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Abstract. We investigate the polynomial lower and upper bounds for decay
of correlations of a class of two-dimensional almost Anosov diffeomorphisms with
respect to their SRB measures. The degrees of the bounds are determined by the
expansion and contraction rates as the orbits approach the indifferent fixed point,
and can be expressed by using coefficients of the third order terms in the Taylor
expansions of the diffeomorphisms at the indifferent fixed points.

0. INTRODUCTION

The purpose of the paper is to obtain polynomial decay of correlations for diffeo-
morphisms on compact manifolds. The systems we consider are C”, r > 4, almost
Anosov diffeomorphisms f of a two-dimensional manifold M with an indifferent
fixed point p at which D f, = id. We show that under some nondegeneracy condi-
tions, if the coefficients of the third order terms in the Taylor expansions of f at
p satisfy certain conditions then f has polynomial decay of correlations, and the
degrees of the decay rates are given by the coefficients of the zy? and y> terms. 3

Polynomial decay for one-dimensional expanding maps with an indifferent fixed
point has been studied extensively (see e.g. [9, 15, 21, 5]). There are some sys-
tematic ways developed to obtain polynomial decay rates. The tower structures
introduced in [20, 21] are widely used that can apply for both exponential and
subexponential decay rates. The renew methods proposed in [17] provide a way
to obtain upper and lower bound estimates. For higher-dimensional expanding
maps with an indifferent periodic points, upper bounds estimates were made in
[15]. Recently both upper and lower bound estimates were obtained in [7] for some
non-Morkov maps. Though the methods in both [20] and [17] can be applied to
invertible case, there are fewer results in this direction. Liverani and Martens in-
vestigated a class of area preserving maps on torus and obtained the upper bounds
for the correlation functions [10]. In this work we obtain both upper and lower
bound estimates of polynomial decay rates for diffeomorphisms.

Our strategy to prove the results is more or less standard. We first induce
two-dimensional almost hyperbolic systems to one-dimensional almost expanding
systems by collapsing the stable leaves in a Markov partitions, following the scheme
described in [20] in particular. Then we use a corresponding theorem, stated in [17]
(and [2] as well), for the induced systems to obtain polynomial decay rates, in which
first return maps are used. The last step is to pass the rates we obtained for the
induced systems to the original ones.

'E-mail: hu@math.msu.edu

2Corresponding author. E-mail: xuzhang08@gmail.com

3We mention here that in the Taylor expansion, the conditions D f;, = id means that the linear
terms are trivial, and hyperbolicity implies that the second order terms must vanish. So under the
nondegeneracy conditions the third order terms determine the ergodic properties of the systems.

1



The most challenging part of the work is to estimate the size of the level sets
[T > n], where 7 is the first return time with respect to the set M \ P, where P is a
rectangle whose interior contains p. Note that restricted to the unstable manifold
of the indifferent fixed point p, the map has the form f(r) ~ r + agr®. (See (1.2)
and (1.3) with = r and y = 0.) So if we take any point z in the the local
unstable manifold of p, then the backward orbit f~"(z) converges to p at a speed
proportional to n~!/2, that is unsummable. Fortunately, the size of the level sets
[T > n] is of order between n~/* and n~/# where 1/8 > 1/a > 2, because the
stable foliation is not Lipschitz continuous near the indifferent fixed point p! (See
(1.4) for the value of o and 3, and Proposition 4.1 for the estimates.) We obtain
such estimates by controlling the slopes of the stable leaves at the points close to
the local stable manifold of p.

Another problem comes from the last step, when we use the decay rates of the
induced systems to obtain the decay rates of the original ones. In this step we need
to estimate of the sizes of the rectangles after nth iteration. We use large deviation
estimation to get that most rectangles shrink exponentially fast, and prove directly
that other rectangles shrink fast enough, and the measure of the union of such
rectangles is small.

It is well known that for almost expanding maps of the interval with indifferent
fixed point p = 0, if f(z) ~ z+x1 7%, s € (0,1), then the rates of decay of correlations
are of the order n=(1/5=1) So faster decay rates are given by stronger expansion near
the indifferent fixed point (smaller s). In our case, near the fixed point f(x,y) ~
(z(1 + azy?),y(1 — bay?)), and ay/2by plays the role as 1/s in one-dimensional
systems. The rates of decay are roughly of the order n=(#2/202=1) " This means that
the rates of decay for two-dimensional almost hyperbolic systems are determined by
the effect of both contraction and expansion when orbits approach the indifferent
fixed point, and faster decay rates are given by either stronger expansion (larger
az) or weaker contraction (smaller by) or both.

The rest of the paper is organized as follows. In Section 1, we introduce some
related definitions and state the Main Theorem. In Section 2, we give the proof
of the theorem. The proof consists of three major steps, which are carried out in
three subsections. In Subsection 2.1, we introduce a quotient map by collapsing the
map along the stable manifolds. In Subsection 2.2, we obtain both the lower and
upper polynomial bounds for the induced systems. In Subsection 2.3, we obtain
the polynomial bounds for Holder continuous observables for the original systems.
Section 3 is for distortion estimates, mainly used in Subsection 2.1. The size of the
level sets are estimated in Section 4, where quantitative analysis is performed. And
the decay rates of the size of rectangles are estimated in Sections 5 and 6.

1. STATEMENT OF RESULTS

Consider a C*° two-dimensional compact Riemannian manifold M without bound-
ary, and the Riemannian measure on M is m. Let Diff* (M ) be the set of four times
differentiable diffeomorphisms.

Definition 1.1. [[4] Definition 1] A map f € Diff*(M) is called an almost Anosov
diffeomorphism, if there exist two continuous families of cones x — C¥,CJ such
that, except for a finite set S,

4We refer Remark 1.9 for the reasons that ap and bg are not involved here.



(i) Dfxcalct c C?(w) and Dfxcfz 2 C;(gﬂ);

(ii) |Dfyv| > |v| for any v € C¥ and |D fyv| < |v| for any v € C5.

Since S is a finite set, we only need to consider that S is an invariant set by
studying f" instead of f for some nonnegative integer n. Assume that S consists of
a single fixed point p. A fixed point p is called indifferent if D f,, has an eigenvalue
of modulus 1.

Remark 1.2. (i) By Proposition 4.2 in [4], there is an invariant decomposition of
the tangent bundle into TM = E“ @ E?®, the decomposition is continuous except
at the indifferent fized point. By Definition 1.1, away from the fixed point angle
between E° and E™ is bounded away from zero.

(ii) It follows from Proposition 4.4 in [4] local unstable manifolds exist for all
x € M. Existence of local stable manifolds follows similarly.

Definition 1.3. [[4] Definition 2] An almost Anosov diffeomorphism f is said to be
non-degenerate (up to the third order), if there exist constants ro > 0 and k", k* > 0
such that for any x € B(S,rq),

|Dfov| > (14 k“d(x, S)*)|v|, Yo € C¥;
|Dfov| < (1 —w%d(z,S8)?)|v|, Vv e CE.

By choosing a suitable coordinate system, there is a neighborhood B(p,r*) of p
such that p = (0,0) and f can be expressed as

(1.2) Favy) = (m T o, y)) (1 — ¢<x,y>>),

where (z,y) € R? and
o(z,y) = aor® + a1y + azy® + O(|(z, ) %),
U(@,y) = boa® + bizy + bay® + O(|(z, y)[*).

Remark 1.4. By (1.1), we know that ¢(x,y), ¥ (x,y) > 0 for any (x,y) € B(p,r*)\
{p}. Hence, we have ag,as,by,bs > 0. In this paper, we will consider the case
a; = bl =0.

(1.1)

(1.3)

Given a measurable partition £ of a measurable space X with a probability
measure v on X, there exists a family of probability measures {v5 : z € X} with
v&(&(z)) = 1, such that for any measurable set B C X, the map x — v5(B) is
measurable and

V(B):/Xl/g(B)dl/(x).

This family {v$} is said to be a canonical system of conditional measures for v and
¢ [16].

Let f: (M,u) — (M, u) be a map with positive Lyapunov exponents almost
everywhere. So, the unstable manifold W*(z) exists almost everywhere and is an
immersed submanifold of M ([13]). A measurable partition & of M is said to be
subordinate to unstable manifolds if {(x) C W*(x) and contains an open neigh-
borhood of z in W¥(x) for almost every x with respect to the measure p. Let m®
be the Riemannian measure on W"(z). The measure u is said to have absolutely
continuous conditional measures on unstable manifolds if for every measurable par-
tition ¢ which is subordinate to unstable manifolds, uS is absolutely continuous
with respect to m¥ for p almost every x € M ([8]).



Definition 1.5. An f-invariant Borel probability measure p on M is said to be an
SRB measure if

(i) (f, ) has positive Lyapunov exponents almost everywhere;
(ii) w has absolutely continuous conditional measures on unstable manifolds.

For any given map f and its invariant probability measure u, the correlation for
two observables ® and WV is defined by

Cora (@93 £.4) = (W (7))~ [ odu [ v,

where n is a positive integer.

In Lemma 7.1 of [4], it is in fact proved that if f is an almost Anosov diffeomor-
phism of a torus M = T2, then for any neighborhood U of p, there exists * € (0, 1),
such that the unstable subspaces are Holder continuous with Hélder exponent 0*.

By applying the renewal theory developed by [17] and [2], we could obtain the
following results:

Main Theorem. Let f € Diff*(M) be a topologically mizing almost Anosov dif-
feomorphism that has an indifferent fixed point p at which (1.1)—(1.3) are satisfied.
Suppose apba — asbg > 0, 4by < az, and a1 = by = 0. Fiz any «, 8 € (0,1/2) with
2(121)2 2b2
1+« <h< a3 + asbe + b3 < as
Then for any neighborhood U of p, and any Hélder continuous functions ®, ¥ with
the exponent 6, supp ®,supp ¥ C M\ U, and [ ®du [ Wdu # 0, we have
A A
(15) 17 S COI‘n(q),\I/,f7ILI,)‘ S 1
ns na
where y is an SRB measure, 0 € (max{(1/8 —1/a)(3/2+ bo/(2a0))~1,0*},1], and
A’ and A are positive constants dependent on ® and V.

(1.4) <a

Remark 1.6. The condition on topological mixing seems unnecessary. It can be
proved that f is topologically conjugate to an Anosov diffeomorphism on the two-
dimensional torus. Hence, [ is topologically transitive, and M is the only basic
set of f. By the spectral decomposition theorem, f is topologically mizing on M.
Howewver, since there is no suitable reference, we put this condition in the theorem.

1
Remark 1.7. (i) Since a < ok the decay rates are faster than n=?'.

.. . L, 2b2 2a2b2
I lit 1.4 take « 2 — and B S —————~. H
(ii) In inequalities (1.4), we can take o 2, o and B8 S 2T arbs + 12 ence
1 1.1 « , _ L . ) 1 1
— — — 2 —+ —, while the first inequalities in (1.4) is equivalent to — — — < 1. So
B a2 4 «

if 4by < ag, then we can always choose o and (B satisfying (1.4).

Remark 1.8. As we see in the above remark, 1/ —1/a 2 1/2 4 /4, and 1/2 +
«a/4 < 1. Hence, we can take 0 < 1. In particular, if 2by/ay is sufficiently small,
then 6 can be close to 1/2.

Remark 1.9. To get decay rates of the systems we meed to consider first return
maps with respect to M\ P, where P are rectangles with p in its interior. The decay
rates are determined by the size of the level sets [T = n], where T is the first return
time. For all large n, the sets are in regions close to the local stable manifold of p.
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More precisely, if f has the form given by (1.2) and (1.3) under some coordinate
systems, then the level sets [T = n] are in regions of the form {(z,y) : 0 < |z| <
r1 < |yl < ro} for some 0 < 1y < ro. In the regions apx® and box?* are much smaller
than asy? and bay?, and hence we have f(z,y) ~ (x(1+ a2y?),y(1 — bay?)). So the
degree of the rates of decay only depends on as and by.

2. PROOF OF THE MAIN THEOREM

In this section, we prove the Main Theorem. The proof consists of three steps,
and is carried out in three subsections. In the first step, we induce the system
(f, M) to one-dimensional expanding system (f, M) with an indifferent fixed point
P by taking a Markov partition P and then collapsing the stable manifolds in each
element of the partition. In the second step, we apply a result of Sarig [17] to obtain
the lower and upper bounds for the decay of correlations for observable functions
on the reduced manifold M, where the key step is to estimate the measure of the
level sets [T = n] for the first return time function 7. In the last step, we obtain the
decay rates for (f, M) by using the estimates for (f, M), where the main ingredient
is to estimate the size of the elements of the partition V' f*P.

2.1. Induce to one-dimensional map. Take a finite Markov partition P =
{Py, P1,--+, P} such that p € intPy C U, where U is given in the Main Theo-
rem. For any P; and = € P;, denote by v*(z) the connected component of unstable
leaf containing = in P;, and by W"(F;) the set of all such leaves. And, v*(z) and
W#(P;) are understood in a similar way.

Define an equivalent relation on M by x ~ y if x and y are in the same stable
leave v° € W#(P;) for some P;. Denote by T = 7°(z) the equivalent class that

contains x. Denote M = M/ ~. Let m: M — M be the natural projection.

Denote by B the completion of the Borel algebra of M.

Since P is a Markov partition, f(y*(z)) C v*(f(x)) for any = € P, with f(z) €
P;. Hence, the quotient map f : M — M given by f(z) = f(z) is well defined.
Denote P; =P/ ~and P = {Py,...,P.}. Since f(y*(z)) D v*(f(z)) for any
x € P; with f(z) € P], P is a Markov partition for f.

Fix an arbitrary 4% € W*(P;), 0 < i < r. By abuse of notation we also let
m : Py — A be the sliding map along stable leaves such that for any » € P;,
m(x) =~*(x) N4 = &, where v*(z) € W*(F;).

Now, we define a reference measure ¥ on M. For each v € W¥(P;), denote by
m., the Lebesgue measure restricted to . We introduce the following function

n—1

un(@) =Y (log|Dfs,

=0

By | —10g|Df@\Egi|),

where x; = fi(r). By Lemma 3.1 in the next section, one has that u, converges
uniformly to some function u. We define v by dv,(z) = e“®dm.,(z). By (1)
of Lemma 3.3 in the next section, we can define a measure 7 on M satisfying
?lﬁj = V4u.
Note that the Jacobian of f with respect to v is given by
J(f)(@) = |D(f)| gz - e*TED . emul)

for v, almost every z € M. By (2) of Lemma 3.3, we have that J(f)(Z) can be
defined as J(f)(y) for any y € v*(z).



By Theorem B in [4], f has an SRB measure p under our assumption. And,
u induces an invariant measure @ on M in an obvious way. The estimates for
bounded distortion given by Proposition 7.5 in [4] imply that the conditional mea-
sure is equivalent to the Lebesgue measure, when the measure is restricted to any
unstable curve v* away from the indifferent fixed point p. Hence, i is an absolutely
continuous invariant measure with respect to 7, and is equivalent to 7 away from
D- -
Now, we obtain a Markov map (M, B, fi, f,P) in the following sense (see [1, 17]):
(i) (Generator property) B is complete and is the smallest o-algebra containing
Unzof_n(ﬁ); - _
(ii) (Markov property) P is a Markov partition, that is, for any P;, P; € P, if
A(F(P:) N P;) > 0, then F(P;) O P, (mod ji); -
(iii) (Local invertibility) for any P; € P with g(P;) > 0, f : P; — f(P;) is
invertible with measurable inverse.

By the assumption that f is topologically mixing, the Markov map is irreducible.

2.2. Polynomial decay rates. Recall that the indifferent fixed point p € int Py,
and hence, p € int Py. Denote M = M \ Py.

Take the first return map f: f7 of f with respect to M \ Py, that is, f(m) =
@) (2), where 7 is the first return time, 7(z) = min{n > 0 : f*(z) € M\ Pp}.
Clearly f: M\ Py = M\ Py induces a first return map from M to itself. For the

sake of simplicity of notation we also denote it by f
Let 7/ = {[r = n] : n = 1,2,...} be a partition into the level sets. Then let

T =TV Py, where Py =P\ {P} is the Markov partition of M. Tt is clear that T
is a Markov partition of M.
For any point Z,y € M, the separation time is defined by

s(z,9) == sup{n > 0: fi(y) € T(f'(2), 0<i<n}.

We may also regard s(z,y) = s(Z,y) if v € Z and y € 7.
Let

(2.1) A =sup{[Dfalpell™", IDfalesll: = € M\ Po}.

Clearly A € (0,1). Let 6* € (0,1) as in Lemma 3.1, and then take 6 € [6*,1).
For any function ® defined on M, take a semi-norm by

d(z) — D(y
D® := sup 7‘ (@) — Ey”
syt \/X 0s(z,y)
Then we consider the Banach space
(2.2) L:={®:supp® C M, ||® o0 + DP < o0}

and take the norm in £ by ||®||z = ||®]|« + DP.
It is clear that £ contains Holder functions with Holder exponent 6 supported
on M. If & € L, then for any z,§ with s(zZ, ) > n, we have

[B(2) — B()] < (DB)AED < (DB)(A)" < (DB)(VX )"
That is, ® is locally Hélder continuous in the sense given in [17] (see also [1]).

By Lemma 3.4, we know that log J(f) € L. By standard arguments, it is easy
to know (e.g. see Lemma 2 in Subsection 3.1 in [20]) that f admits an absolutely
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continuous invariant measure i on M with the density function h with respect to
v, and the density function satisfies 10gi~z € L and is bounded away from 0 and
infinity. By uniqueness we know that i is the conditional measure mentioned in
the last subsection with respect to M.

The Jacobian of fwith respect to fi is given by

Since both log J(f) and logh are in £, so is —log Jﬁ(jN’). Hence, —log Jﬁ(f) is
locally Hélder continuous.

Now we are ready to apply the following theorem that is directly derived from
Theorem 2 in [17].

Theorem. Let (M,B, i, f,P) be an irreducible measure preserving Markov map
with (M) = 1, and assume that — log |Jﬁ(f)| has a (f,T)-locally Hélder continuous
version for M. If g.c.d. {7(z) —7(y) : z,§ € M} =1, and g[r > n] = O(1/n?)
with 0 > 2, then there exists C > 0 such that for any ® € L and ¥ € L> with
supp @, supp ¥ C M, one has

cory@. 0570~ (Y- s> 1)) [ [ 9] < crowllle.
k=n-+1
where Fy(n) = O(1/n?).

We have an irreducible measure preserving Markov map (M, B, 1 P by the
previous subsection. By above arguments we know that —log |J5(f f)| has a (f,T)-
locally Holder continuous version. It is clear that {7(z) — 7(y) : 7,9 € M} = 1
by our construction. So, what we need to do is to estimate f[r > n], that is, to

estimate the exponent p.

Recall that P = P, is the element of the Markov Partition P with p € int P.
Denote @ = f~1P\ P. Clearly Q is a rectangle and the set of points z € M
with 7(x) > 1, where 7 is the first return time given at the beginning of this
subsection. Denote Qr = [7 > k]. Clearly Q = Q2 and Qi1 C Qy for any k > 2.
Moreover, Q) are rectangles such that for any « € Qg, W#(z, Q) = W#(z,Q) and
W (z,Qr) C W (z, Q).

For any unstable curve 4% € W*(Q), let v} = v* N Q. By Proposition 4.1, we
know that there exist D, > 0 and Dg > 0 such that

i

D u u
175 <mi(y) <

)

where a and f§ are given in the Main Theorem, and mJ is the Lebesgue measure
restricted to y*.

Denote by w4 the conditional measure of the SRB measure p on 7. Since the
distortion of f along any unstable curve is uniformly bounded above and below
away from p (see Lemma 3.1, also Proposition 7.5 in [4]), so is the density function

d u
dﬂ»y . Hence, there exist C,Cs > 0 such that
mu

Y

C
k*ﬁ My () <

o
MH\QQ



By integration, we get that similar inequalities are true for uQy = p[r > k| with
different constant coefficients, that is, there exist two positive constants B, Bg > 0
such that

Bs

(2.3) 1 Q) <

Pyl
Al

It gives that Z [T > k] has the order between n ~E=D and n~ Y,
k=n-+1

1
By (2.3), we can take o = 1/a. Since F,(n) is of order of n=¢ and ¢ > 5 1,
we get that there exist A,, Ag > 0 such that

_ A,
e Corn(®,%; f, 1) < T
- 1

(2.4)

2.3. Polynomial decay rates for diffeomorphisms. In this subsection, we es-
tablish polynomial decay of correlations for almost Anosov diffeomorphisms using
the results we obtained in the reduced systems.

Recall that P is a Markov partition, and P = P, is the element of P containing
p, and My = M \ P.

We introduce a type of Holder functions:

Ho:={®: IHs >0 s.t. |®(z) — (y)| < Holz —y|? and supp(®) C Mo},

where § € (max{(1/8 —1/a)(3/2 + bo/(2ao))~1,0*},1], and 6* € (0, 1) is specified
in Lemma 7.1 of [4], which is dependent on the map f and the element Py.

Set Py :=P and Py, == i) [ (Po), and P, = Py .

For any ®, ¥ € Hy and for any k > 0, we define ) by ®x|B := inf{®(z): z €
f¥(B)} for any B € Py oy, and define ¥y, in the same way.

By Lemma 2.1 below, the direct calculation gives

|COI‘n k(q) \I/Of fv ) Orn k(q) \I’kaf7 )l

o5 < f@er =To ) v +| [(wor - Tdu- [ od

CuHy
kﬂ* )

<(2max |D|) / [T o fF —Tyldy < (2max |®|) -

where 8% is specified in Lemma 2.1.
For & defined as above, let ®ppu be the signed measure whose density with

— d k (D
respect to i is By, and set by = A )=(Ber)

dp
Let || be the total variation of a signed measure, and note that (f*),(®o(f*)u) =
®p, where |pu|(A) = [, d|p| for any Borel set A C M. Applying Lemma 2.1 for ®

we can get

/ | — Puldp = |@p — Prp (M) = [(f*) (@ 0 (F*)p) = (f*)s (@repr) (M)

CaHgp
kP*

ﬂ@oﬁ—@mww=/@oﬂ—@m@



Hence, by similar computation as previously, we have

(Cot (@, i £, 1) = Corm (@1 Tt 1)

(2.6) S’ /(ak o (f* (@~ (I’k)dﬂ‘ + ’ /@kdﬂ : /(‘1) - @k)dlt’

CaHy
ks*

§(2max\\D|)/|<I)f<I>k|du§ (2max |U|)

Now we show that Cor, _(®, Uy; f, 1) can be expressed as functions only de-
pendent on the unstable manifolds, which means that these functions are constant
along stable manifolds on each element of P;. Since U} is constant along stable
manifolds on each rectangle P; € P, we can regard it as a function on M as well.
Also we have 7, (®gp) = Py (mep) = ®x(fi), and for =mo f. So,

/ (T o (/")) Bpdps = / (@ 0 (/")) @)
- / Tod((f" ). (). Bips)) = / Tod((f"), (Tips))
- / Tid(m. (). (Bap) = / Tod((F"). @) = / Tyo 7" Budp,

nd,
/@kdu/@deZ /d((fk)*@kﬂ))'/akdﬁz /Ekdﬂ'/@kdﬂ

It means |Cor,,_ ¢ (@, Vi; f, )| = |Corp_1 (P, Uy; f, ii)|. Hence, by (2.5) and (2.6),
we have
|Cor,, (@, V; f, )| = |Cory, 1 (P, ¥ o fk§ Il
§|COI‘n,k(<I), ¥o fka fa ,u‘) - Cornfk(q)vak; fv N’)|
+|Corp—i(®, Wi; f, 1) — Cornp(Ph, Wi £ 11)| + |Corp—i(Pp, s f, )|
OAH\I/ OAH<I>
B B

a

=(2max|D|) - + (2max |¥|) - + |Cory, i (@, Uy; £, 1)

1
Take k = [n/2]. Since 8* > 5 1, by (2.4), we obtain that there exist A >
21/a=1 4, and A’ < 2Y/8=1 A5 such that

A A
T < [Corn(®,9; )| < ——
ne e

This completes the whole proof of the Main Theorem.

Lemma 2.1. Given any 0 € (max{(1/8 — 1/a)(3/2 + bo/(2a0))~*,0%},1], there
1

exist C4 > 0, K > 0 and B* = 5*(0) > 5 1 such that for any ¥ € H° and
k> K,

CaHy

kB*

Proof. Recall that by the definition, Wy|B := inf{¥(x) : 2 € f*¥(B)}, where
B € Pyo. So for any z, there is y € Poax(z) such that W o fF(z) — Uy(x) =

[lwe s~ Tijau<
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Vo fF(z) — Vo fF(y). Since ¥ € Hy and f*(Poox(x)) = P-kr(f*(z)), we have
that for x € B with B € Py 2,

Wo f*(x) = k()| = Vo f5(x) — Wo fH(y)|
<Hg|f*(z) = f*(y)|° < Hydiam(f"(B))’ = Hydiam(P_y & (f"(x)))’.
It means
(2.7) |U(2) — Up(f*(2))| < Hydiam(P_j x(z))°.

Hence, we need to estimate the diameter of the sets in P_y 4.
Let ¢ € (0,0¢), where dp is given in Proposition 6.2. Let
Sy ={x € M\ P:diam(P_j (x)) > e *}.

By Remark 1.2, there is a uniform lower bound for the angle between EY and E?
for all x € M \ P. Hence, there exist Cy > 0 such that for any = € Sy, either there
exists an unstable manifold 7 (z*) C P_ k() with the length larger than Cre™*?,
where 2% € P_j i (z), or there exists a stable manifold v; (z*) C P_j x(z) with the
length larger than Cye %, where x° € P_j 1 ().

In the former case, by the fact f¥(y&(z%)) = ~5(f*(z*)), there is C4 > 0
and y* € vy (z") such that |Df?fu|E;u| < Cy4e?. Hence, by distortion given in
Lemma 3.1, for any y € vy (2*), \Df;‘|E;| < CyJ,e" and then for any z € 73 (y),
y € (x"), |DfF|s| < CaJuJser?, that is, the inequality holds for all z € P_j ().
In particular, we have |D f¥|g:| < CyqJy,Jse*. Similarly, in the latter case, we can
get that |Df*|g:| < C4J.Je™ for some C], > 0, where J] and J| are given in
Lemma 3.2. So we can get

Skc{xeM: |Df*

Eu <Eek5}U{x€M: IDf " s | <E’ek5},

where E = CyJ,Js; and B/ = C,J, J.. By applying Proposition 6.2, we get that
there exist Cp, Cp > 0 such that

C* logk 2(1/a—1)
M(Sk) S D( kl/o)z—l b

where C}, = Cp + Cp,

Cslogk
Let T) be given in Proposition 5.1. By this proposition, u(Ty;) < ]Sgl(/)i .

C
For any = € Ty, by Propositions 5.1 and 5.2, diam(P_j (z)) < le’jm” where
b
o = ﬁ, and C}, is a constant larger than the constants Cs and C, given by
0

Proposition 5.1 and 5.2.
For any = ¢ Ty, diam(P_j x(x)) < ]&Tjw/

Hence, by invariance of p and (2.7), the above estimates give

/|\I/ofkf@k’du:/ﬂf*@kof*ﬂdu

by Proposition 5.1.

= [ west-Wildus [ wort-Wdus [ |wo st - Tilau
TeNSE TENS), Ty

HyC? O3 (log k)?(H/a=1) HyC?  Cylogk CaHy
k(3/2+a)0 Ll/a—1 +k(1/2+a/)a' ko =  kB”

<Hge ¥ 1
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for some C4 > 0 independent of ¥, where 5* > (% + 0/)9 + é — 1. By the choice

1
of 8, we have that 5* > B —1. O

3. SOME DISTORTION ESTIMATES

In this section we provide some distortion estimates which were used in Subsec-
tion 2.1 and will be used in Section 5 as well.

Lemma 3.1. There are positive constants Jg, J,, > 0, and 6* € (0,1] such that for
any y* € W8(P;),i=1,---,r, 2,y €v° and n > 0,

1D fy ey .
3.1 log 24 < Jod*(x,y)? ;
. Dzl = Y
and for any y* € W¥(P;), i=1,---,r, x,y € y* and n > 0,
Df " gu .
(32 tog |22 g e
1D fa"|py]

Proof. Denote P = Fy. By the same method as in the proof of Lemma 7.4 in
[4], we can get that there exists constant I, > 0 such that if v* C f~1P\P is a
W-segment with f*v* C P,i=1,---n — 1, then for any z,y € ~*,
Dfgu .
IOg @ S Isdu(xvy)e ’
|Df2| g
where 6* = 0 is given in Lemma 7.1 of [4].
With this result we can get a proof of (3.1) using the same idea as in the proof
of Proposition 7.5 in [4], whose details can be found in Proposition 3.1 in [3].
The second inequality (3.2) can be obtained similarly. (I

Similarly, we have the following result:
Lemma 3.2. There are two positive constants J, and J,,, and 0* € (0, 1] such that

forany~v* € We(R,),i=1,--- ,r, z,y €v® and n > 0,

D e )
1Dy ;| < Jld(z,y)";

IOg —_— S
(D]

and for any y* € W¥(P;), i=1,---,r, z,y € y* and n > 0,

Lemma 3.3. (1) Let v, 4% € W*(F;). For the sliding map © : v* — 4%, one
has that .y = pge.

(2) J(f)(x) = J(f)(y) for any y € 7*(x).

Proof. The statements and proof are the same as (1) and (2) of Lemma 1 in Sub-
section 3.1 in [20]. O
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Lemma 3.4. There are C > 0, A € (0,1), and 6* € (0,1) such that for any
Y eWHPR),i=1,..r, x,y €Y,

o ‘J(f)(x) ova T,

*17Hw)

where s(x,y) is given in Subsection 2.2.

Proof. For any x € v* N P;, i # 0, one has
J(F)(@) = |D g - " T@) . e

Denote ¢(x) = log |D]?E|E; |. We can write

k k
(o) = )] <| SJ0(F ) — o F 0| + | 0@ - (@)
+ 3 o) - o @l + | Y ) - o @)
i=k+1 i=k+1

We take k > 0 such that f* = fs*(a},y)/27 where s*(x,y) = s(z,y) if s(x,y) is even
and s*(2,y) = s(z,y) + 1, otherwise. Hence, f*(x), f*(2), f*(), *(5) ¢ P, and
(3.1) and (3.2) can be applied to the sums of the right hand side. So, we can get

Ju(z) = u(y)| <Jud"(F*(x), fF))" + Jud" (F*(@), f*(9)"
s (f (), fH (@) + Jud* (F* (), £ ()"
Recall that X is defined in (2.1). We can get that
d*(f*(x), fF ()"
—qu( fs(z,y) rs(z,y) [ du(fs(a:,y)*/Q(x)’fa(z,y)*/Q(y))G*
d (f ($)7 f (y)) du(fs(m,y) (x), fs(z,y) (y))e*

where C, is determined by the maximum radius of each element in the Markov
partition, we use the fact that f*(*%) (z) and f*®¥) (y) are in the same element of the
Markov partition P, and hence, d“(fs(m*y)(:zr)7 fs(m>y) (y))?" is uniformly bounded.
Similaxly, we have d"(f5(2), *())" Jud® (f5(x), FFE)", Jud® (FF@), F4(3)" <
C'N\0"s(@)/2 where €7 is a positive constant. Hence,

< CdAG*S(w,y)/Q’

Ju(z) = u(y)] < 4CN =02,

where C' is a positive constant. N N

Since log |D fo|pu| — log|Dfy|gx| and u(f(z)) — u(f(y)) can be estimated in a
similar way, we get the inequality we need.

This competes the proof. O
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4. RATES OF CONVERGENCE OF THE LEVEL SETS

In this section, we prove Proposition 4.1 that is the key step to estimate the
term p[r > nj.

Recall that Q = Q2 = f~1P\ P, and Q; = [r > i] for i > 2.

Note that the map f has a local product structure, that is, there exist positive
constants € and ¢ such that for any z,y € M with d(z,y) < 0, [z,y] := Wk(z)N
W?(y) contains exactly one point.

Take a coordinate system in a neighborhood U* of p such that the map has
the form given in (1.2) and (1.3). Hence, the y-axis and z-axis are the stable and
unstable manifold of p, respectively. Recall that we assume a; = 0 = b;.

Let » > 0 be small such that the ball centered at p of radius r is contained in
U*. We also assume that P = P, is small enough such that P, f(P), and f~(P)
are contained in the ball.

P ition 4.1. S 0,1) sati 222 2b

roposition 4.1. Suppose «, 8 € (0,1) satisfies f < P S < = <«
Then there exist Do, Dg > 0 such that for any unstable curve v* € W*(Q), for
any k > 0, we have

D/B Ul @

k%f < mry('ﬂc) < [
where v =" N Qg and mY is the Lebesque measure restricted to v*.
Proof. Let v* € W*(Q) be an unstable curve in ). Denote ¢ = y* N WZ(p).

For any z = (z,y) € v*, denote 21 = (z1,y1) = f(2), and z = (Z,9) = [z, fz] =
W¥(z) NW*#(fz). Since both z; and Z are in the same stable curve, z € @, if and
only if Z € Qi—1. So if z is an endpoint of 7}, then z is an endpoint of v;/_;. In
order to estimate the length of ~y, we estimate the ratio m?(yy_)/m5(vy) firstly.
This is equivalent to estimate Z/x.

Denote by v$ a real number or co such that (v, 1) is a tangent vector of W7 (z).
Take the function p on [0,r] as in Proposition 4.3. By Lemmas 4.4 and 4.6 below,
we know that if z = zg is sufficiently close to ¢, then

Zo

,(% + ﬁ(yo))(l - z‘é‘)% <vf, < {Z—j + [)(yo))(l _ xﬁ)%'

With the estimates for v, we can get by Lemmas 4.5 and 4.7 that there exist
E.,Eg > 0 such that

Ty + an:(1)+o‘ < Ty < w0 + Egzé'm.
If we denote s, = m™(v}), the inequalities mean
Sk + Easllc"'a < sp_1 < s+ E@sllfo‘.

for all k sufficiently large. Hence, it follows (e.g. see Lemma 3.1 in [6]) that there
exist Do, Dg > 0 such that for all £ > 0,

Q

Dg D
1 S Sk S
kB k

This is what we need. O

Q=

To obtain Lemmas 4.4 and 4.6, we consider v$, where z is near the y-axis. Assume
that v{ has the form

X
v, = 7p§7
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where p = p(z,y).
Since (vg, 1) is in the stable cone at z, without loss of generality, assume that
(4.1) —-1<v; <1, VzeB(p,r).
Let p ba a function defined on U*. Set z1 := f(z) and p; := p(z1). Define
Ap(,y) i =(p—p1)(1+ &)1 =) + pry(1 + @)y —y(1 — V),
= p1p(l+ @)y + pr(1 — V) s,
where ¢ = ¢(x,y) and ¥ = (z,y). We need the following facts.

Lemma 4.2 ([4] Lemma 8.3). If v < —p(z)§ and 0 < Ay(z,y), then vi <

z =

—p(zl)%. The result also holds if all “ <7 are replaced by “ =7 .

To get more precise form of p, we need the following results.

Proposition 4.3 ([4] Proposition 8.4). There ezists a Lipschitz function p on [0,7]
with p(0) = 0 satisfying the following two equations:

Az p(0,y) = (3(y) = pu™))(1 +9)(1 = )

. (b ; ﬁ<y£°>>)y<1 o)y —y(1— D)o, =0,

and

(4.2) ba log(1 + ¢) + az log(l —¢) — by /1) @dt =0,
Y1

where ¢ = ¢(0,), ¥ = (0, y), and y\” = y(1 — (0,y)).

The upper bound estimates have been proved in [4]. We state the corresponding
lemmas here for completion, which are Lemmas 9.1 and 9.2 in [4]

Lemma 4.4. Suppose aas > 2by, 0 < a < 1, and agbs — asby > 0. Then for
any point ¢ = (0,yq) with y, > 0 small, there exists € > 0 such that for any
20 = (20,Y0) € WX(q) with z¢ > 0,
as A Lo
s > (22 1—28)20,
iz, 2 = (52 4 ot ) (1 - )
Lemma 4.5. Let zo = (o, yo) with xg > 0. If for all z = (x,y) in the stable curve
that joins zy and z1,
an R x
s> (22 1— 2%~
iz (200 a- e,
then
To > xo + Eax(l)Jra,

where Ey is a positive constant dependent on yg.

The following lemma is the key step to get the lower bound estimates for Zq/xo.

. . 2a2b2 262
L 4.6. G ,8 € (0,1 th< 54— < —<a Th
emma wen any «, f € (0,1) with 8 R — o o en
for any point ¢ = (0,y,) with y; > 0 small, there exists € > 0 such that for any

2o = (z0,Y0) € W2(q) with xo > 0 small,

(4.3) v < —(@ + ﬁ(yo))(l —z0)—.
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Proof. For each 2 = (w0, 90) € W;*(q), 2z = (2i,y:) = f'(20), define

A B,2
Co ‘= 0, C; = 1 1%0 %0 Vi > ].7
[T (1 = oy, (0.9,)
where 4; = ;72(21)2 — Bag) and 6y is specified in Lemma 4.8. It is evident that
2
(44) Ci+1 — C = Ci+100yi¢y(0ayi), Vi > 0.
Set
a . )
(15) prim o) = (2 o) ) (1 =2l 020
and
(46) [’)VZ = P — Gy ) Z 0.

For any z; = (x;,y:), set
Ap (x5, yi) :=(pi — Pig1) (L + ds) (1 — o)
+pi19i(1 + @)ty (Tiy yi) — vi(1 — i) oy (i, yi)
—PiPir1Ti (1 + ¢i) Ve (w4, yi) + pizi (1 — Vi) Pu (T4, Yi),
where ¢; = @(z;) = ¢(@i, yi), ¥i = Y(21) = (x4, 45).
By contradiction, suppose that (4.3) is incorrect. It is to show that for y, > 0
small enough, there is € > 0 such that for any zy = (%o, y0) € W (¢) with ¢ =

(O7yq)a Zo,Yo > 07
~ Ty

vy > —pi— and 0> As(zi,9:),
‘ Yi
this, together with Lemma 4.2, yields that
~ Ti41
Uji+1 2 —Pit+1 =

Yit1
By Lemma 4.8 below, we can take ¢ > 0 small enough such that ¢,, > 1+
max{as/bs + p(y;) : y € [0,7]} and hence, p,, < —1 for some ng = n(zp). Since ¢;
increases with i, it follows that p; < —1 for any i > ng. Note that z; is increasing
and y; is decreasing when the orbit under the iteration of f is in the neighborhood
of the origin. Then there exists ny > mng such that vﬁnl > —ﬁnl% > 1. This

ny
contradicts (4.1).
Now, we will show that for all ¢ > 0 with z; < v,

Ag, (zi,y;) <0.
Note that by (1.2) and (1.3)

(4.7) $(x,y) = (0,y) + O(@® +ay®),  P(x,y) = ¥(0,y) + O(a? + zy?),
(4.8)  ¢y(z,y) = ¢y(0,y) + O(@® + zy), Yy(x,y) =1y (0,y) + O(a? + xy).
Also,

(4.9) d(2,y) = azy® + O(2® + 2y® + y°) = asy® + O(a® + ¢%),
(4.10) yiy(@,y) = 2b2y® + O(a®y + 2y + y°) = 2b2y” + O(2%y + y°),
(4.11) z¢,(2,y), b (z,y) = O(2* + 22y + zy?) = O(2? + 23?).
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Since y; — yi+1 = yi — ¥i(1 — ¥(24,vi)) = yip (x4, yi), and p is Lipschitz continuous,
(4.12) pyi) — p(yir1) = Oy — yiy1) = Oyt (i, y:)) = O(yix} + 7).

Denote y %y == yi(1 — ¥(0,3:)). Then yir1 —y'%) = O(y: (¥(0,y;) — ¥(ws,,))) and
hence, by (4.8),

(4.13) Pyier) = py) = Oyies — uy) = O(a?yi + miy).
Note (14 a)? — 1 = Ba + O(a?). By (4.9), we have
(4.14) af =2l = 2l (14 ¢z, )P — 1) = Bagaly? + 2] 0(a? + y2).
First, using (4.4), (4.7), (4.12), (4.13), and (4.14), we get
(Pi — Pit1) (1 + &3) (1 — 4y)
= () = (g )<1+¢z>< i)
(el 4 (el = pw)el) ) (1 + 00 (1 - )
(4.15) +(Cig —cz)(1+¢z)( — i)
( P ) (1 + 6(0, 3))(1 = (0, )

+gﬁa2$i Yi + (civr — i) (1+ ¢0) (1 — )
+O(@Fy; + wiy}) + &) O} + ).
Next, using (4.5) and (4.6), and then using (4.7), (4.8), (4.10), and (4.13), we get
Pi+1Yity (i, i) (L + ¢i) — yi(1 — i) by (24, Yi)
( + P Yi+1 )yﬂ/}y xuyz 1+ (bz) - yi(l - wz)%(l”u%)
(4.16) ( P(Yit1 )

=(%j ) )ithy (0, (1 -+ 6(0,32)) = (1 = (0,5:)) (0, 32)

hq%% i, yi) (14 ¢i) — cipryidy (i, i) (1 + ¢4)

—%2b2$?yi2 — cip1¥iy (0, ) + yiO(x} + my;) + xfyZO(xf + 7).
Also, denote
(4.17) R(zi,yi) = —pipit12i(L + @) ¥u (i, yi) + pizi(1 — i) ¢ (i, yi).-
The equations (4.15)-(4.17), (4.11), and Proposition 4.3 give
Ag (i, y1) = =3 (2b2 — faa)olyf + (cira — )1+ 60)(1 )
— cir19ithy(0,3:) + Rp(wi, ys) + O(afys + wiy}) + 2 O} + ).
Note that the choice of S implies 2b; — Bag > 0. By (4.11), we have

(4.18)

=0(z} +aiyf) if p > —1;
<0 if p; < 0.

Ry(x4,y:) {
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Fori=0,cy=0and ¢ = 2b (2b2 — Bag)xo y2 by the definition of ¢;. Hence,
2

Ap, (xo,40) = =2 (2by — 502)%% c1yity (0, y:) + O(z2 + 2oy + xgyS) <0,

2b

since we assume z¢ is small compared with yqg.
For 0 < i < ng(20), where ng is given in Lemma 4.8, by (4.4), we have

(cir1— i) (1+) (1 =) — cipryitdy (0, y;) = —cip1 (1= 00)yitdy (0, 1:) +y7 O (a7 +y7).

So, we have

Ap (xi,y:) = (252 ﬂaz)fﬂ y? Ci+1<1_90)yi¢y<0ayi>+0($?+$iyz‘3+xoﬁy?) <0,

Qb
since we have Kx; < y't8/2=F) or 22 < K=2=FzP2 for some K > 0 sufficiently
large.

If i > ng, then p; < 0. Hence, Rz(z;,y;) < 0. Then by (4.18),

Aﬁi (i, y:) = 2b (2b2 - 5a2)$ Z/z —cit1(1 — 90)%1/@(0 Yi)
—|Ry(wi, yi)| + O(a7yi + miy}) + 2] O(aF +4)) < 0.
This completes the proof. ([

Lemma 4.7. Let zo = (x0,y0) with xo,yo > 0. If for all z = (z,y) in the stable
curve that joins zZg and 21,

a A~
(4.19) i< (324 o) )1 - a2,
2
then
.’fo S o + ng(l)JrB
where Eg is a positive constant dependent on yo.

Proof. Since (v, 1) forms a tangent line of the stable manifold W2 (z), (4.19) gives

dx as T
< - 5 _ B2
o < (G +am)a—a),

which implies that

dx dy
—_— — <0.
2(1—aP) (b2 ) y =
Integrating the function from z; = (xl, y1) to Zo = (Zo, Jo), we have
— 1 1 g ~
log@—flog —|——1 / p(y)dy<0
o BT 1—a2f by wo Y

In the following discussions, we omit the subscript 0. The above inequality gives

z —zf 1 Yp
L) () e (- [ )

This, together with z7 = (1 + ¢(z,y)) and y1 = y(1 — ¥(x,y)), yields that

<t oe— v (=5) () e (- [ M)

SHEST
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By (4.7), ¢(z,y) = ¢(0,y) + O(z® + zy?®) and ¥ (x,y) = ¥(0,y) + O(x* + zy?).

y(1-9(0,9)) )
Hence, / —=~dy = O(z), where we treat y as a constant. By (4.2), one
y

has (1-d(@y) Y
(e ole - v Fen (- [ My
=(1+0(z?)) exp (/y [)Eyy)dy>

Since z = (Z,y) and z = (x,y) are in the same local unstable manifold, one has
that

[§ =yl < N(Z —2) < N(z1 — ) = Nao,
where N is a positive constant. So,
y

(g;)ig < <1+ N;w)ig =14+0(x) and exp (/y ﬁ(yy)dy) =1+ O(x).

Now we get

SHES]

< () (14 0)).

1—af

Using the facts xf =281+ ¢)? =28 + B2Pp + 2P0(4?) and x < Z, we have

_ 7B B _ 8 B B — 78 B 2 B B 2
1-af |, of=s | P plem a4 afOW) | Be+sOW)
1—af 1—2af 1—=xf 11—
Therefore,
L <14 By,
x
where Fjg is a positive constant dependent on yq.
This completes the proof. O
2a2b2 2b2

L 4.8. S ,B8€(0,1) sati <5< —<a Th
emma uppose a, 5 € (0,1) satisfies P o «a en

) a2b2

a3 + b3

and N, a point ¢ = (0,y,) with y; > 0 small, there is € > 0 such that for any

zo = (zo,yo0) € WH(q) with xg > 0, the following inequalities hold simultaneously

for some positive integer n = n(zg):

there exist 6y € (0,1

and n > such that for any positive constants K

x‘”H 1 — Ooy;1,(0,y;) TN K 1+
o¥%o 0Y; Wy (U, Y; =Z IV, Ty <Y .
j=0

2a2b 2a9b
Proof. Since < —; 4272 5 = 222 , there is v > 1+
a3 + azba + b3 (a2 +82) (1 " azby )
N a3 403
a2b2 2a2b2 agbg
such that = ————. Take —5 < < v — 1 and then take
a2+ 83 @ EET

0y > 0 such that

B 2*(7*1)ﬂ+nﬂ}.

1>00>max{?, 5
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p 2azbs azby
Clearl h < = <
GO WERAE 978 S 202 + asbs + b2) — 2a0by a2+ b2
By the choices of 8y and ~, we could assume that K is large enough such that if

Kz <y, then

(4.20) 1—Boyt)y (0,y) < 1—012byy® < (1 —1)>*
and
(4.21) (1+¢)f(1 -y P <1,
where 61 and 0, satisfy
2—(y—1

(422) max{%, (’Y 2)5+ﬂn} <02 <91 <90.

Hence, for any zg = (9, yo) with Kzo < yo, by (4.21), we have
(4.23) xfyffw < a:g(l + %)ﬁy(?)*vﬁ(l — )2 P < :cgyg*w.

Set n := n(zp) as the largest positive integer such that Kz, < y.*" and Kz, 1 >

147

Yna1- Since 0 <y < 1, we have that if Kz < y'*7, then Kz < y. So,

8,2 B 2—pB -8, B8(+n) 2—B _ 1-—pB, 2+(1—7)B+npB
ZoYo n+1yn+¥ > K Byn+1 ynﬁ =K ﬁyn+1 .

By (4.20) and (4.23), we get

*'Yﬁ>l.

26
ooyl v al

z n
H?:o (1 - 90yj¢y(07 y])) ygez Hj=0(1 - 1/11')292

B 2420 205 —~3
Toyo Yo

>
26 — 205 —(2—(y—1 :
ynfl Kﬁynfl (2—(y=1)B+nB)

By (4.22), 205 — (2 — (y — 1)8 4+ nB) > 0. Hence, if 2 is sufficiently close to g,
then y,41 can be arbitrarily small and the right hand side of the inequality can be
arbitrarily large. This lemma is thus proved. O

>

5. ESTIMATES OF THE SIZE OF ELEMENTS OF P_j

Recall that P is a Markov partition. Denote Py, = \/izkfi(P) and P, = Po,p.
Denote by Py (z) the element of Py, that contains .

Also, denote by ~:(z) the connected stable curves that contains  and is con-
tained in P, (x), and by v%(z) the connected unstable curves that contains x and
is contained in P_,, o(z).

Recall that m? is the Lebesgue measure restricted to stable curves. Recall also
that @ = Q2 = f~1P\P, and Q; = [r > k], k > 2, are introduced in Subsection 2.2.
Denote Ry, = [T = k] = Qi \ Qx41 for k > 2. Then we denote Q7 = f7(Qy) and
R} = f(Ry) = f*(Ry), where f7 is the first return map of f with respect to
Mo =M\ Py. Clearly Q) = U2, R; and Qf = U2, R,

Proposition 5.1. There exist Ks > 0 and Cs > 0 such that for any k > K, we
can find a set Ty, with the following properties:

. Cslogk
() ulTi) < 8%

N Cs
(i) m*(yi(z)) < lefm' for any x € Ty;
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G er s Cs
(iil) m*(yp(x)) < T/t for any x ¢ T, U P,
where o = by/2ag.

Proof. Take Ky > 2K, where K7 is given in Corollary 5.6.

log k&
Recall that A is defined in (2.1). For each k > 0, take ¢ = £, = — [12§/\J. Then
1
for any j >, M < T
Define ,
Tk = U(fT)Z( -L‘rk/QJ)a
=0
ot/ap,
where 7 is the first return time with respect to M\ P. By (2.3), u(Qr/2)) < i

for some B, > 0. Since p is preserved under the map f7, we can get

2!/*B, C'logk
HT) € =t 0SS
for some C’" > 0. Hence, we get part (i) if Cs > C".
For any 2 € M, denote zy := f~*(x). If 7 € P, we define 7(x3) = min{i > 0 :
fi(zx) € M\ P}, the first time the orbit of zj enter M \ P.
We now prove a claim stronger than the requirements in (ii) and (iii): For any
x ¢ P, the inequality in (ii) holds for any x € Ty with x; € P and 7(xy) > k/2;
and that in (iii) holds otherwise.
If 1, ¢ P, then by Corollary 5.7(i), m®(vi(z)) < %
If 2, € P and 7(xg) < k/2, then we have f7(xy) ¢ P and k — 7(xx) >
max{ K1, k/2}. Using Corollary 5.7(i) with f7(®%)(z;,) and & = fF=7@6) (f7(@0) (1))
we get
Cs 23/2+e' 0,
m® (v (7)) < (k —T(xk)3/2+o" < k3/2+a

If v, € P, 7(xy) > k/2 and = ¢ T}, then we have *yj(wk)(fT(”)(zk)) C Q-

.s S(AS T(z CQ 21/2+O/C'2
By Corollary 5.7(ii) we have m®(v;,,,(f @) (23,))) < 2 S g
On the other hand, x ¢ T} implies k — 7(x) > 7(f"(zx)) + 7((f7)? (k) + - +
—T\Tk 1 s T(x
T((F7) (xw). Hence [ Dfy ™™gyl < A < - for any y € v, (/77 (ax)) by

the choice of £. Note that fk_T(f”’C)(Wj(zk)(fT(r’“)(xk))) = 77 (x). We get

S(nS 1 S(AS T(z 1 21/2+a’02 21/2+a'02
m* (@) < £ m* (o I @) < 3 Famar = Tamre
On the other hand, if zy € P, 7(xx) > k/2 and x € T}, then we can only get
C2 21/2-&-0/02

m®(yp(r)) < ms('yi(mk)(fT(wk)@k))) < |k/2]1/2+a = kl/2+a

Now we get what we claimed if we take Cy = 21/2+ (. O
Proposition 5.2. There exist K, > 0 and C,, > 0 such that for any k > K,,
Cu
mU(yi(x)) < Tia for any x & P.
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Proof. The proof is similar to that for Proposition 5.1 by using the estimates given
in Proposition 4.1 for v € W*(Qy,), instead of Corollary 5.7 for v§ € W*(Q}). O

To prove Lemma 5.5 below, we need the following facts.

Lemma 5.3 ([6] Lemmas 3.1 and 3.2). If

(5.1) tno1 >t + CtTC L O(hH) Vn > 0,
where o' > o, then for all large n,

1 1
5.2 tn < 0 7 )
> <o e

for some ' > 1/p and k € Z.
Moreover, if (5.2) holds and for all n > 0,

r(ta) <1 - C't2 + O(t5+),

where C' > 0, then there exists D > 0 such that for all kg > k,
n+ko—k

H r(t) < D(nik)d/gc~

i=ko—k

The results remain true if we interchange “<” and “>”. Therefore, if (5.1)
becomes an equality, then so does (5.2).

Lemma 5.4 ([4] Propositions 2.6 and 2.8). For any € > 0, there ezists a constant

2
0 < 7. < 1o such that for anyr € (0,7) andx € B(p,r),t € (0,1],j=1,---, LQJ ,
we have _
(1= e)lt| < [ (t2)] < (1 + e)lta;
and for any x,y € B(p,r) with |0(x,y)| < |O(z, f(z))| and |y| = t|z|, t € (0,1], we
have

O )| < 00 fa)] +elo Yo<i< 5]
; ) 1] |2
O W) 218G, f@) —2leP V|| << |5,
where 1 is specified in Definition 1.3, and O(x,y) denotes the angle from x to y

counterclockwise in R2.

Lemma 5.5. There exists C; > 0 such that for any © € Q with n = 7(x),
IDfz

1 ’
Es S W, where o/ = b0/2a0.

Proof. Choose 0%,0° > 0 small. Then take sectors S* = {z € U : |[£(z, E}))| < 0}
and §* = {z € U : |£(z, E})| < 0°}, where Z(z, E}) is the angle between the vector
from p to z and the line E. Then let S¢ = P\ (§° U S°).

If No > 0 is large enough, then for any z € Qn,, the orbit of = passes through
S§%, 8¢, and S* consecutively before it leaves P. Note that if x € R, C Qny,
then n = n, = 7(z) > Ny. We take n®,n° n* > 0 such that n® = max{j > 0 :
fi(z) € 8%, V1 < i <4}, n® =max{j > 0: f" Ti(zx) € S V1 < i < j}, and
n' = ng,—n®—n. Thatis, z, f(z),..., f" () € S%, [T (x),..., f~ 1" (z) € S°,
and f (), L e (x) € S
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Note that (1.3) implies that f has the form f(r) = r(1—bar? + O(73)) restricted
to W2(p), and Df has the form Df|gs = 1 — 3bar? + O(r®) restricted to ES
for z = (0,7) € WZ(p). Hence, by Lemma 5.3, for any point £ € W7(p) N Q,

~ 1 ds 7
/™ ()| ~ NG and [|Df} gzl ~ T for some constant ds; > 0, where aj =~ by

a
means klim Tk _ 1, and ay ~ by, means ay /by is bounded away from 0 and infinity.
— 00 k

Since the points in §° are close to W2(p), we can get that there exist ¢ > ¢}, > 0
and dg > d’ > 0 such that
and < |IDf3

\ﬁ_ ( )| < N /7(715) z |Ezll < (ns>3'

Now we consider the part of the orbit in S¢. Take z € S* such that f*(z) €
S*N QEO with some k > 0. Define k° and k€ in a way similar with that of n® and
n¢ as above, that is, k* is the largest positive integer such that f1(z),..., f* (2) €
S*®, and k¢ is the largest positive integer such that f*"*1(z),..., fF"+5(2) € S°.
Consider Lemma 5.4 with ¢ small. If Ny is sufficiently large, then for x € Qn,,
|/ (z)| = t|f*(2)] is small. Hence, by Lemma 5.4, for i =0, 1,...,n°,

kR (R)P

U
(53) Cs ds s ds

(L= 1" @) < | (@) < A+ " (@) and 0~

2 (o)
So, there exist ¢,, > ¢}, > 0 and ¢, > ¢, > 0 such that for i =0,1,...,n°,
C/ Cp, s s | s s
(5.4) <n° - ,oand el f" (@) < [T ()] < el f7 (@)
[ (2)? |f” ()? ‘

Note that (1.2) and (1.3) imply that there exist ¢ > ¢/ > 0 such that 1 — c|y|*> <
|Df, Bl < 1-— d|y|? for any y with |y| small. Hence, by taking y = f *i(z),
i=20,1,...,n° we obtain that there exist 0 < d’, < d. < 1 such that
(5.5) &, < DSl < e

For the part of the orbit in S*, we note that (1.3) implies that f has the form
f(r) = r(1 4+ agr®* + O(r3)) restricted to W2(p), and Df has the form Df|p: =
1 —bor? + O(r?) restricted to ES for z = (r,0) € W¥(p). Hence, by Lemma 5.3, for

. . w —n 1
any point & € W2(p), |f~"(2)| = VZaon ™ nbo/2a0

in 8* are close to W*(p), we can get that there exist ¢, > ¢/, > 0 and d,, > d], > 0
such that

Since points

/

\ﬁ <[ ()] <
d, d,
(nu)bo/an _||foné+n (x)‘Efn S4n¢ (T)H S (nu)b0/2a0 '

(5.6)

By the second inequality of (5.4), |f™ " (z)| ~ | f* (x)|. Hence, by (5.3), (5.4),
and (5.6), all n®, n® and n* are roughly proportional. Since n®+nc+n* =n = ny,
we know that there exist p*, p* € (0,1) such that n® > p*n and n* > p“n. So by
(5.3), (5.5) and (5.6), we get

n G
”Dfx |ET|| < W

for some Cq > 0.



23

The proof is completed. O

Corollary 5.6. There exists K1 > 0 such that for any n > Ky, if x, f"(x) ¢ P,

then | Df7 ] | < ot

, .
—32rar where Cy and o' are as in Lemma 5.5.

C Cy Cq

7 ; < -, whenever
k3/2+a n3/2+a (2(]%‘ + n))3/2+a

Proof. Take K| > 0 such that

k,n > Kj.

Let S = Si; = {f'(z) € P:x € Qg;,i = 1,...,n, — 1}, where n, = 7().
Since f is uniformly hyperbolic on M \ S, there exists p = ps € (0,1) such that
|Df.|g:|| < p for any 2 € M\ S. Take K > 0 such that for any n > K7,
P —

(2n)3/2+a

Take K7 = max{2K],2K}'}. For z, f"z ¢ P with n > K;, we denote I = {i €

(1,n) : fi(z) ¢ S}, and let k, be the cardinality of I. If k, > n/2 > K}, then

Ch Ch
(ZL’ f(»L || —p (2]€ )3/2+a/ — n3/2+a/'

IDf7 |

el
If k, < n/2, then we may assume that the orbit {z,..., f"~1(x)} passes through
Qr; ¢ times. Let k1 < k2 < .-+ < kg < n such that fFi(x) € Qk;,J=1,...,L
Denote n; = 7(f*i(x)). So, we have n; > K| for all j. Now we get

C
n;

1Dk g2y, < Il =5
1<]<Z 1<j<e

Cl Cl Cl

= 3/2+a’ 3/2+4a’ = 3/2+a’’
nl .. _— T n
(2(n1 + - - + ny)) (2(n — ky)) 4

where we use the fact ny + -+ +ng =n—k; > n/2.
This completes the proof. ([

DS e

Recall that Q,,, R, Q;", R} and 72 () are given at the beginning of this section.
Also, we have Q" € P,.

Corollary 5.7. There exists Cy > 0 such that for any k > 0,
s S S C N
0) m* () < ey i £ £ P
. s/ s C .
(it) m*(vi(x)) < kl/ﬁ ifz € Q.

Proof. (i) Note that f"(y§(z)) = vi(f*(z)). By Corollary 5.6, and distortion esti-
M 3 S Cl 5 S
mates given in Lemma 3.2, we can get that m®(vi(f*(z))) < ICST}"W -m* (7§ (z))

for some C] > 0. Then we use the fact that m*(y§(z)) are bounded above for all
re M.

(ii) Note that for y € R;, fi(y) € R and fi(vs(vi)) = 75 (f*(yi)). By using the
same arguments as above, and using Lemma 5.5 to replace Corollary 5.6, we can

S(~S( £t C .
get m* (v (f*(y))) < ey for all y € R;. Since for any = € Q}, vi(x) is the
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union of the stable curves 75 (z;), z € R N~i(x), i = k,k+1,..., we get that
o0
s Co . .
m®(vi(z)) < E > FEypen Now we can increase Cy to get the result of part (ii). O
=

6. SOME LARGE DEVIATION ESTIMATION

In this section, we study the large deviation estimates for the observable function
U € £ with respect to the quotient map f. We adopt the discussions used in [14].

Recall that (f, M) is the one-dimensional system induced from (f, M), and
(]?, M) is the first return maps of f with respect to M=2M \ Po.

Lemma 6.1. Let 0 < a < % Given any € > 0, for any function ¥ € L satisfying
| [ Wdpi| > €, one has that

(6.1) ﬂ{f €M: ‘nzl (\I/(fi(f)) — /\Ifdﬂ)’ > ne} = O((log n)2&—Dp=(G=D),
=0

The transfer operator of the Markov map f is defined as follows:

T) = Z 9:(Y)¥

fy=z

where g; = dji/dji o fand ¥ € L'(M). Since fi is invariant with respect to the
quotient map f, gp is said to be the g-function of .
Define the following operators:

By Proposition 1 of [17], one has the renewal equation:
T(z)=(I—-R(2))"", zeD,

where D is the unit disk in the complex plane, and

=S SR, T() =1+ T, zeD
n=1 n=1

Proof of Lemma 6.1. For convenience, set ® := ¥ — f Wdj.
It follows from (2.4) and the fact that fi is an invariant measure of f that

‘/Cbof’“ @du’—’/ q, - /\Ildﬂ)(\l/—/\l’dﬂ)dﬂ‘
:‘/\I/ofkwlldﬁ—/\llofkdp/\lldu‘ |Cor, (W, W; F, j1)] <

By the renewal theory, Theorem 1 in [17] or Theorem 1.1 in [2],

c(v)
k*fl

fPr+ Z Pk + Ey,
k n+1
where Pr is the eigenprojection of R(1) at 1, r is given by PrR/(1)Pr = rPr, P,, =
> 1sn PrRPr, E, € Hom(L, £). By using Lemma 6.5 in [2] and (2.3), we have that
|R.|| = O(-k). So, we have || E,|| = o(1/n="1).
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By the fact that Pr& = [ ®dfi (see the proof of Theorem 2 in [17]), [ ®dji = 0,
and Theorem 1.2 in [2], one has

_ _ 1
[ eldn = [ 17,010 = 0(—=).

Next, it is to apply the method of the proof of Proposition 2.3 in [14] to prove
(6.1).

By Proposition 1.2 in [1_8] and the fact that f is measure preserving with respect
to the measure i, Ez(®|f*B) = (T*®) o f* for any positive integer k and ® €
L'(M). By direct computation,

p{z el \Zw ]>ne}<@/]E@(ﬂ(w))\”dm)

19 29
< ne)w(ll¢l\w+24ozk V2B (@ o *1B) 20
19 29
= 219(||‘I’H2z9+2402k 2B (®] B 20
Cn? 29
= (10l + 240 5T 0 )’
k=1
C s L 209
< ey (191120 + 200) 2~ /o) 3 2 [i7+ean)™)
k=1
C "1y 20
< (20-1)/(20) N~ 1
<=3 (1220 + 240] ]| 2 > )

where ¥ = i —1 > 1 and Corollary 1 from [12] is used in the second inequality.
This shows (6.1). O

Finally we show a proposition which is used in Subsection 2.3.

Proposition 6.2. There exists 6o > 0 such that for any 0 < § < ég, E, E' > 0, we
can find Cp, Cp > 0 respectively and Ng > 0 satisfying

1 2(1-1)
(6.2) u{x e M: |Dfp| < EeM} < Cpllogn)7=7 7,
x ng_l
—n / _nd CD(IOgn) (é_l)
(6.3) /,L{xeM: |IDf; "|es| < E'e } B e a—
mn «

for alln > Ngy.

Proof. Without loss of generality, we can assume that ' = E’ = 1. This is because
we can always take Ny sufficiently large and incease § to some d* > ¢ such that
Ee™ < e for all n > Ny.

Now let us prove (6.2).

For the finite Markov partition P = {Py, P1,--- , P.} and fixed 4 € W*(F;),
0 <7 < r, consider the following function

(z) = 0 if x € Py;
¢ x) = log |Df7'r($)|E;‘(T)| if © g PO,
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where 7 is the sliding map defined in Subsection 2.1. Clearly 1 is constant along
the stable manifolds in P;, 0 < i < r. It can be regarded as an element in £ as
well. It is evident that [¢dpn > 0.

Since f is uniformly hyperbolic on M \ P, there exist two positive constants C,,
and C!, such that

Cy <log|Dfylpe| < C, VxeM\P.

/
u

Hence, if we let Cr, = C— and C} = g, then

IOg |Dfac|E“| /
T < = <C Vr € P;, i #0.
lOg |Df7r(x)|E::($)| L
So,
n—1
log |Df}!pg| = Y _log|DfpilEe, |
1=0

n—1 n—1
> Lanp, log|Dfys iwley 12 CL > w(fi(x),
=0 i=0

where 1pp\ p, is the indicator function. Hence,

n—1
(6.4) {1‘6 M : %log\ngﬂEﬂ < 5} C {x eEM: i;¢(f1(x)) < CiL}

for any § > 0.

Take g = Cp, [tdu, and let 0 < § < &y. Set € := [¢dp — §/Cr. Clearly
€ > 0. Recall that we mentioned that ¢ can be regarded as functions in £. So by
Lemma 6.1, one has that

p{zeM: \Z (v(F@) - / bdji)| > ne} = O((logm)? = ~Dn=G ),
=0

and therefore,

1

(6.5) ﬂ{f eM: %211;(?(5)) < /wdﬁ — e} = O((logn)*(= =D~ (a1,

By (6.4) and (6.5), and the fact that fi is the quotient measure of x4, we have that

<e"5}§u{x€M Z¢ 6}

u{xeM: |Df
CL

u
Ea;

na—1

1” 1 2(5-1)
:,:L{g; eM: =Y /wdu < Cpllogn)7e 77

i=

for some Cp > 0. This is (6.2).
To get (6.3), we introduce the following function

0 if x € Py;
w(l‘) - { — Efr(m)‘ if ¢ Po.
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Hence v is constant along the stable manifolds and can be regarded as a function
in L. It is also obvious that f wdp > 0. By using similar methods as above, we can
obtain

C’,(logn)2(& =1
n o
for some C, > 0. Note that E® is one-dimensional. So |Df7;”($)|E;n(x)| < em if
and only if [Df?|gs| > e™™°. Since y is an invariant measure, we get (6.3). O
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