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Abstract: A partially hyperbolic diffeomorphism f has quasi-shadowing property

if for any pseudo orbit {xk}k∈Z, there is a sequence of points {yk}k∈Z tracing it in

which yk+1 is obtained from f(yk) by a motion τ along the center direction. We show

that any partially hyperbolic diffeomorphism has quasi-shadowing property, and if f

has C1 center foliation then we can require τ to move the points along the center

foliation. As applications, we show that any partially hyperbolic diffeomorphism is

topologically quasi-stable under C0-perturbation. When f has uniformly compact

C1 center foliation, we also give partially hyperbolic diffeomorphism versions of some

theorems holden for uniformly hyperbolic systems, such as Anosov closing lemma,

cloud lemma and spectral decomposition theorem.

0 Introduction

The goal of this paper is to study some shadowing properties for partially hyperbolic systems and to

use it to study some topological properties of the systems shared by hyperbolic systems. For partially

hyperbolic diffeomorphisms, a center direction is allowed in addition to the hyperbolic directions.

The presence of this direction permits a very rich type of structure in these systems. For general

theory of partially hyperbolic system, we refer to [8], [11], [1] and [2]. On the other hand, there are

still hyperbolic structure in partially hyperbolic systems, and therefore we may see some phenomena

similar to that of hyperbolic systems.

It is well known that an Anosov diffeomorphism has the shadowing property. (See [3] for example.)
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A sequence of ξ = {xk}
+∞
−∞ is said to be a δ-pseudo orbit for f , if

sup
k∈Z

d(f(xk), xk+1) ≤ δ.

If for a δ-pseudo orbit ξ = {xk}
+∞
−∞ there is a point x ∈ M such that

d(fk(x), xk) ≤ ε for all k ∈ Z,

then we call that the point x “ε-shadows” (or “ε-traces”) the δ-pseudo orbit ξ. We say that f has the

shadowing property if for any ε > 0, there exists δ > 0 such that every δ-pseudo orbit is ε-shadowed

by some point.

In this paper, we shall investigate the “shadowing” property of partially hyperbolic systems. Let

f be a partially hyperbolic diffeomorphism. We cannot expect that in general the shadowing property

holds for f because of the existence of the center direction. We show in Theorem A that for any

pseudo orbit {xk}k∈Z, there is a sequence of points {yk}k∈Z tracing it in which yk+1 is obtained from

f(yk) by a motion τ along center direction. In this case we call that f has quasi-shadowing property.

Moreover, if center foliation Wc
f of f exists and is of C1, then we can choose the motion τ that maps

points along the center leaves. This result is given in Theorem B. Theorem B′ deal with a particular

case, i.e., one dimensional center foliation, in which the map τ can be determined by a flow along the

foliation.

In [8] and [11], the notion of pseudo orbits with respect to the plaque of the center foliation is

introduced to investigate the robustness of the center foliation for normally hyperbolic and partially

hyperbolic systems respectively. Recently, Kryzhevich and Tikhomirov [10] give a version of cen-

ter shadowing property for dynamically coherent partially hyperbolic diffeomorphisms, that is, any

pseudo orbit can be shadowed by a center pseudo orbit. In this paper we show that for any partially

hyperbolic diffeomorphism f , without any additional assumption, the quasi-shadowing property holds.

In particular, if f has C1 center foliation, we can also obtain the similar result in [10]. Moreover, the

method we use is different from that in [10].

Shadowing property implies some other interesting properties in the study of hyperbolic systems.

We can obtain similar results for partially hyperbolic systems from quasi-shadowing property.

It is well known that any Anosov diffeomorphism f on M is topologically stable ([15]), that is,

for any homeomorphism g C0-close to f , there exists a surjective continuous map h on M such that

h ◦ g = f ◦ h. Topological stability for hyperbolic systems can be obtained by shadowing property

([16], see also [12]). Similarly, as an application of quasi-shadowing property, we show in Theorem

C that any partially hyperbolic diffeomorphism has topological quasi-stability under C0 perturbation,

that is, for any homeomorphism g C0-close to f , there exist a surjective continuous h from M to

itself and a family of locally defined homeomorphisms {τx : x ∈ M}, which map points along the

center foliation such that h ◦ g(x) = τf(x) ◦ f ◦ h(x) for all x ∈ M . In particular, if center foliation

Wc
f of f exists and is of C1, then we can choose the motion τ maps points along the center foliation.

We can also investigate the quasi-stability of for partially hyperbolic diffeomorphisms under C0 and

C1-perturbations using a modified version of the method in Theorem A. (see [9] for more details.)

A notable property for hyperbolic systems is Anosov closing lemma, which says that if an orbit

returns to a small neighborhood of its initial position, then there is a periodic orbit nearby. Conse-
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quently, for an Anosov diffeomorphism, the closure of its periodic orbits is equal to its nonwandering

set. It is natural to image that in a partially hyperbolic system, if an orbit returns, then there is a

periodic center leaf nearby. We prove it by using quasi-shadowing property. Further, we obtain in

Theorem D that periodic center leaves are dense in the nonwandering set. If all the center leaves are

compact, then the closure of the periodic center leaves is equal to the center nonwandering set of the

map (see Section 1 for precise meaning).

As the last application in the paper, we give versions of cloud lemma and then spectral decompo-

sition theorem when f has uniformly compact C1 center foliation, which are generation of the corre-

sponding results for the Axiom A systems (see [3], [14], for example). We use the quasi-shadowing

property to show that the center nonwondering set can be uniquely split into finite disjoint center

topologically transitive closed subsets, and each of which can be uniquely split into finite disjoint sets

which are invariant and is center topologically mixing under an iteration of f .

This paper is organized as the following. The statements of results are given in Section 1. In

Section 2 we deal with the quasi-shadowing property for general case in the proof of Theorem A, where

we do not assume existence of center foliation. Section 3 is for the case that the center foliation is of

C1, and proofs of Theorem B and Theorem B′ are given there. The last three sections are concerning

applications of of our results. We study topological quasi-stability, denseness of periodic center leaves

and spectral decomposition in the center nonwandering sets in Section 4, 5 and 6, respectively.

1 Definition and statement of results

Everywhere in this paper, we assume that M is a smooth m-dimensional compact Riemannian mani-

fold. We denote by ‖ · ‖ and d(·, ·) the norm on TM and the metric on M induced by the Riemannian

metric, respectively.

A diffeomorphism f : M → M is said to be (uniformly) partially hyperbolic if there exist numbers

λ, λ′, µ and µ′ with 0 < λ < 1 < µ and λ < λ′ ≤ µ′ < µ, and an invariant decomposition TxM =

Es
x ⊕ Ec

x ⊕ Eu
x ∀x ∈ M , such that for any n ≥ 0,

‖dxfnv‖ ≤ Cλn‖v‖ as v ∈ Es(x),

C−1(λ′)n‖v‖ ≤ ‖dxfnv‖ ≤ C(µ′)n‖v‖ as v ∈ Ec(x),

C−1µn ‖v‖ ≤ ‖dxfnv‖ as v ∈ Eu(x)

hold for some number C > 0. The subspaces Es
x, Ec

x and Eu
x are called stable, center and unstable

subspace, respectively. Via a change of Riemannian metric we always assume that C = 1. Moreover,

for simplicity of the notation, we assume that λ =
1

µ
.

Since M is compact, we can take a constant ρ0 > 0 such that for any x ∈ M , the standard

exponential mapping expx : {v ∈ TxM : ‖v‖ < ρ0} → M is a C∞ diffeomorphism to the image.

Clearly, we have d(x, expx v) = ‖v‖ for v ∈ TxM with ‖v‖ < ρ0. For any diffeomorphism f : M → M ,

we take ρ = ρf ∈ (0, ρ0/2) such that for any x, y ∈ M with d(f−1(x), y) ≤ ρ, v ∈ TyM with ‖v‖ ≤ ρ,

d(x, f ◦ expy v) ≤ ρ0/2.
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Reduce ρ if necessary such that both sides in equation (2.3) and (3.2), in the proof of Theorem A and

Theorem B respectively, are contained in the set {v ∈ TxM : ‖v‖ < ρ0}.

For a sequence of points {xk}k∈Z and a sequence of vectors {uk ∈ Ec
xk
}k∈Z with ‖uk‖ < ρ for any

k ∈ Z, we define a family of smooth maps τ
(1)
xk = τ

(1)
xk (·, uk) on B(xk, ρ), k ∈ Z, by

τ (1)
xk

(y) = expxk
(uk + exp−1

xk
y). (1.1)

Theorem A. Let f : M → M be a partially hyperbolic diffeomorphism. Then f has the quasi-

shadowing property in the following sense: for any ε ∈ (0, ρ) there exists δ > 0 such that for any

δ-pseudo orbit {xk}k∈Z of f , there exist a sequence of points {yk}k∈Z and a sequence of vectors

{uk ∈ Ec
xk
}k∈Z such that

d(xk, yk) < ε, (1.2)

where

yk = τ (1)
xk

(f(xk−1)). (1.3)

Moreover, {yk}k∈Z and {uk}k∈Z can be chosen uniquely so as to satisfy

yk ∈ expxk
(Es

xk
+ Eu

xk
). (1.4)

The above theorem does not require any additional condition, provided that f is a partially hy-

perbolic diffeomorphism. Here τ
(1)
xk

is a motion in the center direction for any k ∈ Z. If f has C1

center foliation Wc
f , then we can make τ to move along the center foliation. In this case, we denote

for any ε > 0, Σε(x) = expx(Hx(ε)), where Hx(ε) is the ε-ball in Es
x ⊕ Eu

x . Obviously, Σε(x) is a

smooth disk transversal to Ec
x at x. Since the center foliation Wc

f is C1, we can conclude that if y is

close enough to x, then there is a locally defined diffeomorphism τ
(2)
x on some neighborhood U(x) of

x and a constant K1 > 1 independent of x such that for any y ∈ U(x),

τ (2)
x (y) ∈ Σε(x) ∩Wc

f (y) (1.5)

and

d(τ (2)
x (y), x) < K1d(y, x). (1.6)

Theorem B. Let f : M → M be a partially hyperbolic diffeomorphism with C1 center foliation Wc
f .

Then f has the quasi-shadowing property in the following sense: for any ε ∈ (0, ρ) there exists δ > 0

such that for any δ-pseudo orbit {xk}k∈Z of f , there exists a sequence of points {yk}k∈Z such that

d(xk, yk) < ε, (1.7)

where

yk = τ (2)
xk

(f(xk−1)). (1.8)

Moreover, {yk}k∈Z can be chosen uniquely so as to satisfy (1.4).

As a particular case, when the center foliation Wc
f is C1 and of dimension one then we can define

τ more directly. Let u be the vector field consisting of unit vectors in center direction, i.e., ‖u(x)‖ = 1

for any x ∈ M , and ϕt be the flow generated by u. For a sequence of points {xk}k∈Z and a sequence of
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real numbers {τ̃k}k∈Z, denote a sequence of smooth maps τ
(3)
xk = τ

(3)
xk (·, τ̃k) of B(xk, ρ) for any k ∈ Z

given by

τ (3)
xk

(z) = ϕτ̃k(z).

Theorem B
′
. Let f : M → M be a partially hyperbolic diffeomorphism with one dimensional C1

center foliation Wc
f . Then f has the quasi-shadowing property in the following sense: for any ε ∈ (0, ρ)

there exists δ > 0 such that for any δ-pseudo orbit {xk}k∈Z of f , there exist a sequence of points

{yk}k∈Z and a sequence of real numbers {τ̃k}k∈Z such that

d(xk, yk) < ε, (1.9)

where

yk = τ (3)
xk

(f(xk−1)). (1.10)

Moreover, {yk}k∈Z can be chosen uniquely so as to satisfy (1.4).

Now we consider applications of our results. The first one is about quasi-stability.

Theorem C. Assume that f : M → M is a partially hyperbolic diffeomorphism. Then f has topolog-

ical quasi-stability in the sense that there exists ε0 ∈ (0, ρ) satisfying the following conditions: for any

ε ∈ (0, ε0) there exists δ > 0 such that for any homeomorphism g of M with d(f, g) < δ there exist a

continuous center section u = {ux ∈ Ec
x : x ∈ M} and a surjective continuous map h : M → M such

that

h ◦ g(x) = τ
(1)
g(x) ◦ f ◦ h(x), x ∈ M. (1.11)

In addition, h can be chosen uniquely so as to satisfy the following conditions:

d(h, idM ) < ε,

exp−1
x (h(x)) ∈ Es

x ⊕ Eu
x for x ∈ M.

(1.12)

Moreover, if f has C1 center foliation Wc
f , then there exists h as above such that (1.11) holds with

τ
(1)
g(x) replaced by τ

(2)
g(x). Furthermore, if the above C1 center foliation Wc

f is of one dimensional, then

there exist h as above and a continuous function τ̃ on M such that (1.11) holds with τ
(1)
g(x) replaced by

τ
(3)
g(x).

It is well known that for uniformly hyperbolic systems, closing lemma holds and therefore the

periodic points are dense in nonwandering set. We can get a similar result for partially hyperbolic

systems by using Theorem B. In this case, periodic center leaves and center nonwandering leaves play

the role as periodic points and nonwandering points, respectively.

A center leaf W c(p) is said to be a periodic center leaf with period n ∈ N if W c(p) = W c(fn(p)).

Denote

P c(f) = {p ∈ M : W c(p) is a periodic center leaf}.

We say that a center leaf W c(x) is center nonwandering if for any neighborhood U of W c(x)

consisting of center leaves, there is n ≥ 1 such that fnU ∩U 6= ∅. We denote the center nonwandering

set of f by

Ωc(f) = {x ∈ M : W c(x) is center nonwandering}.
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It is easy to see that Ωc(f) is a closed invariant set and saturated by W c, i.e., W c(x) ⊂ Ωc(f) if

x ∈ Ωc(f).

Also we denote by Ω(f) the nonwandering set of f . Clearly, Ω(f) ⊂ Ωc(f).

We say that the center foliation is uniformly compact if

sup{vol(W c(x)) : x ∈ M} < +∞,

where vol(W c(x)) is the Riemannian volume restricted to the submanifold W c(x) of M . Uniformly

compact center foliations for partially hyperbolic systems were studied in [6].

It is easy to see that if the center foliation is uniformly compact, then a center leaf W c(x) is center

nonwandering if and only if for any δ > 0, there is y ∈ M and n ∈ N such that

max{dH(W c(x), W c(y)), dH(W c(x), W c(fny))} < δ, (1.13)

where dH(·, ·) denotes the Hausdorff distance given by dH(A, B) = max
a∈A

min
b∈B

d(a, b) for subsets A, B ⊂

M .

For any set S ⊂ M , denote W c(S) = ∪x∈SW c(x).

With the notions P c(f) and Ωc(f), we can get an analogues of Anosov closing lemma for partially

hyperbolic diffeomorphisms (see Lemma 5.1 for details). Based on the results, we have the following

theorem.

Theorem D. For any partially hyperbolic diffeomorphism f : M → M with C1 center foliation Wc
f ,

Ω(f) ⊂ P c(f).

Moreover, if the center foliation of f is uniformly compact, then

P c(f) = Ωc(f) = W c
(
Ω(f)

)
. (1.14)

Further, if a partially hyperbolic diffeomorphism has uniformly compact C1 center foliation, then

we have cloud lemma (see Lemma 6.3), and therefore we can get spectral decomposition for Ωc(f).

The substitutes of topological transitivity and topological mixing are center topological transitivity

and center topological mixing. An f -invariant set S is said to be center topologically transitive, if for

any two nonempty open sets U, V in S, there is n ∈ N such that

fn(W c(U)) ∩ V 6= ∅.

S is said to be center topologically mixing, if for any two nonempty open sets U, V in S, there is n0 ∈ N

such that

fn(W c(U)) ∩ V 6= ∅ ∀n ≥ n0.

Theorem E. Let f : M → M be a partially hyperbolic diffeomorphism with uniformly compact C1

center foliation. Then Ωc(f) is a union of finite pairwise disjoint closed sets

Ωc(f) = Ωc
1 ∪ · · · ∪ Ωc

k.

Moreover, for each i = 1, 2, · · · , k, Ωc
i satisfies that

(a) f(Ωc
i) = Ωc

i and f |Ωc
i

is center topologically transitive;
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(b) Ωc
i = X1,i ∪ · · · ∪ Xni,i such that the Xj,i are disjoint closed sets, f(Xj,i) = Xj+1,i for 1 ≤ j ≤

ni − 1, f(Xni,i) = X1,i, and fni |Xj,i
is center topologically mixing.

We call Ωc
i , i = 1, 2, · · · , k the center basic sets of f .

Remark 1.1. We mention that if f is dynamically coherent and plaque expansive with respect to

the center foliation then the similar results in Theorem B hold ([10]). Therefore, if we replace the

C1 smoothness of the center foliation by the weaker conditions, we can obtain the same results in

Theorem C, D and E in a similar strategy.

2 Quasi-shadowing for the general case

We prove Theorem A in this section.

Recall that ‖ · ‖ is the norm on TM . We define the norm ‖ · ‖1 on TM by ‖w‖1 = ‖u‖ + ‖v‖ if

w = u + v ∈ TxM with u ∈ Ec
x and v ∈ Eu

x ⊕ Es
x. For any sequence {xk}k∈Z, Denote

X = {w = {wk}k∈Z : wk ∈ Txk
M, k ∈ Z},

X
c = {u = {uk}k∈Z : uk ∈ Ec

xk
, k ∈ Z}

and

X
us = {v = {vk}k∈Z : vk ∈ Eu

xk
⊕ Es

xk
, k ∈ Z}.

For any w = u + v ∈ X, where u ∈ Xc and v ∈ Xus, we also define

‖w‖ = sup
k∈Z

‖wk‖

and

‖w‖1 = ‖u‖ + ‖v‖.

By triangle inequality and the fact that the angles between Ec and Eu ⊕ Es are uniformly bounded

away from zero, we know that there exists a constant L such that

‖w‖ ≤ ‖w‖1 ≤ L‖w‖. (2.1)

For any ε > 0, we denote

B(ε) = {w ∈ X : ‖w‖ ≤ ε}, B
us(ε) = {w ∈ X

us : ‖w‖ ≤ ε},

B1(ε) = {w ∈ X : ‖w‖1 ≤ ε}.

We denote Πs
x : TxM → Es

x be the projection onto Es
x along Ec

x ⊕ Eu
x . Πc

x and Πu
x are defined in

a similar way.

Proof of Theorem A. Given a δ-pseudo orbit {xk}k∈Z of f . To find a sequence of points {yk}k∈Z and a

sequence of vectors {uk ∈ Ec
xk
}k∈Z satisfying (1.2), (1.3) and (1.4), we shall try to solve the equations

yk = τ (1)
xk

(f(xk−1)), k ∈ Z, (2.2)
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for unknown {yk}k∈Z and {uk ∈ Ec
xk
}k∈Z, where τ

(1)
x is defined in (1.1). Put vk = exp−1

xk
yk, k ∈ Z.

Then the equations (2.2) can be written as

vk = expxk
τ (1)
xk

(f ◦ expxk−1
vk−1), k ∈ Z.

By (1.1), the equations are equivalent to

vk = uk + exp−1
xk

◦f ◦ expxk−1
vk−1, k ∈ Z. (2.3)

Define an operator β : Bus(ρ) → X and a linear operator A : Bus(ρ) → Xus by

(β(v))k−1 = exp−1
xk−1

◦f ◦ expxk−1
vk−1, (2.4)

and

(Av)k = ((As + Au)v)k = (As
k−1 + Au

k−1)vk−1, (2.5)

where

As
k−1 = Πs

xk
◦ d0(exp−1

xk
◦f ◦ expxk−1

) ◦ Πs
xk−1

,

Au
k−1 = Πu

xk
◦ d0(exp−1

xk
◦f ◦ expxk−1

) ◦ Πu
xk−1

.
(2.6)

Let η = β − A. By (2.4) and (2.5), (2.3) is equivalent to

v = u + Av + η(v),

or

v − u − Av = η(v).

Define a linear operator P from a neighborhood of 0 ∈ X to X by

Pw = −u + (idXus − A)v, (2.7)

and then define an operator Φ from a neighborhood of 0 ∈ X to X by

Φ(w) = P−1η(v)

for w = u + v in the neighborhood of 0 ∈ X, where u ∈ Xc and v ∈ Xus.

Hence, the equations (2.3) are equivalent to

Φ(w) = w, (2.8)

namely, w is a fixed point of Φ.

By Lemma (2.1) bellow, we know that for any ε ∈ (0, ρ) there exists δ = δ(ε) such that for any

δ-pseudo orbit {xk}k∈Z, the operator Φ : B1(ε) → B1(ε) defined as above is a contracting map, and

therefore has a fixed point in B1(ε). Hence, (2.3) has a unique solution.

Lemma 2.1. For any ε ∈ (0, ρ) there exists δ = δ(ε) > 0 such that for any δ-pseudo orbit {xk}k∈Z,

Φ(B1(ε)) ⊂ B1(ε) and for any w, w′ ∈ B1(ε),

‖Φ(w) − Φ(w′)‖1 ≤
1

2
‖w − w′‖1.
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Proof. Recall that λ ∈ (0, 1) is given in the definition of partially hyperbolic diffeomorphism. For any

λ̃ ∈ (λ, 1) and ε ∈ (0, ρ), we take δ > 0 and C(δ) > 0 such that d(f(y), x) < δ implies

∥∥Πs
x ◦ d0(exp−1

x ◦f ◦ expy)|Es
y

∥∥ ≤ λ̃, (2.9)

∥∥[
Πu

x ◦ d0(exp−1
x ◦f ◦ expy)|Eu

y

]−1∥∥ ≤ λ̃, (2.10)

∑

i,j=s,c,u, i6=j

∥∥Πi
x ◦ d0(exp−1

x ◦f ◦ expy)|
E

j
y

∥∥ ≤
C(δ)

2
(2.11)

and for any v′, v′′ ∈ Hx(ε) and any t ∈ [0, 1],

‖dv′′+t(v′−v′′)(exp−1
x ◦f ◦ expy) − d0(exp−1

x ◦f ◦ expy)‖ ≤
C(δ)

2
. (2.12)

We can take C(δ) > 0 in a way such that C(δ) → 0 as δ → 0.

Note that if δ satisfies (2.9)–(2.12), then Sublemma 2.2 and 2.3 below can be applied.

Further, we assume δ and C(δ) are small enough such that

L

1 − λ̃
δ <

1

2
ε,

L

1 − λ̃
C(δ) <

1

2
. (2.13)

Take w = u + v ∈ B1(ε) with u ∈ Xc and v ∈ Xus. Note that for any k ∈ Z, ‖(η(0))k‖ =

‖(β(0))k‖ = ‖ exp−1
xk

f(xk−1)‖ ≤ δ. and hence ‖η(0)‖ ≤ δ. So by Sublemma 2.2 and 2.3 below, and

(2.13), we can get

‖Φ(w)‖1 ≤ ‖P−1‖1 · ‖η(v)‖1 ≤
1

1 − λ̃
· L‖η(v)‖

≤
L

1 − λ̃
(‖η(v) − η(0)‖ + ‖η(0)‖) ≤

L

1 − λ̃
(C(δ)‖v‖1 + δ) <

1

2
‖w‖1 +

1

2
ε ≤ ε,

which implies that Φ(B1(ε)) ⊂ B1(ε).

Similarly, for two elements w = u + v, w′ = u′ + v′ ∈ B1(ε) with u, u′ ∈ Xc and v, v′ ∈ Xus, we

have

∥∥Φ(w) − Φ(w′)
∥∥

1
≤

1

1 − λ̃

(
‖η(v) − η(v′)‖1

)

≤
L

1 − λ̃

(
‖η(v) − η(v′)‖

)
≤

L

1 − λ̃

(
C(δ)‖w − w′‖1

)
≤

1

2
‖w − w′‖1.

This proves that Φ : B1(ε) → B1(ε) is a contraction.

Sublemma 2.2. For δ > 0 satisfying (2.9)–(2.12) and any v, v′ ∈ Bus(ε),

‖η(v′) − η(v)‖ ≤ C(δ)(‖v′ − v‖),

where C(δ) is chosen in the beginning of the proof of Lemma 2.1.

Proof. Denote ηk(vk) = (η(v))k+1 for v = {vk}k∈Z in a neighborhood of 0 ∈ Xus. By the definition of

η, we can write

ηk = η
(1)
k + η

(2)
k ,

where

η
(1)
k (vk) = exp−1

xk+1
◦f ◦ expxk

(vk) − d0(exp−1
xk+1

◦f ◦ expxk
)vk

9



and

η
(2)
k (vk) =

∑

i=s,c,u, j=s,u, i6=j

Πi
xk+1

◦ d0(exp−1
xk+1

◦f ◦ expxk
) ◦ Πj

xk
vk.

Note that for v′, v′′ ∈ Hk(ε), we have

∥∥η
(1)
k (v′) − η

(1)
k (v′′)

∥∥

=
∥∥∥

∫ 1

0

[
dv′′+t(v′−v′′)(exp−1

xk+1
◦f ◦ expxk

) − d0(exp−1
xk+1

◦f ◦ expxk
)
]
(v′ − v′′)dt

∥∥∥

≤ sup
t∈[0,1]

∥∥dv′′+t(v′−v′′)(exp−1
xk+1

◦f ◦ expxk
) − d0(exp−1

xk+1
◦f ◦ expxk

)
∥∥ ·

∥∥v′ − v′′
∥∥.

Therefore, from (2.12) we have

‖η
(1)
k (v′) − η

(1)
k (v′′)‖ ≤

C(δ)

2
‖v′ − v′′‖. (2.14)

By (2.11), we have for v′, v′′ ∈ Hk(ε)

‖η
(2)
k (v′) − η

(2)
k (v′′)‖ ≤

C(δ)

2
‖v′ − v′′‖. (2.15)

Combining (2.14) and (2.15), for v′, v′′ ∈ Hk(ε) we have

‖ηk(v′) − ηk(v′′)‖ ≤ C(δ)‖v′ − v′′‖. (2.16)

Hence, we can get the result we need immediately.

Sublemma 2.3. For any δ > 0 satisfying (2.9)–(2.12) and any δ-pseudo orbit {xk}k∈Z, the operator

P defined as (2.7) is invertible and

‖P−1‖1 ≤
1

1 − λ̃
.

Proof. By the definition of P , we have P |Xi = idXi − Ai, i = s, u, and P |Xc = idXc . So P (Xi) =

X
i, i = u, s, c.

By (2.10) and (2.9), ‖As‖, ‖(Au)−1‖ ≤ λ̃ < 1. Hence, both P |Xs and P |Xu are invertible and

(P |Xs)−1 = (idXs − As)−1 =

∞∑

k=0

As
k,

(P |Xu)−1 = (idXu − Au)−1 = −
∞∑

k=1

(Au
k)−1.

It follows that

‖(P |Xus)−1‖ ≤ max
{
‖(P |Xs)−1‖, ‖(P |Xu)−1‖

}
≤

1

1 − λ̃
.

It is obvious that

‖(P |Xc)−1‖ = 1.

So we obtain that

‖P−1‖1 ≤ max
{
‖(P |Xus)−1‖, ‖(P |Xc)−1‖

}
≤

1

1 − λ̃
.

This is what we need.
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3 Quasi-shadowing for the system with C
1 center foliation

3.1 The general case

Recall that Xus and Bus(ρ) are defined in the beginning of the previous section.

Proof of Theorem B. The proof is similar to that of Theorem A.

Given a δ-pseudo orbit {xk}k∈Z of f . To find a sequence of points {yk}k∈Z satisfying (1.7), (1.8)

and (1.4), we shall try to solve the equations

yk = τ (2)
xk

(f(xk−1)) (3.1)

for unknown {yk}k∈Z. Put vk = exp−1
xk

yk. Then the equations (3.1) are equivalent to

vk = exp−1
xk

◦τ (2)
xk

◦ f ◦ expxk−1
vk−1, k ∈ Z. (3.2)

Define an operator β : Bus(ρ) → Xus and a linear operator A : Bus(ρ) → Xus by

(β(v))k = exp−1
xk

◦τ (2)
xk

◦ f ◦ expxk−1
vk−1, k ∈ Z, (3.3)

and

(Av)k = (Au
k−1 + As

k−1)vk−1, (3.4)

where

As
k−1 = Πs

xk
◦ d0(exp−1

xk
◦τ (2)

xk
◦ f ◦ expxk−1

) ◦ Πs
xk−1

,

Au
k−1 = Πu

xk
◦ d0(exp−1

xk
◦τ (2)

xk
◦ f ◦ expxk−1

) ◦ Πu
xk−1

.

Let η = β − A. By (3.3) and (3.4), (3.2) is equivalent to

v = Av + η(v),

further, is equivalent to

v − Av = η(v).

Define a linear operator P from a neighborhood of 0 ∈ Xus to Xus by

Pv = (idXus − A)v, (3.5)

and then define an operator Φ from a neighborhood of 0 ∈ Xus to Xus by

Φ(v) = P−1η(v) (3.6)

for v in a neighborhood of 0 ∈ Xus.

Hence, the equations (3.2) are equivalent to

Φ(v) = v, (3.7)

namely, v is a fixed point of Φ.

The remaining work is to show that for any ε ∈ (0, ρ) there exists δ = δ(ε) such that for a δ-

pseudo orbit {xk}k∈Z of f , Φ : Bus(ε) → Bus(ε) is a contracting map, and therefore has a fixed

point in Bus(ε). Hence, (3.2) has a unique solution. To this end we only need to modify the proof of

Lemma 2.1 to a easer version since in this case we do not need to consider the center direction. We

leave the details to the reader.
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3.2 Wc
f is of one dimensional

Proof of Theorem B′. The proof is also similar to that of Theorem A.

Given a δ-pseudo orbit {xk}k∈Z of f . To find a sequence of points {yk}k∈Z and and a sequence of

real numbers {τ̃k}k∈Z ∈ C(ρ), where C(ρ) = {τ̃ = {τ̃k}k∈Z : τ̃k ∈ R, |τ̃k| ≤ ρ, k ∈ Z}, satisfying (1.9),

(1.10) and (1.4), we shall try to solve the equations

yk = τ (3)
xk

(f(xk−1)) (3.8)

for unknown {yk}k∈Z and {τ̃k}k∈Z. Putting vk = exp−1
xk

yk, then the equations (3.8) are equivalent to

vk+1 = exp−1
xk+1

◦τ (3)
xk+1

◦ f ◦ expxk
vk, k ∈ Z,

i.e.,

vk+1 = exp−1
xk+1

◦ϕτ̃k+1 ◦ f ◦ expxk
vk, k ∈ Z. (3.9)

Define an operator β : Bus(ρ) × C(ρ) → X and a linear operator A : Bus(ρ) → Xus by

β(v, τ̃ )k+1 = exp−1
xk+1

◦ϕτ̃k+1 ◦ f ◦ expxk

(
vk). (3.10)

and

(Av)k = (Au
k−1 + As

k−1)vk−1, (3.11)

where

As
k−1 = Πs

xk
◦ (d(0,0)β(v, τ̃ ))k ◦ Πs

xk−1
,

Au
k−1 = Πu

xk
◦ (d(0,0)β(v, τ̃ ))k ◦ Πu

xk−1
.

Let η = β − A. Let u be a vector field consisting of unit vectors tangent to Wc
f . Then by (3.10) and

(3.11), (3.9) is equivalent to

v = τ̃u + Av + η(v),

for some τ̃ ∈ C(ρ). Further, the equations are equivalent to

−τ̃u + v − Av = η(v).

Define a linear operator P from a neighborhood of 0 ∈ X(ρ) to X by

Pv = τ̃u + (idXus − A)v, (3.12)

and then define an operator Φ from a neighborhood of 0 ∈ X to X by

Φ(w) = P−1η(v),

where w = τ̃ · u + v ∈ X with v ∈ Bus(ρ) and τ̃ ∈ C(ρ).

Hence, the equations (3.9) are equivalent to

Φ(τ̃ · u + v) = τ̃ · u + v, (3.13)

namely, τ̃ · u + v is a fixed point of Φ.

The remaining work is to show that for any ε ∈ (0, ρ) there exists δ = δ(ε) such that for δ-pseudo

orbit {xk}k∈Z of f , Φ : B1(ε) → B1(ε) is a contracting map, and therefore has a fixed point in B1(ε).

Hence, (3.9) has a unique solution. We leave the details to the reader.
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4 Quasi-stability

It is well known that for any homeomorphism f on a compact metric space, shadowing property

together with expansiveness implies topological stability (see [16] for example). In the case of partially

hyperbolic diffeomorphism, we can get topological quasi-stability from quasi-shadowing property.

Proof of Theorem C. For the simplicity of the notation, we only prove this theorem under the condi-

tion that f is a partially hyperbolic diffeomorphism with C1 center foliation.

Choose ε0 ∈ (0, ρ) small enough such that any continuous map h with d(h, idM ) < ε0 must be

surjective (see e.g Lemma 3 of [15] for existence of such ε0).

Let ε ∈ (0, ε0). From Theorem B, there exists δ > 0 such that for any δ-pseudo orbit {xk}k∈Z of f ,

there exist a unique pseudo orbit {yk}k∈Z ε-quasi-shadowing it that satisfies (1.4) and yk+1 ∈ W c(yk)

for all k ∈ Z. Let g be any homeomorphism with d(f, g) < δ. It is obvious that for any x ∈ M , its

orbit orbg(x) = {xk = gk(x)}k∈Z is a δ-pseudo orbit of f , hence, there exists a unique corresponding

pseudo orbit {yk}k∈Z ε-quasi-shadowing it. Let h(x) = y0.

Now we consider continuity of h. Notice that the sequence {yk}k∈Z, which is ε-quasi-shadowing

the orbit of x, is defined by the sequence v = {exp−1
gk(x)

yk}k∈Z, and v is the fixed point of the operator

Φorbg(x) : Bus
orbg(x)(ε) → Bus

orbg(x)(ε) in the proof of Theorem B (here we use the notions Φorbg(x)

and Bus
orbg(x)(ε) since they all depend on orbg(x)). Given x′ near x, denote by v′ = {v′k ∈ Eus

gk(x′)}

the unique fixed point of the operator Φorbg(x′) : Bus
orbg(x′)(ε) → Bus

orbg(x′)(ε). By the definition of h,

h(x′) = expx′(v′0). By continuity of the distribution Eus, continuity of the differential of f and the

construction of the operator Φ, we can see that as x′ approaches x, v′0 approaches v0 in the tangent

bundle TM . Therefore, h(x′) arbitrarily approaches h(x) as x′ sufficiently close to x. This means

that the map h is continuous.

5 Center Nonwandering Sets

It is well known that for a uniformly hyperbolic system f : M → M , if x is close to fnx for some

x ∈ M and n > 0, then there is a periodic point y ∈ M of period n close to x. The result is the

main part of Anosov closing lemma (see e.g. [3, 14]), and sometimes is directly called Anosov closing

lemma (see e.g. [7]).

The next lemma is an analogue of the result for partially hyperbolic diffeomorphisms.

Lemma 5.1. Suppose f : M → M is a partially hyperbolic diffeomorphism with C1 center foliation

Wc
f . For any ε > 0, there exists δ ∈ (0, ε) such that for any x ∈ M and n ∈ N with d(x, fnx) < δ,

there exists a periodic center leaf W c(p) of period n satisfying d(p, x) ≤ ε.

Moreover, if W c(x) is compact and dH

(
W c(x), fn(W c(x))

)
< δ, then there exists a periodic center

leaf W c(p) of period n such that d(p, x′) ≤ ε for some x′ ∈ W c(x).

Proof. By Theorem B, there is δ ∈ (0, ε) such that any δ-pseudo orbit can be ε-quasi-shadowed. Since

d(x, fnx) < δ, we can repeat the orbit segment {x, fx, · · · , fn−1x} to get a δ-pseudo orbit {xk}k∈Z,

where xk = f ix if k ≡ i(mod n). By Theorem B, there is a sequence {yk}k∈Z ε-quasi-shadows {xk}k∈Z.

Note that xn+i = xi for all i ∈ Z, {yn+k}k∈Z also ε-quasi-shadows {xk}k∈Z.
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By uniqueness of the quasi-shadowing point, yn = y0. Note that if {yk}k∈Z ε-quasi-shadows

{xk}k∈Z, then f(yk−1) ∈ W c(yk) and therefore fW c(yk−1) = W c(yk). So yn = y0 implies fnW c(y0) =

W c(yn) = W c(y0), that is, W c(y0) is a periodic center leaf. So the result of the first part of the lemma

follows with p = y0.

To prove the second part, we use dH

(
W c(x), W c(fnx)

)
< δ. Take x0 = x and then take x1 ∈ W c(x)

such that d(x1, f
n(x0)) < δ. Inductively, for any i ≥ 1, if xi−1 ∈ W c(x) is taken, then we can

choose xi ∈ W c(x) such that d(xi−1, xi) < δ. Since W c(x) is compact, there exist i < j such that

d(xi, xj) < δ. Repeating the pseudo orbit segment

xi, f(xi), · · · , fn−1(xi), xi+1, f(xi+1), · · · , fn−1(xi+1), · · · , xj−1, f(xj−1), · · · , fn−1(xj−1)

we get a δ-pseudo orbit {x(k)}k∈Z satisfying that x(0) = xi and x(k) = x(ℓ) if k ≡ ℓ (mod n(j − i)).

By the same arguments as above, there is a periodic center leaf W c(y) with d(x(0), y) ≤ ε. Hence,

we get the result if we take p = y and x′ = x(0).

Proof of Theorem D. The first result of the theorem follows from the first result of Lemma 5.1 im-

mediately. This is because for any x ∈ Ω(f) and ε > 0, we can find y ∈ Ω(f) and n > 0 such

that d(x, y) ≤ ε and d(y, fny) ≤ δ, and therefore there exists p ∈ P c(f) with d(x, p) < ε. Hence,

d(x, p) ≤ 2ε. It means that x ∈ P c(f). We get Ω(f) ⊂ P c(f).

Now we consider the second part of the theorem. Note that if f has uniformly compact center

foliation, then by (1.13), for any x ∈ Ωc(f) there is y ∈ M such that dH

(
W c(x), W c(y)

)
< ε and

dH

(
W c(y), fn(W c(y))

)
< δ. By the same arguments we get that there exists p ∈ P c(f) with d(y′, p) <

ε for some y′ ∈ W c(y). Hence d(x′, p) < ε for some x′ ∈ W c(x). And we get Ωc(f) ⊂ P c(f).

By Lemma 5.2 below, we know that Ωc(f) ⊂ W c(Ω(f)). Since it is obvious that P c(f) ⊂ Ωc(f)

and W c(Ω(f)) ⊂ Ωc(f), we get the equality (1.14).

Lemma 5.2. Suppose f : M → M is a partially hyperbolic diffeomorphism with compact C1 center

foliation Wc
f . Then for any x ∈ Ωc(f), there exists x′ ∈ Ω(f) ∩ W c(x).

Proof. Suppose Ω(f) ∩ W c(x) = ∅. Then any point y ∈ W c(x) is a wandering point. Hence, there is

a neighborhood Uy of y such that fn(Uy) ∩ Uy = ∅ for any n > 0. Clearly {Uy : y ∈ W c(x)} form a

open cover of W c(x). Let {U1, . . . , Uk} be a subcover of W c(x), and let U = ∪k
i=1Ui. Then U is a

neighborhood of W c(x). By Lemma 5.1, U contains a periodic leaf W c(z).

Suppose W c(z) has period ℓ. Then f jℓ(z) ∈ U for any j > 1. Since U = ∪k
i=1Ui, there are j1 < j2

such that f j1ℓ(z), f j2ℓ(z) ∈ Ui for some Ui. That is, f (j2−j1)ℓUi ∩ Ui 6= ∅, contrdicting the fact that

fn(Uy) ∩ Uy = ∅ for any n > 0.

6 A spectral decomposition theorem

In this section, we assume that f : M → M is a partially hyperbolic diffeomorphism with uniformly

compact C1 center foliation.

Denote by Wu
ε (x) and W s

ε (x) the local unstable and stable manifolds of size ε at x respectively.

We recall that f is dynamically coherent since the center foliation W c of f is C1 ([13]).

The next lemma gives the local product structure.
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Lemma 6.1. There are ε, δ > 0 such that for any x, y ∈ M with d(x, y) < δ, for any x1 ∈ W c(x),

there is y1 ∈ W c(y) such that W s
ε (x1) ∩ Wu

ε (y1) contains exact one point.

Proof. Since W s and W cu are uniformly transversal, and Wu subfoliate Wuc, it is obvious that there

are ε, δ′ > 0 such that if w, z ∈ M with d(w, z) < δ′, then W s
ε (w) ∩ Wu

ε (z1) contains exact one point

for some z1 ∈ Wu(z).

Since f has uniformly compact C1 center foliation, we can take δ ∈ (0, δ′) such that if d(x, y) < δ,

then dH

(
W c(x), W c(y)

)
< δ′. Then for any x1 ∈ W c(x), we can find y0 ∈ W c(y) such that d(x1, y0) <

δ′. Thus the result follows.

For uniformly hyperbolic systems, the cloud lemma gives that for any periodic points p and q, any

point x ∈ Wu(p) ∩ W s(q) is contained in the nonwandering set of the map (see e.g. [14]). The next

lemma can be regarded as a local version of the cloud lemma for partially hyperbolic diffeomorphisms

with uniformly compact C1 center foliation.

Lemma 6.2. Let p, q ∈ P c(f) with d(p, q) < δ. If x ∈ W s
ε (p1) ∩ Wu

ε (q1) for some p1 ∈ W c(p) and

q1 ∈ W c(q), then x ∈ Ωc(f).

Proof. By the definition of Ωc(f) and uniform compactness of the center foliation, it is sufficient to

prove that for any α > 0, there are a point y and a number n ∈ N such that

d(x, y) < α and d(fn(y), W c(y)) < α. (6.1)

By uniform compactness of the center foliation, there exists β ∈ (0, α) such that

d(x, y) < β =⇒ dH(W c(x), W c(y)) <
α

2
∀x, y ∈ M. (6.2)

Since x ∈ W s(p1) and p1 ∈ P c(f), {f i(x)}i≥0 has an accumulated point p2 ∈ W c(p) (See Figure 1).

Note that d(p2, W
c(q)) < δ′ by the choice of δ in the proof of Lemma 6.1. Hence, we can find i0 > 0

such that d(f i0(x), W c(q)) < δ′. By Lemma 6.1, there are q2 ∈ W c(q) and z0 ∈ M such that

z0 ∈ Wu
ε (f i0(x)) ∩ W s

ε (q2). Set z = f−i0(z0). We can choose i0 large enough such that

d(z, x) <
β

2
,

where β is given in (6.2). Note that {fn(z0)}n≥0 has an accumulated point q3 ∈ W c(q) since z ∈

W cs(q2) = W cs(q) and W c(q) is compact. We may assume fnj (z0) → q3 for some nj → +∞. This

implies that

lim
j→∞

fnj−i0(z) = q3. (6.3)

Recall that x ∈ Wu
ε (q1) ⊂ W cu(q). There is a point x′ ∈ W c(x) ∩ Wu(q3) since W c and Wu

subfoliate W cu.

Note that z ∈ Wu
ε (x) and x′ ∈ Wu(q3). By continuity of the unstable foliation, (6.3), implies that

there are a point y ∈ Wu
β
2

(z) and an integer j0 ∈ N such that d(f j0(y), x′) < α
2 , and therefore

d(f j0(y), W c(x)) <
α

2
.
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Also we have that d(x, y) ≤ d(x, z) + d(z, y) < β
2 + β

2 = β. So (6.2) can be applied, and we have

d(f j0(y), W c(y)) ≤ d(f j0(y), W c(x)) + d(W c(x), W c(y)) <
α

2
+

α

2
= α.

Now we get (6.1) with n = j0, and complete the proof.

p1 q
x

W c(p) W c(x)

W c(q)

Ec

Eu

Esy z

q1

q2

q3

f i0x

f j0z

p2

W s(p1)

Wu(q1)

z0

f j0y
x′

p

Figure 1: intersection of stable and unstable manifolds

Proof of Theorem E. For any p ∈ P c(f), we set

Xp = W cu(p) ∩ Ωc(f).

By Lemma 6.3 below, Xp is both open and closed in Ωc(f). By Lemma 6.4 below, {Xp : p ∈ P c(f)} are

either identical or disjoint. Since Ωc(f) is compact, there are finitely many points p1, · · · , pn ∈ P c(f)

such that

Ωc(f) = Xp1
∪ Xp2

∪ · · · ∪ Xpn
,

where Xpi
are pairwise disjointed. Then f(Xpj

) = Xf(pj) and hence equals to some Xpi
. So f

permutes these Xpj
’s. We set Ωc

i as the union of the Xpj
’s in the various cycles of permutation. Then

we can get

Ωc(f) = Ωc
1 ∪ · · · ∪ Ωc

k.

Center topological transitivity in (a) is implied by center topological mixing in (b). For finishing

the proof, we only need to prove that fN : Xp → Xp is center mixing whenever p ∈ P c(f) and N ∈ N

satisfying fN (Xp) = Xp.

Suppose U, V are nonempty open subsets in Xp. We choose a point q ∈ P c(f) ∩ U , and assume

that W c(q) has period n. Note that n = tN for some t ≥ 1.
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We firstly prove that there is i0 ∈ N such that

f in(W c(U)) ∩ V 6= ∅ ∀i ≥ i0. (6.4)

In fact, since U is open, there exists ε > 0 such that

Bε,Ωc(f)(W
c(q)) = {x ∈ Ωc(f) : d(x, W c(q)) < ε} ⊂ W c(U).

On the other hand, since W cu(q) is dense in Xq = Xp, we can select a point z ∈ W cu(q) ∩Ωc(f)∩ V .

Then there is i0 ∈ N such that

f−in(z) ∈ Bε,Ωc(f)(W
c(q)) ∀i ≥ i0

and hence this proves (6.4).

Similarly to (6.4), for any j = 1, · · · , t − 1, there is ij ∈ N such that

f in(f jN (W c(U))) ∩ V 6= ∅ ∀i ≥ ij . (6.5)

Set i∗ = t · max{i0, i1, · · · , it−1}. Then, for any i ≥ i∗, we can write

iN = ln + jN,

where l ≥ max{i0, i1, · · · , it−1} and 1 ≤ j ≤ t − 1. So, by (6.4) and (6.5)

f iN (W c(U)) ∩ V = f ln(f jN (W c(U))) ∩ V 6= ∅ ∀i ≥ i∗.

That is to say, fN |Xp
is center mixing. We complete the proof of Theorem E.

Lemma 6.3. There exists δ > 0 such that for any p ∈ P c(f),

Bδ,Ωc(f)(Xp) := {x ∈ Ωc(f) : d(x, Xp) < δ} = Xp,

where d(x, Xp) = min
y∈Xp

d(x, y).

Proof. Let δ > 0 as in Lemma 6.1. By Theorem D, we only need to prove that q ∈ Xp for any

q ∈ P c(f) with d(q, Xp) < δ.

By the definition of Xp, we can find a point x ∈ W cu(p) ∩ Ωc(f) such that d(x, q) < δ. By

Lemma 6.1, we can take z ∈ Wu(x) ∩ W s(q). Since x ∈ Ωc(f), Theorem D implies that there are

infinitely many points pn ∈ P c(f) such that pn → x as n → ∞. Hence, d(pn, q) < δ for all n large

enough. By Lemma 6.1, there exist qn ∈ W c(q) and zn ∈ M such that zn ∈ Wu
ε (pn) ∩ W s

ε (qn). By

Lemma 6.2, zn ∈ Ωc(f). Note that by continuity if pn → x, then qn → q and zn → z. We get

z ∈ Ωc(f). Since z ∈ Wu(x) and x ∈ W cu(p), we get z ∈ Xp by the definition of Xp. Further, since

z ∈ W s(q) and q ∈ P c(f), {fn(z)}n≥0 has at least one accumulated point in W c(q). This implies

that W c(q) ⊂ Xp and we complete the proof.

Lemma 6.4. Let p, q ∈ P c(f) and Xp ∩ Xq 6= ∅. Then Xp = Xq.
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Proof. Since Xp ∩ Xq 6= ∅, there are points x ∈ W cu(p) ∩ Ωc(f) and q′ ∈ Xq ∩ P c(f) such that

d(x, q′) < δ. By Lemma 6.1, there exists a point z ∈ Ωc(f) such that z ∈ Wu
ε (x) ∩ W s

ε (q′1) for some

q′1 ∈ W c(q′). Let n be the period of W c(q′). Then

lim
i→+∞

d
(
f in(z), W c(q′)

)
= 0.

By Lemma 6.3, f in(z) ∈ Xq1
for i large enough and hence z ∈ Xq.

At the same time, we have

lim
i→+∞

d
(
f−in(z), W c(p)

)
= 0.

So, W c(p) ⊂ Xq.

For any y ∈ W cu(p) ∩ Ωc(f), one has

lim
i→+∞

d
(
f−im(y), W c(p)

)
= 0,

where m is the period of W c(p). So f−im(y) ∈ Bδ,Ωc(f)(W
c(p)) ⊂ Bδ,Ωc(f)(Xq) for i large enough and

hence y ∈ Xq. Noting that Xp = W cu(p) ∩ Ωc(f), we have Xp ⊂ Xq.

Similarly, one can get Xq ⊂ Xp. This completes the proof.
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