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Abstract. We show that there exists a C∞ volume preserving topologi-
cally transitive diffeomorphism of a compact smooth Riemannian manifold
which is ergodic (indeed is Bernoulli) on an open and dense subset G of not
full measure and has zero Lyapunov exponent on the complement of G.

1. Introduction.

It is shown in [7, 11, 22, 23] that on any manifold M and for any sufficiently
large r one has what can be viewed as a discrete version of the classical KAM
theory phenomenon in the volume preserving category – there are open sets
of volume preserving Cr diffeomorphisms of M all of which possess positive
measure sets of codimension-1 invariant tori; on each such torus the diffeo-
morphism is C1 conjugate to a Diophantine translation; all of the Lyapunov
exponents are zero on the invariant tori. It is expected that the set of invari-
ant tori is surrounded by “chaotic sea”, i.e., outside this set the Lyapunov
exponents are nonzero and the system has at most countably many ergodic
components. It has since been an open problem to find out to what extend
this picture is true.

A first step towards understanding this picture is to establish “essential” co-
existence of completely chaotic and regular non-chaotic behavior for the class
of volume preserving systems in the spirit of the results mentioned above. To
this end in this paper we prove the following result.

Main Theorem. Given α > 0, there exists a compact smooth Riemannian
manifold M of dimension 5 and a C∞ diffeomorphism P : M→M preserving
the Riemannian volume m such that

(1) ‖P − Id ‖C1 ≤ α and P is homotopic to Id;
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(2) P is ergodic on an open and dense subset G ⊂ M and m(G) < m(M);
in particular, P is topologically transtive on M; furthermore, P |G is a
Bernoulli diffeomorphism;

(3) the Lyapunov exponents of P are nonzero for almost every x ∈ G;
(4) the complement Gc = M \ G has positive volume, P |Gc = Id and the

Lyapunov exponents of P on Gc are all zero.

In our example the set Gc is the direct product of a 3-dimensional smooth
compact manifold and a Cantor set of positive volume in a two dimensional
torus and thus has codimension two. By modifying our construction one can
obtain a C∞ diffeomorphism P of a compact smooth Riemannian manifold of
dimension 4, which is close to the identity map and has nonzero Lyapunov
exponents on an open and dense set G of positive but not full volume and
zero exponents on its compliment. The latter is the direct product of a 3-
dimensional smooth compact manifold and a circle and thus has codimension
one and P has countably many ergodic components (see [6]).

Coexistence of elliptic islands and “chaotic sea” is one of the most interest-
ing phenomena in dynamical systems and very few results are known in this
direction. Przytycki [19] and Liverani [16] studied a one-parameter family fa,
−ε ≤ a ≤ ε, of area preserving diffeomorphisms for which the map f0 lies
on the boundary of the set of Anosov diffeomorphisms. This example demon-
strates a route from uniform hyperbolicity (corresponding to −ε ≤ a < 0) to
non-uniform hyperbolicity (corresponding to a = 0) and then to coexistence
of regular and chaotic behavior, i.e., the appearance of an elliptic island (for
0 < a ≤ ε).

An example of a billiard dynamical system – the so-called “mushroom bil-
liards” – with coexistence of “elliptic islands” and “chaotic sea” was con-
structed by Bunimovich in [3]. However, this case differs substantially from
the smooth case due to the presence of singularities.

In [10], Fayad obtained a weaker version of our theorem: only some but not
all Lyapunov exponents for P are zero on Gc. Ensuring that all Lyapunov
exponents are zero is a substantially more difficult problem and we use a
completely different techniques than in [10] to make it happen. The matter is
that if all Lyapunov exponents in Gc are zero, then a typical trajectory that
originates in G will spend long time in the vicinity of Gc where contraction
and expansion rates are very small. This should be compensated by even
longer periods of time that the trajectory should spend away from Gc thus
gaining sufficient contraction and expansion and ensuring nonzero Lyapunov
exponents.

Let us briefly outline our construction. It starts with a C∞ volume preserv-
ing diffeomorphism T of a compact smooth 5-dimensional manifold M. The
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map T is close to and homotopic to the identity and indeed is the identity
on an invariant compact subset of positive volume. On its compliment G the
map T is partially hyperbolic with one-dimensional stable, one-dimensional
unstable subspaces and 3-dimensional center subspace along which dT acts as
an isometry and hence has zero Lyapunov exponents. These subspaces are
integrable to three transverse one-dimensional stable, one-dimensional unsta-
ble and 3-dimensional central invariant foliations of G. Since this set is open,
partial hyperbolicity appears in its weaker pointwise form (see Section 2 for
the definition of pointwise partial hyperbolicity).

Pointwise partially hyperbolic maps on compact manifolds were introduced
in [5]. They have properties that are pretty much similar to those of uniformly
partially hyperbolic systems: 1) stable and unstable subspaces are integrable
to continuous stable and unstable foliations that are uniformly transverse to
each other; 2) Lyapunov exponents along stable (unstable) subspaces are neg-
ative (positive); 3) any sufficiently small perturbation of a pointwise partially
hyperbolic map is also pointwise partially hyperbolic. These properties fail
to be true if one considers, as we do, pointwise partially hyperbolic maps on
open subsets thus providing one of the major obstacles for our construction.
To overcome this problem we only consider small perturbations of T that are
gentle, i.e., they coincide with T outside a neighborhood of the Cantor set Gc.
For those perturbations the above three properties hold. However, the final
map P is not a gentle perturbation of T and additional arguments are needed
to establish these properties for P .

Our next step is to perturb T gently to a C∞ volume preserving diffeomor-
phism Q, which is concentrated in an open set, which is “far away” from the
Cantor set. We arrange this perturbation in such a way that the average Lya-
punov exponents of Q in the central direction are positive for points in G while
the Lyapunov exponents on the compliment Gc of G are all zero. Our construc-
tion of the map Q is built upon some ideas from [21, 8, 14, 2, 9] but requires
substantial modifications and new arguments due to nonuniform hyperbolicity
of the map T . Note that the restriction Q|G is not ergodic.

Finally, we perturb Q to a C∞ volume preserving diffeomorphism P , which
is pointwise partially hyperbolic on G and, similarly to the maps T and Q,
possesses three transversal continuous one-dimensional stable, one-dimensional
unstable and 3-dimensional central invariant foliations. In doing so we first
construct a sequence of small perturbations Pn of Q such that each Pn coincides
with T outside some open invariant subset Un ⊂ G (hence, Pn is a gentle
perturbation of T ) and has the accessibility property on Un. The sets Un are
nested and exhaust G and the sequence Pn converges to the desired map P . In
constructing the maps Pn we use some techniques developed in [8, 14].
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Although the map P is not a gentle perturbation of T (it coincides with T on
the Cantor set only) we shall prove that P has the three properties described
above. Furthermore, we show that P has the accessibility property on G via
its stable and unstable foliations and that the average Lyapunov exponents
of P |G in the central direction remain positive and in fact, central Lyapunov
exponents are positive on a subset of positive volume. We then show that P |G
is ergodic and indeed, is a Bernoulli diffeomorphism. To achieve this we extend
the argument in [4] to the case of maps that are pointwise partially hyperbolic
on open sets. This implies that P has four positive and one negative Lyapunov
exponents on G while the Lyapunov exponents on the Cantor set Gc are all zero.

In Section 2 we provide some background information and introduce some
basic notations. In Section 3 we describe our construction of the map P and
prove our result subject to two propositions. In the remaining sections we
present the proofs of these propositions and other supporting statements.

2. Preliminaries

See [17, 1] for more details.
Let f be a diffeomorphism of a compact smooth Riemannian manifold M

and Λ ⊂M an f -invariant compact subset. The map f is said to be uniformly
partially hyperbolic on Λ if for every x ∈ Λ the tangent space at x admits an
invariant splitting

(2.1) TxM = Es(x)⊕ Ec(x)⊕ Eu(x)

into strongly stable Es(x) = Es
f (x), central Ec(x) = Ec

f (x), and strongly unsta-
ble Eu(x) = Eu

f (x) subspaces. More precisely, there are numbers 0 < λ < λ′ ≤
1 ≤ µ′ < µ such that for every x ∈ Λ,

‖dfv‖ ≤ λ ‖v‖, v ∈ Es(x),

λ′ ‖v‖ ≤ ‖dfv‖ ≤ µ′ ‖v‖, v ∈ Ec(x),

µ ‖v‖ ≤ ‖dfv‖, v ∈ Eu(x).

Given x ∈ Λ, one can construct a strongly stable local manifold V s(x) =
V s
f (x) and a strongly unstable local manifold V u(x) = V u

f (x) at x. This local
manifolds have uniform size, i.e., there are numbers r > 0 and D > 0 such
that for every x ∈ Λ there are smooth functions ϕi : Bi(r)→ TxM, i = s or u
(here Bi(r) ⊂ Ei(x) is the ball centered at zero of radius r) such that

ϕ(0) = 0, dϕ(0) = 0, max{‖dϕ(a)‖ : a ∈ Bi(r)} ≤ A,

and

V i(x) = expx{(a, ϕ(a)) : a ∈ Bi(r)}.
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We define the strongly stable and strongly unstable global manifolds at x by

W u(x) = W u
f (x) =

⋃
n≥0

fn(V u(f−n(x))),

W s(x) = W s
f (x) =

⋃
n≥0

f−n(V s(fn(x))).

We denote by B(x, r) the ball centered at the point x of radius r. Further, we
adopt the following notation: for a smooth submanifold V ⊂ M and a point
x ∈ V we denote by BV (x, r) the ball in V centered at x of radius r (with
respect to the intrinsic Riemannian metric). We also set

Bs(x, r) = Bs
f (x, r) = BV s(x)(x, r),

Bu(x, r) = Bu
f (x, r) = BV u(x)(x, r).

In this paper we need a weaker property than uniform partial hyperbolicity.
Let S ⊂M be an f -invariant open subset. We say that f is pointwise partially
hyperbolic on S if for every x ∈ S the tangent space at x admits an invariant
splitting (2.1) and there are continuous positive functions λ(x) < λ′(x) ≤ 1 ≤
µ′(x) < µ(x), x ∈ S such that

‖dfv‖ ≤ λ(x) ‖v‖, v ∈ Es(x),

λ′(x) ‖v‖ ≤ ‖dfv‖ ≤ µ′(x) ‖v‖, v ∈ Ec(x),

µ(x) ‖v‖ ≤ ‖dfv‖, v ∈ Eu(x).

Given a subset S we call a partition P of S a (δ, q)-foliation with smooth leaves
or simply a foliation with smooth leaves if there exist continuous functions
δ = δ(x) > 0, q = q(x) > 0, and an integer k > 0 such that for each x ∈ S:

(1) there exists a smooth immersed k-dimensional manifold W (x) contain-
ing x for which P(x) = W (x) where P(x) is the element of the par-
tition P containing x. The manifold W (x) is called the global leaf
of the foliation at x; the connected component of the intersection
W (x) ∩ B(x, δ(x)) that contains x is called the local leaf at x and
is denoted by V (x);

(2) there exists a continuous map φx : B(x, q(x))→ C1(D,M) (where D is
the unit ball) such that V (y) is the image of the map φx(y) : D → M

for each y ∈ B(x, q(x)); the number q(x) is called the size of V (x).

We say that a foliation with smooth leaves is absolutely continuous if for almost
every x ∈ S and almost every y ∈ B(x, q(x)) the conditional measure generated
on V (y) by volume m (with respect to the partition of B(x, q(x)) by local
leaves) is absolutely continuous with respect to the leaf volume mV (y) on V (y).
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The strongly stable and strongly unstable global manifolds of a uniformly
partially hyperbolic diffeomorphism form two (δ, q)-foliations of Λ with smooth
leaves where δ and q are constants. These foliations are absolutely continuous
and transversal at every point z ∈ Λ.

Let W1 and W2 be two continuous foliations with smooth leaves of a subset
S. Assume that these foliations are transversal at every point z ∈ S. We say
that these foliations have the accessibility property if any two points z, z′ ∈ S

are accessible; this means that

(1) there exists a collection of points z1, . . . , zn ∈ S such that x = z1, y = zn
and zk ∈ Wi(zk−1) for i = 1 or 2 and k = 2, . . . , n;

(2) the points zk−1 and zk can be connected by a smooth curve γk ⊂
Wi(zk−1) for i = 1 or 2 and k = 2, . . . , n.

The collection of such points zk and curves γk is called the leaf-wise path
connecting x and y. In particular, if W1 and W2 are the stable and unstable
foliations, then we say that f has the accessibility property and the leaf-wise
path is called the (u, s)f -path or simply (u, s)-path.

It may not be true in general that a diffeomorphism, which is pointwise
partially hyperbolic on an open set S, has strongly stable and unstable local
manifolds at every point in S. However, this is the case for all pointwise
partially hyperbolic diffeomorphisms that we construct and in fact their global
strongly stable and unstable manifolds form two transversal foliations with
smooth leaves.

A uniformly partially hyperbolic diffeomorphism f is called dynamically co-
herent if the subbundles Ecu = Ec⊕Eu, Ec, and Ecs = Ec⊕Es are integrable
to continuous foliations with smooth leaves W cu, W c and W cs, called respec-
tively the center-unstable, center and center-stable foliations. Furthermore,
the foliations W c and W u are subfoliations of W cu, while W c and W s are
subfoliations of W cs.

The following result (see [12, 20]) shows that dynamical coherence is a robust
property.

Theorem 2.1. Suppose that f is a partially hyperbolic diffeomorphism. If the
center foliation W c is smooth, then f is dynamically coherent. Moreover, any
diffeomorphism that is close to f in the C1 topology is dynamically coherent.

Since both subbundle Ecu and Ecs vary continuously with the map, so does
Ec and the corresponding center foliation W c.

We denote by

λ(x, v) = lim sup
n→∞

1

n
log ‖dfnv‖
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the Lyapunov exponent of a nonzero vector v at x ∈M and by λi(x) = λi(x, f),
i = 1, . . . , dim M, the values of the Lyapunov exponents at x. Note that the
functions λi(x, f) are invariant. We assume that these values are ordered so
that

λ1(x, f) ≥ · · · ≥ λdimM
(x, f).

We also denote by

(2.2) Lk(f) :=

∫
M

k∑
i=1

λi(x, f) dm(z),

where m is the Riemannian volume. We call this number the k-th average
Lyapunov exponent of f .

Consider a volume preserving C2 diffeomorphisms f of a compact smooth
manifold M that is pointwise partially hyperbolic on an open set S. We say
that f has positive central exponents if there is an invariant set A ⊂ S of
positive volume such that for every x ∈ A and every v ∈ Ec(x) the Lyapunov
exponent λ(x, v) > 0. The following result plays an important role in the proof
of our Main Theorem.

Theorem 2.2. Assume that the following conditions hold:

(1) f has strongly stable and unstable (δ, q)-foliations W s and W u where
δ = δ(x) and q = q(x) are continuous functions on S;

(2) the foliations W s and W u are absolutely continuous; more precisely,
any two points z1, z2 ∈ S can be connected in S via a W s and W u

foliations;
(3) f has the accessibility property via the foliations W s and W u;
(4) f has positive central exponents.

Then f has positive central exponents at almost every point x ∈ S, f |S is
ergodic and indeed, is a Bernoulli diffeomorphism.

Proof. In the case when f is uniformly partially hyperbolic on the whole man-
ifold M, has positive central exponents and the accessibility property this the-
orem was proved in [4]. We shall show how to extend the argument presented
there to our case.

Note that f is a C2 volume preserving diffeomorphism, with nonzero Lya-
punov exponents on a set A of positive volume. Hence, it has at most count-
ably many ergodic components of positive volume in A. Each such component
contains the set

A(x) =
⋃

y∈V +(x)

V s(y),
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where x is a density point of A and V +(x) is a center-unstable local manifold
at x. Since the strongly stable foliation W s is continuous, the set A(x) is
open in A and hence the set A itself is open (mod 0). We shall show that
the accessibility property of f in S and absolute continuity of strongly stable
and unstable foliations imply that the trajectory of almost every point in S is
dense. Clearly, this yields that A = S (mod 0) and that f |S is ergodic and
indeed, is a Bernoulli diffeomorphism.

To this end, it suffices to show that if U is an open set then the orbit of
almost every point enters U . To see this let us call a point good if it has a
neighborhood in which the orbit of almost every point enters U . We wish
to show that an arbitrary point p is good. Since f is accessible, there is a
(u, s)-path [z0, . . . , zk] with z0 ∈ U and zk = p. We shall show by induction
on j that each point zj is good. This is obvious for j = 0. Now suppose that
zj is good. Then zj has a neighborhood N such that Orb(x) ∩ U 6= ∅ for
almost every x ∈ N . Let B be the subset of N consisting of points with this
property that are also both forward and backward recurrent. It follows from
the Poincaré recurrence theorem that B has full measure in N . If x ∈ B, any
point y ∈ W s(x)∪W u(x) has the property that Orb(y)∩U 6= ∅. The absolute
continuity of the foliations W s and W u means that the set⋃

x∈B

W s(x) ∪W u(x)

has full measure in the set ⋃
x∈N

W s(x) ∪W u(x).

The latter is a neighborhood of zj+1. Hence zj+1 is good. �

3. Construction of the map P : Proof of Main Theorem

We describe a construction of the map P splitting it into several steps.

3.1. Step 1: A Special Flow T t. Let A be an Anosov automorphism of the
torus X = T2. We denote by ηA the constant expanding rate of A along the
unstable direction.

Consider the special flow T t over A with a constant roof function. The flow
acts on the the manifold

N = {(x, t) : x ∈ X, t ∈ [0, 1]}/ ∼,
where “∼” is the identification (x, 1) = (Ax, 0). We may choose the metric
on N in such a way that the expansion rate of T t along the one-dimensional
unstable direction is tηA at every point (x, t) ∈ N. For each t 6= 0 the map
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T t is uniformly partially hyperbolic with one-dimensional stable Es
T t , one-

dimensional unstable Eu
T t and one-dimensional center Ec

T t subbundles (the
latter is the direction of the flow). These subbundles are integrable to smooth
stable W s

T t , unstable W u
T t and center W c

T t foliations of N.

3.2. Step 2: The Original Map T . Set Y = T2 and M = N×Y . We endow
M with the product metric and denote by m its Riemannian volume. We also
denote the fiber

(3.1) Ny = N × {y}.

For our construction we choose:

(A1) a Cantor set C ⊂ Y of positive measure whose complement G = Y \C
is an open connected subset;

(A2) an open square G0 such that G0 ⊂ G;
(A3) a C∞ function κ : Y → R satisfying: (1) κ(y) = 0 if y ∈ C and κ(y) > 0

if y ∈ G; (2) | gradκ| < 1/4, and (3) κ(y) = κ0 for y ∈ U1, where κ0 is
a constant and U1 is a neighborhood of G0 whose choice is specified in
Subsection 5.1.

The set G in the Main Theorem is given by G = N × G and is open, dense
and of positive but not full measure. We let Gc be the complement of G.

We define a map T : M→M by

T ((x, t), y) = (T κ(y)(x, t), y),

where (x, t) ∈ N and y ∈ Y . The proof of the following proposition is imme-
diate.

Proposition 3.1. The map T is a C∞ volume preserving diffeomorphism of
M with the following properties:

(1) given δT > 0, one can chose the function κ such that ‖T − Id ‖C1 ≤ δT ;
moreover, T is homotopic to Id;

(2) T preserves the fibers Ny;
(3) T is uniformly partially hyperbolic on any invariant subset N×A where

A ⊂ G is compact; moreover, T is dynamically coherent with the cenral
foliation W c

T = W c
T t × Y ;

(4) T is pointwise partially hyperbolic on G with one-dimensional stable
Es
T (z), one-dimensional unstable Eu

T (z) and 3-dimensional center Ec
T (z)

subspaces; the subspaces Es
T (z) and Eu

T (z) are integrable to strongly sta-
ble and unstable foliations W s

T (z) and W u
T (z) with smooth leaves; these

foliations are uniformly transversal and their local leaves have uniform
size; in addition, these foliations are absolutely continuous;
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(5) T |Gc = Id and dTz = Id for any z ∈ Gc; in particular, the Lyapunov
exponents of T |Gc are all zero;

(6) for every z ∈ G the Lyapunov exponents of T are as follows:

λ1(z, T ) = λu(z, T ) > 0 = λ2(z, T ) = λ3(z, T ) = λ4(z, T )

> λ5(z, T ) = λs(z, T ),

where λu(z, T ) and λs(z, T ) correspond to the directions Eu
T t and Es

T t

respectively and λ2(z, T ), λ3(z, T ) and λ4(z, T ) correspond to the direc-
tion of the flow and the Y -direction respectively. Moreover, |λu(z, T )| =
|λs(z, T )|. Consequently,

L1(T ) = L2(T ) = L3(T ) = L4(T ) > 0 and L5(T ) = 0,

where each i-th average Lyapunov exponents Li(·) is given by (2.2).

We say that a diffeomorphism F is a gentle perturbation of T if F is C1 close
to T and the following conditions hold:

(1) F (G) = G and F is pointwise partially hyperbolic in G;
(2) the one-dimensional strongly stable and unstable subbundles for F are

integrable to one-dimensional strongly stable and unstable foliations
with smooth leaves on G; the 3-dimensional central subbundle of F is
integrable to a central foliation;

(3) F |Gc = Id.

Further, if F \ is a gentle perturbation of T that is sufficiently C1 close to F ,
then we say that F \ is a gentle perturbation of F as well.

Let F be a diffeomorphism of M that is C1 close to T . Assume that there
is an open set U such that U ⊂ G and F |U = T |U; in particular, U is invariant
under F . Then F is a gentle perturbation of T and in fact, F |U is uniformly
partially hyperbolic.

3.3. Step 3: The Perturbation Q. We perturb the map T to a map Q such
that it has one negative and four positive average Lyapunov exponents but is
not necessarily ergodic. We then perturb Q to a map P which is ergodic on G
and has all the desired properties.

Given z ∈M, we choose a local coordinate system (s, u, t, a, b) such that

(3.2) F s(z) := ∂/∂s = Es
T (z), F u(z) := ∂/∂u = Eu

T (z), F t(z) := ∂/∂t

are the unstable, stable and central (flow) directions of T respectively, and

(3.3) F b(z) := ∂/∂b, F a(z) := ∂/∂a
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are tangent to Y . We shall assume that in these coordinates the square G0

has the form

(3.4) G0 = BFa(a0, α0)×BF b(b0, α0)

for some (a0, b0) ∈ Y and α0 > 0.
The following statement describes some properties of the map Q; its proof

is given in Section 4.

Proposition 3.2. Given δQ > 0, one can construct a C∞ volume preserving
diffeomorphism Q : M→M which satisfies:

(1) ‖Q− T‖C1 ≤ δQ and Q is homotopic to Id;
(2) Q = T on the set N × (Y \G0); in particular, Q preserves Ny-fibers if

y /∈ G0 and is a gentle perturbation of T ;
(3) Q satisfies Statements (3)–(5) of Proposition 3.1;
(4) for every z ∈ G we have

Eutab
Q (z) = Eutab

T (z), det(dQ|Eutab
Q (z)) = det(dT |Eutab

T (z)).

(5) L1(Q) < L2(Q) < L3(Q) < L4(Q) = L4(T ) and L5(Q) = 0 where Li(·)
is given by (2.2).

3.4. Step 4: The Final Perturbation P . Our next step is to perturb the
map Q to a map P that is pointwise partially hyperbolic on the open set G,
and hence possesses two transversal stable and unstable foliations W s

P and W u
P

of G. Furthermore, we shall ensure that P has two transversal strongly stable
and unstable foliations W s

P and W u
P of G and satisfies the accessibility property

on this set via these foliations. We shall also show that P can be constructed
in such a way that the Lyapunov exponents of P on Gc are all zero and that∫

M
λi(z, P ) dm > 0 for i = 1, 2, 3, 4.

In order to construct the map P we choose two sequences of open subsets

Un, Ũn ⊂ G, n = 1, 2, . . . such that

(A4) G0 ⊂ Ũ1;

(A5) Ũn ⊂ Ũn ⊂ Un ⊂ Un ⊂ Ũn+1 ⊂ G and
⋃
n≥1 Un = G;

(A6) Ũn and Un are connected sets for any n ≥ 1.

We set

(3.5) Un = N × Un, Ũn = N × Ũn.
We will construct a sequence of diffeomorphisms {Pn}, whose limit is the
desired map P . The following statement is proven in Section 5.
Proposition 3.3. Given a number δP > 0, one can find two sequences of
positive numbers {δn} and {θn} with δn ≤ δP/2

n and δn ≤ d(C,Un)2 as well as
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a sequence of C∞ volume preserving diffeomorphisms Pn : M → M such that
for n ≥ 1

(1) ||Pn − Pn−1||Cn < δn and Pn is homotopic to Id;
(2) Pn(Un) = Un, Pn = T on M\Un, and Pn = Pn−1 on Un−2; in particular,

Pn is a gentle perturbation of T ;
(3) Pn satisfies Statements (3)–(5) of Proposition 3.1;
(4) for every z ∈M we have

Eutab
Pn (z) = Eutab

Q (z), det(dPn|Eutab
Pn (z)) = det(dQ|Eutab

Q (z));

(5) for all z ∈ Uj, j = 1, . . . , n and i = u, s, c,

∠(Ei
Pn−1

(z), Ei
Pn(z)) ≤ θj/2

n−j;

(6) if the number δQ > 0 (see Proposition 3.2) is sufficiently small, then
each map Pn is stably accessible in the following sense: let P \ be a C2

volume preserving diffeomorphism of M that is a gentle perturbation of
T ; assume that for all z ∈ Un and i = u, s, c

∠(Ei
P \(z), Ei

Pn(z)) ≤ θn;

then any two points z1, z2 ∈ Ũn are accessible via a (u, s)P \-path in G;

in particular, Pn has the accessibility property on Ũn.

Statement (1) and (2) of this proposition implies that the limit P = lim
n→∞

Pn

exists. We shall show that the map P has all the desired properties.

3.5. Step 5: Proof of the Main Theorem. By Proposition 3.3 (1), we have
for any k ≥ 1 and any n > k,

||Pn − Pn−1||Ck ≤ ||Pn − Pn−1||Cn < δP/2
n.

It follows that Pn converges to P in the Ck topology. Since k is arbitrary,
P is a C∞ diffeomorphism. Clearly, P preserves volume and ‖P − Id ‖ ≤ δ
if δT , δQ and δP are small enough. In addition, since P = Pn+1 on Un, by
Proposition 3.3 (1), P is homotopic to Id on Un for any n. The first statement
of the Main Theorem follows.

By Proposition 3.3, each diffeomorphism Pn is pointwise partially hyperbolic
on U and uniformly partially hyperbolic on Un. By Theorem ?? in the Ap-
pendix, if the sequence δn decreases sufficiently fast, the limit diffeomorphism
P is pointwise partially hyperbolic on U.

We now claim that the one-dimensional strongly stable Es
P and unstable Eu

P

subbundles are integrable to invariant strongly stable W s
P and unstable W u

P

foliations with smooth leaves, which are transversal and absolutely continu-
ous. Recall that the “start-up” map T has strongly stable and unstable local
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manifolds V s
T (z) and V u

T (z) respectively at each z ∈ U. Moreover, these local
manifolds are of uniform size, say larger than a certain number 4r > 0.

By Proposition 3.3(3), Pn|Uc
n = T |Uc

n, and thus V ω
Pn

(z) = V ω
T (z) for all

z ∈ U\Un, ω = s, u. On the other hand, each Pn is a perturbation of Pn−1

on the compact set Un on which both Pn and Pn−1 are uniformly partially
hyperbolic if δn is sufficiently small. Furthermore, if rn is the size of V ω

Pn
(z)

for z ∈ Un, one can arrange that rn/rn−1 ≥ 2−1/2n , and thus by induction we
obtain that the size of local manifolds for Pn|Un is bigger than r. Therefore,
given z ∈ U, we obtain that the size of V ω

Pn
(z) has a lower bound r > 0, which

is independent of z and n.
We can describe the local stable manifold at a point z ∈ U in the following

way

V s
Pn(z) = expz{(v, ψsPn(v)) : v ∈ Bs

T (0, r)},
where ψsPn : Bs

T (0, r) → Ecu
T (z) is a C1 map satisfying ψsPn(0) = 0 and

dψsPn(0) = 0. The C1-norm of each ψsPn is small provided δn are sufficiently
small. We may assume that the sequence of maps ψsPn converges in the C1

topology to a map ψsP , so that the local stable manifold through z for P is
given by

V s
P (z) = expz{(v, ψsP (v)) : v ∈ Bs

T (0, r)}.
Clearly, TzV

s
P (z) = Es

P (z) and hence V s
P (z) is a strongly stable manifold of size

at least r. Ina similar fashion we can obtain strongly unstable local manifolds
for P . Since P is nonuniformly partially hyperbolic on U, by Theorem 8.6.1
in[1], we obtain that its strongly stable and unstable foliations are absolutely
continuous.

We shall now show that the Lyapunov exponent λsP (z) in the direction Es
P (z)

is negative at almost every point z ∈ G. Indeed, let Z ⊂ G be the set of points
at which λsP (z) = 0. If m(Z) > 0 then

0 =

∫
Z

λsP (z) dm =

∫
Z

lim
n→∞

1

n
log

n−1∏
i=0

λP (P i(z))

= lim
n→∞

1

n

∫
Z

n−1∑
i=0

log λP (P i(z)) dm(z)

=

∫
Z

log λP (z) dm(z) < 0

(recall that λP (z) is the contraction coefficient along Es
P (z)). This contradic-

tion proves our claim. Similarly, one can prove that the Lyapunov exponent
λuP (z) in the direction Eu

P (z) is positive at almost every point z ∈ G.
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Our next step is to show that the map P has the accessibility property on
G via its invariant foliations W s

P and W u
P . Indeed, by Proposition 3.3 (6), for

any n > k and any z ∈ Uk, i = s, u, c,

∠(Ei
Pn(z), Ei

Pk
(z)) ≤ θk

(
1− 1

2n−k
)
< θk.

Taking the limit as n→∞ yields for i = s, u, c and any z ∈ Uk,

(3.6) ∠(Ei
P (z), Ei

Pk
(z)) ≤ θk.

Hence, by Proposition 3.3 (6), the map P has the accessibility property on Ũk.
Since k is arbitrary, we obtain that the map P has the accessibility property
on G.

To prove that the map P has nonzero central Lyapunov exponents almost
everywhere we let c = L4(Q) − L3(Q) > 0. By semicontinuity of Li with
respect to the map, we may take δP in Proposition 3.3 so small that L3(P ) <
L3(Q) + c/2. Note that by Proposition 3.3 (4), for all n ≥ 1,

L4(Pn) =

∫
G

log | det(dPn|Eutab
Pn (z))| dm

=

∫
G

log | det(dQ|Eutab
Q (z))| dm = L4(Q).

Since Pn converges to P in the C1 topology, by Proposition 3.3 (4), we have
that L4(Pn) → L4(P ) as n → ∞ and hence L4(P ) = L4(Q). It follows that
L4(P )− L3(P ) ≥ c/2 > 0. Therefore,∫

G

λ4(z, P )dm(z) ≥ c/2 > 0.

It follows that there is a subset A ⊂ G of positive volume such that λ4(z) >
0 for every z ∈ A. Hence, λ2(z) ≥ λ3(z) ≥ λ4(z) > 0. Thus the map
P has positive central exponents at every point in a set of positive volume.
Since P is volume preserving, the total sum of the Lyapunov exponents is zero
at every point. Therefore, λ5(z, P ) < 0 at every point in A. Since P has
the accessibility property and its strongly stable and unstable foliations are
absolutely continuous, by Theorem 2.2, we obtain that P has positive central
exponents at almost every point in G, P |G is ergodic and indeed, is a Bernoulli
diffeomorphism.

It follows from Proposition 3.3 (3) and the fact that δn ≤ d(C,Un)2, that
P = Id on the set N×C and that dPz = Id for all z ∈ N×C. In other words,
all Lyapunov exponents at every point in the set N × C are zero. Since this
set has positive volume this completes the proof of the Main Theorem.
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4. Construction of the map Q: Proof of Proposition 3.2

We use an approach which is similar to the one in [14] and obtain Q as a
result of three consecutive perturbations. First, we perturb the map T to a
diffeomorphism S via a gentle perturbation hS so that S = hS ◦ T preserves
the fibers Ny, y ∈ G and has two positive average Lyapunov exponents in
the Eut

T subbundle, i.e, L1(S) < L2(S) (see Lemma 4.1). Next, we perturb S
to a diffeomorphism R via a gentle perturbation hR so that R = hR ◦ S has
three positive average Lyapunov exponents, i.e., L1(R) < L2(R) < L3(R) (see
Lemma 4.2). Finally, we obtain the desired map Q as a perturbation of R via
a gentle perturbation hQ so that Q = hQ ◦R satisfies

L1(Q) < L2(Q) < L3(Q) < L4(Q)

(see Lemma 4.6), or equivalently,
∫

M
λ4(z,Q) dm(z) > 0.

Given δ > 0 and k = S,R,Q, the perturbations hk are concentrated on
pairwise disjoint small open subsets Ωk ⊂ G0 such that ‖hk − Id ‖C1 ≤ δ and
hk = Id outside Ωk. It follows that Q = T outside ΩS

⋃
ΩR

⋃
ΩQ.

To effect our construction we choose periodic points q, pt, pa and pb of the
Anosov automorphism A, which are close to each other and whose orbits are
pairwise disjoint. Let V s

A(q), V u
A (q), V s

A(pi) and V u
A (pi), i = t, a, b be stable

and unstable local manifolds at these periodic points. We may assume that
each intersection V u

A (q) ∩ V s
A(pi) and V u

A (pi) ∩ V s
A(q) consists of exactly one

point, which we denote by [q, pi] and [pi, q] respectively. Consider the closed
quadrilateral path with the collection of points q, [q, pi], pi, [pi, q] and q, and
let

γ(q) = V u
A (q) ∪ V s

A(q), γ(pi) = V u
A (pi) ∪ V s

A(pi).

Given positive numbers ν and σ whose choice will be specified later (see (4.4)),
we set for i = t, a, b,

Ωi(ν) =
( ⋃
t∈[0,τ(pi)]

BN

(
T t(pi, 0), ν

))
×G,

Ω̂i(σ) =
( ⋃

(x,t)∈(γ(q)×[0,τ(q)])∪(γ(pi)×[0,τ(pi)])

BN

(
(x, t), σ

))
×G,

Ω(ν, σ) =
( ⋃
i=t,a,b

Ωi(ν)
)
∪
( ⋃
i=t,a,b

Ω̂i(σ)
)
,

(4.1)

where τ(q) and τ(pi) are the periods of q and pi and BN((x, t)), r) is the ball
in N of radius r centered at the point (x, t). Finally, we set

(4.2) Ω0(ν, σ) = Ω(ν, σ) ∩ G0

(recall that G0 is defined in (A2) and is in the form of (3.4)).
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Given δQ > 0, choose the number θ > 0 according to Sublemma 4.5 below
and an integer k0 > 0 such that

π/2k0 < θ.(4.3)

Now choose positive numbers ν and σ to ensure that the measure of the set
Ω0(ν, σ) is so small that

20k0m(Ω0(ν, σ)) < 1.(4.4)

4.1. Construction of the map S.
We obtain the map S as a small perturbation of the map T via a perturbation

hS, which is a small rotation in the Eut
T subbundle at every point of a small

subset of G0 = N × G0. This approach is an elaboration of the approach
developed in [21, 8] for some uniformly partially hyperbolic systems.

To this end we observe that by the construction of the map T for every
z ∈ G0 the expansion rate in the Eu

T -direction at z, |dT |Eu
T |, is a constant. We

denote this constant by η. Choose a C∞ function ψ = ψ(r) : R+ → R+ such
that

(1) ψ(r) = ψ0 > 0 if r ∈ [0, 0.9];
(2) ψ(r) > 0 if r ∈ [0, 1) and ψ(r) = 0 if r ≥ 1;
(3) ‖ψ‖C1 ≤ 1.

Given N0 ≥ 20k0, choose a point (x0, t0) ∈ N and a number ε1 > 0 such that

BN((x0, t0), 2ε1) ∩ ProjN(Ω0) = ∅,
f−kκ0(BN((x0, t0), 2ε1)) ∩BN((x0, t0), 2ε1) = ∅, k = 1, . . . , N0,

where ProjN is the projection onto N, i.e., ProjN(x, t, y) = (x, t) and κ0 is
defined by (A3) (see Subsection 3.2). Set

ΩS = BN((x0, t0), ε1)×G0.

Our choice of ε1 guarantees that ΩS ∩ Ω0 = ∅ and for k = 1, . . . , N0,

(4.5) T−k(ΩS) ∩ ΩS = ∅.

To define the desired map hS we switch from the coordinate system (s, u, t, a, b)
(see (3.2) and (3.3)) in ΩS to the cylindrical coordinate system (r, θ, s, a, b)
originated at z0 = (x0, t0, a0, b0), where u = r cos θ and t = r sin θ.

Given τ > 0, define the map hS = hS,τ on ΩS as a small rotation in the
(u, t)-subspace. More precisely, we set

(4.6) hS(r, θ, s, a, b) =
(
r, θ + τα2

0ε
2
1ψ
( r
ε1

)
ψ
( |s|
ε1

)
ψ
( |b|
α0

)
ψ
( |a|
α0

)
, s, a, b

)
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(here α0 is defined in (3.4)). We extend the map hS = hS,τ to the whole
manifold M by letting it to be the identity outside of ΩS. It is easy to see that
hS is a C∞ volume preserving diffeomorphism satisfying:

(1) ‖hS,τ − Id ‖C1 → 0 as τ → 0;
(2) dhS preserves Eut

T bundle;
(3) det(dhS|Eut

T (z)) = 1 for any z ∈M.

We define the map S = Sτ = T ◦ hS,τ and we set

(4.7) α1 = 0.9α0, G1 = BFa(a0, α1)×BF b(b0, α1).

The following statement describes some properties of the map S.

Lemma 4.1. Given δQ > 0, there exist τ > 0 such that the map S = Sτ is a
C∞ diffeomorphism with the following properties:

(1) ‖S − T‖C1 ≤ δQ and S is homotopic to Id;
(2) S = T on the sets N × (Y \ G0) and Ω0; in particular, S is a gentle

perturbation of T ;
(3) S satisfies Statements (3)–(5) of Proposition 3.1;
(4) for every z ∈M,

Eut
S (z) = Eut

T (z), det(dS|Eut
S (z)) = det(dT |Eut

T (z));

(5) for any y1, y2 ∈ G1,

ProjN(S(x, t, y1)) = ProjN(S(x, t, y2));

(6) L1(S) < L1(T ) and hence,

L1(S) < L2(S) = L3(S) = L4(S) = L4(T ), L5(S) = 0;

(7) there exist a number λS and a set ΠS = ProjN(ΠS)×G1 such that

m(ΠS) ≥ 20k0m(ΠS ∩ ΩS) > 0,

and for any z ∈ ΠS the map S has two positive Lyapunov exponents
λ1(z, S) > λ2(z, S) ≥ λS along the Eut

S = Eut
T subbundle.

Proof. Statements (1)–(5) follow easily from the construction of the map hS.
In particular, S is dynamically coherent in view of Theorem 2.1. It remains to
prove Statements (6) and (7).

We prove that there exists τ0 > 0 such that for any τ ∈ (0, τ0],

(4.8) L1(Sτ |G0) < L1(T |G0).

Since on the complement of G0 we have S = T , this implies that L1(S) < L1(T ).
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We outline the proof of (4.8) referring the reader to the proof of Proposition
5.1 in [8] for details. Since Eu

Sτ
(z) is one-dimensional, it is easy to see that

L1(Sτ |G0) =

∫
G0

λ1(z, Sτ ) dm(z) =

∫
G0

log |dSτ (z)|Eu
Sτ (z)| dm(z).

Since the perturbation hS = hS,τ preserves the Eut
T subbundle, we can write

dhS,τ |Eut
T (z) =

(
A(τ, z) B(τ, z)
C(τ, z) D(τ, z)

)
,

where

A = A(τ, z) = 1− τrρ̃r sin θ cos θ − τ 2ρ̃2

2
− τ 2rρ̃ρ̃r cos2 θ +O(τ 3),

B = B(τ, z) = −τ ρ̃− τrρ̃r sin2 θ − τ 2rρ̃ρ̃r sin θ cos θ +O(τ 3),

C = C(τ, z) = τ ρ̃+ τrρ̃r cos2 θ − τ 2rρ̃ρ̃r sin θ cos θ +O(τ 3),

D = D(τ, z) = 1 + τrρ̃r sin θ cos θ − τ 2ρ̃2

2
− τ 2rρ̃ρ̃r sin2 θ +O(τ 3),

and

ρ̃(r, s, a, b) = α2
0ε

2
1ψ
( r
ε1

)
ψ
( |s|
ε1

)
ψ
( |b|
α0

)
ψ
( |a|
α0

)
.

Recall that the expanding rate η = ηA of dT along Eu
z (T ) is constant for all

z ∈ G0. By the choice of the coordinate systems, we can write

dT |Eut
T (z) =

(
η 0
0 1

)
.

Since dSτ = dT ◦ dhS,τ , we have

dSτ (z)|Eut
Sτ (z) =

(
ηA(τ, z) ηB(τ, z)
C(τ, z) D(τ, z)

)
.

Denote by eτ (z) the unique number such that the vector vτ (z) = (1, eτ (z))∗ ∈
Eu
Sτ

(z), where ∗ denote the transpose of the vector. Repeating the arguments
in the proof of Lemma B.7 in [8], one can show that

L1(Sτ |G0)=

∫
G0

log η dm(z)−
∫

G0

log[D(τ, z)− ηB(τ, z)eτ (Sτ0(z))] dm(z).

Now we compute the first and second derivatives of L1 with respect to τ . To
apply the arguments in [8], we use the Fubini theorem∫

G0

· dm(z) =

∫
G0

∫
Ny

· dmN
y (x, t)dmY (y),
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where the fiber Ny is given by (3.1) and mN
y , mY denote the Lebesgue measures

on Ny and on Y respectively. Hence, applying the same arguments in the proof
of Lemma B.8 in [8] one can show that

dL1(Sτ |G0)

dτ

∣∣∣
τ=0

=

∫
G0

D′τdm(z) = 0

and

d2L1(Sτ |G0)

dτ 2

∣∣∣
τ=0

=

∫
G0

[
(D′τ )

2 −D′′ττ + 2ηB′τ
∂eτ (z)

∂τ
(Sτ (z))

]
τ=0

dm(z).

Similar to Lemma B.9 in [8], this integral can be wrriten as the sum∫
G0

[
D′τ (0, w)2 −D′′ττ (0, w) + 2B′τ (0, w)C ′τ (0, w)

]
dm(z)

+

∫
G0

∞∑
i=1

1

ηi
2Bτ (0, z)Cτ (0, T

−i(z)) dm(z).

The first term is bounded above by

−(1− ε1)

∫
G0

ρ̃2dm(z)− 1

8

∫
G0

r2ρ̃2
rdm(z).

To estimate the second term, we notice that for any i ≥ 1, ε1 > 0 and y ∈ G0,∫
Ωy

2Bτ (0, z)Cτ (0, T
−i(z)) dmY

y (x, t) ≤ 1

4

∫
Ωy

(
ρ̃2 + r2ρ̃2

r

)
dmY

y (x, t),

where Ωy = Ω ∩ Ny. This allow us to choose N0 > 0 large enough such that
for all y ∈ G0,

∞∑
i=N0

1

ηi

∫
Ωy

2Bτ (0, z)Cτ (0, T
−i(z)) dmY

y (x, t) ≤ 1

10

∫
Ωy

(
ρ̃2 + r2ρ̃2

r

)
dmY

y (x, t).

By (4.5), for k = 1, . . . , N0 we have∫
Ωy

2Bτ (0, z)Cτ (0, T
−i(z)) dmY

y (x, t) = 0.

We conclude that

d2L1(Sτ |G0)

dτ 2

∣∣∣
τ=0
≤ −

( 9

10
− ε1

)∫
G0

ρ̃2dm(z)− 1

40

∫
G0

r2ρ̃2
rdm(z) < 0.

It follows that there exists τ0 > 0 such that (4.8) hold for any τ ∈ (0, τ0].
Therefore, L1(Sτ ) < L1(T ).
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Note that for any y ∈ Y the fibers Ny are Sτ -invariant and that the subbun-
dles Eutab

T , Euta
T and Eut

T are preserved by the perturbation hS. Furthermore,
since det(dhS,τ |Eut

T (z)) = 1, we have for i = ut, uta, utab,

det(dSτ |Ei
T ) = det(dT |Ei

T ).

Hence, the three smallest Lyapunov exponents remain unchanged and so does
the sum of the two largest ones. This implies that Li(Sτ ) = Li(T ) for i = 3, 4, 5
and hence,

L1(Sτ ) < L2(Sτ ) = L3(Sτ ) = L4(Sτ ) = L4(T )

and L5(Sτ ) = 0. This proves Statement (6) of the lemma.
To prove Statement (7) we first notice that for any y ∈ G1, the arguments

similar to the above ones yield

dL1(Sτ |Ny)

dτ

∣∣∣
τ=0

= 0,
d2L1(Sτ |Ny)

dτ 2

∣∣∣
τ=0

< 0.

It follows that if τ0 > 0 is small enough, then L1(Sτ |Ny) < L1(T |Ny) for any
τ ∈ (0, τ0]. Let us fix such a τ . There is a subset of Ny on which Sτ has
two positive Lyapunov exponents λ1(z, Sτ ) > λ2(z, Sτ ) > 0. Given λS > 0,
consider the level set ΠS(y) = {z ∈ Ny : λ2(z, Sτ ) ≥ λS}. If λS is sufficiently
small this set has positive Lebesgue measure. Set ΠS = ΠS(y)×G1, where the
set G1 is defined by (4.7). Clearly, ΠS is invariant under Sτ . Since N0 ≥ 20k0,
we obtain by (4.4) that 20k0m(ΠS∩ΩS) ≤ m(ΠS). Furthermore, by Statement
(5) and definition of ΠS, for any z ∈ ΠS we have that λ2(z, Sτ ) ≥ λS and the
lemma follows. �

4.2. Construction of the map R.
We shall obtain the map R as a small perturbation of the map S by a

diffeomorphism hS, i.e., R = hR ◦ S. We use some ideas from [2, 9] and
construct hR as a composition of rotations in the F ta-subspace along pieces of
orbits so that the total rotation is π/2. This allows us to interchange the F t-
and F a-directions making the Lyapunov exponents along these directions to
be close to each other.

Let us briefly outline the construction. It starts with a choice of the Rokhlin-
Halmos tower for S within an invariant set Γ′ of positive measure where at
every point the map S has two positive Lyapunov exponents along the Eut

T -
subspace. The tower of height 7K+k0 consists of disjoint subsets called floors,
where K > 0 is a given number and k0 is given by(4.3). We then consider a
subtower Γ ⊂ Γ′ of height 2K+k0. The number K should be sufficiently large
to ensure that the k0 floors in the middle of Γ are disjoint from ΩS and Ω0

and consist of “good” points z in the sense that every vector v ∈ Eut
T -subspace

expands by about eiλ times under dSi and contracts by about e−iλ under dS−i
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for any i ≥ K/2. We then approximate these k0 floors by finitely many sets
of a special type – in our global coordinate system these sets are cylinders.
We obtain the perturbation hR as a composition of finitely many maps where
each of these maps rotates the core of the corresponding cylinder by the angle
π/2k0 in the F ta-subspace at each level so that the total rotation is π/2.

Now consider a “good” orbit, which starts at a point z on the bottom of
the subtower Γ, and a vector v ∈ Euta(z). If v is close to the Eut-subspace,
then the length of the ut-component of dRKv = dSKv becomes at least about
eKλ times longer than the length of v. Since dS does not contract vectors in
the Euta-subspace very much during the remaining k0 +K steps, the length of
the ut-component stays about the same. If v is close to the Ea

T -subspace, the
length of the a-component of v does not change under the map dRK = dSK .
During the next k0 iterations the vector dRKv is rotated by π/2 degree into the
Et-subspace. During the next K iterations the length of the vector becomes at
least about eKλ times longer. It follows that every vector in Euta(z) expands
by about eKλ times under dR2K+k0 . Thus we obtain a set on which R has
three positive Lyapunov exponents.

To effect this construction let λ = λS and Π = ΠS be as in Statement (7) of
Lemma 4.1. Given K > 0, let

(4.9)

Λ′ = Λ′(K) ={z ∈ Π : log ‖dSk(z, v)‖ − kλ ≥ −0.1kλ,

log ‖dS−k(z, v)‖+ kλ ≤ 0.1kλ

for all v ∈ Eut
S (z), ‖v‖ = 1 and all |k| ≥ 0.5K},

and let also

Λ = Λ(K) =

k0−1⋂
i=0

S−i(Λ′(K)),(4.10)

where k0 > 0 is given by (4.3). Note that m(Λ′(K))→ m(Π) as K →∞ and
hence, m(Λ(K)) → m(Π) as K → ∞. Therefore, given a number δQ > 0, we
can choose K so large that

Kλ ≥ max{5k0λ, 10 log 2, −10k0 log(1− δQ)},(4.11)

λm(Π) + 40 log(1− δQ)m(Π \ Λ) > 0,(4.12)

20m(Π \ Λ) ≤ m(Π).(4.13)

Note that if z ∈ Λ(K) then for n ≥ 0.5K and v ∈ Eut
S (z),

‖dSn(z, v)‖ ≥ e0.9nλ‖v‖.
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Set

(4.14) Λ∗ = Λ \
k0−1⋃
i=0

S−i(Ω0 ∪ ΩS)

(recall that Ω0 and ΩS are given by (4.2) and (4.4) respectively). By Lemma 4.1 (7),

(4.15) m(ΩS ∩ Π) ≤ m(Π)/20k0.

Furthermore, by choosing the numbers ν and σ in (4.1) appropriately, we may
assume that

(4.16) m(Ω0 ∩ Π) ≤ m(Π)/20k0.

Combining (4.13), (4.14), (4.16) and (4.15), we find that

m(Λ∗) ≥ ((1− 0.05)− 0.05− 0.05)m(Π) ≥ 0.8m(Π).

By the Rokhlin-Halmos Lemma (see [15]), given K > 0, one can choose a
measurable set Γ′ ⊂ Π such that Si(Γ′)∩Γ′ = ∅ for any −K ≤ i ≤ 6K+k0−1,
i 6= 0 and

m
(6K+k0−1⋃

i=−K

Si(Γ′)
)
≥ 0.9m(Π).(4.17)

Set

Γ0 = {Sj(z) : z ∈ Γ′, 0 ≤ j ≤ 5K − 1, Sj(z) ∈ Λ∗, Si(z) /∈ Λ∗ for i < j}.

In other words, Γ0 is the set of first entries to Λ∗ of trajectories {Si(z)}5K−1
i=0

with z ∈ Γ′. By Lemma 4.1 (5), both sets Λ and Π are of the form

Λ = ProjN(Λ)×G1, Π = ProjN(Π)×G1

and hence so is the set Γ0, i.e., Γ0 = ProjN(Γ0)×G1. Let

(4.18) Γi = Si(Γ0), Γ =

K+k0−1⋃
i=−K

Γi.

Clearly, the sets {Γi} are pairwise disjoint for i = −K, . . . ,K + k0 − 1. We
approximate the set Γ0 by finitely many disjoint sets Σ0j of the form

Σ0j = BFu(uj, r
′
j)×BF s(sj, r

′′
j )×BF ta((tj, aj), rj)×BF b(b0, α1),

where

zj = (uj, sj, tj, aj, bj) ∈M, r′j ≥ rj, r
′′
j ≥ rjη

k0 , j = 1, . . . , J.
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For i = −K, . . . ,K + k0 − 1, let

Σij = Si(Σ0j), ∆i =
J⋃
j=1

Σij.

We can choose the sets Σ0j in such a way that

Σij ∩ Σkl = ∅
for (i, j) 6= (k, l), −K ≤ i, k ≤ K + k0, 1 ≤ j, l ≤ J and that

Σij ∩ (Ω0 ∪ ΩS) = ∅
for 0 ≤ i ≤ k0 − 1, 0 ≤ j ≤ J . It follows that for i = 1, . . . , k0, the set ∆i is
an approximation of Γi and Γi ∩ (Ω0 ∪ΩS) = ∅. We may assume that for each
i = 0, . . . , k0,

m(Γi4∆i) ≤ 0.05 max{m(Γi),m(∆i)}.(4.19)

Note that each set Σij is a cylinder in the form described in Sublemma 4.5
below. Applying this sublemma with ∆ = Σij, we obtain a map ρij and a
subcylinder Σ′ij ⊂ Σij such that ‖ρij − Id ‖ ≤ δQ and

(4.20) m(Σ′ij)/m(Σij) ≥ 3/4.

Furthermore, restricted to Σ′ij, the map ρij is the rotation by the angle π/2k0

along the F t × F a-subspace and is the identity outside Σij. In fact, by the
construction of the sets Σ′ij (see Sublemma 4.5 below), we can assume that
S(Σ′ij) = Σ′i+1,j for i = 0, . . . , k0 − 1. Let

(4.21) ΩR =

k0−1⋃
i=0

∆i, ∆′i =
J⋃
j=1

Σ′ij.

Hence, by (4.20) and by definition of ∆i and ∆′i, we have

(4.22) m(∆′i)/m(∆i) ≥ 3/4.

Then define hR = ρij on Σij, and hR = Id otherwise. Clearly, hR is a C∞

volume preserving diffeomorphism. Moreover, dhR preserves Euta
T bundle and

det(dhR|Euta
T (z)) = 1 for any z ∈M. We define the map R = hR ◦ S. Some of

the properties of R are described in the following lemma.

Lemma 4.2. The following statements hold:

(1) ‖R− T‖C1 ≤ δQ and R is homotopic to Id;
(2) R = T on the sets N × (Y \ G0) and Ω0; in particular, R is a gentle

perturbation of T ;
(3) R satisfies Statements (3)–(5) of Proposition 3.1;
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(4) for any (a, b) ∈ G0, the set N × Ib, where Ib = {(a′, b) : a′ ∈
BFa(a0, α0)}, is R-invariant and for y /∈ G0 the set Ny is R-invariant;

(5) for every z ∈M,

Euta
R (z) = Euta

S (z) = Euta
T (z),

det(dR|Euta
R (z)) = det(dS|Euta

S (z)) = det(dT |Euta
T (z));

(6) for α2 = 0.9α1, y′ = (a, b′), y2 = (a, b′′) ∈ BFa(a0, α1)× BF b(b0, α2) we
have ProjN×BFa (a0,α1)R(x, t, a, b′) = ProjN×BFa (a0,α1)R(x, t, a, b′′), where
ProjN×BFa (a0,α1) is the projection onto the set N×BFa(a0, α1) given by
ProjN×BFa (a0,α1)(x, t, a, b) = (x, t, a);

(7) L2(R) < L3(R) and hence,

L1(R) < L2(R) < L3(R) = L4(R) = L4(T ), L5(R) = 0;

(8) there exist a number λR > 0 and a subset ΠR = (ProjN×BFa (a0,α1)ΠR)×
BF b(b0, α2) of positive measure such that m(ΠR) ≥ 20k0m(ΠR∩Ωi) for
i = R, S, and at any z ∈ ΠR, R has three positive Lyapunov exponents
λ1(z, R), λ2(z,R), λ3(z,R) ≥ λR along the Euta

R = Euta
T subbundle.

Proof. Statements (1)–(6) follows immediately from the construction of hR.
In particular, the fact that α2 = 0.9α1 follows from Statement (4) of Sub-
lemma 4.5.

Now we prove Statements (7) and (8).
Set ∆∗0 = ∆′0 ∩ Λ, where ∆′0 is given by (4.21), and Λ is given by (4.10) (we

shall see later that ∆∗0 is not empty and indeed has positive measure). Then
set

U1 = R−K∆∗0, U2 = ∆0 \∆∗0,

U3 = Rk0((∆0 ∩ Λ) \∆∗0), U4 = Rk0(∆0 \ Λ).

Let U = U1 ∪ U2 ∪ U3 ∪ U4 and R̄ = Rβ : U → U be the first return map
where β = β(z) is the first return time of the point z ∈ U to U under R. By
Poincarẽs Recurrence Theorem, the map R̄ is defined for almost every z ∈ U .
In the proof below, for any z ∈ U , we shall assume that v ∈ Euta

R (z) = Euta
S (z).

Let ∧k(Euta
S (z)) denote the exterior power of Euta

S (z) and

∧k(dR|Euta
S (z)) : ∧k(Euta

S (z))→ ∧k(Euta
S (R(z)))

be the exterior power of dR|Euta
S (z). It is easy to see that if there exists c ≥ 1

such that ‖dRv‖ ≥ c‖v‖ for any v ∈ Euta
S (z), then

(4.23)
‖∧3(dR|Euta

S (z))‖
‖∧2(dR|Euta

S (z))‖
≥ c.
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First we consider the case when z ∈ U1. Then β(z) ≥ 2K + k0. By Sub-
lemma 4.3 below and (4.11),

log ‖dR̄zv‖ ≥ 0.9Kλ− 0.5 log 2 + log ‖v‖ ≥ 0.85Kλ+ log ‖v‖.
Hence,

log ‖∧3(dR|Euta
S (z))‖ − log ‖∧2(dR|Euta

S (z))‖ ≥ 0.85Kλ.

Note that by definition, Γ0 ⊂ Λ∗. Since Σij ∩ (Ω0 ∪ΩS) = ∅ for 0 ≤ i ≤ k0− 1
and 0 ≤ j ≤ J , we have that ∆′0 ∩ Λ = ∆′0 ∩ Λ∗ ⊃ ∆0 ∩ Γ0. Hence, by (4.22)
and (4.19),

m(U1) =m(∆∗0) = m(∆′0 ∩ Λ) ≥ m(∆′0 ∩ Γ0) = m(∆′0)−m(∆′0 \ Γ0)

≥m(∆′0)−m(∆0 \ Γ0) ≥ 3

4
m(∆0)− 0.05m(∆0) = 0.7m(∆0).

It follows that

(4.24)

∫
U1

(
log ‖∧3(dR̄|Euta

S (z))‖ − log ‖∧2(dR̄|Euta
S (z))‖

)
dm(z)

≥0.85Kλ · 0.7m(∆0).

Now we consider the case when z ∈ U2. Note that ‖dR − dT‖C1 ≤ δQ
andEuta

R (z) = Euta
R (z) for all z. Then R̄|U2 = Rk0|U2 and

log ‖dR̄zv‖ ≥ k0 log(1− δQ) + log ‖v‖.
In addition, by definition of ∆∗0 and (4.22),

m(U2) = m(∆0 \∆∗0) ≤ m(∆0 \∆′0) ≤ 1

4
m(∆0).

We conclude that

(4.25)

∫
U2

(log ‖∧3(dR̄|Euta
S (z))− log ‖∧2(dR̄|Euta

S (z))‖
)
dm(z)

≥k0 log(1− δQ) · 0.25m(∆0).

If z ∈ U3, then z ∈ Rk0(Λ) ⊂ Λ′, where Λ′ is defined in (4.9), and β(z) > K.
Hence, Rk(z) = Sk(z) for 0 ≤ k ≤ β(z) and

dR̄|Eut
S (z) = dSβ(z)|Eut

S (z).

Therefore if v ∈ Eut
S (z), then ‖dR̄zv‖ ≥ 0.9Kλ‖v‖, and if v ∈ Ea

S(z), then
‖dR̄v‖ = ‖dSβ(z)v‖ = ‖v‖. It follows that ‖dR̄zv‖ ≥ ‖v‖ for any v ∈ Euta

S (z).
Hence, by (4.23) with c = 1, we have

(4.26)

∫
U3

(
log ‖∧3(dR̄|Euta

S (z))‖ − log ‖∧2(dR̄|Euta
S (z)‖

)
dm(z) ≥ 0.
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Finally, let us consider the case z ∈ U4. Let β′(z) be the smallest positive
integer such that Rβ′(z)(z) ∈ Λ for some 0 ≤ β′(z) ≤ β(z) and let β′(z) = β(z)
if there is no such integer. Denote by

U ′4 = U4 ∩ {z : β(z)− β′(z) ≥ 0.5K}, U ′′4 = U4 ∩ {z : β(z)− β′(z) < 0.5K}.

Since β(z) ≥ K for z ∈ U ′′4 , we have β(z) ≤ 2β′(z). Note that by (4.9), if
n ≥ 0.5K then ‖dSnz v‖ ≥ ‖v‖ for any z ∈ Λ and v ∈ Euta

S (z). Also note that
R = S on Π \ ΩR. If z ∈ U ′4 then

‖dR̄zv‖ = ‖dRβ(z)
z v‖ = ‖dSβ(z)−β′(z)

Rβ
′(z)(z)

(dRβ′(z)
z v)‖ ≥ ‖dRβ′(z)

z v)‖.

Hence, by Statement (6) of the lemma,

log ‖dR̄zv‖ ≥ log ‖Rβ′(z)
z (v)‖ ≥ β′(z) log(1− δQ) + log ‖v‖.

If z ∈ U ′′4 then

log ‖dR̄zv‖ ≥ β(z) log(1− δQ) + log ‖v‖ ≥ 2β′(z) log(1− δQ) + log ‖v‖.

It follows that∫
U4

(
log ‖∧3(dR̄|Euta

S (z))‖ − log ‖∧2(dR̄|Euta
S (z)‖

)
dm(z)

≥2 log(1− δQ)

∫
U4

β′(z) dm(z).

Furthermore, if z ∈ U4, then z,R(z), . . . , Rβ′(z)−1(z) ∈ Π\Λ. Hence, we obtain∫
U4
β′(z) dm(z) ≤ m(Π \ Λ) and therefore

(4.27)

∫
U4

(
log ‖∧3(dR̄|Euta

S (z))‖ − log ‖∧2(dR̄|Euta
S (z)‖

)
dm(z)

≥2 log(1− δQ)m(Π \ Λ).

Note that the sets RK(U1), R−k0(U3) and R−k0(U4) form a partition of ∆0 and
hence, by (4.24)–(4.27), we have∫

U

(
log ‖∧3(dR̄|Euta

S (z))‖ − log ‖∧2(dR̄|Euta
S (z))‖

)
dm(z)

≥0.595λKm(∆0) + 0.25k0 log(1− δQ)m(∆0) + 2 log(1− δQ)m(Π \ Λ).
(4.28)

Using (4.11), and then Sublemma 4.4 and (4.12), we conclude that the right
hand side of (4.28) is greater than

0.57λKm(∆0) + 2 log(1− δQ)m(Π \ Λ)

≥0.0627λm(Π)− 0.05λm(Π) ≥ 0.0127λm(Π) > 0.
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Hence,∫
U

log ‖∧3(dR̄|Euta
S (z))‖ dm(z) >

∫
U

log ‖∧2(dR̄|Euta
S (z))‖ dm(z).

Denote Π′ = ∪∞i=−∞Ri(U). Clearly we have∫
U

log ‖∧3(dR̄|Euta
S (z))‖ dm(z) =

∫
Π′

log ‖∧3(dR|Euta
S (z))‖ dm(z)

=

∫
Π′

(λ1(z,R) + λ2(z, R) + λ3(z,R)) dm(z)

and ∫
U

log ‖∧2(dR̄|Euta
S (z))‖ dm(z) =

∫
Π′

log ‖∧2(dR|Euta
S (z))‖ dm(z)

=

∫
Π′

(λ1(z,R) + λ2(z, R)) dm(z).

It follows that L3(R|Π′) > L2(R|Π′), where Li is defined by (2.2). Since
R = S outside Π′, we obtain that L3(R) > L2(R). Furthermore, there is an
R-invariant subset of Π′ on which R has three positive Lyapunov exponents.
Note that the subbundles Eutab

T and Euta
T are preserved by dS and dR and that

det(dS|Ei
T ) = det(dT |Ei

T ) for i = uta, utab. Hence, the two smallest Lyapunov
exponents remain unchanged, and so does the sum of the three largest ones.
This implies that Li(Sτ ) = Li(T ) for i = 4, 5 and hence,

L1(R) < L2(R) < L3(R) = L4(R) = L4(S) = L4(T ) and L5(R) = 0.

Statement (7) of the lemma follows.
To prove Statement (8) observe that the above argument applies to the sets

Ũ = U
⋂

N ×BFa(a0, α1)×BF b(b0, α2)

and

Π̃′ = Π′
⋂

N ×BFa(a0, α1)×BF b(b0, α2).

Denote by λ1(z,R), λ2(z,R) and λ3(z,R) the positive Lyapunov exponents of
z ∈ Π′. Given λR > 0, consider the level set

ΠR = {z ∈ Π̃′ : λ1(z,R), λ2(z,R), λ3(z,R) ≥ λR}.

If λR is sufficiently small, this set has positive Lebesgue measure. Note that
by (4.11), we have K ≥ 5k0. Furthermore, by definition of sets Γ′, Γ0 and
ΩR, we have that every piece of an orbit visiting all set Si(Γ′) with −K ≤
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i ≤ 6K + k0 − 1 consecutively meets ΩR exactly k0 times. Moreover, ΩR is
contained in the union of these Si(Γ′). Since R preserves volume, we have that

m(ΠR) ≥ (7K + k0)m(ΠR ∩ ΩR) > 20k0m(ΠR ∩ ΩR).

Since N0 > 20k0, we obtain by (4.5), that m(ΠR) ≥ 20k0m(ΠR ∩ ΩS). This
completes the proof of the lemma. �

4.3. Sublemmas.
We shall prove now the technical sublemmas used in the previous subsection.

Sublemma 4.3. Let z ∈ R−K(∆∗0). Then for any v ∈ Euta
S (z),

‖dR̄z(v)‖ ≥
√

2

2
‖v‖e0.9Kλ.

Proof. Note that hR = Id on ∪−1
i=−KΓi and hence, RK(z) = SK(z). Since dhS

preserves the subbundle Eut(S), we have Eut
S (z) = Eut

T (z). Write v = vut + va,
where vut ∈ Eut

T (z) and va ∈ Ea
T (z).

We first consider the case ‖va‖ ≤
√

2

2
‖v‖. Note that ‖vut‖ ≥

√
2

2
‖v‖. Since

dSKvut ∈ Eut
S (SK(z)) and SK(z) ∈ Λ, using (4.9) and (4.10), we find that

‖vut‖ = ‖dS−K(dSKvut)‖ ≤ ‖dSKvut‖e−0.9Kλ.

Hence,

‖dRKv‖ = ‖dSKv‖ ≥ ‖dSKvut‖ ≥ ‖vut‖e0.9Kλ ≥
√

2

2
‖v‖e0.9Kλ.

Note that atRK(z), . . . , RK+k0−1(z) the map dhR is a rotation and that dS|Euta
S (Ri(z)) =

dT |Euta
T (Ri(z)) is non-contracting for i = K, . . . ,K + k0 − 1. Therefore,

dRk0|Euta
S (RK(z)) is non-contracting. Further, since

{Ri(z)}βi=K+k0
∩ ΩR = ∅

and RK+k0(z) ∈ Λ′, we have that the map

dRβ−(K+k0)|Eut
S (RK+k0(z)) = dSβ−(K+k0)|Eut

S (RK+k0(z))

is expanding and the map

dRβ−(K+k0)|Euta
S (RK+k0(z))

is non-contracting. It follows that

‖dR̄v‖ =‖dRβ−(K+k0)

RK+k0 (z)
(dRK+k0

z v)‖ = ‖dSβ−(K+k0)

RK+k0 (z)
(dRK+k0

z v)‖

≥‖dRK+k0
z v‖ ≥ ‖dRK

z v‖ = ‖dSKz v‖ ≥
√

2

2
‖v‖e0.9Kλ.
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We now consider the case ‖va‖ ≥
√

2

2
‖v‖. Note that dSKva ∈ Ea

S(SK(z)). By

construction of hR, we see that dRk0
SK(z)

rotates the vector in Eta
S (SK(z)) =

Eta
T (SK(z)) by π/2. It means that

dRK+k0va = dRk0(dSKva) ∈ Eut
S (RK+k0(z)).

Using the fact that RK+k0(z) ∈ Λ we obtain

‖dR̄va‖ =‖dRβ−(K+k0)

RK+k0 (z)
(RK+k0(z)va‖ ≥ ‖dRK(dRK+k0va)‖

≥‖dRK+k0va‖e0.9Kλ ≥ ‖va‖e0.9Kλ ≥
√

2

2
‖v‖e0.9Kλ.

This implies the desired result. �

Sublemma 4.4. m(Γ0) ≥ 0.12K−1m(Π) and hence, m(∆0) ≥ 0.11K−1m(Π).

Proof. Denote by

Γ̂′ =
5K−1⋃
i=0

Si(Γ′), Γ
′
=

6K+k0−1⋃
i=−K

Si(Γ′)

(recall that Γ′ is given by the Rokhlin-Halmos Lemma in Subsection 4.2). Since
K ≥ 5k0, we have that

m(Γ̂′)

m(Γ
′
)

=
5K

7K + k0

≥ 5K

7K + 0.2K
≥ 50

72
.

By (4.17),

m(Γ̂′) ≥ (50/72) · 0.9m(Π) = 0.625m(Π).

For z ∈ Γ′ denote by O(z) = {Qi(z) : i = 0, . . . , 5K + k0 − 1} the piece of the
orbit from 0 to 5K − 1 that start at z. Let

Γ̂′1 = {O(z) : z ∈ Γ′, O(z) ∩ Λ 6= ∅}, Γ̂′2 = {O(z) : z ∈ Γ′, O(z) ∩ Λ = ∅}.
Clearly {Γ̂′1, Γ̂′2} forms a partition of Γ̂′ and Γ̂′2 ⊂ Π \ Λ. Therefore by (4.13),

m(Γ̂′1) =m(Γ̂′)−m(Γ̂′2) ≥ m(Γ̂′)−m(Π \ Λ)

≥0.625m(Π)− 0.025m(Π) = 0.6m(Π).

Note that Γ0 consists of exactly one point from each orbit O(z) in Γ̂1. It follows
that

m(Γ0) ≥ m(Γ̂1)

5K
≥ 0.6m(Π)

5K
≥ 0.12K−1m(Π).

By (4.19),

m(∆0) ≥ m(Γ0)−m(Γ0 \∆0) ≥ 0.95m(Γ0) ≥ 0.11K−1m(Π).
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This is the desired result. �

Sublemma 4.5. For any δ > 0, there is θ0 > 0 such that for any θ ∈ [0, θ0],
any positive numbers s, s′, s′′, s′′′ satisfying s′, s′′, s′′′ ≥ s and any cylinder ∆ ⊂
R5 of the form

∆ = ∆s,s′,s′′,s′′′ = B1(z1, s
′)×B2(z2, s

′′)×B34((z3, z4), s)×B5(z5, s
′′′)

there exists a set ∆′ ⊂ ∆ of the form

∆′ = ∆′s0,s′0,s′′0 ,s′′′0 = B1(z1, s
′
0)×B2(z2, s

′′
0)×B34((z3, z4), s0)×B5(z5, s

′′′
0 )

and a C∞ map ρ : R5 → R5 with the following properties:

(1) ρ = rθ on ∆′ where rθ is the rotation

rθ(z1, z2, z3, z4, z5) = (z1, z2, z3 cos θ − z4 sin θ, z3 sin θ + z4 cos θ, z5);

(2) ρ = Id outside ∆;
(3) m(∆′)/m(∆) ≥ 3/4;
(4) s0/s, s

′
0/s
′, s′′0/s

′′, s′′′0 /s
′′′ > 9/10.

(5) ‖ρ− Id ‖C1 ≤ δ;

Proof. Due to the particular form of our cylinders there is a number κ ∈
(0, 1/10) such that for any r > 0 and r′, r′′, r′′′ > r we have that

m(∆r(1−κ),r′(1−κ),r′′(1−κ),r′′′(1−κ))

m(∆rr′r′′r′′′)
≥ 3/4.

Consider a family of C∞ functions ζr = ζr(s) : R+ → R+, for r ≥ 1 such that

(a) ζ1(s) = 1 if s ∈ [0, 1− κ] and ζ1(s) = 0 if s ≥ 1;
(b) ζr(s) = 1 if s ∈ [0, r − 1) and ζr(s) = ζ1(s− r + 1) if s ≥ r − 1.

Define the map ρ by ρ(z) = rθ(τ,s,s′,s′′,s′′′)(z), where

θ(τ, s, s′, s′′, s′′′) = τζs′/s(z1/s
′)ζs′′/s(z2/s

′′)ζ1

(√z2
3 + z2

4

s

)
ζs′′′/s(z5/s

′′′),

and r(s,s′,s′′,s′′′) is given in Condition (1) of the sublemma. By construction, ρ
satisfies Statements 1 and 2. Statement 3 and 4 follows from the choice of the
number κ and the definition of ζ1 and ζr. To obtain Statement 5, we first note
that if τ = 0 then ρ = Id and that the C1 norm of ρ changes smoothly with τ .
It is also easy to check that the C1 norm of the rotation is independent of the
choice of the size s if s′ = s′′ = s′′′ = s, and the C1 norm does not increase if
we increase s′, s′′ and s′′′. �
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4.4. Construction of the map Q.
We shall obtain the map Q as a small perturbation of the map R by a

diffeomorphism hQ, i.e., Q = hQ ◦ R. The construction of hQ is similar to the
construction of the map hR: it is a composition of rotations in the F ba-subspace
along pieces of orbits so that the total rotation is π/2.

Let λ = λR and Π = ΠR be as in Lemma 4.2 (8). Note that for any
z ∈ Π the map R has three positive Lyapunov exponents λ1(z,R), λ2(z, R),
and λ3(z,R) ≥ λ along the Euta

R = Euta
T subbundle. Consider the set

Λ′ = Λ′(K) = {z ∈ Π : log ‖dRk
zv‖ − kλ ≥ −0.1kλ,

log ‖dR−kz v‖+ kλ ≤ 0.1kλ,

for all v ∈ Euta(z,R), ‖v‖ = 1, and all |k| ≥ 0.5K}

and define the set Λ and the number K > 0 similar to (4.10)-(4.13). Set

Λ∗ = Λ \
k0−1⋃
i=0

R−i(Ω0 ∪ ΩS ∪ ΩR).

Similar to (4.16), we may assume

m(Ω0 ∩ Π) ≤ m(Π)/20k0.

Hence, by the choice of K, and Lemma 4.2 (4), we have

m(Λ∗) ≥ ((1− 0.05)− 0.05− 0.05− 0.05)m(Π) = 0.8m(Π).

We then construct the set Γ′, Γ0 in a way similar to the previous subsection
and set Γi = Ri(Γ) for −K ≤ i ≤ K + k0 − 1. Finally, we approximate Γ0 by
the sets of the form

Σ0j = BFu(u, t′j)×BF s(s, t
′′
j )×BF t(t, t

′′
j )×BFab((aj, bj), rj),

where r′j, r
′′′
j ≥ rj, r

′′
j ≥ rjη

k0 and set for i = −K, · · · , K + k0 − 1,

Σij = Ri(Σ0j), ∆i =
J⋃
j=1

Σij.

Define ΩQ =
⋃k0−1
i=0 ∆i. Applying Sublemma 4.5 to each set Σij we obtain a

map ρij and then set hQ = ρij on each Σij and hQ = Id otherwise. Finally,
define Q = hQ ◦R.

Lemma 4.6. The map Q satisfies all the properties stated in Proposition 3.2.
In particular, L1(Q) < L2(Q) < L3(Q) < L4(Q) = L4(T ).
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Proof. Statements (1)–(4) of Proposition 3.2 follow from the construction of
the map Q. The proof that L3(Q) < L4(Q) is the same as in the proof of
Lemma 4.2.

Note that the subbundle Eutab
T is preserved by both Q and T and that both

maps T and Q are volume preserving. Hence the smallest Lyapunov exponents
remains unchanged, and so does the sum of the four largest ones. It follows that
Q has four positive Lyapunov exponents along the Eutab

R = Eutab
T subbundle on

a set of positive measure. �

5. Construction of the maps Pn: Proof of Proposition 3.3

Recall that the map Q is pointwise partially hyperbolic with one-dimensional
stable, one-dimensional unstable and 3-dimensional central subbundles. The
stable and unstable subbundles are integrable to (one-dimensional) transversal
stable and unstable foliations. The central subbundle corresponds to the flow
direction and two directions, F a and F b, in the Y -space and is integrable to a
smooth central foliation. However Q does not have the accessibility property:
for (a, b) /∈ G0 the accessibility class of every point z = (u, s, t, a, b) is the
2-torus (X, t, a, b).

For each n, we construct the map Pn to be a sufficiently small gentle pertur-
bation of Q such that Pn has the accessibility property on an invariant open

set Un, and is stably accessible on an open set Ũn (see (3.5)). These sets are
nested and exhaust the set G, and the sequence of maps Pn converges to a map
P that is accessible on G. In our construction we use methods similar to those
in [8] and [14], and we obtain each Pn as a result of three gentle perturbations
ht, ha and hb that ensure accessibility in the flow direction and two directions
in Y respectively.

5.1. Construction of sets Un.
In our construction we will heavily exploit the fact that the 2-torus Y has

a global coordinate system. This will enable us to define the sets Un in an
explicit and specific way, which will serve our goal. At this point we regard
the 2-torus Y as the square [0, 8] × [0, 8] whose opposite sides are identified.
For each n ≥ 1, consider the partition of Y into squares

Ẑ
(n)
ij =

[ i
2n
,
i+ 1

2n

]
×
[ j

2n
,
j + 1

2n

]
, i, j = 0, 1, . . . , 2n+3 − 1.

Without loss of generality we shall assume that the square G0, constructed in

Subsection 3.2, is contained in some Ẑ
(1)
i0j0

so that

d(G0, ∂Ẑ
(1)
i0j0

) ≥ 1/24 and d(C, Ẑ
(1)
i0j0

) > 2

(here C is the Cantor set constructed in (A1), see Subsection 3.2).
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Consider the open squares

Z
(n)
ij =

( i

2n
− 1

2n+2
,
i+ 1

2n
+

1

2n+2

)
×
( j

2n
− 1

2n+2
,
j + 1

2n
− 1

2n+2

)
,

Z̃
(n)
ij =

( i

2n
− 1

2n+5
,
i+ 1

2n
+

1

2n+5

)
×
( j

2n
− 1

2n+5
,
j + 1

2n
− 1

2n+5

)
.

Clearly, these squares have the same center as Ẑ
(n)
ij and Ẑ

(n)
ij ⊂ Z̃

(n)
ij ⊂ Z

(n)
ij .

For n ≥ 1 consider the set

Yn = {y ∈ Y : d(y, C) ≥ 1/2n−2}.

Since G0 ⊂ Y1, we let Y ′n be the connected component of Yn that contains G0.
Finally, consider the sets

Û1 = Ẑ
(1)
i0j0
, U1 = Z

(1)
i0j0

and Ũ1 = Z̃
(1)
i0j0

and for n > 1,

Ûn =
⋃

bZ(n)
ij ∩Y ′n 6=∅

Ẑ
(n)
ij , Un =

⋃
bZ(n)
ij ∩Y ′n 6=∅

Z
(n)
ij , Ũn =

⋃
bZ(n)
ij ∩Y ′n 6=∅

Z̃
(n)
ij .

It is clear that the sets Un and Ũn satisfy Conditions (A4)–(A6) in Subsec-
tion 3.4.

Let Ẑn = {Ẑ(n)
ij : Ẑ

(n)
ij ⊂ Ûn \ Ûn−1} and Zn = {Z(n)

ij : Ẑ
(n)
ij ∈ Ẑn}. Relabeling

elements of Zn we shall denote them by Z
(n)
1 , . . . , Z

(n)
kn

, and we shall use the

notations Ẑ
(n)
` and Z̃

(n)
` for the corresponding squares contained in Z

(n)
` . Thus

we have (see Figure 1)

Un = Un−1 ∪
( ⋃
Z

(n)
ij ∈Zn

Z
(n)
ij

)
= Un−1 ∪

( kn⋃
`=1

Z
(n)
`

)
.

Clearly, Ẑ
(n)
` ∩ Ẑ(m)

j = ∅ if (n, `) 6= (m, j) and hence, the collection of sets

{Ẑ(n)
` : n = 1, 2, . . . , ` = 1, . . . , kn} forms a countable partition of G up to a

set of measure 0 while the collection of sets {Z(n)
` : n = 1, 2, . . . , ` = 1, . . . , kn}

forms a cover of G of multiplicity at most 4.

Note that the requirement d(G0, ∂Ẑ
(1)
1 ) ≥ 1/24 yields that G0 ∩Z(n)

` = ∅ for
any n > 1 and ` = 1, . . . , kn.

Lemma 5.1. There is a labeling of the squares {Z(n)
` } by integers from 1 to

8 such that for any y ∈ G, the labels of the squares Z
(n)
` containing y are all

different. In particular, Z
(1)
1 can be labelled by 1.
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Z11 Z12

Z13 Z14 Z15

Cantor set

Z2

Z3

Figure 1. Sets Un and Un+1

Proof. For each odd number n > 0, we use 1, 2, 3, 4 to label the squares

{Z(n)
ij } ∈ Zn in such a way that Z

(n)
ij and Z

(n)
kl have the same label if i ≡

k(mod 2) and j ≡ l(mod 2). An alternative way of describing this process is

that we first label the 4 squares Ẑ
(n)
ij inside of some Ẑ

(n−1)
kl by the numbers 1

to 4, and then translate the square Ẑ
(n−1)
kl to all other such squares. We then

let Z
(n)
ij have the same labeling as Ẑ

(n)
ij . Clearly, for any y ∈ G, the label of

the squares Z
(n)
ij with Z

(n)
ij 3 y are all different. Hence, we obtain a labeling

on Zn by restriction.

For even n > 0, we use numbers 5 to 8 to label the squares {Z(n)
ij } in a

similar way. Since any squares Z
(n)
ij ∈ Zn and Z

(n+2)
kl ∈ Zn+2 are disjoint, we

obtain the desired labeling. �

5.2. Construction of maps Pn.
Let qj, j = 1, . . . , 8 be eight distinct periodic points of the Anosov automor-

phism A. There is ε0 > 0 such that BX(Alqj, ε0) ∩BX(Alqj′ , ε0) = ∅ whenever
j 6= j′ and l = −1, 0, 1. For each qj we choose three distinct periodic points
ptj, p

a
j , p

b
j ∈ BX(qj, ε0/3) for A. We shall assume that q1 = q and pi1 = pi for

i = t, a, b where q and pi are chosen as in the beginning of Section 3.4.
Denote by [qj, p

i
j] = V u(qj) ∩ V s(pij), i = t, a, b (where V s and V u are the

stable and unstable local manifolds respectively). For i = a, b, t and j =
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1, . . . , 8 consider the closed quadrilateral (u, s)A-path γij with the collection of

points qj, [qj, p
i
j], p

i
j, [pij, qj], and qj. In the case n = 1, we take γi1, i = a, b, t

as introduced in the beginning of Section 4.
Recall that η = ηA is the expanding rate of A along its unstable direction.

Clearly, η−1 is the contracting rate along the stable direction of A. Recall also
that κ is the function in (A2) such that κ = κ0 on U1 and | gradκ| < 1/4. We
have that the expanding rate of T |Ny along W u

T is ηκ(y) (here Ny is given by
(3.1)).

For n ≥ 1 let us choose a rectangle Z
(n)
` ∈ Zn and assume that it is labelled

by a number j. Consider the case n > 1 and let

η− = η−(n, `) = min{ηκ(y) : y ∈ Z(n)
` }

and

αiu = αiu(j) = d(pij, [p
i
j, qj]), αis = αis(j) = d(pij, [qj, p

i
j])(5.1)

ᾰiu = ᾰu(n, `) = αiu(j)/η−(n, `), ᾰis = ᾰs(n, `) = αis(j)/η−(n, `),

where we write ᾰs(n, `) instead of ᾰs(j, n, `) since j is determined by n and `
(see Figure 2).

q_j V^u(q_j )

V^s (q_j)

p_j^t

p_j^b

Pi_j^a
Pi_j^t

Pi_j^b

V^u(pb)

p_j^a V^u(pa)

V^u(pt)

Figure 2. Quadrilaterals

Next for i = t, a, b and j = 1, . . . , 8 we set

Πi
j = BFu(pij, α

i
u)×BF s(p

i
j, α

i
s), Π̆i

j = BFu(pij, ᾰ
i
u)×BF s(p

i
j, ᾰ

i
s).
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We shall assume that the points pij are chosen in such a way that all three

rectangles Πi
j, i = t, a, b, are pairwise disjoint. Hence, all the 24 rectangles Πi

j,
i = t, a, b, j = 1, . . . , 8 are pairwise disjoint.

Finally, we let

(5.2) εt = εt(n, `) = min{κ(y)/2 : y ∈ Z(n)
` }, ε̆t = ε̆t(n, j) = 5εt(n, j)/6.

In the case n = 1, we have Z
(1)
1 = U1. Choose liu and lis such that

A−l
i
u([pi1, q1]) ∈ BX(pi1, ν/2), Al

i
s([q1, p

i
1]) ∈ BX(pi1, ν/2),

where ν > 0 is given by (4.1). Then we set

αiu = αiu(1) = d(pij, A
−liu([ptj, qj])), αis = αis(1) = d(pij, A

lis([qj, p
t
j]))

with other quantities and sets to be defined in a similar way.

To effect our construction of the maps Pn, in addition to the squares Ẑ
(n)
ij ,

Z̃
(n)
ij and Z

(n)
ij constructed in the previous subsection, we need to consider for

n ≥ 1 the following squares:

Z̆
(n)
ij =

( i

2n
− 1

2n+3
,
i+ 1

2n
+

1

2n+3

)
×
( j

2n
− 1

2n+3
,
j + 1

2n
− 1

2n+3

)
;

Z̄
(n)
ij =

( i

2n
− 1

2n+4
,
i+ 1

2n
+

1

2n+4

)
×
( j

2n
− 1

2n+4
,
j + 1

2n
− 1

2n+4

)
as well as the following intervals:

Ĭn = J̆n =

(
− 5

2n+3
,

5

2n+3

)
, Īn = J̄n = (−9/2n+4, 9/2n+4),

În =

(
− 1

2n+1
,

1

2n+1

)
, Ĩn =

(
− 17

2n+5
,

17

2n+5

)
, In =

(
− 3

2n+2
,

3

2n+2

)
and

K̆ =

(
−1

8
, 1 +

1

8

)
, K̄ = (−1/16, 1 + 1/16),

K̂ = (0, 1) , K̃ = (−1/32, 1 + 1/32) , K = (−1/4, 1 + 1/4) .

We have that
Ẑ

(n)
ij ⊂ Z̃

(n)
ij ⊂ Z̄

(n)
ij ⊂ Z̆

(n)
ij ⊂ Z

(n)
ij

with similar relations for In and Jn.
Fix n ≥ 1 and choose C∞ functions φi and ψi on R for i = a, b, t satisfying:

· φi(r) = const. for r ∈ (−ᾰiu, ᾰiu) and ψi(r) = const for r ∈ (−ᾰis, ᾰis);
· φi(r) = 0 for |r| ≥ αiu, and ψi(r) = 0 for |r| ≥ αis;

·
∫ ±αiu

0
φi(τ)dτ = 0, and ψi(x) > 0 for any |x| < αis;

· ‖φi(·)‖Cn < 1 and ‖ψi(·)‖Cn < 1.
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Further, choose C∞ functions ξt and ξY supported on K and In respectively
such that:

· ξt(r) = const. for r ∈ K̆, and ξY (r) = const. for r ∈ Ĭn;
· ξt(r) > 0 for r ∈ K and ξY (r) > 0 for r ∈ In;
· ξt(r) = 0 for r /∈ K and ξY (r) = 0 for r /∈ In;
· ‖ξt‖Cn , ‖ξY ‖Cn < 1.

Finally, choose C∞ functions ζt and ζY supported on (−εt, εt) and In respec-
tively such that:

· ζt(r) = const. for r ∈ (−ε̆t, ε̆t) and ζY (r) = const. for r ∈ Ĭn;
· ζt(r) > 0 for r ∈ (εt, εt) and ζY (r) > 0 for r ∈ In;
· ζt(r) = 0 for r /∈ (εt, εt) and ζY (r) = 0 for r /∈ In;
· ‖ζ‖Cn < 1.

Let (a0, b0) = (a0(n, `), b0(n, `)) be the center of the square Z
(n)
` .

In this section we shall use the coordinate system z = (u, s, t, a, b) = (x, t, a, b)
introduced in (3.2) and (3.3) with the origin at (paj , 1/2, a0, b0). In this coordi-
nate system the interval K is in the symmetric form (−3/4, 3/4). Define

Ωa = Ωa
n,` = {z = (x, r, â, b̂) : x ∈ Πa

j , |r| ≤ εt, (â, b̂) ∈ Z(n)
` }

(recall that j labels the square Z
(n)
` ) and for each β > 0 a vector field Xa =

Xa
β,n,` by

(5.3) Xa(z) = βζY (b̂)ζt(r)ψ
a(s)

(
−ξ′Y (â)

∫ u

0

φa(τ)dτ, 0, 0, ξY (â)φa(u), 0
)
,

(here ξ′Y denotes the derivative of ξY ). The choice of εt guarantees that T (Ωa)∩
Ωa = ∅. It is clear that Xa is constant on the set

Ω̆a = {z = (x, r, â, b̂) : x ∈ Π̆a
j , |r| ≤ ε̆t, (â, b̂) ∈ Z̆(n)}.

We define the map han,` = haβ,n,` on Ωa to be the time-1 map of the flow
generated by Xa, and we set han,` = Id on the complement of Ωa. It is easy to
see that the vector field Xa is divergence free, the differential dhan,` preserves
Eua
T , and det(dhan,`|Eua

T (z)) = 1.
Then we use the same coordinate system as above but with the origin at

(pbj, 1/2, a0, b0). Define

Ωb = Ωb
n,` = {z = (x, r, â, b̂) : x ∈ Πb

j, |r| ≤ εt, (â, b̂) ∈ Z(n)
` }

and for each β > 0 a vector field Xb = Xb
β,n,` by

(5.4) Xb(z) = βζY (â)ζt(r)ψ
b(s)
(
−ξ′Y (b̂)

∫ u

0

φb(τ)dτ, 0, 0, 0, ξY (b̂)φb(u)
)
.
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Let hbn,` = hbβ,n,` on Ωb be the time-1 map of the flow generated by Xb and let

hbn,` = Id on the complement of Ωb. It is clear that Xb is divergence free, dhbn,`
preserves Eub

T , and det(dhbn,`|Eub
T (z)) = 1.

Now we use the coordinate system but with the origin at (ptj, 1/2, a0, b0).
Define

Ωt = Ωt
n,` = {z = (x, r, y) : x ∈ Πt

j, r ∈ K, y ∈ Z
(n)
` }

and for each β > 0 a vector field X t = X t
β,n,` by

(5.5) X t(z) = βζY (a)ζY (b)ψt(s)
(
−ξ′t(r)

∫ u

0

φt(τ)dτ, 0, ξt(r)φ
t(u), 0, 0

)
.

We define the map htn,` = htβ,n,` on Ωt to be the time-1 map of the flow generated
by X t, and we set htn,` = Id on the complement of Ωt. Obviously, X t is
divergence free, dhtn,` preserves Eut

T and det(dhtn,`|Eut
T (z)) = 1.

Our construction guarantees that all {Qi
n,`} are pairwise disjoint. For n =

1, 2, . . . define hn = hβ,n by

hβ,n = hbβ,n,kn ◦ h
a
β,n,kn ◦ h

t
β,n,kn ◦ · · · ◦ h

b
β,n,1 ◦ haβ,n,1 ◦ htβ,n,1.

Then we let P1 = hβ1,1,1 ◦Q and define Pn inductively by setting Pn = hβn,n ◦
Pn−1 for some suitable choice of {βn} which will be determined inductively
later.

5.3. Properties of maps Pn: Proof of Proposition 3.3.
Statements (2) and (4) of Proposition 3.3 and the fact that the map Pn is

homotopic to the identity follow directly from the construction.
Note that the unperturbed map T is uniformly partially hyperbolic on each

set Un with smooth 3-dimensional central foliation and is dynamically coherent.
Note also that for each n > 0, by choosing βn in (5.3)-(5.5) sufficiently small,
we can ensure that ‖hn − Id ‖Cn is arbitrarily small. Hence, we can choose a
positive sequence {δ′n} such that δ′n ≤ δ′1/2

n−1 and if hn and Pn satisfy

(5.6) ‖Pn − Pn−1‖Cn ≤ δ′n and ‖hn − Id ‖Cn ≤ δ′n,

then Statement (3) of the proposition holds. In particular, Pn is pointwise
partially hyperbolic on an open set G; it is uniformly partially hyperbolic on
Un with 3-dimensional central foliation and is dynamically coherent. It remains
to show how to choose sequences of positive numbers δn and θn such that Pn
also satisfies Statements (5) and (6) of the proposition.

We denote by W c
Pn

(z) the center manifold of Pn at the point z ∈M. Suppose

a square Z
(n)
` is labelled by a number j. Let qj be the periodic point chosen as

in the previous subsection and z0 = z0(n, `) = (qj, 1/2, a0(n, `), b0(n, `)). We

denote by W c
Pn

(z0, K, Z
(n)
` ) the connected component of W c

Pn
(z0) ∩ (X ×K ×
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Z
(n)
` ) that contains z0. We shall also use similar notations W c

Pn
(z0, K̆, Z̆

(n)
` ),

etc. Note that for all ` and n,

W c
Pn(z0, K, Z

(n)
` ) = W c

Q(z0, K, Z
(n)
` ) = W c

T (z0, K, Z
(n)
` ).

Recall that γij is the quadrilateral (u, s)A-path with the collection of points qj,

[qj, p
i
j], p

i
j, [pij, qj], and qj (for i = a, b, t and j = 1, . . . , 8) introduced in the

beginning of Subsection 5.2. In particular, γi1 = γi is given in the beginning of
Section 4.

For any n ≥ 1, ` = 1, . . . , kn, and j = 1, . . . , 8 such that the label of Zn
` is j,

we consider a quadrilateral (u, s)Pn-path γ̂aj with the initial point z1 such that
ProjX γ̂

a
j = γaj . More precisely, γ̂aj = {z1, . . . , z5} where

(5.7)

z2 = V u
Pn(z1) ∩ V sc

Pn(paj , 1/2, a0, b0),

z3 = V s
Pn(z2) ∩ V uc

Pn (paj , 1/2, a0, b0),

z4 = V u
Pn(z3) ∩ V sc

Pn(z1),

z5 = V s
Pn(z4) ∩ V uc

Pn (z1).

This path defines a map Θ = Θa = Θa
n,`,Pn

, given by Θ(z1) = z5. Note that
z4 ∈ V sc

Pn
(z1) and z5 ∈ V s

Pn
(z4). Hence, z5 ∈ V sc

Pn
(z1). Since also z5 ∈ V uc

Pn
(z1),

we obtain that z5 ∈ V c
Pn

(z1). This implies that Θ maps W c
Pn

(z0, K, Z
n
` ) into

itself.
We contract the (u, s)Pn-path γ̂aj to a line segment. Namely, let σ : [0, 1]→

V u
Pn

(z1) be a parametrization by the arc length of the part of the curve V s
Pn

(z1)
from z1 to z2 so that σ(0) = z1 and σ(1) = z2. For each τ ∈ [0, 1], the new
path γ̂aj (τ) = {z1(τ), . . . , z5(τ)} is such that z1(τ) = z1, z2(τ) = σ(τ) and zi(τ)
for i = 3, 4, 5 are obtained in the way similar to (5.7). Thus we obtain a map
Θτ = Θa

τ,n,`,Pn
, given by Θτ (z1) = z5. It maps W c

Pn
(z0, K, Z

n
` ) into W c

Pn
(z0)

and depends continuously on τ ∈ [0, 1].
Clearly, γ̂aj (1) = γ̂aj and hence, Θa

1,n,`,Pn
= Θa

n,`,Pn
. Furthermore, the path

γ̂aj (0) degenerates to a path on V s
Pn

(z1) that starts from z1 = z2, goes to z3 = z4

and then returns to z5 = z1. Hence, Θ0 = Id.
We stress that Θa

n,`,Pn
depends only on han,`, since γ̂aj consists of stable and

unstable leaves of (qj, 1/2, y) and (paj , 1/2, y) with y ∈ Z(n)
` that are not per-

turbed by any other perturbations han′,`′ if (n′, `′) 6= (n, `). On the other hand,
if τ ∈ (0, 1), then Θa

τ,n,`,Pn
may depend on other perturbations han′,`′ .

By using the paths γbj and γtj respectively, we can define the maps Θb
τ =

Θb
τ,n,`,Pn

and Θt
τ = Θt

τ,n,`,Pn
for τ ∈ [0, 1] in a similar way. Furthermore, for

any gentle perturbation P \ of Pn we can also construct the maps Θa
n,`,P \

and

Θa
τ,n,`,P \

from W c
P \

(z0, K, Z
n
` ) to itself. Clearly, they have properties similar to
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those of the maps Θa
n,`,Pn

and Θa
τ,n,`,Pn

. Note that V u
P \

, V s
P \

and V c
P \

depend

continuously on the perturbation P \ as long as P \ is a gentle perturbation of
T with P \ = T outside some fixed Un and with ∠(Ei

P \
(z), Ei

T (z)) sufficiently
small for all z ∈ Un and i = u, s, c. It follows that Θi

n,`,P \
and Θi

τ,n,`,P \
,

for i = u, s, c depend continuously on P \ as well. Since the lengths of all
the quadrilateral paths used in the construction of the maps Θi and Θi

τ are
uniformly bounded from above, the continuity is uniform with respect to z.

Given j = 1, . . . 8 and a point z = (x, t, y), we can find a (u, s)T -path γT (z)
connecting z to the point z′ = (qj, t, y) whose length does not exceed 2d(x, qj)
(indeed, such a path can be constructed by using at most three points z, z1

and z′). This generates a map ΨT = ΨT,j from G to {qj} × K × G given by
ΨT (z) = z′.

Furthermore, given a gentle perturbation P \ of T and a point z ∈ Z(n)
` , we

can find a (u, s)P \-path γP \(z), which is close to γT (z) and connect z to a point

z′ = z′(P \) ∈ W c
P \

(z0(n, `), K, Z
(n)
` ) and we can then define ΨP\(z) = z′(P \).

Again the path can be chosen to consists of at most three point z, z1 = z1(P \)
and z′ = z′(P \), and both z1(P \) and z′(P \) depend continuously on P \.
Hence, ΨP \ depends continuously on P \ as long as P \ is a gentle perturbation
of T with P \ = T outside some fixed Un and with ∠(Ei

P \
(z), Ei

T (z)) sufficiently
small for all z ∈ Un and i = u, s, c. We stress that the lengths of all the paths
used in the construction of the map Ψ are uniformly bounded from above for
all z and all gentle perturbations P \. In particular, the continuity is uniform
with respect to z.

Given a set Γ ⊂M and a gentle perturbation P \ of T , let

(5.8)
AP \(Γ) = {z ∈M : there is y ∈ Γ such that

y is accessible to z via a (u, s)P \-path}.

For n ≥ 1 denote by εn = min{1/2n+5, ε̆t(n, `), ` = 1, . . . , kn} where ε̆t(n, `) is
given by (5.2).

We shall now show how to choose the sequence {δn}. Recall that U1 =

Z
(1)
i0j0

= Z
(1)
1 and Ũ1 = Z̃

(1)
1 . We can choose a number θ0 > 0 such that for

any gentle perturbation P \ of T with ∠(Ei
P \

(z), Ei
T (z)) ≤ 2θ0(z) for i = s, c, u

and z ∈ U1 the maps ΨP \ and Θi
τ,1,1,P \

are well defined. We also assume that
the number δQ in Proposition 3.2 is so small that the map P0 = Q satisfies
∠(Ei

P0
(z), Ei

T (z)) ≤ θ0 and d(Θi
τ,1,1,P0

(z), z) ≤ ε1/4 for z ∈ G0, τ ∈ [0, 1] and
i = s, c, u.
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Now we choose a number θ1 such that 0 < θ′1 ≤ θ0/2 and if ∠(Ei
P \

(z), Ei
P0

(z)) ≤
2θ′1 for i = s, c, u and z ∈ N × Z(1)

1 , then

(5.9) d(ΨP \(z),ΨP0(z)) ≤ 1/28, z ∈ N × Z(1)
1 .

Finally, we may assume that the number δ′1 in (5.6) is chosen so small that if

‖P1 − P0‖ ≤ δ′1, then ∠(Ei
P1

(z), Ei
P0

(z)) ≤ θ′1 for i = s, c, u and z ∈ N × Z(1)
1 .

Now we set δ1 = min{δ′1, δ′′1} and θ1 = min{θ′1, θ′′1} where the numbers δ′′1
and θ′′1 are given by Lemma 5.2 below. For any gentle perturbation P \ of

P1 with ∠(Ei
P \

(z), Ei
P1

(z)) ≤ θ′1 for i = s, c, u and z ∈ N × Z
(1)
1 , we have

∠(Ei
P \

(z), Ei
P0

(z)) ≤ 2θ′1 and therefore (5.9) holds. Since d(Θi
τ,1,1,P0

(z), z) ≤
ε1/4, we can apply Lemma 5.2 to obtain that d(Θi

τ,2,`,P1
(z), z) ≤ ε2/4 for all

z ∈ W c
P1

(z0(2, `), K, Z
(2)
` ), i = u, s, c, τ ∈ [0, 1] and ` = 1, . . . , k2. Moreover,

AP \(z0) ⊃ W c(z0(1, 1), K̄, Z̄
(1)
1 ).

Since the distance between the boundaries ∂Z̄
(1)
1 and ∂Z̃

(1)
1 is 1/26, (5.9) implies

that
ΨP \(N × Z̃

(1)
1 ) ⊂ W c

P \(z0(1, 1), K̄, Z̄
(1)
1 ).

By definition, z and ΨP \(z) are (u, s)P \-accessible and hence, we have that

AP \(z0(1, 1)) ⊃ N × Z̃(1)
1 .

In particular, for P \ = P1, the inclusion holds and so does (5.9).
Proceeding inductively, we assume that for j = 1, . . . , n − 1, the maps Pj,

and the numbers δj and θj are chosen such that (5.6) and Statements (5)
and (6) of the proposition hold. Moreover, we assume that for all i = u, s, c,
τ ∈ [0, 1], ` = 1, . . . , kj+1,

d(ΨPj(z),ΨPj−1
(z)) ≤ 1/2j+7 for all z ∈ N × Z(j)

` ,(5.10)

d(Θi
τ,j+1,`,Pj

(z), z) ≤ εj+1/4 for all z ∈ W c
Pj

(z0(j + 1, `), K, Z
(j+1)
` ).(5.11)

Now we choose 0 < θ′n ≤ θn−1/2 in such a way that for any gentle perturbation

P \ of Pn−1, if ∠(Ei
P \

(z), Ei
Pn−1

(z)) ≤ 2θ′n for i = u, s, c, z ∈ N × Z
(n)
` , and

` = 1, . . . , kn then

(5.12) d(ΨP \(z),ΨPn−1(z)) ≤ 1/2n+7

for all z ∈ N × Z
(n−1)
` and ` = 1, . . . , kn. Reducing δ′n in (5.6) further if

necessary we may assume that if ‖Pn−Pn−1‖ ≤ δ′n then ∠(Ei
Pn

(z), Ei
Pn−1

(z)) ≤
θ′n for i = u, s, c and z ∈ Un. Then we take δn = min{δ′n, δ′′n} and θn =
min{θ′n, θ′′n}, where θ′′n and δ′′n are given in Lemma 5.2.

Since 0 < θn ≤ θn−1/2, Statement (5) of the proposition holds.
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Let P \ be a gentle perturbation of Pn such that ∠(Ei
P \

(z), Ei
Pn

(z)) ≤ θn for
i = u, s, c and z ∈ Un. Then ∠(Ei

P \
(z), Ei

Pn−1
(z)) ≤ 2θ′n ≤ θn−1 for z ∈ Un.

By Statement (6), we get that P \ has the accessibility property on Ũn−1.

Since Pn−2 = T on N × Z
(n)
` , applying (5.10) with j = n − 1, we find

that d(ΨPn−1(z),ΨT (z)) ≤ 1/2n+6 for all z ∈ N × Z(n−1)
` and ` = 1, . . . , kn−1.

Therefore by (5.12), we obtain that

d(ΨP \(z),ΨT (z)) ≤ 1/2n+6 + 1/2n+7 < 1/2n+5.

Applying (5.11) with j = n−1, we conclude that the requirement of Lemma 5.2

below holds. Therefore by the lemma and the fact that d(∂Z̃
(n)
` , ∂Z̄

(n)
` ) =

1/2n+5, we obtain following the same line of arguments as in the case n = 1
that

AP \(z0(n, `)) ⊃ N × Z̃(n)
`

for all ` = 1, . . . , kn. In other words, P \ has the accessibility property on

N × Z̃(n)
` for ` = 1, . . . , kn. By the construction,

Ũn =
(
Ũn−1

)⋃( kn⋃
l=1

N × Z̃(n)
`

)
.

Note that any intersection Z̃
(n)
` ∩ Z̃

(n)
`′ or Z̃

(n)
` ∩ Z̃

(n−1)
`′ , if not empty, contains

a rectangle of width 1/2n+4. Hence, the intersection of any two sets among

Ũn−1 and N× Z̃(n)
` , ` = 1, . . . , kn, contains a nonempy open set whenever they

intersect. Since Ũn is connected, we obtain accessiblity of P \ on Ũn.
Applying the above result with P \ = Pn, we obtain that Pn has the acces-

siblity property on Ũn. Moreover, (5.12) for P \ = Pn gives (5.10), and (5.13)
below gives (5.11) for j = n.

5.4. A technical lemma. We prove here some of our main technical state-
ments.

Lemma 5.2. Suppose for some n > 0, d(Θi
τ,n,`,Pn−1

(z), z) ≤ εn/4 for all i =

u, s, c, τ ∈ [0, 1], z ∈ W c
Pn−1

(z0(n, `), K, Z
(n)
` ), ` = 1, . . . , kn. Then there are

δ′′n > 0 and θ′′n > 0 such that if Pn satisfies ‖Pn − Pn−1‖ ≤ δ′′n, then we have

(5.13) d(Θi
τ,n+1,`,Pn(z), z) ≤ εn+1/4 as z ∈ W c

Pn(z0(n+ 1, `), K, Z
(n+1)
` ),

for all i = u, s, c, τ ∈ [0, 1], ` = 1, . . . , kn+1; and for any gentle perturbation
P \ of Pn with

∠(Ei
P \(z), Ei

Pn(z)) ≤ θ′′n for all z ∈ N × Z(n)
` , i = u, s, c,
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we have

(5.14) AP \(z0(n, `)) ⊃ W c
P \(z0(n, `), K̄, Z̄

(n)
` ) for all ` = 1, . . . , kn.

In particular, (5.14) holds with P \ = Pn.

Proof. Take θ′′n ≤ θn−1/2 such that for any gentle perturbation P \ of Pn−1, if

∠(Ei
P \ , E

i
Pn−1

) ≤ 2θ′′n on N × Z(n)
` , i = u, s, c,

then (5.13) holds with Pn = P \, and

(5.15) d(Θi
τ,n,`,P \(z), z) ≤ εn/2 as z ∈ W c

P \(z0(n, `), K, Z
(n)
` ),

for all i = u, s, c, τ ∈ [0, 1], and ` = 1, . . . , kn. (5.15) is possible because of

the assumption of the lemma, while (5.13) is possible because on N × Z(n+1)
` ,

Pn−1 = T and therefore d(Θi
τ,n+1,`,Pn−1

(z), z) = 0. Then we take δ′′n ≤ δn−1/2

such that if ‖Pn − Pn−1‖ ≤ δ′′n, then ∠(Ei
Pn
, Ei

Pn−1
) ≤ θ′′n on N × Z

(n)
` for

i = u, s, c. Hence, (5.15) is satisfied with P \ = Pn.

Now we only need to prove (5.14) for one square Z
(n)
` .

Define a continuous function Φ = Φ
(1)
Pn

: R→ W c
Pn

(z0) by using Θ = Θa
n,`,Pn

and Θτ = Θa
τ,n,`,Pn

such that the image of Φ consists of points accessible to
z0 = (qj, 1/2, a0, b0). Namely,

(1) Φ(0) = z0;
(2) For a positive integer n if Φ(n− 1) = (qj,

1
2
, a, b0) for some a ∈ In, then

we let Φ(n) = Θ(Φ(n− 1));
(3) For a negative integer −n if Φ(−n+ 1) = (qj,

1
2
, a, b0) for some a ∈ In,

then we let Φ(−n) = Θ−1(Φ(−n + 1)); in other words, Φ(−n) is the
terminate point of the quadrilateral (u, s)Pn-path γ̂aj with the initial
point Φ(−n+ 1) such that πX γ̂

a
j = γaj with the direction reversed;

(4) For any real number n + τ , where n ∈ Z and τ ∈ [0, 1) if Φ(n) =
(qj,

1
2
, a, b0) then we let Φ(n+ τ) = Θτ (Φ(n)).

In fact, if we denote by brc the greatest integer that is less than or equal to r,
then we have

Φ
(1)
Pn

(r) = Θa
r−brc ◦ (Θa)brc(z0).

Since, limτ→1 Θa
τ = Θa and limτ→0 Θa

τ = Id we have that Φ
(1)
Pn

is a continuous
function of r. Furthermore,

Φ
(1)
Pn

(R) ⊂ APn(z0(n, `)).

By Lemma 5.3 below,

Φ
(1)
Pn

(Z) ⊂ {(qj, 1/2, a, b0) : a ∈ In, } ⊂ W c
Pn(z0, K, Z

(n)
` ).
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Hence, by (5.15) with P \ = Pn,

Φ
(1)
Pn

(R) ⊂ {(qj, t, a, b) : |t− 1/2| < εn/2, a ∈ In(εn/2), |b− b0| ≤ εn/2},
where In(εn) denotes the εn-neighborhood of In in R. It is also clear that

lim
n→±∞

Φ
(1)
Pn

(±n) = (qj, 1/2, a0 ∓
3

2n+2
, b0),

where the two points on the right hand side is on the boundary of Z
(n)
` . Hence,

we can choose an integer N = Na
n,` > 0 such that Φ

(1)
Pn

(±N) /∈ π−1
Y Z̆

(n)
` . In

other words, Φ
(1)
Pn

([−N,N ]) forms a continuous curve near the line segment

{(qj, 1/2, a, b0) : a ∈ In} and crosses Z̆
(n)
` in F a direction.

Now we use the maps Θ = Θb
n,`,Pn

and Θτ = Θb
τ,n,`,Pn

to define a function

Φ = Φ
(2)
Pn

: R2 → W c
Pn

(z0) such that the image of Φ consists of the points
accessible to z0. Namely, given r ∈ R, let

(1) Φ(r, 0) = Φ
(1)
Pn

(r);
(2) For a positive integer n if Φ(r, n − 1) is defined, we let Φ(r, n) =

Θ(Φ(r, n− 1));
(3) For a negative integer −n if Φ(r,−n+ 1) is defined, we let Φ(r,−n) =

Θ−1(Φ(r,−n+ 1));
(4) For any real number n + τ , where n ∈ Z and τ ∈ [0, 1) if Φ(r, n) is

defined, we let Φ(r, n+ τ) = Θτ (Φ(r, n)).

In other words,

Φ
(2)
Pn

(r, r′) = Θb
r′−br′c ◦ (Θb)br

′c(Φ
(1)
Pn

(r))

or equivalently,

Φ
(2)
Pn

(r, r′) = Θb
r′−br′c ◦ (Θb)br

′c ◦Θa
r−brc ◦ (Θa)brc(z0).

It is clear that Φ
(2)
Pn

is continuous, and Φ(R2) ⊂ A(qj, 1/2, a0, b0). Furthermore,
for r ∈ R,

Φ(r,Z) ⊂ {Φ(1)
Pn

(r) + (0, 0, 0, 0, b) : πF bΦ
(1)
Pn

(r) + b ∈ Jn}.
Hence, by (5.15) with P \ = Pn,

Φ(r,R) ⊂ {(qj, t, a, b) : |t− 1/2| ≤ εn, (a, b) ∈ Z(n)
` (εn)},

where Z
(n)
` (εn) denotes the εn-neighborhood of Z

(n)
` in Y . This means that

Φ(R2) is contained in the εn-neighborhood of the set {qj} × {1/2} × Z(n)
` .

Similarly, for every r ∈ R there exists N(r) = N b
n,`(r) such that the set

Φ(r, [−N(r), N(r)]) forms a continuous curve near Jn(r) and crosses Z̆
(n)
` . By

continuity, we can take N = N b
n,` such that Φ(r, [−N,N ]) crosses Z̆

(n)
` for all
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r ∈ [−N,N ]. Moreover, we may assume that Na
n,` = N b

n,`, since otherwise we
may use the larger one instead. By continuity, we obtain that the four curves

Φ(−N, [−N,N ]), Φ(N, [−N,N ]), Φ([−N,N ],−N), Φ([−N,N ], N)

form a closed curve. The projection of the curves under ProjY is outside Z̆
(n)
` .

Hence, by Sublemma 5.4, we get that ProjY {Φ(r, r′) : r, r′ ∈ [−N,N ]} covers

Z̆
(n)
` .
Finally, we use the maps Θ = Θt

n,`,Pn
and Θτ = Θt

τ,n,`,Pn
to define a function

Φ = Φ
(3)
Pn

: R3 → W c
Pn

(z0) such that the image of Φ consists of the points
accessible to z0. See Figures 3 and 4. Namely, given r, r′ ∈ R, let

(1) Φ(r, r′, 0) = Φ
(2)
Pn

(r, r′);
(2) For a positive integer n if Φ(r, r′, n− 1) is defined, we let Φ(r, r′, n) =

Θ(Φ(r, r′, n− 1));
(3) For a negative integer−n if Φ(r, r′,−n+1) is defined, we let Φ(r, r′,−n) =

Θ−1(Φ(r, r′,−n+ 1));
(4) For any real number n + τ , where n ∈ Z and τ ∈ [0, 1) if Φ(r, r′, n) is

defined, we let Φ(r, r′, n+ τ) = Θτ (Φ(r, r′, n)).

We have

Φ
(3)
Pn

(r, r′, r′′) = Θt
r′′−br′′c ◦ (Θt)br

′′c ◦Θb
r′−br′c ◦ (Θb)br

′c ◦Θa
r−brc ◦ (Θa)brc(z0).

The function Φ
(3)
Pn

is continuous and Φ(R3) ⊂ A(z0).
We also have that there exists N > 0 such that Φ maps the surfaces of the

cube [−N,N ]× [−N,N ]× [−N,N ] into outside the corresponding surfaces of

W c
Pn

(z0, K̆, Z̆
(n)
` ) and inside the corresponding surfaces of the 2εn-neighborhood

of W c
Pn

(z0, K, Z
(n)
` ). By Sublemma 5.4, {Φ(r, r′, r′′) : r, r′, r′′ ∈ [−N,N ]} covers

W c
Pn

(z0, K̆, Z̆
(n)
` ), and we obtain that

A(z0) ⊃ W c
Pn(z0, K̆, Z̆

(n)
` ).

We may reduce δ′′n again if neccesary such that any gentle perturbation P \ of
Pn satisfying ‖P \ − Pn‖ ≤ δ′′n is so close to the unperturbed map Pn that the
map Θi

P \
= Θi

n,`,P \
and Θi

τ,P \
= Θi

τ,n,`,P \
are well defined on for i = u, s, c and

τ ∈ [0, 1], and close to Θi
Pn

= Θi
n,`,Pn

and Θi
τ,Pn

= Θi
τ,n,`,Pn

respectively. Then

we define Φ
(3)

P \
: R3 → W c

P \
(z0, K, Z

(n)
` ) by

Φ
(3)

P \
(r, r′, r′′) = Θt

{r′′},P \ ◦ (Θt
P \)
br′′c ◦Θb

{r′},P \ ◦ (Θb
P \)
br′c ◦Θa

{r},P \ ◦ (Θa
P \)
brc(z0),

where {r} = r−brc denotes the fractional part of r. If θ′′n is small enough and

∠(Ei
Pn

(z), Ei
P \

(z)) ≤ θ′′n for i = u, s, c and all z ∈ N×Z(n)
` , then Θi

P \
and Θi

τ,P \
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Wc

a0,b0

z0

t direction

NxY

Y

F(N)

Figure 3. The action of the function Φ(3) on the central direc-
tion of z0

are sufficiently close to Θi
Pn

and Θi
τ,Pn

respectively for i = a, b, t. Thus we can
obtain that

d(Φ
(3)

P \
(r, r′, r′′),Φ

(3)
Pn

(r, r′, r′′)) ≤ 1/2n+4,

which is the distance between ∂Z̆
(n)
k and ∂Z̄

(n)
k , for r, r′, r′′ ∈ [−N,N ]. In other

words, Φ
(3)

P \
(r, r′, r′′) maps the surface of the cube [−N,N ]× [−N,N ]× [−N,N ]

to the surfaces that are close to and outside the corresponding surfaces of

W c
P \

(z0, K̄, Z̄
(n)
` ). Hence, by Sublemma 5.4, the set

{Φ(3)

P \
(r, r′, r′′) : r, r′, r′′ ∈ [−N,N ]}

covers W c
P \

(z0, K̄, Z̄
(n)
` ) implying that

AP \(z0(n, `)) ⊃ W c
P \(z0(n, `), K̄, Z̄

(n)
` ).

The desired result follows. �

Sublemma 5.3. For each n > 0, there exists δ′′n > 0 such that if ‖hn−Id ‖Cn ≤
δ′′n > 0, then for any a ∈ In,

(1) Θa((qj, 1/2, a, b0)) = (qj, 1/2, a
′, b0) with a′ < a;

(2) b ∈ Jn, t ∈ (1/2− εt, 1/2 + εt), Θb((q, t, a, b)) = (q, t, a, b′) with b′ < b;
(3) b ∈ Jn, t ∈ K, Θt((q, t, a, b)) = (q, t′, a, b) with t′ < t.
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a direction

(a0,b0)

Znl

b direction

zbarnl

F(N,r)

F(r,N)

F(!r,N) F(r,!N)

Figure 4. The function Φ

Proof. The proof is similar to that of Lemma B.4 in [8].
We prove the first statement. Consider the coordinate system in Ωa with

the origin at (paj , 1/2, a0, b0) which therefore has local coordinates (0, 0, 0, 0, 0).
We may assume that the local coordinates of the points qj, [q, paj ] and [paj , q]
are (u0, s0), (0, s0) and (u0, 0) respectively, where u0 = αau and s0 = αas are
given by (5.1).

We first consider the case n > 1 and note that the path γ̂aj is contained in the
closure of Ωa

n,` (see Subsection 5.2) for n > 1 and ` = 1, . . . kn. We have that
Pn|Ωa

n,` = han,` ◦ T . Furthermore, since han,` = Id on the curve V u
T (qj, t, y) for

t ∈ K and y ∈ Z(n)
` , we have that V u

Pn
(qj, t, y) = V u

T (qj, t, y). It follows that if
(u0, s0, 0, a1, 0) are the local coordinates of the point z1 = (qj, 1/2, a1, b0), then
(0, s0, 0, a2, 0) are the local coordinates of the point z2 = ([qj, p

a
j ], 1/2, a2, b0)

with a2 = a1.
Recall that by (5.3), the a-component of the vector field Xa(z) is equal to

βφa(u)ψa(s)ζt(t)ζY (b)ξY (a) and that φa(u), ψa(s), ζt(t) and ζY (b) are constants

for |u| ≤ ᾰau, |s| ≤ ᾰas , |t| ≤ ε̆t and b ∈ J̆n respectively. Recall also that the
map ha preserves the s-, t- and b-coordinates. Therefore, if |u| ≤ ᾰau, |s| ≤ ᾰas ,

|t| ≤ ε̆t, a ∈ In, and b ∈ J̆n, then

(5.16) ha(u, s, t, a, b) = (u′, s, t, a+ c(a, t), b),
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where u′ is close to u provided β is sufficiently small, and c(a, t) > 0 if |t| ≤
εt and c(a, t) = 0 otherwise. Moreover, if |t| ≤ ε̆t, then c(a, t) = c(a) is
independent of t. Also, if u = 0 then u′ = 0 since in this case

∫ u
0
φa(r)dr = 0

and therefore the u-component of Xa is zero. Since αas/ηκ(a, b) ≤ ᾰas , we have

that for |s| ≤ αas and b ∈ J̆n,

Pn(0, s, t, a, b) = ha
(
T (0, s, t, a, b)

)
=(0, s/ηκ(a, b), t+ κ(a, b), a+ c(a, t), b).

Note that Pn = T near the orbit of (paj , t, y) and outside Ωa. Hence, under the
iterations of Pn all points of the set {(0, s, t, a, b) : |s| ≤ αas} have fixed u- and
b-coordinates and the same t- and a-coordinates. Therefore, this set belongs
to V s(paj , t, a, b). Since z2 ∈ V s(z3), the fact that(0, s0, 0, a2, 0) are the local
coordinates of the point z2 yields that (0, 0, 0, a3, 0) are the local coordinates
of the point z3 = (paj , 1/2, a3, b0) with a3 = a2.

By similar arguments, we can show that if |u| ≤ ᾰau, a ∈ In and b ∈ J̆n, then

(5.17)
P−1
n (u, 0, t, a, b) = T−1

(
(ha)−1(u, 0, t, a, b)

)
=(u′′/ηκ(a, b), 0, t− κ(a′, b), a′, b),

for some u′′ close to u, where by (5.16), a′ satisfies a′+c(a′, t) = a. If we choose
δ′′n > 0 small enough, then ‖han − Id ‖ ≤ δ′′n implies that u′′ is sufficiently close
to u and therefore |u′′|/ηκ(a, b) ≤ ᾰau. Hence, under the iterations of P−1

n all
points of the set {(u, 0, t, a′, b) : |u| ≤ ᾰau} have fixed s- and b-coordinates and
the same t- and a-coordinates. Therefore, this set belongs to V u(paj , t, a, b). On
the other hand, by the definition of ha and the choice of αau, we have ha = Id
if |u| ≥ αau. Therefore, since u0 = αau,

(5.18)
P−1
n (u0, 0, t, a

′, b) = T−1(u0, 0, t, a
′, b)

=(u0/ηκ(a, b), 0, t− κ(a′, b), a′, b).

Comparing (5.18) with (5.17) we obtain that the point with local coordi-
nates (u0, 0, t, a

′, b) is on the unstable local manifold of the point with lo-
cal coordinates (0, 0, t, a, b), where a′ + c(a′, t) = a and c(a′, t) > 0. So if
z4 = ([paj , qj], t, a4, b0) ∈ V u(z3), then z4 has local coordinates (u0, 0, 0, a4, b0)
with a4 < a3.

Since the path on V s(qj) is unperturbed, the fact that z4 ∈ V s(z5) yields
that the point z5 = (qj, 1/2, a5, b0) has local coordinates (u0, s0, 0, a5, b0) with
a5 = a4. This implies that in the the case n > 1 we have a1 = a2 = a3 > a4 =
a5.

In the case n = 1 similar arguments can be used with the following mod-
ification. To obtain the a-coordinate of the points on V s(paj , 1/2, a, b0) and
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V u(paj , 1/2, a, b0), we need to consider P `u

1 = ha ◦ T `u and P `s

1 = ha ◦ T `s re-
spectively, (recall that near the pathes γa1 and on the set Ωa, the map T is
unperturbed, and hence Q = T ,) and therefore get a1 = a2 ≥ a3 > a4 = a5.
The assumption κ = κ0 on U1 guarantees that on these local manifolds the
t-coordinates are the same. This implies Statement (1).

In the above arguments, we can actually replace b0 by any b ∈ Jn and the
number 1/2 by any t ∈ (1/2−εn, 1/2+εn) and can still obtain the same results.
Therefore, Statement (2) can be proved by switching the roles of a and b.

Statement (3) can be proved in the same way. In particular, since ht pre-
serves a- and b-coordinates and the stable and unstable local manifolds for T
at (qj, t, y) and (ptj, t, y) are unperturbed except by ht, the arguments can be

carried over on the submanifold Ny (see (3.1)) for each y ∈ Z(n)
` . �

Sublemma 5.4. Let Φ : In → In be a homeomorphism of the n-dimensional
cube In and ∂iI

n be the faces of In, i = 1, . . . , 2n. Assume that Φ(∂iI
n) ⊂

B(∂iI
n, ε) \ In for i = 1, . . . , 2n, where B(·, ε) is the ε-neighborhood of the set.

Then In ⊂ Φ(In).

Proof. This is a variation of a general topology thoerem, which says that in
the setting if Φ(∂iI

n) ⊂ B(∂iI
n, ε) for i = 1, . . . , 2n, then In \ B(∂iI

n, ε) ⊂
Φ(In). �

Appendix A

Let M be a compact smooth Riemannian manifold and S ⊂ M an open
subset. Let also h be a C1 diffeomorphism that is pointwise partially hyperbolic
on S. Further, let Un ⊂ S, n ≥ 1 be a sequence of open subsets such that:

(1) Un ⊂ Un ⊂ Un+1 and
⋃

Un = S;
(2) each Un is h-invariant;
(3) h|Un is uniformly partially hyperbolic.

The goal of this Appendix is to prove the following statement. Suppose there
is a sequence of diffeomorphisms hn such that h0 = h, hn = hn−1 on M\Un.
Clearly, Un is hn-invariant, and hn = h on M\Un.

Theorem A.1. Let hn be a sequence of diffeomorphisms for which h0 = h and
hn = hn−1 on M\Un, so that Un is hn-invariant and hn = h on M\Un. Then
there exists a sequence of positive numbers εn such that if ‖hn−hn−1‖C1 ≤ εn,
then

(1) each map hn is uniformly partially hyperbolic on Un and hence pointwise
partially hyperbolic on S;

(2) the limit H = lim
n→∞

hn exists and is a C1 pointwise partially hyperbolic

diffeomorphism of S.
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We need the following technical statements.

Lemma A.2. Given a sequence of positive numbers {an}n≥1 satisfying

∞∑
n=1

an ≤
1

4
,

we have

∞∏
n=1

(1 + an) ≤ 1 + 2
∞∑
n=1

an and
∞∏
n=1

(1− an) ≥ 1− 2
∑

an.

Lemma A.3. Set

Mn = sup
x∈M

‖dxhn‖ and mn = inf
x∈M

m(dxhn).

If εn < m0/2
n+4, then Mn ≤ 2M0 and mn ≥ 0.5m0.

Proof. Note that |Mn −Mn−1| ≤ εn and |mn −mn−1| ≤ εn. Applying Lemma
A.2, one can show by induction that

1− 1

2n+2
≤ Mn

Mn−1

, and
mn

mn−1

≤ 1 +
1

2n+2
.

The desired result follows. �

Given two diffeomorphisms f and g with invariant distributions Ef and Eg
on S respectively, let

∆f,g,Ef ,Eg(x) = max

{∣∣∣∣ ‖dxg|Eg(x)‖
‖dxf |Ef (x)‖

− 1

∣∣∣∣ , ∣∣∣∣m(dxg|Eg(x))

m(dxf |Ef (x))
− 1

∣∣∣∣} ,
εf,g(x) =‖dxg − dxf‖, θEf ,Eg(x) = ∠(Ef (x), Eg(x)).

(A.19)

Lemma A.4. Assume that

sup
x∈M

‖dxf‖ ≤M := 2M0, inf
x∈M

m(dxf) ≥ m := 0.5m0.

Then for any x ∈ S,

∆f,g,Ef ,Eg(x) ≤ 1

m
[εf,g(x) + CMθEf ,Eg(x)],

where C > 0 is a constant which depends only on the Riemannian metric of
M.
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Proof. We have that

|‖dxg|Eg(x)‖ − ‖dxf |Ef (x)‖| ≤ |‖dxg|Eg(x)‖ − ‖dxf |Eg(x)‖|
+ |‖dxf |Eg(x)‖ − ‖dxf |Ef (x)‖|
≤ ‖dxg − dxf‖+ ‖dxf‖dist(Eg(x), Ef (x))

≤ ‖dxg − dxf‖+ C‖dxf‖∠(Eg(x), Ef (x)),

for some constant C > 0 depending only on the Riemannian metric of M. Di-
viding both sides of the inequality by ‖dxf |Ef (x)‖ and noting that ‖dxf |Ef (x)‖ ≥
m(dxf), we obtain that∣∣∣∣ ‖dxg|Eg(x)‖

‖dxf |Ef (x)‖
− 1

∣∣∣∣ ≤ ‖dxg − dxf‖
m(dxf)

+ C
‖dxf‖
m(dxf)

∠(Eg(x), Ef (x))

≤ 1

m
[εf,g(x) + CMθEf ,Eg(x)]

Similarly one can show that

∣∣∣∣m(dxg|Eg(x))

m(dxf |Ef (x))
− 1

∣∣∣∣ has the same upper bound.

�

Lemma A.5. Suppose that f is uniformly partially hyperbolic on a compact
invariant subset Λ ⊂ S. Pick numbers 0 < λ < λ̃ ≤ 1 ≤ µ̃ < µ such that

λ ≥ λ(f,Λ) = sup
x∈Λ
‖dxf s‖, λ̃ ≤ λ̃(f,Λ) = inf

x∈Λ
m(dxf

c),

µ̃ ≥ µ̃(f,Λ) = sup
x∈Λ
‖dxf c‖, µ ≤ µ(f,Λ) = inf

x∈Λ
m(dxf

u).

Given ∆ > 0, there is ε = ε(∆, λ, λ̃, µ̃, µ) <
m∆

2
such that if ‖g − f‖C1 < ε

and g = f on S\Λ, then g|Λ is also uniformly partially hyperbolic and

(A.20) ∆ω
f,g(x) := ∆f,g,Eωf ,E

ω
g
(x) ≤ ∆, ω = s, c, u, x ∈ Λ.

In particular,

1−∆ ≤ λ(g,Λ)

λ(f,Λ)
,
λ̃(g,Λ)

λ̃(f,Λ)
,
µ̃(g,Λ)

µ̃(f,Λ)
,
µ(g,Λ)

µ(f,Λ)
≤ 1 + ∆.

Proof. Note that the set of uniformly partially hyperbolic diffeomorphisms is
C1-open, and the invariant distributions Eω

g depend continuously on g, ω =

s, c, u (see [?]). More precisely, there is ε <
m∆

2
depending on ∆, λ, λ̃, µ̃, µ

such that if ‖g − f‖C1 < ε and g = f on S\Λ, then g|Λ is uniformly partially
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hyperbolic with

(A.21) sup
x∈Λ
∠(Eω

g (x), Eω
f (x)) <

m∆

2CM
.

Then by Lemma A.4, it is immediate that ∆ω
f,g(x)λ∆. �

We shall now specify how to choose the sequence of numbers εn in the

theorem. First choose four sequences of numbers 0 < λn < λ̃n ≤ 1 ≤ µ̃n < µn
such that

(1) λn ≥ λ(h,Un), λ̃n ≤ λ̃(h,Un), µ̃n ≥ µ̃(h,Un), µn ≤ µ(h,Un);

(2) λn, µ̃n are strictly increasing while λ̃n, µn are strictly decreasing.

For all x ∈ S, let

γ(x) = min

{
min{1,m(dxh

c)}
‖dxhs‖

,
m(dxh

u)

max{1, ‖dxhc‖}

}
,

and choose a strictly decreasing sequence of numbers γn such that

(A.22) 0 < γn ≤ inf
x∈Un

γ(x)− 1

8
.

Now choose a sequence of positive numbers ∆n such that

(A.23) max{ λ̃n+1

λ̃n
,
µn+1

µn
} ≤ 1−∆n < 1 + ∆n ≤ min{λn+1

λn
,
µ̃n+1

µ̃n
};

(A.24) ∆n <
1

2n+2
,

∞∑
k=n

∆k < γn.

Finally, choose

εn <
1

2
min{ m0

2n+4
, ε(∆n, λn, λ̃n, µ̃n, µn)},

where ε(∆, λ, λ̃, µ̃, µ) is given by Lemma A.5.

Proof of Theorem A.1. First we shall show that for every n > 0 the map hn
is uniformly partially hyperbolic on Un. It is clearly true for h0 and we shall
use induction assuming that hk|Uk for k = 1, . . . , n are uniformly partially
hyperbolic. By Lemma A.5 we obtain that

1−∆k ≤
λ(hk,Uk)

λ(hk−1,Uk)
,

λ̃(hk,Uk)

λ̃(hk−1,Uk)
,

µ̃(hk,Uk)

µ̃(hk−1,Uk)
,

µ(hk,Uk)

µ(hk−1,Uk)
≤ 1 + ∆k.
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Note that

λ(hk,Uk+1) ≤ max{λ(h,Uk+1), λ(hk,Uk)}
≤ max{λk+1, λ(hk,Uk)}
≤ max{λk+1, λ(hk−1,Uk)(1 + ∆k)}.

The fact that λ(h0,U1) ≤ λ1 and the choice of ∆n in (A.23) guarantee that

λ′n := λ(hn,Un+1) ≤ λn+1.

Similarly, we have

λ̃′n := λ̃(hn,Un+1) ≥ λ̃n+1, µ̃′n := µ̃(hn,Un+1) ≤ µ̃n+1,

µ′n := µ(hn,Un+1) ≥ µn+1.

It follows that

εn ≤ ε(∆n, λn, λ̃n, µ̃n, µn) ≤ ε(∆n, λ
′
n, λ̃

′
n, µ̃

′
n, µ

′
n).

Since ‖hn+1 − hn‖C1 ≤ εn, by Lemma A.5 we obtain that hn+1|Un+1 is uni-
formly partially hyperbolic.

Next we shall show that H = lim
n→∞

hn exists and is indeed pointwise partially

hyperbolic on S. Since εn < m0/2
n+4, the sequence of maps hn is a Cauchy

sequence and hence it converges in the C1 topology. Moreover, as shown in
(A.21), given x ∈ Uk and n > k, we have

∠(Eω
hn(x), Eω

hn−1
(x)) <

m∆n

2CM
≤ m

2n+3CM
, ω = s, c, u.

Hence, the sequence of subspaces Eω
hn

(x) is a Cauchy sequence, and thus there
is a limit

Eω
H(x) = lim

n→∞
Eω
hn(x).

Fix n > 0. We now wish to estimate ∆ω
H,h(x) for x ∈ Un\Un−1 (see (A.19) and

(A.20)). We have

∆ω
hk,hk−1

(x)

{
= 0, k < n,

≤ ∆k, k ≥ n.

Note that

‖dxhωl ‖
‖dxhω‖

=
l∏

k=1

‖dxhωk‖
‖dxhωk−1‖

,
m(dxh

ω
l )

m(dxhω)
=

l∏
k=1

m(dxh
ω
k )

m(dxhωk−1)
,
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and by (A.24),
∑

∆k < 1/4. It follows from Lemma A.2 that

∆ω
hl,h

(x) ≤
l∏

k=1

(1 + ∆ω
hk,hk−1

(x))− 1 ≤
∞∏
k=n

(1 + ∆k)− 1 ≤ 2
∞∑
k=n

∆k.

Letting l→∞, we find that

∆ω
H,h(x) ≤ 2

∞∑
k=n

∆k, ω = s, c, u.

Therefore by (A.22),

‖dxHs‖
min{1,m(dxHc)}

≤ 1 + 2
∑∞

k=n ∆k

1− 2
∑∞

k=n ∆k

‖dxhs‖
min{1,m(dxhc)}

< (1 + 8γn)
‖dxhs‖

min{1,m(dxhc)}

≤ γ(x)
‖dxhs‖

min{1,m(dxhc)}
< 1

Similarly, one can show m(dxH
u) > max{1, ‖dxHc‖}. It follows that H is

pointwise partially hyperbolic on S. �
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Vol. 1991/92, Astérisque 206 (1992), Exp. No. 754, 4, 311–344.

H. Hu, Department of Mathematics, Michigan State University, East Lans-
ing, MI 48824, USA

E-mail address: hu@math.msu.edu

Ya. Pesin, Department of Mathematics,Pennsylvania State University, Uni-
versity Park, PA 16802, USA

E-mail address: pesin@math.psu.edu

A. Talitskaya
E-mail address: anjuta@math.northwestern.edu


