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Abstract. We investigate the polynomial lower and upper bounds for decay
of correlations of a class of two-dimensional almost Anosov diffeomorphisms with
respect to their SRB measures. The degrees of the bounds are determined by the
expansion and contraction rates as the orbits approach the indifferent fixed point,
and can be expressed by using coefficients of the third order terms in the Taylor
expansions of the diffeomorphisms at the indifferent fixed points.

0. Introduction

The purpose of the paper is to obtain polynomial decay of correlations for diffeo-
morphisms on compact manifolds. The systems we consider are Cr, r ≥ 4, almost
Anosov diffeomorphisms f of a two-dimensional manifold M with an indifferent
fixed point p at which Dfp = id. We show that under some nondegeneracy condi-
tions, if the coefficients of the third order terms in the Taylor expansions of f at
p satisfy certain conditions then f has polynomial decay of correlations, and the
degrees of the decay rates are given by the coefficients of the xy2 and y3 terms. 3

Polynomial decay for one-dimensional expanding maps with an indifferent fixed
point has been studied extensively (see e.g. [9, 15, 21, 5]). There are some sys-
tematic ways developed to obtain polynomial decay rates. The tower structures
introduced in [20, 21] are widely used that can apply for both exponential and
subexponential decay rates. The renew methods proposed in [17] provide a way
to obtain upper and lower bound estimates. For higher-dimensional expanding
maps with an indifferent periodic points, upper bounds estimates were made in
[15]. Recently both upper and lower bound estimates were obtained in [7] for some
non-Morkov maps. Though the methods in both [20] and [17] can be applied to
invertible case, there are fewer results in this direction. Liverani and Martens in-
vestigated a class of area preserving maps on torus and obtained the upper bounds
for the correlation functions [10]. In this work we obtain both upper and lower
bound estimates of polynomial decay rates for diffeomorphisms.

Our strategy to prove the results is more or less standard. We first induce
two-dimensional almost hyperbolic systems to one-dimensional almost expanding
systems by collapsing the stable leaves in a Markov partitions, following the scheme
described in [20] in particular. Then we use a corresponding theorem, stated in [17]
(and [2] as well), for the induced systems to obtain polynomial decay rates, in which
first return maps are used. The last step is to pass the rates we obtained for the
induced systems to the original ones.

1E-mail: hu@math.msu.edu
2Corresponding author. E-mail: xuzhang08@gmail.com
3We mention here that in the Taylor expansion, the conditions Dfp = id means that the linear

terms are trivial, and hyperbolicity implies that the second order terms must vanish. So under the
nondegeneracy conditions the third order terms determine the ergodic properties of the systems.
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The most challenging part of the work is to estimate the size of the level sets
[τ > n], where τ is the first return time with respect to the set M \P , where P is a
rectangle whose interior contains p. Note that restricted to the unstable manifold
of the indifferent fixed point p, the map has the form f(r) ≈ r + a0r

3. (See (1.2)
and (1.3) with x = r and y = 0.) So if we take any point z in the the local
unstable manifold of p, then the backward orbit f−n(z) converges to p at a speed
proportional to n−1/2, that is unsummable. Fortunately, the size of the level sets
[τ > n] is of order between n−1/α and n−1/β , where 1/β > 1/α > 2, because the
stable foliation is not Lipschitz continuous near the indifferent fixed point p! (See
(1.4) for the value of α and β, and Proposition 4.1 for the estimates.) We obtain
such estimates by controlling the slopes of the stable leaves at the points close to
the local stable manifold of p.

Another problem comes from the last step, when we use the decay rates of the
induced systems to obtain the decay rates of the original ones. In this step we need
to estimate of the sizes of the rectangles after nth iteration. We use large deviation
estimation to get that most rectangles shrink exponentially fast, and prove directly
that other rectangles shrink fast enough, and the measure of the union of such
rectangles is small.

It is well known that for almost expanding maps of the interval with indifferent
fixed point p = 0, if f(x) ≈ x+x1+s, s ∈ (0, 1), then the rates of decay of correlations
are of the order n−(1/s−1). So faster decay rates are given by stronger expansion near
the indifferent fixed point (smaller s). In our case, near the fixed point f(x, y) ≈(
x(1 + a2y

2), y(1 − b2y
2)
)
, and a2/2b2 plays the role as 1/s in one-dimensional

systems. The rates of decay are roughly of the order n−(a2/2b2−1). This means that
the rates of decay for two-dimensional almost hyperbolic systems are determined by
the effect of both contraction and expansion when orbits approach the indifferent
fixed point, and faster decay rates are given by either stronger expansion (larger
a2) or weaker contraction (smaller b2) or both. 4

The rest of the paper is organized as follows. In Section 1, we introduce some
related definitions and state the Main Theorem. In Section 2, we give the proof
of the theorem. The proof consists of three major steps, which are carried out in
three subsections. In Subsection 2.1, we introduce a quotient map by collapsing the
map along the stable manifolds. In Subsection 2.2, we obtain both the lower and
upper polynomial bounds for the induced systems. In Subsection 2.3, we obtain
the polynomial bounds for Hölder continuous observables for the original systems.
Section 3 is for distortion estimates, mainly used in Subsection 2.1. The size of the
level sets are estimated in Section 4, where quantitative analysis is performed. And
the decay rates of the size of rectangles are estimated in Sections 5 and 6.

1. Statement of results

Consider a C∞ two-dimensional compact Riemannian manifoldM without bound-
ary, and the Riemannian measure on M is m. Let Diff4(M) be the set of four times
differentiable diffeomorphisms.

Definition 1.1. [[4] Definition 1] A map f ∈ Diff4(M) is called an almost Anosov
diffeomorphism, if there exist two continuous families of cones x → Cux , Csx such
that, except for a finite set S,

4We refer Remark 1.9 for the reasons that a0 and b0 are not involved here.
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(i) DfxCux ⊆ Cuf(x) and DfxCsx ⊇ Csf(x);

(ii) |Dfxv| > |v| for any v ∈ Cux and |Dfxv| < |v| for any v ∈ Csx.

Since S is a finite set, we only need to consider that S is an invariant set by
studying fn instead of f for some nonnegative integer n. Assume that S consists of
a single fixed point p. A fixed point p is called indifferent if Dfp has an eigenvalue
of modulus 1.

Remark 1.2. (i) By Proposition 4.2 in [4], there is an invariant decomposition of
the tangent bundle into TM = Eu ⊕ Es, the decomposition is continuous except
at the indifferent fixed point. By Definition 1.1, away from the fixed point angle
between Es and Eu is bounded away from zero.

(ii) It follows from Proposition 4.4 in [4] local unstable manifolds exist for all
x ∈M . Existence of local stable manifolds follows similarly.

Definition 1.3. [[4] Definition 2] An almost Anosov diffeomorphism f is said to be
non-degenerate (up to the third order), if there exist constants r0 > 0 and κu, κs > 0
such that for any x ∈ B(S, r0),

|Dfxv| ≥ (1 + κud(x, S)2)|v|, ∀v ∈ Cux ;

|Dfxv| ≤ (1− κsd(x, S)2)|v|, ∀v ∈ Csx.
(1.1)

By choosing a suitable coordinate system, there is a neighborhood B(p, r∗) of p
such that p = (0, 0) and f can be expressed as

(1.2) f(x, y) =

(
x(1 + φ(x, y)), y(1− ψ(x, y))

)
,

where (x, y) ∈ R2 and

φ(x, y) = a0x
2 + a1xy + a2y

2 +O(|(x, y)|3),

ψ(x, y) = b0x
2 + b1xy + b2y

2 +O(|(x, y)|3).
(1.3)

Remark 1.4. By (1.1), we know that φ(x, y), ψ(x, y) > 0 for any (x, y) ∈ B(p, r∗)\
{p}. Hence, we have a0, a2, b0, b2 > 0. In this paper, we will consider the case
a1 = b1 = 0.

Given a measurable partition ξ of a measurable space X with a probability
measure ν on X, there exists a family of probability measures {νξx : x ∈ X} with
νξx(ξ(x)) = 1, such that for any measurable set B ⊂ X, the map x → νξx(B) is
measurable and

ν(B) =

∫
X

νξx(B)dν(x).

This family {νξx} is said to be a canonical system of conditional measures for ν and
ξ [16].

Let f : (M,µ) → (M,µ) be a map with positive Lyapunov exponents almost
everywhere. So, the unstable manifold Wu(x) exists almost everywhere and is an
immersed submanifold of M ([13]). A measurable partition ξ of M is said to be
subordinate to unstable manifolds if ξ(x) ⊂ Wu(x) and contains an open neigh-
borhood of x in Wu(x) for almost every x with respect to the measure µ. Let mu

x

be the Riemannian measure on Wu(x). The measure µ is said to have absolutely
continuous conditional measures on unstable manifolds if for every measurable par-
tition ξ which is subordinate to unstable manifolds, µξx is absolutely continuous
with respect to mu

x for µ almost every x ∈M ([8]).
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Definition 1.5. An f -invariant Borel probability measure µ on M is said to be an
SRB measure if

(i) (f, µ) has positive Lyapunov exponents almost everywhere;
(ii) µ has absolutely continuous conditional measures on unstable manifolds.

For any given map f and its invariant probability measure µ, the correlation for
two observables Φ and Ψ is defined by

Corn(Φ,Ψ; f, µ) :=

∫
(Ψ ◦ (fn))Φdµ−

∫
Φdµ

∫
Ψdµ,

where n is a positive integer.
In Lemma 7.1 of [4], it is in fact proved that if f is an almost Anosov diffeomor-

phism of a torus M = T2, then for any neighborhood U of p, there exists θ∗ ∈ (0, 1),
such that the unstable subspaces are Hölder continuous with Hölder exponent θ∗.

By applying the renewal theory developed by [17] and [2], we could obtain the
following results:

Main Theorem. Let f ∈ Diff4(M) be a topologically mixing almost Anosov dif-
feomorphism that has an indifferent fixed point p at which (1.1)–(1.3) are satisfied.
Suppose a0b2 − a2b0 > 0, 4b2 < a2, and a1 = b1 = 0. Fix any α, β ∈ (0, 1/2) with

(1.4)
α

1 + α
< β <

2a2b2
a2

2 + a2b2 + b22
<

2b2
a2

< α.

Then for any neighborhood U of p, and any Hölder continuous functions Φ,Ψ with
the exponent θ, supp Φ, supp Ψ ⊂M \ U , and

∫
Φdµ

∫
Ψdµ 6= 0, we have

(1.5)
A′

n
1
β−1

≤
∣∣∣Corn(Φ,Ψ; f, µ)

∣∣∣ ≤ A

n
1
α−1

,

where µ is an SRB measure, θ ∈ (max{(1/β − 1/α)(3/2 + b0/(2a0))−1, θ∗}, 1], and
A′ and A are positive constants dependent on Φ and Ψ.

Remark 1.6. The condition on topological mixing seems unnecessary. It can be
proved that f is topologically conjugate to an Anosov diffeomorphism on the two-
dimensional torus. Hence, f is topologically transitive, and M is the only basic
set of f . By the spectral decomposition theorem, f is topologically mixing on M .
However, since there is no suitable reference, we put this condition in the theorem.

Remark 1.7. (i) Since α <
1

2
, the decay rates are faster than n−1.

(ii) In inequalities (1.4), we can take α &
2b2
a2

and β .
2a2b2

a2
2 + a2b2 + b22

. Hence

1

β
− 1

α
&

1

2
+
α

4
, while the first inequalities in (1.4) is equivalent to

1

β
− 1

α
< 1. So

if 4b2 < a2, then we can always choose α and β satisfying (1.4).

Remark 1.8. As we see in the above remark, 1/β − 1/α & 1/2 + α/4, and 1/2 +
α/4 < 1. Hence, we can take θ ≤ 1. In particular, if 2b2/a2 is sufficiently small,
then θ can be close to 1/2.

Remark 1.9. To get decay rates of the systems we need to consider first return
maps with respect to M \P , where P are rectangles with p in its interior. The decay
rates are determined by the size of the level sets [τ = n], where τ is the first return
time. For all large n, the sets are in regions close to the local stable manifold of p.
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More precisely, if f has the form given by (1.2) and (1.3) under some coordinate
systems, then the level sets [τ = n] are in regions of the form {(x, y) : 0 < |x| �
r1 ≤ |y| ≤ r2} for some 0 < r1 < r2. In the regions a0x

2 and b0x
2 are much smaller

than a2y
2 and b2y

2, and hence we have f(x, y) ≈ (x(1 + a2y
2), y(1− b2y2)). So the

degree of the rates of decay only depends on a2 and b2.

2. Proof of the main theorem

In this section, we prove the Main Theorem. The proof consists of three steps,
and is carried out in three subsections. In the first step, we induce the system
(f,M) to one-dimensional expanding system (f̄ ,M) with an indifferent fixed point
p̄ by taking a Markov partition P and then collapsing the stable manifolds in each
element of the partition. In the second step, we apply a result of Sarig [17] to obtain
the lower and upper bounds for the decay of correlations for observable functions
on the reduced manifold M , where the key step is to estimate the measure of the
level sets [τ = n] for the first return time function τ . In the last step, we obtain the
decay rates for (f,M) by using the estimates for (f̄ ,M), where the main ingredient
is to estimate the size of the elements of the partition ∨ni=−nf iP.

2.1. Induce to one-dimensional map. Take a finite Markov partition P =
{P0, P1, · · · , Pr} such that p ∈ intP0 ⊂ U , where U is given in the Main Theo-
rem. For any Pi and x ∈ Pi, denote by γu(x) the connected component of unstable
leaf containing x in Pi, and by Wu(Pi) the set of all such leaves. And, γs(x) and
W s(Pi) are understood in a similar way.

Define an equivalent relation on M by x ∼ y if x and y are in the same stable
leave γs ∈ W s(Pi) for some Pi. Denote by x̄ = γs(x) the equivalent class that
contains x. Denote M = M/ ∼. Let π : M →M be the natural projection.

Denote by B the completion of the Borel algebra of M .
Since P is a Markov partition, f(γs(x)) ⊂ γs(f(x)) for any x ∈ Pi with f(x) ∈

Pj . Hence, the quotient map f : M → M given by f(x̄) = f(x) is well defined.

Denote P i = Pi/ ∼ and P = {P 0, ..., P r}. Since f(γu(x)) ⊃ γu(f(x)) for any
x ∈ Pi with f(x) ∈ Pj , P is a Markov partition for f .

Fix an arbitrary γ̂ui ∈ Wu(Pi), 0 ≤ i ≤ r. By abuse of notation we also let
π : Pi → γ̂ui be the sliding map along stable leaves such that for any x ∈ Pi,
π(x) = γs(x) ∩ γ̂ui = x̂, where γs(x) ∈W s(Pi).

Now, we define a reference measure ν on M . For each γ ∈ Wu(Pi), denote by
mγ the Lebesgue measure restricted to γ. We introduce the following function

un(x) :=

n−1∑
i=0

(
log |Dfxi |Euxi | − log |Dfx̂i |Eux̂i |

)
,

where xi = f i(x). By Lemma 3.1 in the next section, one has that un converges
uniformly to some function u. We define ν by dνγ(x) := eu(x)dmγ(x). By (1)

of Lemma 3.3 in the next section, we can define a measure ν on M satisfying
ν|P i = νγ̂ui .

Note that the Jacobian of f with respect to ν is given by

J(f)(x) = |D(f)|Eux | · e
u(f(x)) · e−u(x)

for νγ almost every x ∈ M . By (2) of Lemma 3.3, we have that J(f)(x̄) can be
defined as J(f)(y) for any y ∈ γs(x).
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By Theorem B in [4], f has an SRB measure µ under our assumption. And,
µ induces an invariant measure µ on M in an obvious way. The estimates for
bounded distortion given by Proposition 7.5 in [4] imply that the conditional mea-
sure is equivalent to the Lebesgue measure, when the measure is restricted to any
unstable curve γu away from the indifferent fixed point p. Hence, µ is an absolutely
continuous invariant measure with respect to ν, and is equivalent to ν away from
p̄.

Now, we obtain a Markov map (M,B, µ̄, f ,P) in the following sense (see [1, 17]):

(i) (Generator property) B is complete and is the smallest σ-algebra containing

∪n≥0f
−n

(P);

(ii) (Markov property) P is a Markov partition, that is, for any P i, P j ∈ P, if

µ̄(f(P i) ∩ P j) > 0, then f(P i) ⊃ P j (mod µ̄);

(iii) (Local invertibility) for any P i ∈ P with µ̄(P i) > 0, f : P i → f(P i) is
invertible with measurable inverse.

By the assumption that f is topologically mixing, the Markov map is irreducible.

2.2. Polynomial decay rates. Recall that the indifferent fixed point p ∈ intP0,

and hence, p̄ ∈ intP 0. Denote M̃ = M \ P 0.

Take the first return map f̃ = fτ of f with respect to M \ P0, that is, f̃(x) =
fτ(x)(x), where τ is the first return time, τ(x) = min{n > 0 : fn(x) ∈ M \ P0}.
Clearly f̃ : M \ P0 → M \ P0 induces a first return map from M̃ to itself. For the

sake of simplicity of notation we also denote it by f̃ .
Let T′ = {[τ = n] : n = 1, 2, . . . } be a partition into the level sets. Then let

T = T′ ∨ P0, where P0 = P \ {P0} is the Markov partition of M̃ . It is clear that T

is a Markov partition of M̃ .

For any point x̄, ȳ ∈ M̃ , the separation time is defined by

s(x̄, ȳ) := sup{n ≥ 0 : f̃ i(ȳ) ∈ T(f̃ i(x̄)), 0 ≤ i ≤ n}.
We may also regard s(x, y) = s(x̄, ȳ) if x ∈ x̄ and y ∈ ȳ.

Let

(2.1) λ = sup{‖Dfx|Eux ‖
−1, ‖Dfx|Esx‖ : x ∈M \ P0}.

Clearly λ ∈ (0, 1). Let θ∗ ∈ (0, 1) as in Lemma 3.1, and then take θ ∈ [θ∗, 1).
For any function Φ defined on M , take a semi-norm by

DΦ := sup
x̄,ȳ∈M̃

|Φ(x̄)− Φ(ȳ)|√
λ θs(x̄,ȳ)

.

Then we consider the Banach space

(2.2) L := {Φ : supp Φ ⊂ M̃, ‖Φ‖∞ +DΦ <∞}.
and take the norm in L by ‖Φ‖L = ‖Φ‖∞ +DΦ.

It is clear that L contains Hölder functions with Hölder exponent θ supported

on M̃ . If Φ ∈ L, then for any x̄, ȳ with s(x̄, ȳ) ≥ n, we have

|Φ(x̄)− Φ(ȳ)| ≤ (DΦ)λθs(x̄,ȳ) ≤ (DΦ)(λθ)n ≤ (DΦ)(
√
λ
θ
)n.

That is, Φ is locally Hölder continuous in the sense given in [17] (see also [1]).

By Lemma 3.4, we know that log J(f̃) ∈ L. By standard arguments, it is easy

to know (e.g. see Lemma 2 in Subsection 3.1 in [20]) that f̃ admits an absolutely
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continuous invariant measure µ̃ on M̃ with the density function h̃ with respect to

ν̃, and the density function satisfies log h̃ ∈ L and is bounded away from 0 and
infinity. By uniqueness we know that µ̃ is the conditional measure mentioned in

the last subsection with respect to M̃ .

The Jacobian of f̃ with respect to µ̃ is given by

Jµ̃(f̃) = J(f̃)
h̃ ◦ f̃
h̃

.

Since both log J(f̃) and log h̃ are in L, so is − log Jµ̃(f̃). Hence, − log Jµ̃(f̃) is
locally Hölder continuous.

Now we are ready to apply the following theorem that is directly derived from
Theorem 2 in [17].

Theorem. Let (M,B, µ̄, f ,P) be an irreducible measure preserving Markov map

with µ̄(M) = 1, and assume that − log |Jµ̃(f̃)| has a (f̃ ,T)-locally Hölder continuous

version for M . If g.c.d. {τ(x̄) − τ(ȳ) : x̄, ȳ ∈ M} = 1, and µ̄[τ > n] = O(1/n%)
with % > 2, then there exists C > 0 such that for any Φ ∈ L and Ψ ∈ L∞ with

supp Φ, supp Ψ ⊂ M̃ , one has∣∣∣∣Corn(Φ,Ψ; f, µ̄)−
( ∞∑
k=n+1

µ̄[τ > k]

)∫
Φ

∫
Ψ

∣∣∣∣ ≤ CF%(n)‖Ψ‖∞‖Φ‖L,

where F%(n) = O(1/n%).

We have an irreducible measure preserving Markov map (M,B, µ̄, f ,P) by the

previous subsection. By above arguments we know that − log |Jµ̃(f̃)| has a (f̃ ,T)-

locally Hölder continuous version. It is clear that {τ(x̄) − τ(ȳ) : x̄, ȳ ∈ M} = 1
by our construction. So, what we need to do is to estimate µ̄[τ > n], that is, to
estimate the exponent %.

Recall that P = P0 is the element of the Markov Partition P with p ∈ intP .
Denote Q = f−1P \ P . Clearly Q is a rectangle and the set of points x ∈ M
with τ(x) > 1, where τ is the first return time given at the beginning of this
subsection. Denote Qk = [τ ≥ k]. Clearly Q = Q2 and Qk+1 ⊂ Qk for any k ≥ 2.
Moreover, Qk are rectangles such that for any x ∈ Qk, W s(x,Qk) = W s(x,Q) and
Wu(x,Qk) ⊂Wu(x,Q).

For any unstable curve γu ∈ Wu(Q), let γuk = γu ∩Qk. By Proposition 4.1, we
know that there exist Dα > 0 and Dβ > 0 such that

Dβ

k
1
β

≤ mu
γ(γuk ) ≤ Dα

k
1
α

,

where α and β are given in the Main Theorem, and mu
γ is the Lebesgue measure

restricted to γu.
Denote by µuγ the conditional measure of the SRB measure µ on γu. Since the

distortion of f along any unstable curve is uniformly bounded above and below
away from p (see Lemma 3.1, also Proposition 7.5 in [4]), so is the density function
dµuγ
dmu

γ

. Hence, there exist Cα, Cβ > 0 such that

Cβ

k
1
β

≤ µuγ(γuk ) ≤ Cα

k
1
α

.
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By integration, we get that similar inequalities are true for µQk = µ[τ > k] with
different constant coefficients, that is, there exist two positive constants Bα, Bβ > 0
such that

(2.3)
Bβ

k
1
β

≤ µ(Qk) ≤ Bα

k
1
α

.

It gives that

∞∑
k=n+1

µ̄[τ > k] has the order between n−( 1
α−1) and n−( 1

β−1).

By (2.3), we can take % = 1/α. Since F%(n) is of order of n−% and % >
1

β
− 1,

we get that there exist Aα, Aβ > 0 such that

(2.4)
Aβ

n
1
β−1

≤ Corn(Φ,Ψ; f, µ̄) ≤ Aα

n
1
α−1

.

2.3. Polynomial decay rates for diffeomorphisms. In this subsection, we es-
tablish polynomial decay of correlations for almost Anosov diffeomorphisms using
the results we obtained in the reduced systems.

Recall that P is a Markov partition, and P = P0 is the element of P containing
p, and M0 = M \ P0.

We introduce a type of Hölder functions:

Hθ :=
{

Φ : ∃HΦ > 0 s.t. |Φ(x)− Φ(y)| ≤ HΦ|x− y|θ and supp(Φ) ⊂M0},

where θ ∈ (max{(1/β − 1/α)(3/2 + b0/(2a0))−1, θ∗}, 1], and θ∗ ∈ (0, 1) is specified
in Lemma 7.1 of [4], which is dependent on the map f and the element P0.

Set P0 := P and Pk,n :=
∨n
i=k f

−i(P0), and Pn = P0,n.

For any Φ,Ψ ∈ Hθ and for any k > 0, we define Φk by Φk|B := inf{Φ(x) : x ∈
fk(B)} for any B ∈ P0,2k, and define Ψk in the same way.

By Lemma 2.1 below, the direct calculation gives

|Corn−k(Φ,Ψ ◦ fk; f, µ)− Corn−k(Φ,Ψk; f, µ)|

≤
∣∣∣ ∫ (Ψ ◦ fk −Ψk) ◦ (fn−k) · Φdµ

∣∣∣+
∣∣∣ ∫ (Ψ ◦ fk −Ψk)dµ ·

∫
Φdµ

∣∣∣
≤(2 max |Φ|)

∫
|Ψ ◦ fk −Ψk|dµ ≤ (2 max |Φ|) · CAHΨ

kβ∗
,

(2.5)

where β∗ is specified in Lemma 2.1.
For Φk defined as above, let Φkµ be the signed measure whose density with

respect to µ is Φk, and set Φk :=
d((fk)∗(Φkµ))

dµ
.

Let |·| be the total variation of a signed measure, and note that (fk)∗(Φ◦(fk)µ) =
Φµ, where |µ|(A) =

∫
A
d|µ| for any Borel set A ⊂ M . Applying Lemma 2.1 for Φ

we can get∫
|Φ− Φk|dµ = |Φµ− Φkµ|(M) = |(fk)∗((Φ ◦ (fk)µ)− (fk)∗(Φkµ)|(M)

≤|(Φ ◦ fk − Φk)µ|(M) =

∫
|Φ ◦ fk − Φk|dµ ≤

CAHΦ

kβ∗
.
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Hence, by similar computation as previously, we have∣∣∣Corn−k(Φ,Ψk; f, µ)− Corn−k(Φk,Ψk; f, µ)
∣∣∣

≤
∣∣∣ ∫ (Ψk ◦ (fn−k))(Φ− Φk)dµ

∣∣∣+
∣∣∣ ∫ Ψkdµ ·

∫
(Φ− Φk)dµ

∣∣∣
≤(2 max |Ψ|)

∫
|Φ− Φk|dµ ≤ (2 max |Ψ|)CAHΦ

kβ∗
.

(2.6)

Now we show that Corn−k(Φk,Ψk; f, µ) can be expressed as functions only de-
pendent on the unstable manifolds, which means that these functions are constant
along stable manifolds on each element of Pi. Since Ψk is constant along stable
manifolds on each rectangle Pi ∈ P, we can regard it as a function on M as well.
Also we have π∗(Φkµ) = Φk(π∗µ) = Φk(µ̄), and f ◦ π = π ◦ f . So,∫

(Ψk ◦ (fn−k))Φkdµ =

∫
(Ψk ◦ (fn−k))d((fk)∗(Φkµ))

=

∫
Ψkd((fn−k)∗(f

k)∗(Φkµ)) =

∫
Ψkd((fn)∗(Φkµ))

=

∫
Ψkd(π∗(f

n)∗(Φkµ)) =

∫
Ψkd((f

n
)∗(Φkµ̄)) =

∫
Ψk ◦ f

n · Φkdµ̄,

and, ∫
Φkdµ

∫
Ψkdµ =

∫
d((fk)∗(Φkµ)) ·

∫
Ψkdµ̄ =

∫
Φkdµ̄ ·

∫
Ψkdµ̄.

It means |Corn−k(Φk,Ψk; f, µ)| = |Corn−k(Φk,Ψk; f, µ̄)|. Hence, by (2.5) and (2.6),
we have

|Corn(Φ,Ψ; f, µ)| = |Corn−k(Φ,Ψ ◦ fk; f, µ)|

≤|Corn−k(Φ,Ψ ◦ fk; f, µ)− Corn−k(Φ,Ψk; f, µ)|
+|Corn−k(Φ,Ψk; f, µ)− Corn−k(Φk,Ψk; f, µ)|+ |Corn−k(Φk,Ψk; f, µ)|

=(2 max |Φ|) · CAHΨ

kβ∗
+ (2 max |Ψ|) · CAHΦ

kβ∗
+ |Corn−k(Φk,Ψk; f, µ̄)|.

Take k = [n/2]. Since β∗ >
1

β
− 1, by (2.4), we obtain that there exist A >

21/α−1Aα and A′ < 21/β−1Aβ such that

A′

n
1
β−1

≤ |Corn(Φ,Ψ; f, µ)| ≤ A

n
1
α−1

.

This completes the whole proof of the Main Theorem.

Lemma 2.1. Given any θ ∈ (max{(1/β − 1/α)(3/2 + b0/(2a0))−1, θ∗}, 1], there

exist CA > 0, K > 0 and β∗ = β∗(θ) >
1

β
− 1 such that for any Ψ ∈ Hθ and

k ≥ K, ∫ ∣∣Ψ ◦ fk −Ψk

∣∣dµ ≤ CAHΨ

kβ∗
.

Proof. Recall that by the definition, Ψk|B := inf{Ψ(x) : x ∈ fk(B)}, where
B ∈ P0,2k. So for any x, there is y ∈ P0,2k(x) such that Ψ ◦ fk(x) − Ψk(x) =
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Ψ ◦ fk(x) − Ψ ◦ fk(y). Since Ψ ∈ Hθ and fk(P0,2k(x)) = P−k,k(fk(x)), we have
that for x ∈ B with B ∈ P0,2k,

|Ψ ◦ fk(x)−Ψk(x)| = |Ψ ◦ fk(x)−Ψ ◦ fk(y)|

≤HΨ|fk(x)− fk(y)|θ ≤ HΨdiam(fk(B))θ = HΨdiam(P−k,k(fk(x)))θ.

It means

(2.7) |Ψ(x)−Ψk(f−k(x))| ≤ HΨdiam(P−k,k(x))θ.

Hence, we need to estimate the diameter of the sets in P−k,k.
Let δ ∈ (0, δ0), where δ0 is given in Proposition 6.2. Let

Sk = {x ∈M \ P : diam(P−k,k(x)) ≥ e−kδ}.

By Remark 1.2, there is a uniform lower bound for the angle between Eux and Esx
for all x ∈M \ P . Hence, there exist C` > 0 such that for any x ∈ Sk, either there
exists an unstable manifold γuk (xu) ⊂ P−k,k(x) with the length larger than C`e

−kδ,
where xu ∈ P−k,k(x), or there exists a stable manifold γsk(xs) ⊂ P−k,k(x) with the
length larger than C`e

−kδ, where xs ∈ P−k,k(x).
In the former case, by the fact fk(γuk (xu)) = γs0(fk(xu)), there is Cd > 0

and yu ∈ γuk (xu) such that |Dfkyu |Euyu | < Cde
kδ. Hence, by distortion given in

Lemma 3.1, for any y ∈ γuk (xu), |Dfky |Euy | < CdJue
kδ, and then for any z ∈ γsk(y),

y ∈ γuk (xu), |Dfkz |Esz | < CdJuJse
kδ, that is, the inequality holds for all z ∈ P−k,k(x).

In particular, we have |Dfkx |Esx | < CdJuJse
kδ. Similarly, in the latter case, we can

get that |Df−kx |Esx | < C ′dJ
′
sJ
′
ue
kδ for some C ′D > 0, where J ′s and J ′u are given in

Lemma 3.2. So we can get

Sk ⊂
{
x ∈M : |Dfkx |Eux | < Eekδ

}⋃{
x ∈M : |Df−kx |Esx | < E′ekδ

}
,

where E = CdJuJs and E′ = C ′dJ
′
uJ
′
s. By applying Proposition 6.2, we get that

there exist CD, C
′
D > 0 such that

µ(Sk) ≤ C∗D(log k)2(1/α−1)

k1/α−1
,

where C∗D = CD + C ′D,

Let Tk be given in Proposition 5.1. By this proposition, µ(Tk) ≤ Cs log k

k1/α
.

For any x ∈ Tk, by Propositions 5.1 and 5.2, diam(P−k,k(x)) ≤ Ch
k1/2+α′

, where

α′ =
b0

2a0
, and Ch is a constant larger than the constants Cs and Cu given by

Proposition 5.1 and 5.2.

For any x /∈ Tk, diam(P−k,k(x)) ≤ Cs
k3/2+α′

by Proposition 5.1.

Hence, by invariance of µ and (2.7), the above estimates give∫ ∣∣Ψ ◦ fk −Ψk

∣∣dµ =

∫ ∣∣Ψ−Ψk ◦ f−k
∣∣dµ

=

∫
T ck∩S

c
k

|Ψ ◦ fk −Ψk|dµ+

∫
T ck∩Sk

|Ψ ◦ fk −Ψk|dµ+

∫
Tk

|Ψ ◦ fk −Ψk|dµ

≤HΨe
−kδθ +

HΨC
θ
s

k(3/2+α′)θ
· C
∗
D(log k)2(1/α−1)

k1/α−1
+

HΨC
θ
s

k(1/2+α′)θ
· Cs log k

k1/α
≤ CAHΨ

kβ∗
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for some CA > 0 independent of Ψ, where β∗ >
(

3
2 + α′

)
θ + 1

α − 1. By the choice

of θ, we have that β∗ >
1

β
− 1. �

3. Some distortion estimates

In this section we provide some distortion estimates which were used in Subsec-
tion 2.1 and will be used in Section 5 as well.

Lemma 3.1. There are positive constants Js, Ju > 0, and θ∗ ∈ (0, 1] such that for
any γs ∈W s(Pi), i = 1, · · · , r, x, y ∈ γs and n ≥ 0,

(3.1) log
|Dfny |Euy |
|Dfnx |Eux |

≤ Jsds(x, y)θ
∗
;

and for any γu ∈Wu(Pi), i = 1, · · · , r, x, y ∈ γu and n ≥ 0,

(3.2) log
|Df−ny |Euy |
|Df−nx |Eux |

≤ Judu(x, y)θ
∗
.

Proof. Denote P = P0. By the same method as in the proof of Lemma 7.4 in
[4], we can get that there exists constant Is > 0 such that if γs ⊂ f−1P\P is a
W s-segment with f iγs ⊂ P , i = 1, · · ·n− 1, then for any x, y ∈ γs,

log

∣∣Dfny |Euy ∣∣∣∣Dfnx |Eux ∣∣ ≤ Isdu(x, y)θ
∗
,

where θ∗ = θ is given in Lemma 7.1 of [4].
With this result we can get a proof of (3.1) using the same idea as in the proof

of Proposition 7.5 in [4], whose details can be found in Proposition 3.1 in [3].
The second inequality (3.2) can be obtained similarly. �

Similarly, we have the following result:

Lemma 3.2. There are two positive constants J ′s and J ′u, and θ∗ ∈ (0, 1] such that
for any γs ∈W s(Pi), i = 1, · · · , r, x, y ∈ γs and n ≥ 0,

log
|Dfny |Esy |
|Dfnx |Esx |

≤ J ′sds(x, y)θ
∗
;

and for any γu ∈Wu(Pi), i = 1, · · · , r, x, y ∈ γu and n ≥ 0,

log
|Df−ny |Esy |
|Df−nx |Esx |

≤ J ′udu(x, y)θ
∗
.

Lemma 3.3. (1) Let γu, γ̂ui ∈ Wu(Pi). For the sliding map π : γu → γ̂ui , one
has that π∗µγ = µγ̂ui .

(2) J(f)(x) = J(f)(y) for any y ∈ γs(x).

Proof. The statements and proof are the same as (1) and (2) of Lemma 1 in Sub-
section 3.1 in [20]. �
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Lemma 3.4. There are C > 0, λ ∈ (0, 1), and θ∗ ∈ (0, 1) such that for any
γu ∈Wu(Pi), i = 1, ..., r, x, y ∈ γu,

log

∣∣∣∣J(f̃)(x)

J(f̃)(y)

∣∣∣∣ ≤ C√λθ∗s(x,y)
,

where s(x, y) is given in Subsection 2.2.

Proof. For any x ∈ γu ∩ Pi, i 6= 0, one has

J(f̃)(x) = |Df̃x|Eux | · e
u(f̃(x)) · e−u(x).

Denote φ(x) = log |Df̃x|Eux |. We can write

|u(x)− u(y)| ≤
∣∣∣∣ k∑
i=0

[φ(f̃ i(x))− φ(f̃ i(y))]

∣∣∣∣+

∣∣∣∣ k∑
i=0

[φ(f̃ i(x̂))− φ(f̃ i(ŷ))]

∣∣∣∣
+

∣∣∣∣ ∞∑
i=k+1

[φ(f̃ i(x))− φ(f̃ i(x̂))]

∣∣∣∣+

∣∣∣∣ ∞∑
i=k+1

[φ(f̃ i(y))− φ(f̃ i(ŷ))]

∣∣∣∣.
We take k > 0 such that fk = f̃s

∗(x,y)/2, where s∗(x, y) = s(x, y) if s(x, y) is even
and s∗(x, y) = s(x, y) + 1, otherwise. Hence, fk(x), fk(x̂), fk(y), fk(ŷ) /∈ P , and
(3.1) and (3.2) can be applied to the sums of the right hand side. So, we can get

|u(x)− u(y)| ≤Judu(fk(x), fk(y))θ
∗

+ Jud
u(fk(x̂), fk(ŷ))θ

∗

+Jsd
s(fk(x), fk(x̂))θ

∗
+ Jsd

s(fk(y), fk(ŷ))θ
∗
.

Recall that λ is defined in (2.1). We can get that

du(fk(x), fk(y))θ
∗

=du(f̃s(x,y)(x), f̃s(x,y)(y))θ
∗
· d

u(f̃s(x,y)∗/2(x), f̃s(x,y)∗/2(y))θ
∗

du(f̃s(x,y)(x), f̃s(x,y)(y))θ∗
≤ Cdλθ

∗s(x,y)/2,

where Cd is determined by the maximum radius of each element in the Markov

partition, we use the fact that f̃s(x,y)(x) and f̃s(x,y)(y) are in the same element of the

Markov partition P, and hence, du(f̃s(x,y)(x), f̃s(x,y)(y))θ
∗

is uniformly bounded.
Similarly, we have du(fk(x̂), fk(ŷ))θ

∗
, Jud

s(fk(x), fk(x̂))θ
∗
, Jud

s(fk(y), fk(ŷ))θ
∗ ≤

C ′λθ
∗s(x,y)/2, where C ′ is a positive constant. Hence,

|u(x)− u(y)| ≤ 4Cλθ
∗s(x,y)/2,

where C is a positive constant.

Since log |Df̃x|Eux | − log |Df̃y|Euy | and u(f̃(x)) − u(f̃(y)) can be estimated in a
similar way, we get the inequality we need.

This competes the proof. �
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4. Rates of convergence of the level sets

In this section, we prove Proposition 4.1 that is the key step to estimate the
term µ[τ > n].

Recall that Q = Q2 = f−1P \ P , and Qi = [τ ≥ i] for i ≥ 2.
Note that the map f has a local product structure, that is, there exist positive

constants ε and δ such that for any x, y ∈ M with d(x, y) ≤ δ, [x, y] := Wu
ε (x) ∩

W s
ε (y) contains exactly one point.
Take a coordinate system in a neighborhood U∗ of p such that the map has

the form given in (1.2) and (1.3). Hence, the y-axis and x-axis are the stable and
unstable manifold of p, respectively. Recall that we assume a1 = 0 = b1.

Let r > 0 be small such that the ball centered at p of radius r is contained in
U∗. We also assume that P = P0 is small enough such that P , f(P ), and f−1(P )
are contained in the ball.

Proposition 4.1. Suppose α, β ∈ (0, 1) satisfies β <
2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α.

Then there exist Dα, Dβ > 0 such that for any unstable curve γu ∈ Wu(Q), for
any k > 0, we have

Dβ

k
1
β

≤ mu
γ(γuk ) ≤ Dα

k
1
α

.

where γuk = γu ∩Qk and mu
γ is the Lebesgue measure restricted to γu.

Proof. Let γu ∈Wu(Q) be an unstable curve in Q. Denote q = γu ∩W s
ε (p).

For any z = (x, y) ∈ γu, denote z1 = (x1, y1) = f(z), and z̄ = (x̄, ȳ) = [z, fz] =
Wu(z) ∩W s(fz). Since both z1 and z̄ are in the same stable curve, z ∈ Qk if and
only if z̄ ∈ Qk−1. So if z is an endpoint of γuk , then z̄ is an endpoint of γuk−1. In
order to estimate the length of γuk , we estimate the ratio mu

γ(γuk−1)/mu
γ(γuk ) firstly.

This is equivalent to estimate x̄/x.
Denote by vsz a real number or ∞ such that (vsz, 1) is a tangent vector of W s

r (z).
Take the function ρ̂ on [0, r] as in Proposition 4.3. By Lemmas 4.4 and 4.6 below,
we know that if z = z0 is sufficiently close to q, then

−
(a2

b2
+ ρ̂(y0)

)
(1− xα0 )

x0

y0
≤ vsz0 ≤ −

(a2

b2
+ ρ̂(y0)

)
(1− xβ0 )

x0

y0
.

With the estimates for vsz, we can get by Lemmas 4.5 and 4.7 that there exist
Eα, Eβ > 0 such that

x0 + Eαx
1+α
0 ≤ x̄0 ≤ x0 + Eβx

1+α
0 .

If we denote sk = mu(γuk ), the inequalities mean

sk + Eαs
1+α
k ≤ sk−1 ≤ sk + Eβs

1+α
k .

for all k sufficiently large. Hence, it follows (e.g. see Lemma 3.1 in [6]) that there
exist Dα, Dβ > 0 such that for all k > 0,

Dβ

k
1
β

≤ sk ≤
Dα

k
1
α

.

This is what we need. �

To obtain Lemmas 4.4 and 4.6, we consider vsz, where z is near the y-axis. Assume
that vsz has the form

vsz = −ρx
y
,
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where ρ = ρ(x, y).
Since (vsz, 1) is in the stable cone at z, without loss of generality, assume that

(4.1) −1 ≤ vsz ≤ 1, ∀z ∈ B(p, r).

Let ρ ba a function defined on U∗. Set z1 := f(z) and ρ1 := ρ(z1). Define

∆ρ(x, y) : = (ρ− ρ1)(1 + φ)(1− ψ) + ρ1y(1 + φ)ψy − y(1− ψ)φy

− ρ1ρx(1 + φ)ψx + ρx(1− ψ)φx,

where φ = φ(x, y) and ψ = ψ(x, y). We need the following facts.

Lemma 4.2 ([4] Lemma 8.3). If vsz ≤ −ρ(z)xy and 0 ≤ ∆ρ(x, y), then vsz1 ≤
−ρ(z1)x1

y1
. The result also holds if all “ 6 ” are replaced by “ > ”.

To get more precise form of ρ, we need the following results.

Proposition 4.3 ([4] Proposition 8.4). There exists a Lipschitz function ρ̂ on [0, r]
with ρ̂(0) = 0 satisfying the following two equations:

∆ a2
b2

+ρ̂(0, y) = (ρ̂(y)− ρ̂(y
(0)
1 ))(1 + φ)(1− ψ)

+

(
a2

b2
+ ρ̂(y

(0)
1 )

)
y(1 + φ)ψy − y(1− ψ)φy = 0,

and

(4.2) b2 log(1 + φ) + a2 log(1− ψ)− b2
∫ y

y
(0)
1

ρ̂(t)

t
dt = 0,

where φ = φ(0, y), ψ = ψ(0, y), and y
(0)
1 = y(1− ψ(0, y)).

The upper bound estimates have been proved in [4]. We state the corresponding
lemmas here for completion, which are Lemmas 9.1 and 9.2 in [4]

Lemma 4.4. Suppose αa2 > 2b2, 0 < α < 1, and a0b2 − a2b0 > 0. Then for
any point q = (0, yq) with yq > 0 small, there exists ε > 0 such that for any
z0 = (x0, y0) ∈Wu

ε (q) with x0 > 0,

vsz0 ≥ −
(
a2

b2
+ ρ̂(y0)

)
(1− xα0 )

x0

y0
.

Lemma 4.5. Let z0 = (x0, y0) with x0 > 0. If for all z = (x, y) in the stable curve
that joins z̄0 and z1,

vsz ≥ −
(
a2

b2
+ ρ̂(y)

)
(1− xα)

x

y
,

then
x̄0 ≥ x0 + Eαx

1+α
0 ,

where Eα is a positive constant dependent on y0.

The following lemma is the key step to get the lower bound estimates for x̄0/x0.

Lemma 4.6. Given any α, β ∈ (0, 1) with β <
2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α. Then

for any point q = (0, yq) with yq > 0 small, there exists ε > 0 such that for any
z0 = (x0, y0) ∈Wu

ε (q) with x0 > 0 small,

(4.3) vsz0 ≤ −
(a2

b2
+ ρ̂(y0)

)
(1− xβ0 )

x0

y0
.
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Proof. For each z0 = (x0, y0) ∈Wu
r (q), zi = (xi, yi) = f i(z0), define

c0 := 0, ci :=
A1x

β
0y

2
0∏i−1

j=0

(
1− θ0yjψy(0, yj)

) ∀i ≥ 1,

where A1 =
a2

2b2
(2b2 − βa2) and θ0 is specified in Lemma 4.8. It is evident that

(4.4) ci+1 − ci = ci+1θ0yiψy(0, yi), ∀i > 0.

Set

(4.5) ρi := ρ(zi) =

(
a2

b2
+ ρ̂(yi)

)
(1− xβi ), i ≥ 0,

and

(4.6) ρ̃i := ρi − ci, i ≥ 0.

For any zi = (xi, yi), set

∆ρ̃i(xi, yi) :=(ρ̃i − ρ̃i+1)(1 + φi)(1− ψi)
+ρ̃i+1yi(1 + φi)ψy(xi, yi)− yi(1− ψi)φy(xi, yi)

−ρ̃iρ̃i+1xi(1 + φi)ψx(xi, yi) + ρ̃ixi(1− ψi)φx(xi, yi),

where φi = φ(zi) = φ(xi, yi), ψi = ψ(zi) = ψ(xi, yi).
By contradiction, suppose that (4.3) is incorrect. It is to show that for yq > 0

small enough, there is ε > 0 such that for any z0 = (x0, y0) ∈ Wu
ε (q) with q =

(0, yq), x0, y0 > 0,

vszi ≥ −ρ̃i
xi
yi

and 0 ≥ ∆ρ̃i(xi, yi),

this, together with Lemma 4.2, yields that

vszi+1
≥ −ρ̃i+1

xi+1

yi+1
.

By Lemma 4.8 below, we can take ε > 0 small enough such that cn0 > 1 +
max{a2/b2 + ρ̂(yi) : y ∈ [0, r]} and hence, ρ̃n0

< −1 for some n0 = n(z0). Since ci
increases with i, it follows that ρ̃i < −1 for any i ≥ n0. Note that xi is increasing
and yi is decreasing when the orbit under the iteration of f is in the neighborhood
of the origin. Then there exists n1 ≥ n0 such that vszn1

> −ρ̃n1

xn1

yn1
> 1. This

contradicts (4.1).
Now, we will show that for all i ≥ 0 with xi < yi,

∆ρ̃i(xi, yi) ≤ 0.

Note that by (1.2) and (1.3)

φ(x, y) = φ(0, y) +O(x2 + xy2), ψ(x, y) = ψ(0, y) +O(x2 + xy2),(4.7)

φy(x, y) = φy(0, y) +O(x2 + xy), ψy(x, y) = ψy(0, y) +O(x2 + xy).(4.8)

Also,

φ(x, y) = a2y
2 +O(x2 + xy2 + y3) = a2y

2 +O(x2 + y3),(4.9)

yψy(x, y) = 2b2y
2 +O(x2y + xy2 + y3) = 2b2y

2 +O(x2y + y3),(4.10)

xφx(x, y), xψx(x, y) = O(x2 + x2y + xy2) = O(x2 + xy2).(4.11)
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Since yi − yi+1 = yi − yi(1−ψ(xi, yi)) = yiψ(xi, yi), and ρ̂ is Lipschitz continuous,

ρ̂(yi)− ρ̂(yi+1) = O(yi − yi+1) = O(yiψ(xi, yi)) = O(yix
2
i + y3

i ).(4.12)

Denote y
(0)
i+1 := yi(1− ψ(0, yi)). Then yi+1 − y(0)

i+1 = O(yi(ψ(0, yi)− ψ(xi, yi))) and
hence, by (4.8),

ρ̂(yi+1)− ρ̂(y
(0)
i+1) = O(yi+1 − y(0)

i+1) = O(x2
i yi + xiy

2
i ).(4.13)

Note (1 + a)β − 1 = βa+O(a2). By (4.9), we have

xβi+1 − x
β
i = xβi ((1 + φ(xi, yi))

β − 1) = βa2x
β
i y

2
i + xβi O(x2

i + y3
i ).(4.14)

First, using (4.4), (4.7), (4.12), (4.13), and (4.14), we get

(ρ̃i − ρ̃i+1)(1 + φi)(1− ψi)

=
(
ρ̂(yi)− ρ̂(yi+1)

)
(1 + φi)(1− ψi)

+
(a2

b2
(xβi+1 − x

β
i ) +

(
ρ̂(yi+1)xβi+1 − ρ̂(yi)x

β
i

))
(1 + φi)(1− ψi)

+(ci+1 − ci)(1 + φi)(1− ψi)

=
(
ρ̂(yi)− ρ̂(y

(0)
i+1)

)
(1 + φ(0, yi))(1− ψ(0, yi))

+
a2

b2
βa2x

β
i y

2
i + (ci+1 − ci)(1 + φi)(1− ψi)

+O(x2
i yi + xiy

2
i ) + xβi O(x2

i + y3
i ).

(4.15)

Next, using (4.5) and (4.6), and then using (4.7), (4.8), (4.10), and (4.13), we get

ρ̃i+1yiψy(xi, yi)(1 + φi)− yi(1− ψi)φy(xi, yi)

=
(a2

b2
+ ρ̂(yi+1)

)
yiψy(xi, yi)(1 + φi)− yi(1− ψi)φy(xi, yi)

−
(a2

b2
+ ρ̂(yi+1)

)
xβi+1yiψy(xi, yi)(1 + φi)− ci+1yiψy(xi, yi)(1 + φi)

=
(a2

b2
+ ρ̂(y

(0)
i+1)

)
yiψy(0, yi)(1 + φ(0, yi))− yi(1− ψ(0, yi))φy(0, yi)

−a2

b2
2b2x

β
i y

2
i − ci+1yiψy(0, yi) + yiO(x2

i + xiyi) + xβi yiO(x2
i + y2

i ).

(4.16)

Also, denote

(4.17) Rρ̃(xi, yi) := −ρ̃iρ̃i+1xi(1 + φi)ψx(xi, yi) + ρ̃ixi(1− ψi)φx(xi, yi).

The equations (4.15)-(4.17), (4.11), and Proposition 4.3 give

∆ρ̃i(xi, yi) = −a2

b2
(2b2 − βa2)xβi y

2
i + (ci+1 − ci)(1 + φi)(1− ψi)

− ci+1yiψy(0, yi) +Rρ̃(xi, yi) +O(x2
i yi + xiy

2
i ) + xβi O(x2

i + y3
i ).

(4.18)

Note that the choice of β implies 2b2 − βa2 > 0. By (4.11), we have

Rρ̃(xi, yi)

{
= O(x2

i + xiy
2
i ) if ρ̃i ≥ −1;

< 0 if ρ̃i < 0.
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For i = 0, c0 = 0 and c1 =
a2

2b2
(2b2 − βa2)xβ0y

2
0 by the definition of ci. Hence,

∆ρ̃0(x0, y0) = − a2

2b2
(2b2 − βa2)xβ0y

2
0 − c1yiψy(0, yi) +O(x2

0 + x0y
3
0 + xβ0y

3
0) < 0,

since we assume x0 is small compared with y0.
For 0 < i ≤ n0(z0), where n0 is given in Lemma 4.8, by (4.4), we have

(ci+1−ci)(1+φi)(1−ψi)−ci+1yiψy(0, yi) = −ci+1(1−θ0)yiψy(0, yi)+y2
iO(x2

i +y2
i ).

So, we have

∆ρ̃i(xi, yi) = − a2

2b2
(2b2−βa2)xβi y

2
i−ci+1(1−θ0)yiψy(0, yi)+O(x2

i+xiy
3
i +xβ0y

3
i ) < 0,

since we have Kxi < y1+β/(2−β), or x2
i ≤ K−(2−β)xβi y

2
i , for some K > 0 sufficiently

large.
If i ≥ n0, then ρ̃i < 0. Hence, Rρ̃(xi, yi) < 0. Then by (4.18),

∆ρ̃i(xi, yi) = − a2

2b2
(2b2 − βa2)xβi y

2
i − ci+1(1− θ0)yiψy(0, yi)

−|Rρ̃(xi, yi)|+O(x2
i yi + xiy

2
i ) + xβi O(x2

i + y3
i )) < 0.

This completes the proof. �

Lemma 4.7. Let z0 = (x0, y0) with x0, y0 > 0. If for all z = (x, y) in the stable
curve that joins z̄0 and z1,

(4.19) vsz ≤ −
(
a2

b2
+ ρ̂(y0)

)
(1− xβ0 )

x0

y0
,

then

x̄0 ≤ x0 + Eβx
1+β
0 ,

where Eβ is a positive constant dependent on y0.

Proof. Since (vsz, 1) forms a tangent line of the stable manifold W s
r (z), (4.19) gives

dx

dy
≤ −

(a2

b2
+ ρ̂(y)

)
(1− xβ)

x

y
,

which implies that
dx

x(1− xβ)
+
(a2

b2
+ ρ̂(y)

)dy
y
≤ 0.

Integrating the function from z1 = (x1, y1) to z̄0 = (x̄0, ȳ0), we have

log
x̄0

x1
− 1

β
log

1− x̄β0
1− xβ1

+
a2

b2
log

ȳ0

y1
+

∫ ȳ0

y1

ρ̂(y)

y
dy ≤ 0.

In the following discussions, we omit the subscript 0. The above inequality gives

x̄

x1
≤
(1− x̄β

1− xβ1

) 1
β
(y1

ȳ

) a2
b2

exp
(
−
∫ ȳ

y1

ρ̂(y)

y
dy
)
.

This, together with x1 = x(1 + φ(x, y)) and y1 = y(1− ψ(x, y)), yields that

x̄

x
≤ (1 + φ(x, y))(1− ψ(x, y))

a2
b2

(1− x̄β

1− xβ1

) 1
β
(y
ȳ

) a2
b2

exp
(
−
∫ ȳ

y(1−ψ(x,y))

ρ̂(y)

y
dy
)
.
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By (4.7), φ(x, y) = φ(0, y) + O(x2 + xy2) and ψ(x, y) = ψ(0, y) + O(x2 + xy2).

Hence,

∫ ¯y(1−ψ(0,y))

y(1−ψ(x,y))

ρ̂(y)

y
dy = O(x), where we treat y as a constant. By (4.2), one

has

(1 + φ(x, y))(1− ψ(x, y))
a2
b2 exp

(
−
∫ ȳ

y(1−ψ(x,y))

ρ̂(y)

y
dy
)

=(1 +O(x2)) exp
(∫ y

ȳ

ρ̂(y)

y
dy
)
.

Since z̄ = (x̄, ȳ) and z = (x, y) are in the same local unstable manifold, one has
that

|ȳ − y| ≤ N(x̄− x) ≤ N(x1 − x) = Nxφ,

where N is a positive constant. So,(y
ȳ

) a2
b2 ≤

(
1 +

Nxφ

ȳ

) a2
b2

= 1 +O(x) and exp
(∫ y

ȳ

ρ̂(y)

y
dy
)

= 1 +O(x).

Now we get

x̄

x
≤
(1− x̄β

1− xβ1

) 1
β (

1 +O(x)
)
.

Using the facts xβ1 = xβ(1 + φ)β = xβ + βxβφ+ xβO(φ2) and x < x̄, we have

1− x̄β

1− xβ1
= 1 +

xβ1 − x̄β

1− xβ1
= 1 +

xβ + βxβφ− x̄β + xβO(φ2)

1− xβ1
≤ 1 +

βxβφ+ xβO(φ2)

1− xβ1
.

Therefore,
x̄

x
≤ 1 + Eβx

β ,

where Eβ is a positive constant dependent on y0.
This completes the proof. �

Lemma 4.8. Suppose α, β ∈ (0, 1) satisfies β <
2a2b2

a2
2 + a2b2 + b22

<
2b2
a2

< α. Then

there exist θ0 ∈ (0, 1) and η >
a2b2
a2

2 + b22
such that for any positive constants K

and N , a point q = (0, yq) with yq > 0 small, there is ε > 0 such that for any
z0 = (x0, y0) ∈ Wu

ε (q) with x0 > 0, the following inequalities hold simultaneously
for some positive integer n = n(z0):

xβ0y
2
0

n∏
j=0

(
1− θ0yjψy(0, yj)

)−1

≥ N, Kxn < y1+η.

Proof. Since β <
2a2b2

a2
2 + a2b2 + b22

=
2a2b2(

a2
2 + b22

)(
1 +

a2b2
a2

2 + b22

) , there is γ > 1 +

a2b2
a2

2 + b22
such that β =

2a2b2
γ(a2

2 + b22)
. Take

a2b2
a2

2 + b22
< η < γ − 1 and then take

θ0 > 0 such that

1 > θ0 > max
{γβ

2
,

2− (γ − 1)β + ηβ

2

}
.
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Clearly we have
β

2− β
<

2a2b2
2(a2

2 + a2b2 + b22)− 2a2b2
=

a2b2
a2

2 + b22
< η.

By the choices of θ0 and γ, we could assume that K is large enough such that if
Kx ≤ y, then

(4.20) 1− θ0yψy(0, y) ≤ 1− θ12b2y
2 ≤ (1− ψ)2θ2

and

(4.21) (1 + φ)β(1− ψ)2−γβ ≤ 1,

where θ1 and θ2 satisfy

(4.22) max
{γβ

2
,

2− (γ − 1)β + βη

2

}
< θ2 < θ1 < θ0.

Hence, for any z0 = (x0, y0) with Kx0 < y0, by (4.21), we have

(4.23) xβ1y
2−γβ
1 ≤ xβ0 (1 + φ0)βy2−γβ

0 (1− ψ0)2−γβ ≤ xβ0y
2−γβ
0 .

Set n := n(z0) as the largest positive integer such thatKxn ≤ y1+η
n andKxn+1 >

y1+η
n+1. Since 0 < y < 1, we have that if Kx < y1+η, then Kx < y. So,

xβ0y
2−γβ
0 ≥ xβn+1y

2−γβ
n+1 ≥ K−βy

β(1+η)
n+1 y2−γβ

n+1 = K−βy
2+(1−γ)β+ηβ
n+1 .

By (4.20) and (4.23), we get

xβ0y
2
0∏n

j=0

(
1− θ0yjψy(0, yj)

) ≥ y2θ2
0 xβ0y

2
0

y2θ2
0

∏n
j=0(1− ψj)2θ2

≥x
β
0y

2+2θ2
0

y2θ2
n+1

≥ y2θ2−γβ
0

Kβy
2θ2−(2−(γ−1)β+ηβ)
n+1

.

By (4.22), 2θ2 − (2 − (γ − 1)β + ηβ) > 0. Hence, if z0 is sufficiently close to q,
then yn+1 can be arbitrarily small and the right hand side of the inequality can be
arbitrarily large. This lemma is thus proved. �

5. Estimates of the size of elements of P−k,k
Recall that P is a Markov partition. Denote Pk,n = ∨ni=kf i(P) and Pn = P0,n.

Denote by Pk,n(x) the element of Pk,n that contains x.
Also, denote by γsn(x) the connected stable curves that contains x and is con-

tained in Pn(x), and by γun(x) the connected unstable curves that contains x and
is contained in P−n,0(x).

Recall that ms is the Lebesgue measure restricted to stable curves. Recall also
that Q = Q2 = f−1P \P , and Qk = [τ ≥ k], k ≥ 2, are introduced in Subsection 2.2.
Denote Rk = [τ = k] = Qk \ Qk+1 for k ≥ 2. Then we denote Q+

k = fτ (Qk) and

R+
k = fτ (Rk) = fk(Rk), where fτ is the first return map of f with respect to

M0 = M \ P0. Clearly Qk = ∪∞i=kRi and Q+
k = ∪∞i=kR+

i .

Proposition 5.1. There exist Ks > 0 and Cs > 0 such that for any k ≥ Ks, we
can find a set Tk with the following properties:

(i) µ(Tk) ≤ Cs log k

k1/α
;

(ii) ms(γsk(x)) ≤ Cs
k1/2+α′

for any x ∈ Tk;
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(iii) ms(γsk(x)) ≤ Cs
k3/2+α′

for any x /∈ Tk ∪ P ,

where α′ = b0/2a0.

Proof. Take Ks ≥ 2K1, where K1 is given in Corollary 5.6.

Recall that λ is defined in (2.1). For each k > 0, take ` = `k = −
⌊ log k

log λ

⌋
. Then

for any j ≥ `k, λj <
1

k
.

Define

Tk =
⋃̀
i=0

(fτ )i(Q+
bk/2c),

where τ is the first return time with respect to M\P . By (2.3), µ(Qbk/2c) ≤
21/αBα
k1/α

for some Bα > 0. Since µ is preserved under the map fτ , we can get

µ(Tk) ≤ 21/αBα
k1/α

· ` ≤ C ′ log k

k1/α

for some C ′ > 0. Hence, we get part (i) if Cs ≥ C ′.
For any x ∈ M , denote xk := f−k(x). If xk ∈ P , we define τ(xk) = min{i > 0 :

f i(xk) ∈M \ P}, the first time the orbit of xk enter M \ P .
We now prove a claim stronger than the requirements in (ii) and (iii): For any

x /∈ P , the inequality in (ii) holds for any x ∈ Tk with xk ∈ P and τ(xk) > k/2;
and that in (iii) holds otherwise.

If xk /∈ P , then by Corollary 5.7(i), ms(γsk(x)) ≤ C2

k3/2+α′
.

If xk ∈ P and τ(xk) ≤ k/2, then we have fτ (xk) /∈ P and k − τ(xk) ≥
max{K1, k/2}. Using Corollary 5.7(i) with fτ(xk)(xk) and x = fk−τ(xk)(fτ(xk)(xk))
we get

ms(γsk(x)) ≤ C2

(k − τ(xk)3/2+α′
≤ 23/2+α′C2

k3/2+α′
.

If xk ∈ P , τ(xk) > k/2 and x /∈ Tk, then we have γsτ(xk)(f
τ(xk)(xk)) ⊂ Q+

bk/2c.

By Corollary 5.7(ii) we have ms(γsτ(xk)(f
τ(xk)(xk))) ≤ C2

bk/2c1/2+α′
≤ 21/2+α′C2

k1/2+α′
.

On the other hand, x /∈ Tk implies k − τ(xk) ≥ τ(fτ (xk)) + τ((fτ )2(xk)) + · · · +
τ((fτ )`(xk)). Hence ‖Dfk−τ(xk)

y |Esy‖ ≤ λ` ≤ 1

k
for any y ∈ γsτ(xk)(f

τ(xk)(xk)) by

the choice of `. Note that fk−τ(xk)
(
γsτ(xk)(f

τ(xk)(xk))
)

= τsk(x). We get

ms(γsk(x)) ≤ 1

k
·ms

(
γsτ(xk)(f

τ(xk)(xk))
)
≤ 1

k
· 21/2+α′C2

k1/2+α′
=

21/2+α′C2

k3/2+α′
.

On the other hand, if xk ∈ P , τ(xk) > k/2 and x ∈ Tk, then we can only get

ms(γsk(x)) ≤ ms
(
γsτ(xk)(f

τ(xk)(xk))
)
≤ C2

bk/2c1/2+α′
≤ 21/2+α′C2

k1/2+α′
.

Now we get what we claimed if we take Cs = 21/2+α′C2. �

Proposition 5.2. There exist Ku > 0 and Cu > 0 such that for any k ≥ Ku,

mu(γuk (x)) ≤ Cu
k1/α

for any x /∈ P .
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Proof. The proof is similar to that for Proposition 5.1 by using the estimates given
in Proposition 4.1 for γuk ∈Wu(Qk), instead of Corollary 5.7 for γsk ∈W s(Q+

k ). �

To prove Lemma 5.5 below, we need the following facts.

Lemma 5.3 ([6] Lemmas 3.1 and 3.2). If

tn−1 ≥ tn + Ct1+%
n +O(t1+%′

n ) ∀n > 0,(5.1)

where %′ > %, then for all large n,

tn ≤
1

(%C(n+ k))1/%
+O

(
1

(n+ k)δ′

)
,(5.2)

for some δ′ > 1/% and k ∈ Z.
Moreover, if (5.2) holds and for all n > 0,

r(tn) ≤ 1− C ′t%n +O(t1+%′

n ),

where C ′ > 0, then there exists D > 0 such that for all k0 > k,

n+k0−k∏
i=k0−k

r(ti) ≤ D
( k

n+ k

)C′/%C
.

The results remain true if we interchange “≤” and “≥”. Therefore, if (5.1)
becomes an equality, then so does (5.2).

Lemma 5.4 ([4] Propositions 2.6 and 2.8). For any ε > 0, there exists a constant

0 < r∗ ≤ r0 such that for any r ∈ (0, r∗) and x ∈ B(p, r), t ∈ (0, 1], j = 1, · · · ,
⌊

2

t2

⌋
,

we have

(1− ε)|tx| ≤
∣∣f j(tx)

∣∣ ≤ (1 + ε)|tx|;
and for any x, y ∈ B(p, r) with |Θ(x, y)| ≤ |Θ(x, f(x))| and |y| = t|x|, t ∈ (0, 1], we
have

|Θ(y, f j(y))| ≤ |Θ(x, f(x))|+ ε|x|2 ∀ 0 ≤ j ≤
⌊

1

t2

⌋
;

|Θ(y, f j(y))| ≥ |Θ(x, f(x))| − ε|x|2 ∀
⌊

1

t2

⌋
≤ j ≤

⌊
2

t2

⌋
,

where r0 is specified in Definition 1.3, and Θ(x, y) denotes the angle from x to y
counterclockwise in R2.

Lemma 5.5. There exists C1 > 0 such that for any x ∈ Q with n = τ(x),

‖Dfnx |Esx‖ ≤
C1

n3/2+α′
, where α′ = b0/2a0.

Proof. Choose θu, θs > 0 small. Then take sectors Su = {z ∈ U : |∠(z, Eup )| ≤ θu}
and Ss = {z ∈ U : |∠(z, Esp)| ≤ θs}, where ∠(z, Eup ) is the angle between the vector
from p to z and the line Eup . Then let Sc = P \ (Ss ∪ Ss).

If N0 > 0 is large enough, then for any x ∈ QN0
, the orbit of x passes through

Ss, Sc, and Su consecutively before it leaves P . Note that if x ∈ Rn ⊂ QN0 ,
then n = nx = τ(x) ≥ N0. We take ns,nc, nu > 0 such that ns = max{j > 0 :
f i(x) ∈ Ss, ∀1 ≤ i ≤ j}, nc = max{j > 0 : fn

s+i(x) ∈ Sc, ∀1 ≤ i ≤ j}, and
nu = nx−ns−nc. That is, x, f(x), . . . , fn

s

(x) ∈ Ss, fns+1(x), . . . , fn
s+nc(x) ∈ Sc,

and fn
s+nc+1(x), . . . , fnx(x) ∈ Su.
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Note that (1.3) implies that f has the form f(r) = r(1− b2r2 +O(r3)) restricted
to W s

ε (p), and Df has the form Df |Es = 1 − 3b2r
2 + O(r3) restricted to Esx

for x = (0, r) ∈ W s
ε (p). Hence, by Lemma 5.3, for any point x̂ ∈ W s

ε (p) ∩ Q,

|fn(x̂)| ≈ 1√
2b2n

and ‖Dfnx̂ |Esx̂‖ ∼
d̂s√
n3

for some constant d̂s > 0, where ak ≈ bk

means lim
k→∞

ak
bk

= 1, and ak ∼ bk means ak/bk is bounded away from 0 and infinity.

Since the points in Ss are close to W s
ε (p), we can get that there exist cs > c′s > 0

and ds > d′s > 0 such that

(5.3)
c′s√
ns
≤ |fn

s

(x)| ≤ cs√
ns

and
d′s√
(ns)3

≤ ‖Dfn
s

x |Esx‖ ≤
ds√
(ns)3

.

Now we consider the part of the orbit in Sc. Take z ∈ Ss such that fk(z) ∈
Su ∩Q+

N0
with some k > 0. Define ks and kc in a way similar with that of ns and

nc as above, that is, ks is the largest positive integer such that f1(z), . . . , fk
s

(z) ∈
Ss, and kc is the largest positive integer such that fk

s+1(z), . . . , fk
s+kc(z) ∈ Sc.

Consider Lemma 5.4 with ε small. If N0 is sufficiently large, then for x ∈ QN0 ,
|fns(x)| = t|fks(z)| is small. Hence, by Lemma 5.4, for i = 0, 1, . . . , nc,

(1− ε)k
c

|fn
s

(x)| ≤ |fn
s+i(x)| ≤ (1 + ε)k

c

|fn
s

(x)| and nc ∼ kc

t2
=
kc|fks(z)|2

|fns(x)|2
.

So, there exist cn > c′n > 0 and cc > c′c > 0 such that for i = 0, 1, . . . , nc,

(5.4)
c′n

|fns(x)|2
≤ nc ≤ cn

|fns(x)|2
, and c′c|fn

s

(x)| ≤ |fn
s+i(x)| ≤ cc|fn

s

(x)|.

Note that (1.2) and (1.3) imply that there exist c > c′ > 0 such that 1 − c|y|2 ≤
‖Dfy|Esy‖ ≤ 1 − c′|y|2 for any y with |y| small. Hence, by taking y = fn

s+i(x),

i = 0, 1, . . . , nc, we obtain that there exist 0 < d′c ≤ dc < 1 such that

(5.5) d′c ≤ ‖Dfn
c

fns (x)|Esfns (x)
‖ ≤ dc.

For the part of the orbit in Su, we note that (1.3) implies that f has the form
f(r) = r(1 + a0r

2 + O(r3)) restricted to Wu
ε (p), and Df has the form Df |Es =

1− b0r2 +O(r3) restricted to Esx for x = (r, 0) ∈Wu
ε (p). Hence, by Lemma 5.3, for

any point x̂ ∈ Wu
ε (p), |f−n(x̂)| ≈ 1√

2a0n
and ‖Dfnx̂ |Esx̂‖ ∼

1

nb0/2a0
. Since points

in Su are close to Wu
ε (p), we can get that there exist cu > c′u > 0 and du > d′u > 0

such that

c′u√
nu
≤|fn

s+nc(x)| ≤ cu√
nu
,

d′u
(nu)b0/2a0

≤‖Dfn
u

fns+nc (x)|Esfns+nc (x)‖ ≤
du

(nu)b0/2a0
.

(5.6)

By the second inequality of (5.4), |fns+nc(x)| ∼ |fns(x)|. Hence, by (5.3), (5.4),
and (5.6), all ns, nc and nu are roughly proportional. Since ns+nc+nu = n = nx,
we know that there exist ρs, ρu ∈ (0, 1) such that ns ≥ ρsn and nu ≥ ρun. So by
(5.3), (5.5) and (5.6), we get

‖Dfnx |Esx‖ ≤
C1

n3/2+b0/2a0

for some C1 > 0.
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The proof is completed. �

Corollary 5.6. There exists K1 > 0 such that for any n > K1, if x, fn(x) /∈ P ,

then ‖Dfnx |Esx‖ ≤
C1

n3/2+α′
, where C1 and α′ are as in Lemma 5.5.

Proof. Take K ′1 > 0 such that
C1

k3/2+α′
· C1

n3/2+α′
≤ C1(

2(k + n)
)3/2+α′

, whenever

k, n ≥ K ′1.
Let S = SK′1 = {f i(x) ∈ P : x ∈ QK′1 , i = 1, . . . , nx − 1}, where nx = τ(x).

Since f is uniformly hyperbolic on M \ S, there exists ρ = ρS ∈ (0, 1) such that
‖Dfz|Esx‖ ≤ ρ for any x ∈ M \ S. Take K ′′1 > 0 such that for any n ≥ K ′′1 ,

ρn ≤ C1

(2n)3/2+α′
.

Take K1 = max{2K ′1, 2K ′′1 }. For x, fnx /∈ P with n ≥ K1, we denote I = {i ∈
(1, n) : f i(x) /∈ S}, and let kx be the cardinality of I. If kx ≥ n/2 > K ′′1 , then

‖Dfnx |Esx‖ ≤
∏
i∈I
‖Dffi(x)|Esfi(x)‖ ≤ ρ

kx ≤ C1

(2kx)3/2+α′
≤ C1

n3/2+α′
.

If kx ≤ n/2, then we may assume that the orbit {x, . . . , fn−1(x)} passes through
QK′1 ` times. Let k1 < k2 < · · · < k` < n such that fkj (x) ∈ QK′1 , j = 1, . . . , `.

Denote nj = τ(fkj (x)). So, we have nj ≥ K ′1 for all j. Now we get

‖Dfnx |Esx‖ ≤
∏

1≤j≤`

‖Dfnj
fkj (x)

|Es
f
kj (x)

‖ ≤
∏

1≤j≤`

C1

n
3/2+α′

j

≤ C1(
2(n1 + · · ·+ n`)

)3/2+α′
=

C1(
2(n− kx)

)3/2+α′
≤ C1

n3/2+α′
,

where we use the fact n1 + · · ·+ n` = n− kx > n/2.
This completes the proof. �

Recall that Qn, Rn, Q+
n , R+

n and γsn(x) are given at the beginning of this section.
Also, we have Q+

n ∈ Pn.

Corollary 5.7. There exists C2 > 0 such that for any k > 0,

(i) ms
(
γsk(fk(x))

)
≤ C2

k3/2+α′
if x, fk(x) /∈ P ;

(ii) ms
(
γsk(x)

)
≤ C2

k1/2+α′
if x ∈ Q+

k .

Proof. (i) Note that fn(γs0(x)) = γsk(fk(x)). By Corollary 5.6, and distortion esti-

mates given in Lemma 3.2, we can get that ms
(
γsk(fk(x))

)
≤ C ′1
k3/2+α′

·ms
(
γs0(x)

)
for some C ′1 > 0. Then we use the fact that ms

(
γs0(x)

)
are bounded above for all

x ∈M .
(ii) Note that for y ∈ Ri, f i(y) ∈ R+

i and f i(γs0(yi)) = γsi (f i(yi)). By using the
same arguments as above, and using Lemma 5.5 to replace Corollary 5.6, we can

get ms
(
γsi (f i(y))

)
≤ C2

i3/2+α′
for all y ∈ Ri. Since for any x ∈ Q+

k , γsk(x) is the
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union of the stable curves γsi (zi), zi ∈ R+
i ∩ γsk(x), i = k, k + 1, . . . , we get that

ms(γsk(x)) ≤
∞∑
i=k

C2

i3/2+α′
. Now we can increase C2 to get the result of part (ii). �

6. Some large deviation estimation

In this section, we study the large deviation estimates for the observable function
Ψ ∈ L with respect to the quotient map f̄ . We adopt the discussions used in [14].

Recall that (f,M) is the one-dimensional system induced from (f,M), and

(f̃ , M̃) is the first return maps of f with respect to M̃ = M \ P 0.

Lemma 6.1. Let 0 < α < 1
2 . Given any ε > 0, for any function Ψ ∈ L satisfying

|
∫

Ψdµ̄| ≥ ε, one has that

(6.1) µ̄
{
x ∈M :

∣∣∣ n−1∑
i=0

(
Ψ(f̄ i(x))−

∫
Ψdµ̄

)∣∣∣ > nε
}

= O((log n)2( 1
α−1)n−( 1

α−1)).

The transfer operator of the Markov map f̄ is defined as follows:

T Ψ(x) =
∑
f̄y=x

gµ̄(y)Ψ(y),

where gµ̄ = dµ̄/dµ̄ ◦ f̄ and Ψ ∈ L1(M). Since µ̄ is invariant with respect to the
quotient map f̄ , gµ̄ is said to be the g-function of µ̄.

Define the following operators:

TnΨ := 1QT
n(Ψ · 1Q), RnΨ := 1QT (Ψ · 1[RQ=n]).

By Proposition 1 of [17], one has the renewal equation:

T (z) = (I −R(z))−1, z ∈ D,

where D is the unit disk in the complex plane, and

R(z) =

∞∑
n=1

znRn, T (z) = I +

∞∑
n=1

znTn, z ∈ D.

Proof of Lemma 6.1. For convenience, set Φ := Ψ−
∫

Ψdµ̄.
It follows from (2.4) and the fact that µ̄ is an invariant measure of f̄ that∣∣∣ ∫ Φ ◦ f̄k · Φdµ̄

∣∣∣ =
∣∣∣ ∫ (Ψ ◦ f̄k −

∫
Ψdµ̄

)(
Ψ−

∫
Ψdµ̄

)
dµ̄
∣∣∣

=
∣∣∣ ∫ Ψ ◦ f̄k ·Ψdµ̄−

∫
Ψ ◦ f̄kdµ̄

∫
Ψdµ̄

∣∣∣ = |Corn(Ψ,Ψ; f̄ , µ̄)| ≤ C(Ψ)

k
1
α−1

.

By the renewal theory, Theorem 1 in [17] or Theorem 1.1 in [2],

Tn =
1

r
Pr +

1

r2

∞∑
k=n+1

Pk + En,

where Pr is the eigenprojection of R(1) at 1, r is given by PrR′(1)Pr = rPr, Pn =∑
l>n PrRlPr, En ∈ Hom(L,L). By using Lemma 6.5 in [2] and (2.3), we have that

‖Rn‖ = O( 1
nα ). So, we have ‖En‖ = o(1/n

1
α−1).
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By the fact that PrΦ =
∫
Q

Φdµ̄ (see the proof of Theorem 2 in [17]),
∫

Φdµ̄ = 0,

and Theorem 1.2 in [2], one has∫
‖T nΦ‖dµ̄ =

∫
‖TnΦ‖dµ̄ = O

( 1

n
1
α−1

)
.

Next, it is to apply the method of the proof of Proposition 2.3 in [14] to prove
(6.1).

By Proposition 1.2 in [18] and the fact that f̄ is measure preserving with respect
to the measure µ̄, Eµ̄(Φ|f̄−kB) = (T kΦ) ◦ f̄k for any positive integer k and Φ ∈
L1(M). By direct computation,

µ̄
{
x ∈M :

∣∣∣ n−1∑
i=0

Φ(f̄ i(x)) ·
∣∣∣ > nε

}
≤ 1

(nε)2ϑ

∫ ∣∣∣ n−1∑
i=0

Φ(f̄ i(x))
∣∣∣2ϑdµ̄(x)

≤ Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240

n∑
k=1

k−1/2‖Eµ̄(Φ ◦ f̄k|B)‖2ϑ
)2ϑ

=
Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240

n∑
k=1

k−1/2‖Eµ̄(Φ|f̄−kB)‖2ϑ
)2ϑ

=
Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240

n∑
k=1

k−1/2‖T kΦ‖2ϑ
)2ϑ

≤ Cnϑ

(nε)2ϑ

(
‖Φ‖2ϑ + 240‖Φ‖(2ϑ−1)/(2ϑ)

∞

n∑
k=1

k−1/2
(∫
|T kΦ|dµ̄

) 1
2ϑ
)2ϑ

≤ C

nϑε2ϑ

(
‖Φ‖2ϑ + 240‖Φ‖(2ϑ−1)/(2ϑ)

∞

n∑
k=1

1

k

)2ϑ

,

where ϑ = 1
α − 1 > 1 and Corollary 1 from [12] is used in the second inequality.

This shows (6.1). �

Finally we show a proposition which is used in Subsection 2.3.

Proposition 6.2. There exists δ0 > 0 such that for any 0 < δ < δ0, E,E′ > 0, we
can find CD, C ′D > 0 respectively and Nd > 0 satisfying

(6.2) µ
{
x ∈M : |Dfnx |Eux | < Eenδ

}
≤ CD(log n)2( 1

α−1)

n
1
α−1

;

(6.3) µ
{
x ∈M : |Df−nx |Esx | < E′enδ

}
≤ C ′D(log n)2( 1

α−1)

n
1
α−1

for all n ≥ Nd.

Proof. Without loss of generality, we can assume that E = E′ = 1. This is because
we can always take Nd sufficiently large and incease δ to some δ∗ > δ such that
Eenδ ≤ enδ∗ for all n > Nd.

Now let us prove (6.2).
For the finite Markov partition P = {P0, P1, · · · , Pr} and fixed γ̂ui ∈ Wu(Pi),

0 ≤ i ≤ r, consider the following function

ψ(x) =

{
0 if x ∈ P0;
log |Dfπ(x)|Euπ(x)

| if x 6∈ P0,
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where π is the sliding map defined in Subsection 2.1. Clearly ψ is constant along
the stable manifolds in Pi, 0 ≤ i ≤ r. It can be regarded as an element in L as
well. It is evident that

∫
ψdµ̄ > 0.

Since f is uniformly hyperbolic on M \ P , there exist two positive constants Cu
and C ′u such that

Cu ≤ log |Dfx|Eux | ≤ C
′
u ∀x ∈M \ P.

Hence, if we let CL =
Cu
C ′u

and C ′L =
C ′u
Cu

, then

CL ≤
log |Dfx|Eux |

log |Dfπ(x)|Euπ(x)
|
≤ C ′L ∀x ∈ Pi, i 6= 0.

So,

log |Dfnx |Eux | =
n−1∑
i=0

log |Dffi(x)|Eu
fi(x)
|

≥
n−1∑
i=0

1M\P0
log |Dffi(x)|Eu

fi(x)
| ≥ CL

n−1∑
i=0

ψ(f i(x)),

where 1M\P0
is the indicator function. Hence,

(6.4)
{
x ∈M :

1

n
log |Dfnx |Eux | < δ

}
⊂
{
x ∈M :

1

n

n−1∑
i=0

ψ(f i(x)) <
δ

CL

}
for any δ > 0.

Take δ0 = CL
∫
ψdµ, and let 0 < δ < δ0. Set ε :=

∫
ψdµ − δ/CL. Clearly

ε > 0. Recall that we mentioned that ψ can be regarded as functions in L. So by
Lemma 6.1, one has that

µ̄
{
x ∈M :

∣∣∣ n−1∑
i=0

(
ψ(f̄ i(x))−

∫
ψdµ̄

)∣∣∣ > nε
}

= O((log n)2( 1
α−1)n−( 1

α−1)),

and therefore,

(6.5) µ̄
{
x ∈M :

1

n

n−1∑
i=0

ψ(f̄ i(x)) <

∫
ψdµ̄− ε

}
= O((log n)2( 1

α−1)n−( 1
α−1)).

By (6.4) and (6.5), and the fact that µ̄ is the quotient measure of µ, we have that

µ
{
x ∈M : |Dfnx |Eux | < enδ

}
≤ µ

{
x ∈M :

1

n

n−1∑
i=0

ψ(f i(x)) <
δ

CL

}
=µ̄
{
x ∈M :

1

n

n−1∑
i=0

ψ(f̄ i(x)) <

∫
ψdµ̄− ε

}
≤ CD(log n)2( 1

α−1)

n
1
α−1

for some CD > 0. This is (6.2).
To get (6.3), we introduce the following function

ψ(x) =

{
0 if x ∈ P0;
− log |Dfπ(x)|Esπ(x)

| if x 6∈ P0.



27

Hence ψ is constant along the stable manifolds and can be regarded as a function
in L. It is also obvious that

∫
ψdµ̄ > 0. By using similar methods as above, we can

obtain

µ
{
x ∈M : |Dfnx |Esx | > e−nδ

}
≤ C ′D(log n)2( 1

α−1)

n
1
α−1

for some C ′D > 0. Note that Es is one-dimensional. So |Df−nfn(x)|Esfn(x)
| < enδ if

and only if |Dfnx |Esx | > e−nδ. Since µ is an invariant measure, we get (6.3). �
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[2] S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math. 139

(2004), 29–65.

[3] H. Hu, L. S. Young, Nonexistence of SBR measures for some diffeomorphisms that are “almost

Anosov”, Ergodic Theory Dyn. Sys. 15 (1995), 67–76.

[4] H. Hu, Conditions for the existence of SBR measures for “almost Anosov” diffeomorphisms,

Trans. Amer. Math. Soc. 352(5) (1999), 2331–2367.

[5] H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic

Theory Dyn. Sys. 24 (2004), 495–524.

[6] H. Hu, S. Vaienti, Absolutely continuous invariant measures for some non-uniformly expand-

ing maps, Ergodic Theory Dyn. Sys. 29 (2009), 1185–1215.

[7] H. Hu, S. Vaienti, Polynomial bounds for the decay of correlations in non-uniformly expanding

maps, preprint.

[8] F. Ledrappier, J. M. Strelcyn, Estimation from below in Pesin’s entropy formula, Ergodic

Theory Dyn. Sys. 2 (1982), 203–219.

[9] C. Liverani, B.Saussol, S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory

Dynam. Systems, 19 (1999), 671–685

[10] C. Liverani, M. Martens, Convergence to equilibrium for intermittent symplectic maps,

Comm. Math. Phys. 260 (2005), 527–556.

[11] V. I. Oseledec, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dy-

namical systems, Trans. Moscow Math. Soc. 19 (1968), 197–221.

[12] M. Peligrad, S. Utev, W. B. Wu, A maximal Lp inequality for stationary sequences and its

applications, Proc. Amer. Math. Soc. 135 (2007), 541–550.

[13] Ya. B. Pesin, Families of invariant manifolds corresponding to non-zero characteristics ex-

ponenets, Math. USSR-Izv. 10 (1978), 1261–1305.

[14] M. Pollicott, R. Sharp, Large deviations for intermittent maps, Nonlinearity 22 (2009), 2079–

2092.



28

[15] M. Pollicott, M. Yuri, Statistical properties of maps with indifferent periodic points. Comm.

Math. Phys. 217 (2001), 503–520.

[16] V. A. Rohlin, Lectures on the theory of entropy of transformations with invariant measures,

Russian Math. Surveys. 22 (1967), 1–54.

[17] O. Sarig, Subexponential decay of corrlations, Invent. Math. 150 (2002), 629–653.

[18] O. Sarig, Introduction to the transfer operator method. Second Brazilian School on Dynamical

Systems, Lecture Notes, 2012.

[19] Ya. G. Sinai, Gibbs measures in ergodic theory, Russ. Math. Surveys 27, 4 (1972), 21–69.

[20] L. S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math.

147 (1998), 585–650.

[21] L. S. Young, Recurrence times and rates of mixing, Isr. J. Math. 110 (1999), 153–188.

Department of Mathematics, Michigan State University, 619 Red Cedar Road,
East Lansing, MI 48824.


