yj- respectively, we can define the maps ©° =
O, ,p, and OL = O, for 7 € [0,1] in a similar way. Furthermore, for

any gentle perturbation P of P, we can also construct the maps ©¢ Pt and
O, ,ps from W5, (20, K, Z}) to itself. Clearly, they have properties similar to
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those of the maps ©f , , and ©F  ,, . Note that Vg, V5, and V5, depend
continuously on the perturbation P as long as P? is a gentle perturbation of
T with P* = T outside some fixed U, and with Z(E%,(z), Ei.(z)) sufficiently
small for all z € U, and ¢ = u,s,c. It follows that @;,E,Ph and @;n’wjh,
for i = wu,s,c depend continuously on P as well. Since the lengths of all
the quadrilateral paths used in the construction of the maps ©" and ©° are
uniformly bounded from above, the continuity is uniform with respect to z.

Given j = 1,...8 and a point z = (x,t,y), we can find a (u, s)p-path yp(z)
connecting z to the point 2’ = (g;,t,y) whose length does not exceed 2d(z, ¢;)
(indeed, such a path can be constructed by using at most three points z, z
and z’). This generates a map WUr = ¥y, from G to {¢;} x K x G given by
Up(z) = 2.

Furthermore, given a gentle perturbation P? of T and a point z € Zé”) , We
can find a (u, s) pr-path vp:(2), which is close to yr(z) and connect z to a point
2 =2 (P%) € Wg,(20(n,0), K, Zén)) and we can then define Wpy(2) = 2/(P%).
Again the path can be chosen to consists of at most three point z, z; = z;(P¥)
and 2/ = 2/(P%), and both 2z (P%) and 2/(P%) depend continuously on P
Hence, ¥ p; depends continuously on P? as long as P? is a gentle perturbation
of T with P* = T outside some fixed U, and with Z(E%,(z), E%(z)) sufficiently
small for all z € U,, and i = u, s,c. We stress that the lengths of all the paths
used in the construction of the map ¥ are uniformly bounded from above for
all z and all gentle perturbations P?. In particular, the continuity is uniform
with respect to z.

Given a set I' € M and a gentle perturbation P? of T, let

Api(I') = {z € M : there is y € I" such that

5.8
(58) y is accessible to z via a (u, s)ps-path}.

For n > 1 denote by €, = min{1/2""° &(n,¢),{ =1,...,k,} where é(n,{) is
given by (5.2).

We shall now show how to choose the sequence {d,}. Recall that U; =
ASNE Z{l) and U; = Zfl). We can choose a number 6, > 0 such that for

10J0

any gentle perturbation P* of T with Z(E%,(z), E4(2)) < 26q(z) for i = s,c,u

and z € U; the maps Wp; and ©' | |, are well defined. We also assume that
the number d¢g in Proposition 3.2 is so small that the map Fy = @ satisfies
L(Ep (2), Ep(2)) < 6o and d(©% , p (2),2) < €/4 for z € Go, 7 € [0,1] and

1=35,C,U.
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Now we choose a number 6; such that 0 < ] < 6y/2 and if Z(E},,(2), B} (2))
20] for i = s,c,u and z € N X Zfl), then
(5.9) d(Upi(z), Up,(2) < 1/28, zeNx zZY.
Finally, we may assume that the number ¢ in (5.6) is chosen so small that if
[Py — Pol| < &, then Z(Eb (2), Eip (2)) < 8 for i = s,¢,u and z € N x 2}V,
Now we set §; = min{d},07} and 6; = min{0}, 0]} where the numbers 67
and 0] are given by Lemma 5.2 below. For any gentle perturbation P% of
Py with Z(E%,(2), Ep (2)) < 0) for i = s,c,u and z € N x Zfl), we have
L(Ey,(2), Ep,(2)) < 267 and therefore (5.9) holds. Since d(©%, 5 (2),2) <
€1/4, we can apply Lemma 5.2 to obtain that d(©%,, p (2),2) < €/4 for all
z € Wg (20(2,4), K, Zf)), i=wu,s,¢,7€[0,1] and £ =1,..., ky. Moreover,

Aps(20) D W(z0(1,1), K, ZM).

Since the distance between the boundaries 8251) and 821(1) is 1/2% (5.9) implies
that N o
Up: (N x Z) € Wy (20(1,1), K, Z1).

By definition, z and Wps(z) are (u, s)ps-accessible and hence, we have that
Api(20(1,1)) DN x ZW.

In particular, for P* = Py, the inclusion holds and so does (5.9).

Proceeding inductively, we assume that for j = 1,...,n — 1, the maps F;,
and the numbers §; and 6; are chosen such that (5.6) and Statements (5)
and (6) of the proposition hold. Moreover, we assume that for all i = u, s, ¢,
T € [0,1], (= 17""kj+17

(5.10)d(¥p,(2), Up, ,(2)) < 1/2%7 forall z € N x 27,
(511) d(©% ;4 0p,(2),2) < €ju1/4 forall 2 € W5 (20(j +1,0), K, Z7*Y).

Now we choose 0 < ¢/, < 6,_1/2 in such a way that for any gentle perturbation
Pt of Py, if Z(EL,(2), Bl (2)) < 20, for i = u,s,¢, z € N x Z™ and
¢(=1,... k, then

(5.12) d(Vp:(2),Vp  (2)) < 1/2"7

for all z € N x Zén_l) and ¢ = 1,...,k,. Reducing 6] in (5.6) further
necessary we may assume that if || P, — P,_|| < 0, then Z(E}, (2), Ep (%))
¢/ for i = u,s,c and z € U,. Then we take §, = min{d},0/} and 0,
min{#,, 0"}, where ¢/ and ¢ are given in Lemma 5.2.

n»’n

Since 0 < 6, < 0,,_1/2, Statement (5) of the proposition holds.

I IA =
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Let P be a gentle perturbation of P, such that Z(E%L,(z2), E5 (2)) < 6, for
i =u,s,cand z € U,. Then Z(EL,(2),Ep (2)) < 20, < 0,4 for z € W,,.
By Statement (6), we get that Ph has the acce831b111ty property on un 1-
Since P, 5 = T on N x Z ), applying (5.10) with j = n — 1, we find
that d(Up, _ (z) 7(2)) < 1/2n+6 forall z€ Nx Z" ™V and 0 =1,... ko_y.
Therefore by (5.12), we obtain that
d(Ups(2), Up(2)) < 1/2"10 4 1/2747 < 1/27H5,

Applying (5.11) with j = n—1, we conclude that the requirement of Lemma 5.2

below holds. Therefore by the lemma and the fact that d(9Z”,0Z) =
1/2"%5 we obtain following the same line of arguments as in the case n = 1
that

Apa(zo(n, €)) DN x Z\™
for all E = 1,...,k,. In other words, P? has the accessibility property on
N x Z ) for ¢ = 1 ., k,. By the construction,

= (1) YU 27),

Note that any intersection Z () A Zé,n ) or Z, 7" Z l?,” ~Y_if not empty, contains
a rectangle of width 1/ 2”*4. Hence, the 1ntersect10n of any two sets among
un 1 and N x Z () ,¢=1,... k,, contains a nonempy open set whenever they

intersect. Since U is connected7 we obtain accessiblity of P on U,.

Applying the above result with P% = P,, we obtain that P, has the acces-
siblity property on U,. Moreover, (5.12) for P! = P, gives (5.10), and (5.13)
below gives (5.11) for j = n.

5.4. A technical lemma. We prove here some of our main technical state-
ments.

Lemma 5.2. Suppose for some n > 0, d(@TMP L (2),2) <€, /4 for all i =

u,s,¢, 7 € [0,1], z € Wi (20(n,(), K, Zg ), ¢ =1,...,k,. Then there are
0" >0 and 0! > 0 such that if P, satisfies | P, — Py_1|| < 0!, then we have

(5.13)  d(O,110p (2),2) S €npi/d as 2z € WE (20(n+1,0), K, Z"),

foralli =wu,s,c, 7 € [0,1], £ = 1,...,k,i1; and for any gentle perturbation
P% of P, with

L(Epy(2),E}p (2)) <60 forall z € N x Zé"), i=u,s,c,
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we have
(5.14)  Api(20(n, €0)) D We(20(n, 0), K, Z)  forall =1,... k.
In particular, (5.14) holds with P* = P,.
Proof. Take 0" < 6,,_1/2 such that for any gentle perturbation P* of P,_y, if
L(Ep B ) <200 on N X Zé"), i=u,s,c,
then (5.13) holds with P, = P% and
(5.15) d(O!,  pi(2),2) S €nf2 as 2 € Wii(20(n,0), K, Z("),

for all i = u,s,¢, 7 € [0,1], and £ = 1,...,k,. (5.15) is possible because of

the assumption of the lemma, while (5.13) is possible because on N X Zénﬂ),

P,y = T and therefore d(©%, ., ,p (2),2) = 0. Then we take §) < &,1/2
such that if | B, — P_1]| < &7, then Z(EbL  Eh ) < 67 on N x Z" for
i =u,s,c. Hence, (5.15) is satisfied with P? = P,.

Now we only need to prove (5.14) for one square Zé").

Define a continuous function ¢ = @%3 'R — WE (20) by using © = O, .
and ©, = O7, ,p such that the image of ® consists of points accessible to
20 = (q;,1/2, ag, bp). Namely,

(1) ©(0) = 2;

(2) For a positive integer n if ®(n—1) = (g;, 5, a, by) for some a € I,,, then

we let ®(n) = O(P(n —1));

(3) For a negative integer —n if ®(—n + 1) = (g;, %, a, by) for some a € I,,,
then we let ®(—n) = ©71(®(—n + 1)); in other words, ®(—n) is the
terminate point of the quadrilateral (u,s)p,-path 7% with the initial
point ®(—n + 1) such that 7x7§ = 7§ with the direction reversed;

(4) For any real number n + 7, where n € Z and 7 € [0,1) if ®(n) =
(g;, 5, a,bo) then we let ®(n + 7) = O,(®(n)).

In fact, if we denote by |r| the greatest integer that is less than or equal to r,
then we have
o) (r) = 07, 0 (0" ().

r—|r

Since, lim,_; ©¢ = 6% and lim,_( ©¢ = Id we have that <I>§313 is a continuous
function of r. Furthermore,

OL)(R) C Ap, (20(n, 0)).
By Lemma 5.3 below,
O (2) € {(g,1/2 a,b) : a € L, } C W, (20, K, Z).
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Hence, by (5.15) with P% = P,,

R (R) C {(g5,t,a,b) 1 [t —1/2] < €0/2, a € L(en/2), |b—bo| < €n/2},
where I,,(€,) denotes the €,-neighborhood of I,, in R. It is also clear that
. 3
lim q)(F}T?(:l:n) = (QJ7 1/27 ao + Wa bO)a

n—=+00

where the two points on the right hand side is on the boundary of Z é”). Hence,
we can choose an integer N = N;, > 0 such that @gg(:l:N) ¢ @12!5”). In
other words, <I>§312([—N ,N]) forms a continuous curve near the line segment
{(g;,1/2,a,by) : a € I,} and crosses Z." in F* direction.

Now we use the maps © = 6%, , and ©, = O}, to define a function
o = @gj : R? — W§ (%) such that the image of ® consists of the points
accessible to zp. Namely, given r € R, let

(1) @(r,0) = @} (r);
(2) For a positive integer n if ®(r,n — 1) is defined, we let ®(r,n) =
O(2(r,n —1));
(3) For a negative integer —n if ®(r, —n + 1) is defined, we let ®(r, —n) =
O (®(r,—n +1));
(4) For any real number n + 7, where n € Z and 7 € [0,1) if ®(r,n) is
defined, we let ®(r,n + 7) = O,.(P(r,n)).
In other words,
2 ] (1
() = Oy 0 (O (@]) (1))
or equivalently,
R (') =00 0 (M 001, 0 (071 (2).

It is clear that @533 is continuous, and ®(R?) C A(qg;,1/2, ag, by). Furthermore,
for r € R,

o(r, Z) € {05 (r) + (0,0,0,0,b) : 7m®p)(r) +b € J,}.
Hence, by (5.15) with P% = P,,
O(r,R) C {(gj,t,a,b) : |t —1/2| < e, (a,b) € Z ()},

where Z\™(e,) denotes the €,-neighborhood of Z\™ in Y. This means that
®(R?) is contained in the €,-neighborhood of the set {¢;} x {1/2} x Zén).
Similarly, for every r € R there exists N(r) = N} ,(r) such that the set
O(r,[-N(r), N(r)]) forms a continuous curve near J,,(r) and crosses Zén) By
continuity, we can take N = N}, such that ®(r,[—N, N]) crosses Zvén) for all
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€ [=N, N]. Moreover, we may assume that N?, = N’ , since otherwise we

may use the larger one instead. By continuity, we obtain that the four curves
®(—N,[-N,N]), ®(N,[-N,N]), ®([-N,N],—N), ®([-N,N],N)
form a closed curve. The projection of the curves under Projy is outside Z én).
Hence, by Sublemma 5.4, we get that Projy, {®(r,7’) : r,7" € [-N, N|} covers
0
Finally, we use the maps © = ©},, p and ©, = ©.  , 5 to define a function
o = (ID( VLR W , (20) such that the image of ® consists of the points
acces&ble to zg. See Flgures 3 and 4. Namely, given r,r" € R, let
(1) @(r,1',0) = B (r,r");
(2) For a positive integer n if ®(r,7’,n — 1) is defined, we let ®(r,r',n) =
O(P(r,r',n—1));
(3) For anegative integer —n if ®(r, 7', —n+1) is defined, we let &(r, 7', —n) =
O~ Y ®(r,r,—n +1));
(4) For any real number n + 7, where n € Z and 7 € [0, 1) if ®(r,7’,n) is
defined, we let ®(r,r',n +7) = O.(P(r,r',n)).
We have

(I)gn) (r,r',1") = @i/qu © (@t)wJ © @f«um © (@b)m 0O, 0 (@a)m (20)-

The function @ﬁi’j is continuous and ®(R?) C A(2).
We also have that there exists N > 0 such that ® maps the surfaces of the
cube [—=N, N] x [-N, N] x [-N, N] into outside the corresponding surfaces of

W§ (2o, K.Z é")) and inside the corresponding surfaces of the 2¢,,-neighborhood
of W§ (20, K, Zé")). By Sublemma 5.4, {®(r, 7", r") : r,v’, 7" € [-N, N]} covers
W5 (2o, K, Zén)), and we obtain that

A(z) D W (20, K, Z).

We may reduce §” again if neccesary such that any gentle perturbation P of
P, satisfying ||1Du P,|| < ¢ is so close to the unperturbed map P, that the
map O, = O] , p, and @ = @TM py are well defined on for 7 = u, s, c and

€ [0, 1], and close to @Z =0, P and ©L , = ©O! ,, respectively. Then
we define (I)g’u) 'R3 — Wch(zo,K Z ') by
B (7", 1") = Oy i © (O10)7 0 Oy i 0 (04:) ") 0 O 1 0 (O1:)1)(20),

where {r} = r — |r] denotes the fractional part of r. If ¢ is small enough and

L(E}p (2), ELy(2)) < 0 for i = u,s,cand all z € N'x Zén), then ©%,, and ©' ,,
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tdirection

F(N)
\j

P NxY

FIGURE 3. The action of the function ®®) on the central direc-
tion of z

are sufficiently close to @}n and @i, p, respectively for ¢ = a,b,t. Thus we can
obtain that
d(@g’u) (r, v’ 7", <I>§§’7f (r,r' 7)) < 1/2"F4
which is the distance between 67 ,i”) and aZ,ﬁ”% for r,r' " € [-N, N]. In other
words, (IDS’; (r,7’,r") maps the surface of the cube [N, N] x [N, N] x [~ N, N]|
to the surfaces that are close to and outside the corresponding surfaces of
£, (20, K, Zén)). Hence, by Sublemma 5.4, the set

{@fﬁ(r, ") e’ " € [N, N|}
covers W, (2o, K, Z™) implying that
‘APh (ZO(n7 E)) D) chah (Z()(TL, E)a K’ 7én))
The desired result follows. O

Sublemma 5.3. For eachn > 0, there exists 8! > 0 such that if ||h,—1d ||cn <
0! >0, then for any a € I,
(1) ©*((g;,1/2,a,b0)) = (gj,1/2,d',by) with ¢’ < a;
(2) bedn 1€ (12— e1/2 4 e0), O((a,t,0.5)) = (q. 1.0, 1) with b/ < b;
B)be J,, te K, O((q,t,a,b)) = (¢,t,a,b) with t' < t.
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F(rN)

b direction

Znl

a direction

F(N;»)

)
]

F(-rN) F(r~N)

FIGURE 4. The function ®

Proof. The proof is similar to that of Lemma B.4 in [§].

We prove the first statement. Consider the coordinate system in 2% with
the origin at (p§, 1/2, ag, bp) which therefore has local coordinates (0, 0,0, 0, 0).
We may assume that the local coordinates of the points g;, [¢,p§] and [p$, q]
are (uo, So), (0,0) and (ug,0) respectively, where vy = o and sy = a? are
given by (5.1).

We first consider the case n > 1 and note that the path 7¢ is contained in the
closure of Q2 , (see Subsection 5.2) for n > 1 and £ = 1,...k,. We have that
Po|Qy , = Ry, o T. Furthermore, since hy , = Id on the curve V3 (g;,t,y) for

te Kandye Zé"), we have that V3 (¢;,t,y) = Vi (g;,t,y). It follows that if
(uo, S0, 0, ar,0) are the local coordinates of the point 2, = (¢;,1/2, a1, by), then
(0, 80,0, az,0) are the local coordinates of the point zo = ([g;, p}], 1/2, az, bo)
with ay = a;.

Recall that by (5.3), the a-component of the vector field X“(z) is equal to
B (u)y®(s)G(t)Cy (b)Ey (a) and that ¢ (u), 1*(s), G:(t) and Gy (b) are constants

for [u| < &%, |s| < a2, |t| < & and b € J, respectively. Recall also that the
map h® preserves the s-, t- and b-coordinates. Therefore, if |u| < a2, |s| < a2,

t| <&, ael, and b e J,, then

(5.16) h*(u, s, t,a,b) = (v, s,t,a+ c(a,t),b),
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where u' is close to u provided f is sufficiently small, and c(a,t) > 0 if [¢t| <
e and c(a,t) = 0 otherwise. Moreover, if |t| < €, then c¢(a,t) = c(a) is
independent of ¢. Also, if u = 0 then % = 0 since in this case fou ¢*(r)dr =0
and therefore the u-component of X is zero. Since a?/nk(a,b) < &%, we have
that for |s| < a® and b € J,,

P,(0,s,t,a,b) = h“(T(O, s, t,a, b))
=(0, s/nk(a,b), t + k(a,b), a + c(a,t),b).

Note that P, =T near the orbit of (p?, t,y) and outside Q®. Hence, under the
iterations of P, all points of the set {(0,s,t,a,b) : |s| < a?} have fixed u- and
b-coordinates and the same t- and a-coordinates. Therefore, this set belongs
to V*(p§,t,a,b). Since z, € V*(z3), the fact that(0, 9,0, az,0) are the local
coordinates of the point 2z, yields that (0,0,0,as,0) are the local coordinates
of the point 23 = (p},1/2, as, by) with az = as.

By similar arguments, we can show that if |u| < &%, a € I, and b € J,, then

Pn’l(u, 0,t,a,b) = T’l((h“)’l(u, 0,t,a, b))

(5.17) — (" [nk(a,b),0,t — w(a’,b), d,b),

for some u” close to u, where by (5.16), a’ satisfies a’+¢(a’,t) = a. If we choose
6, > 0 small enough, then [|h7 —Id || < &) implies that u” is sufficiently close
to u and therefore |u”|/nk(a,b) < a?. Hence, under the iterations of P, ! all
points of the set {(u,0,t,a’,b) : |u| < &%} have fixed s- and b-coordinates and
the same t- and a-coordinates. Therefore, this set belongs to V'* (p?7 t,a,b). On
the other hand, by the definition of A® and the choice of af, we have h* = Id
if |u| > a&. Therefore, since uy = af

P (ug,0,t,a',b) = T (up,0,t,d,b)
=(up/nk(a,b),0,t — k(a',b),d’,b).

Comparing (5.18) with (5.17) we obtain that the point with local coordi-
nates (ug,0,t,a’,b) is on the unstable local manifold of the point with lo-
cal coordinates (0,0,t,a,b), where o’ + c(a’,t) = a and c(da’,t) > 0. So if
zy = ([p§, q;],t, as,00) € V¥(z3), then z; has local coordinates (uo, 0,0, a4, by)
with ay < as.

Since the path on V*(g;) is unperturbed, the fact that z4 € V°(z5) yields
that the point z5 = (g;,1/2, as, by) has local coordinates (uo, so, 0, as, by) with
as = ay. This implies that in the the case n > 1 we have a1 = as = a3 > a4 =
as.

In the case n = 1 similar arguments can be used with the following mod-
ification. To obtain the a-coordinate of the points on V*(p$,1/2,a,by) and

(5.18)
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V(p%,1/2,a,by), we need to consider P{* = h® o T* and P{" = h* o T" re-
spectively, (recall that near the pathes 7{ and on the set Q% the map T is
unperturbed, and hence Q = T',) and therefore get a; = ay > a3 > a4 = as.
The assumption k = kg on U; guarantees that on these local manifolds the
t-coordinates are the same. This implies Statement (1).

In the above arguments, we can actually replace by by any b € J, and the
number 1/2 by any ¢t € (1/2—¢,,1/24¢,) and can still obtain the same results.
Therefore, Statement (2) can be proved by switching the roles of a and b.

Statement (3) can be proved in the same way. In particular, since h' pre-
serves a- and b-coordinates and the stable and unstable local manifolds for T
at (g;,t,y) and (pf,t,y) are unperturbed except by h’, the arguments can be

carried over on the submanifold N, (see (3.1)) for each y € Zén). O
Sublemma 5.4. Let ®: [" — I™ be a homeomorphism of the n-dimensional
cube I"™ and O;I" be the faces of I", i = 1,...,2n. Assume that ®(9;1™) C
B(OI™, e) \ I"™ fori=1,...,2n, where B(-,¢€) is the e-neighborhood of the set.
Then I™ C ®(I™).

Proof. This is a variation of a general topology thoerem, which says that in
the setting if ®(9;1™) C B(9;I™,¢€) for i = 1,...,2n, then 1"\ B(0;I",¢) C
O(I™). O

APPENDIX A

Let M be a compact smooth Riemannian manifold and 8§ C M an open
subset. Let also h be a C'* diffeomorphism that is pointwise partially hyperbolic
on S. Further, let U, C 8, n > 1 be a sequence of open subsets such that:

(1) U, € Uy € Upyy and YU, = §;

(2) each U, is h-invariant;

(3) h|U, is uniformly partially hyperbolic.
The goal of this Appendix is to prove the following statement. Suppose there
is a sequence of diffeomorphisms h,, such that hg = h, h, = h,_1 on M\ﬁn.
Clearly, U, is h,-invariant, and h,, = h on M\U,.

Theorem A.1. Let h,, be a sequence of diffeomorphisms for which hg = h and
hyp = hyo1 on M\UWU,, so that W,, is h,-invariant and h, = h on M\U,. Then
there exists a sequence of positive numbers €, such that if ||hy, — hn—1|lcr < €n,
then

(1) each map h,, is uniformly partially hyperbolic onU,, and hence pointwise
partially hyperbolic on §;
(2) the limit H = lim h,, exists and is a C' pointwise partially hyperbolic

n—oo

diffeomorphism of S.
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We need the following technical statements.

Lemma A.2. Given a sequence of positive numbers {a,}n>1 satisfying

> 1
2
n=1

we have

ﬁ(l—i—an) < 1—|—2ian and ﬁ(l—an) > 1—22%,
n=1 n=1 n=1

Lemma A.3. Set

M,, = sup ||d.h,|| and m, = inf m(dh,).
zEM zeM

If £, < mgo/2"", then M, < 2My and m,, > 0.5my.

Proof. Note that |M,, — M,,_1| < &, and |m,, — m,_1| < &,. Applying Lemma
A.2, one can show by induction that

1 < M, d <1
Coont2 = M, an My 1 + on+2’
The desired result follows. O

Given two diffeomorphisms f and g with invariant distributions E; and FE,
lldag| E()]

on 8 respectively, let
(deg| Eg(x }
A = —1] ¢,
(Agg) ol max{ 4o f 1B ()]l f|Ef ' (d f|Ef ‘
erg() =lldog — daf|, 9Ef Eg( = Z(Ef(2), E ($))-

Lemma A.4. Assume that

sup ||d. f]] < M :=2M,, inf m(d.f) > m = 0.5my.
zeM €M

Then for any x € S,

1
Afvg:Ef’Eg (ﬂj‘) S E[gfvg(x) _'_ CMHEf:Eg (QJ)],

where C' > 0 is a constant which depends only on the Riemannian metric of

M.
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Proof. We have that

deg| Eg(z)|| = lldafIEF ()] < [lldagl Eg(2)]] = ldof| Eg(z)]]]
+ [l de f1Eg ()| = [|do f| Ef ()]
< ldeg = do f|| + [|do fl|dist(Ey(x), Ef(2))
< ldeg — dofI| + Cllda fI| £(Eg(2), Ef (),
for some constant C' > 0 depending only on the Riemannian metric of M. Di-

viding both sides of the inequality by ||d, f|E;(z)| and noting that ||d, f|Ef(z)| >
m(d, f), we obtain that

| dzg| Eq ()] ‘ < ldeg = dif]]

4.
W2l gL _ C
|4 1B ()] "

= @ Cm)
~legy ) + CMb 1, (2

’ m(dog|Ey(z))
m(dyf|Ey(x))

L(Ey(x), Ey(x))

IN

— 1| has the same upper bound.

g

Similarly one can show that

Lemma A.5. Suppose that [ is uniformly partially hyperbolic on a compact
invariant subset A C 8. Pick numbers 0 < A < A <1 < i < u such that

A> ML A) =sup||dof®ll, X< A(f,A) = inf m(d, f©),
zEA zel

= pa(f,A) =sup (. foll, < p(f,A) = inf m(d, f*).
zEA TEN

~ A
Given A > 0, there is € = (A, A\ i, p) < mT such that if ||g — fllcr < €
and g = [ on 8\A, then g|A is also uniformly partially hyperbolic and

(A.20) 79(@) = Dpgpepe () <A, w=scu xeA

In particular,

LA < Mg D) Mg A) a9, A) - plg,A)
ML) XA AN p(fA)

Proof. Note that the set of uniformly partially hyperbolic diffeomorphisms is
C'-open, and the invariant distributions E}; depend continuously on g, w =

<1+4+A.

A ~
s,c,u (see [?]). More precisely, there is ¢ < mT depending on A, A\, A, 1, i
such that if ||g — fllcr < e and g = f on S\A, then g|A is uniformly partially
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hyperbolic with

» » mA
(A.21) :Svlélgl(Eg (z), Bf (7)) < M-
Then by Lemma A.4, it is immediate that A‘]‘é’g(a:))\A. O

We shall now specify how to choose the sequence of numbers ¢, in the

theorem. First choose four sequences of numbers 0 < A\, < A\, < 1 < 1, < iy,
such that

(2) A, i, are strictly increasing while A, i, are strictly decreasing.
For all z € 8, let

2) — min min{1, m(d,h)} m(d,h*)
2(0) = min{ TN T )

and choose a strictly decreasing sequence of numbers ~,, such that

(A.22) 0<nn< inf 2L

xem

Now choose a sequence of positive numbers A,, such that

A A\ -
(A.23) max{ fH, ’M”H} <1-A,<1+A, <mnin{ :z\+1 Mn+1}.

Y ~ )

An Hon, n Hn
(A.24) A, < L, iAk < Yn.
gnt k=n
Finally, choose
En < %min{%, e(A,, )\n,xn,ﬁn, tn)},

where (A, A, X, i, i) is given by Lemma A.5.

Proof of Theorem A.1. First we shall show that for every n > 0 the map h,
is uniformly partially hyperbolic on U,. It is clearly true for hy and we shall
use induction assuming that hg|Uy for & = 1,...,n are uniformly partially
hyperbolic. By Lemma A.5 we obtain that

M W) Mo, W) il W)l W)

]-_Akg — ~ — ) < ) —§1+Ak
M1, U) XMhp—1, W)  Alhr—1, W) plhg—1, Up)
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Note that
A, Ui 1) < max{A(h, Wgr1), Ahy, Up)}
< max{Agi1, Ay, Ug)}
S max{)\kﬂ, )\(hk,h uk)(l + Ak)}
The fact that A(hg, U;) < A; and the choice of A, in (A.23) guarantee that
)‘;z = )\(hnaun-l—l) < An—s—l-

Similarly, we have

Xln = )\<hn7un+1) > )\nJrla ﬁ/n = ﬁ(hnaunJrl) < ﬁn+1>

fy, = (P, Up1) > pingr-
It follows that

En S E(Ana )\ny’j\/na ﬁnv Mn) S E(An, Afn )\'/n? ﬁ;z’ :un)

Since [|hpt1 — huller < €, by Lemma A.5 we obtain that h,41|U,41 is uni-
formly partially hyperbolic.

Next we shall show that H = lim h,, exists and is indeed pointwise partially

hyperbolic on 8. Since &, < mg/2", the sequence of maps h,, is a Cauchy
sequence and hence it converges in the C! topology. Moreover, as shown in
(A.21), given € U, and n > k, we have
mA m
Z(EY (x), BY (7)) < n< , wW=S§,¢,U.
( hn< ) hn_1( )) QCM — 2n+3CM

Hence, the sequence of subspaces E}’ () is a Cauchy sequence, and thus there
is a limit

Ef(z) = lim Ey (x (z).

n—oo

Fix n > 0. We now wish to estimate A%, (v) for € U, \U, 1 (see (A.19) and
(A.20)). We have

w =0, k <n,
At (7) {< Ay,  k>n.

Note that

b | H .| m<dth>:ﬁ m(d,hy)
ldoh| 5 by m(doh?)
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and by (A.24), >~ Ay < 1/4. It follows from Lemma A.2 that

l 00 o)
poal) <JJa+ag,, @) —1<JJa+Aa)—1<2) A
k=1 k=n k=n

Letting [ — oo, we find that

9]
‘Igl,h(x) < 2ZAI€7 w=Ss,Cu.

k=n
Therefore by (A.22),
| ]| o L4235, Ak fldeh?|
min{l,m(d,H°)} — 1-—2> 77 Aymin{l, m(d,he)}
k]
1+ 8v)—
< 8 o)

[dah?|

= 7(x>min{1,771(dl,hc)} <1

Similarly, one can show m(d,H") > max{l,||d,H¢||}. It follows that H is

pointwise partially hyperbolic on 8. O
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