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Abstract

We give conditions under which nonuniformly expanding maps have

polynomial decay of correlations. We show that if the Lasota-Yorke type

inequalities for the transfer operator of a �rst return map are satis�ed in

a Banach space B, and the absolutely continuous invariant measure ob-

tained is weak mixing, in terms of aperiodicity, then under some renewal

condition, the maps has polynomial decay of correlations for observables

in B. We also provide some general conditions that give aperiodicity for

expanding maps in higher dimensional spaces. As applications, we ob-

tain polynomial decay, including lower bound in some cases, for piecewise

expanding maps with an indi�erent �xed point and for which we also al-

low non-markov structure and unbounded distortion. The observables are

functions that have bounded variation or satisfy quasi-H�older conditions

respectively.
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0 Introduction

The purpose of this paper is to study polynomial decay of correlations for in-

variant measures which are absolutely continuous with respect to some reference

measures. Typically the maps T which we consider are non uniformly expanding

and they may neither have a Markov partition nor exhibit bounded distortion.

The main tool we use is the transfer operator on induced subsystems endowed

with the �rst return map. Let us call jjRnjj a suitable norm (see below) of the

n-th power of the transfer operator restricted to the level sets with �rst return

time � = n. We will show that if Lasota-Yorke inequalities can be veri�ed for

the transfer operator of the �rst return maps, and if kRnk converges to 0 at

a speed 1=n�+1, � > 1, then the decay rates are given by the measure of the

sets f� = ng. In the second part of the paper we apply the results to piecewise

expanding maps with an indi�erent �xed point in one dimensional and high-

er dimensional spaces to get polynomial decay of correlations. The results for

maps in higher dimensional spaces with Dfp = id at the indi�erent �xed point

p is new, and in all the cases, the observables are more general than H�older

functions.

We now explain in more details the content of this paper. Let us consider

a non uniformly expanding map T de�ned on a compact subset X � Rn, with

or without discontinuities. Since we do not have necessarily bounded distortion

or Markov partitions, H�older continuous functions are not preserved under the

transfer operator. Therefore we will work on Banach spaces B consisting of

some L1 functions, and endow a norm k � kB stronger than the L1 norm k � kL1 .

We give some conditions on B under which the results apply (see Assumption

B); notice that the norm of Rn will be taken in B.

2



Let us now take a subset eX � X and de�ne the �rst return map bT . The

�rst ingredient of our theorem is the Lasota-Yorke inequality for the transfer

operator cP of bT with respect to the norm k � kB and k � kL1 . Hence, cP has a

�xed point ĥ that de�nes an absolutely continuous measure �̂ invariant underbT . The measure �̂ can be extended to a measure � on X invariant under T .

We may assume ergodicity for �̂, otherwise we can take an ergodic component.

Then the ergodicity of �̂ gives ergodicity of �. However, we also need some

mixing property for �. Therefore our second ingredient is to require that the

function � given by the �rst return time is aperiodic, which is equivalent to the

weak mixing of � for T . The third ingredient is the renewal condition, which

could be stated by asking that jjRnjj decays at least as n�(�+1), with � > 1.

Such a decay gives also an estimate of the error term, which should be faster

than the decay rates of �(� > n) in order to get an optimal rate for the decay

of correlations. With these conditions our theorem (Theorem A) states that

the decay of correlations Cov(f; g � Tn) := j R f g � Tn d� � R fd� R
g d�j; is

polynomial for functions f 2 B and g 2 L1(X; �) with supp f; supp g � bX.

The assumption on aperiodicity is usually di�cult to check. We provide some

general conditions in Theorem B for the maps T under which aperiodicity follows

automatically. The conditions include piecewise smoothness, �nite image and

uniform expansion for an induced maps and topological mixing for the original

maps.

As applications we studied piecewise smooth expanding maps with an indif-

ferent �xed point in one and higher dimensional spaces. In the one-dimensional

case we use the set of bounded variation functions for the Banach space B, and
we found that the decay rates are of the order n��1 if near the �xed point the

maps has the form T (x) � x+ x1+
 , 
 2 (0; 1) and � = 1=
.

One of our main goal in the paper is to obtain polynomial decay of corre-

lations for piecewise smooth expanding maps with an indi�erent �xed point in

higher dimensional space.

For a large class of those maps, we constructed, in a previous paper ([HV]),

absolutely continuous invariant measures by using the Lasota-Yorke inequality.

Our maps could be written in the form of (5.4) near the indi�erent �xed point

p, where the local behavior is precisely given by an isometry plus homogeneous

terms and higher order terms. In the present paper we show that such maps

have polynomial decay of correlations for observables in B. As we said above,

in the estimates we should compare the decay of kRnk with the measure of

the level sets with the �rst return time larger than n. The former could be

determined by the norms kDT�nk or the determinants j detDT�nj�, where the
latter, denoted by �(� > n), is often of order n�m=
 , with m = dimX and 


is given in (5.4). If kRnk decreases as j detDT�nj, then it usually approaches

to 0 faster than �(� > n) does, and therefore both upper and lower estimates

�Notice that T�n denotes the inverse of Tn restricted to the domain of injectivity contain-
ing p:
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for decay rates of correlations are of the same order as
P

k�n �(� > k). This

is the case we have optimal rates of decay of correlations. We obtain optimal

rates under the assumption that all preimages of some neighborhood of p do

not intersect discontinuities, (see Theorem E and examples in Section 7 for

more details). This is satis�ed whenever T has a Markov partition or a �nite

range structure (see Remark 6.1). Whenever kRnk decreases as jjDT�njj, we
get polynomial upper bound (Theorem D).

Our �rst theorem, Theorem A, is based on works of Sarig ([Sr], see also

[Go]), but contrarily to them, we do not assume existence of absolutely contin-

uous invariant measures. Our conditions are given by the Lasota-Yorke type

inequalities, which imply existence of absolutely continuous invariant measures

and the conditions on spectral gap as they required. Since such conditions are

easier to verify for maps without Markov partitions, it makes it possible to verify

those inequalities for observables beyond H�older continuous functions.

The proof of aperiodicity in Theorem B is particularly technical. We use

some results in the theory developed in the paper [ADSZ], where aperiodici-

ty is proved for a large class of interval maps, and some methods in [AD] for

skew product rigidity. We extended aperiodicity result to the multidimensional

setting without Markov partition. The authors in [ADSZ] mentioned that ape-

riodicity for non-Markov case was not so well understood. Our results indicate

that under some general conditions, if we could �nd a suitable Banach space

for which a Lasota-Yorke type of inequality (see (1.6)) can be veri�ed, then

aperiodicity follows.

For piecewise expanding interval maps with indi�erent �xed points, it is

relatively easy to get the desired spectral properties on the space of bounded

variation functions and to estimate decreasing rates for kRnk: our theorem

allows then to get optimal polynomial decay rates of correlation.

The higher dimensional case is much more complicated. Part of reason is

due to unbounded distortion of the systems caused by di�erent expansion rates

in di�erent directions as a point move away from the indi�erent �xed point.

Moreover it is not easy to estimate the decreasing rates of the norm kRnk for

quasi-H�older spaces: Theorems D and E deals with these situations, by assuming

certain hypothesis. One surely needs more work to weaken those assumptions

and achieve optimal decay for a much larger class of maps.

To study statistic properties for non uniformly hyperbolic or expanding sys-

tems, it is common to �nd some \good" part on which we can get bounded

distortion, like Pesin's blocks ([Ps]), elements in Young's tower ([Yo1, Yo2]),

or some neighborhood near points that have hyperbolic time ([ABV]). Another

approach is to work directly on some Banach spaces, like bounded variation func-

tions ([LY]) or quasi-H�older functions ([Ss]), that are preserved by the transfer

operator of the dynamical system. Our paper follows the latter way and we give

some conditions on Banach spaces through which one can obtain some statistical

properties such as existence of physical measure and decay of correlations.
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We would like to remark at this point that the functional space is abstract,

as long as certain general assumptions (Assumption B(d) to (f)) are satis�ed.

In the applications, we present two type of Banach spaces. It seems interesting

to �nd more di�erent spaces to deal with di�erent kinds of dynamical systems.

Part I: Conditions for Polynomial Decay Rates

1 Assumptions and statements of results

Let X � Rm be a subset with positive Lebesgue measure �. We assume �X = 1.

Let d be the (euclidean) metric induced from Rm.

The transfer (Perron-Frobenius) operator P = P� : L1(X; �) ! L1(X; �)

is de�ned by
R
 � T�d� = R

 P�d� 8� 2 L1(X; �),  2 L1(X; �).

Let bX � X be a measurable subset of X with positive Lebesgue measure.

Recall that the �rst return map of T with respect to bX � X is de�ned bybT (x) = T �(x)(x), where �(x) = minfi � 1 : T ix 2 bXg is the return time. We

put �̂ the normalized Lebesgue measure on bX. Then we let cP = cP�̂ be the

transfer operator of bT .
Moreover we de�ne

Rnf = 1 bX �Pn(f1f�=ng) and Tnf = 1 bX �Pn(f1 bX) (1.1)

for any function f on bX. For any z 2 C, denote R(z) =
1X
n=1

znRn. It is clear

that cP = R(1) =
P1

n=1Rn.

For simplicity of notation, we regard the space L1( bX; �̂) as a subspace

L1(X; �) consisting of functions supported on bX, and we denote it with L1(�̂) or

L1 sometimes and when no ambiguity arises. We point out that in the following

we will mainly work on the induced space and its \objects" will be indicated

with an \b ".
Suppose that there is a seminorm j � jB for functions in L1( bX; �̂). Consider

the set B = B( bX) = ff 2 L1( bX; �̂) : jf jB <1g. De�ne a norm on B by

kfkB = jf jB + kfk1
for f 2 B, where kfk1 is the L1 norm. We assume that B satis�es the following.

Assumption B. (a) (Compactness) B is a Banach space and the inclusion

B ,! L1(�̂) is compact; that is, any bounded closed set in B is compact in

L1(�̂).

(b) (Boundness) The inclusion B ,! L1(�̂) is bounded; that is, 9Cb > 0 such

that kfk1 � CbkfkB for any f 2 B.
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(c) (Algebra) B is an algebra with the usual sum and product of functions, in

particular there exists a constant Ca such that kfgkB � CakfkBkgkB for

any f; g 2 B.
Recall that for the system ( bT ; �̂), if the Lasota-Yorke's inequality (1.2) below

is satis�ed for any function f 2 B, and if the Banach space B satis�es Assump-

tion B(a), then cP has a �xed point ĥ 2 B with ĥ � 0 and cPĥ = ĥ, and the

measure �̂ de�ned by �̂(f) = �̂(fĥ) is bT invariant.

Denote D = fz 2 C : jzj < 1g and S = fz 2 C : jzj = 1g.
Theorem A. Let X � Rm be compact subset with �X = 1 and bX � X be a

compact subset of X.

Let T : X ! X be a map whose �rst return map with respect to bX is bT = T � ,

and B be a Banach space satisfying Assumption B(a) to (c). We assume the

following.

(i) (Lasota-Yorke inequality) There exist constants � 2 (0; 1) and D > 0 such

that for any f 2 B,

jcPf jB � �jf jB +Dkfk1; (1.2)

(ii) (Spectral radius) There exist constants B; D̂ > 0 and �̂ 2 (0; 1) such that

for any f 2 B, z 2 D,

kR(z)nfkB � jznj�B�̂nkfkB + D̂kfk1
�
; (1.3)

(iii) (Ergodicity) The measure �̂ given by �̂(f) = �̂(ĥf) is ergodic, where ĥ is

a �xed point of cP.

(iv) (Aperiodicity) The function eit� given by the return time is aperiodic, that

is, the only solution for eit� = f=f�T̂ almost everywhere with a measurable

function f : bX ! S are f constant almost everywhere and t = 0.

If for any n � 1, Rn satis�es
P1

k=n+1 kRkkB = O(n��) for some � > 1, then

there exists a constant C > 0 such that for any function f 2 B, g 2 L1(X; �)

with supp f; supp g � bX,

���Cov(f; g � Tn)� � 1X
k=n+1

�(� > k)
�Z

fd�

Z
gd�

��� � CF�(n)kgk1kfkB; (1.4)

where F�(n) = 1=n� if � > 2, (log n)=n2 if � = 2, and 1=n2��2 if 2 > � > 1.

Remark 1.1. By a result of Hennion ([He], see also [HH]), (1.3) implies that

the spectral radius and essential spectra radius of R(z) are bounded by jzj and
�̂jzj respectively.
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Remark 1.2. Practically, (1.3) usually can be obtained in a similar way as

(1.2), (for example, see the proof of Theorem D). On the other hand, sincecP = R(1), (1.3) implies the Lasota-Yorke inequality for cPn for some n > 0

with B�̂n < 1.

Remark 1.3. The measure �̂ can be extended to an absolutely continuous in-

variant measure � on X in the usual way (see e.g. [Kk]). It is well known that

if �̂ is ergodic, so is �.

Remark 1.4. As we said in the Introduction, Assumption (iv) is actually e-

quivalent to the fact that � is weak mixing for T (see e.g [PP]). Since decay of

correlations implies mixing, we obtain that with Lasota-Yorke inequality, weak

mixing implies mixing. This fact is also implied in the theorem of Ionescu-Tulcea

and Marinescu ([IM]).

Assumption (iv) is usually di�cult to check. However, for piecewise expand-

ing systems, the condition could be veri�ed and we will give some su�cient

conditions in Theorem B below.

The more general version of aperiodicity is as the following. Let G be a

locally compact Abelian polish group. A measurable function � : bX ! G is

aperiodic if the only solutions for 
 � � = �f=f � T almost everywhere with


 2 bG, j�j = 1 and a measurable function f : bX ! G are 
 = 1, � = 1 and

f constant almost everywhere. (See [ADSZ] and references therein.) Here we

only consider the case 
 = id, and � = eit� , and G being the smallest compact

subgroup of S containing eit.

We denote by B"(�) the " neighborhood of a set � � X.

Assumption T. (a) (Piecewise smoothness) There are countably many dis-

joint open sets U1; U2; � � � ; with bX =
S1
i=1 Ui such that for each i, bTi :=bT jUi extends to a C1+� di�eomorphism from U i to its image, and � jUi is

constant; we will use the symbol bTi to denote the extension as well.

(b) (Finite images) f bTUi : i = 1; 2; � � � g is �nite, and �B"(@T̂Ui) = O(")

8i = 1; 2; � � � .
(c) (Expansion) There exists s 2 (0; 1) such that d( bTx; bTy) � s�1d(x; y)

8x; y 2 U i 8i � 1.

(d) (Topological mixing) T : X ! X is topological mixing.

Remark 1.5. Conditions (b) and (c) in Assumption T correspond to condi-

tions (F) and (U) in [ADSZ]. There is there a third assumption, (A), which

is distortion and which is not necessarily guaranteed in our systems. With this

precision, we could regard the systems satisfying Assumption T(a)-(c) as higher

dimensional \AFU systems".
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Remark 1.6. We mention that if T has relatively prime return time on almost

all points x 2 bX, then Condition (d) is satis�ed.

Also we put some more assumptions on the Banach space B.
A set U � bX is said to be almost open with respect to �̂ if for �̂ almost every

point x 2 U , there is a neighborhood V (x) such that �̂(V (x) n U) = 0.

Assumption B. (d) (Denseness) The image of the inclusion B ,! L1(�̂) is

dense in L1(�̂).

(e) (Lower semicontinuity) For any sequence ffng � B with lim
n!1

fn = f

�̂-almost everywhere, jf jB � lim inf
n!1

jfnjB.

(f) (Openness) For any nonnegative function f 2 B, the set ff > 0g is almost
open with respect to �̂.

Remark 1.7. Assumption B(f) means that functions in B are not far from

continuous functions.

Take a partition � of bX. Consider a family of skew-products of the form

eT = eTS : bX � Y ! bX � Y ; eTS(x; y) = � bTx; S(�(x))(y) �; (1.5)

where (Y;F ; �) is a Lebesgue probability space, Aut(Y ) is the collection of

its automorphisms, that is, invertible measure-preserving transformations, and

S : � ! Aut(Y ) is arbitrary.

Consider functions ef 2 L1(�̂ � �) and de�ne

j ef j eB =

Z
Y

j ef(�; y)jBd�(y); k efk eB = j ef j eB + k efkL1(�̂��):

Then we let eB = f ef 2 L1(�̂ � �) : j ef j eB <1g:
It is easy to see that with the norm k � k eB, eB is a Banach space.

The transfer operator fP = fP�̂�� acting on L
1(�̂ � �) is de�ned as the dual

of the operator ef ! ef � eT from L1(�̂ � �) to itself. Note that if Y is a space

consisting of a single point, then we can identify bX � Y , eT and fP with bX, bT
and cP respectively.

Theorem B. Suppose bT satis�es Assumption T(a) to (d) and B satis�es As-

sumption B(d) to (f), and fP satis�es the Lasota-Yorke inequality

j(fP ef)j eB � e�j ef j eB + eDk efkL1(�̂��) (1.6)

for some e� 2 (0; 1) and eD > 0. Then the absolutely continuous invariant

measure �̂ obtained from the Lasota-Yorke inequality (1.2) is ergodic and eit� is

aperiodic. Therefore Condition (iii) and (iv) in Theorem A follow.

8



Remark 1.8. The theorem is for ergodicity and aperiodicity of �. As we men-

tioned in Remark 1.5, aperiodicity of � is equivalent to weak mixing for � with

respect to T . So practically, if we know that � is mixing or weak mixing for T ,

then we do not need to use the theorem.

Remark 1.9. Same as for (1.3), the inequality (1.6) may be obtained in a sim-

ilar way as (1.2). This is because any S(�(x)) is a measure preserving trans-

formation, and therefore cP and fP have the same potential function. (See the

proof of Theorem D).

Remark 1.10. It is well known that for C1+�, � > 1, uniformly expanding

maps or uniformly hyperbolic di�eomorphisms, the absolutely continuous in-

variant measures � are ergodic if the maps are topological mixing. However, it

is not the case if the conditions on C1+� or uniformty of hyperbolicity fails. In

[Qu] the author gives an example of C1 uniformly expanding maps of the unite

circle, and in [HPT] the authors provide an example of C1 di�eomorphisms,

where Lebesgue measures are preserved and topological mixing does not give er-

godicity. In the proof of the theorem we in fact give some additional conditions

under which topological mixing implies ergodicity (see Lemma 3.2).

2 Rates of Decay of Correlations

We prove Theorem A in this section. The proof is based on the results of Sarig

[Sr] and Gou�ezel [Go]. Here we take Gou�ezel's version.

Theorem. Let Tn be bounded operators on a Banach space B such that T (z) =

I +
P

n�1 z
nTn converges in Hom(B;B) for every z 2 D. Assume that:

(1) (Renewal equation) for every z 2 D, T (z) = (I � R(z))�1, where R(z) =P
n�1 z

nRn, Rn 2 Hom(B;B) and Pn�1 kRnk < +1.

(2) (Spectral gap) 1 is a simple isolated eigenvalue of R(1).

(3) (Aperiodicity) for every z 2 D n f1g, I �R(z) is invertible.

Let P be the eigenprojection of R(1) at 1. If
P

k>n kRkk = O(1=n�) for some

� > 1 and PR0(1)P 6= 0, then for all n,

Tn =
1

�
P +

1

�2

1X
k=n+1

Pk + En; (2.1)

where � is given by PR0(1)P = �P , Pn =
P

k>n PRkP and En 2 Hom(B;B)
satis�es kEnk = O(1=n�) if � > 2, O(log n=n2) if � = 2, and O(1=n2��2) if

2 > � > 1.
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Proof of Theorem A. Let Tn and Rn be de�ned by (1.1).

With the assumption
P1

k=n+1 kRkkB = O(n��), � > 1, given in Theorem A,

Lemma 2.1 to 2.3 imply conditions (1) to (3) respectively

Let ĥ 2 B be the eigenfunction of cP = R(1) at 1 with
R
bX ĥd�̂ = 1, where

�̂ is the normalized Lebesque measure on bX. That is, �̂( bX) = 1. Also, let �̂ be

the bT invariant measure over bX given by d�̂ = ĥd�̂. It is well known that �̂ can

be extended to a T invariant absolutely continuous probability ergodic measure

� on X ([Kk]).

Since Pf = ĥ
R
fd�̂ and

R
ĥd�̂ = 1 for any f 2 B, we have R Pfd�̂ = R

fd�̂

and also
R
Pfd� =

R
fd�. Denote �f =

R
bX fd�̂. By the de�nition, RnPf =

1 bXP
n( �fĥ1f�=ng). Integrating over bX, we getZ

RnPfd�̂ =

Z
1 bXP

n( �fĥ1f�=ng)d�̂ =

Z
1 bX � Tn �fĥ1f�=ngd�̂ = �f�̂(f� = ng):

Hence, by the fact Pf =
�R
bX fd�̂

�
ĥ, we immediately get

PRnPf =
�Z

RnPfd�̂
�
ĥ = �f�̂(f� = ng)ĥ = �̂(f� = ng)Pf: (2.2)

Note that �̂(f� = ng) = �(f� = ng)=�( bX). By the Kac formula and the

fact that � is ergodic,

PR(1)0Pf =

1X
n=1

nPRnPf =

1X
n=1

n�̂(� = n)Pf =
1

�( bX)
Pf:

It follows that � = (�( bX))�1. Also, (2.2) gives

Pkf =

1X
i=k+1

PRiPf =

1X
i=k+1

�̂(� = i)Pf = �̂(� > k)
�Z

fd�̂
�
ĥ:

Note that Tnf = 1 bXP
n(f1 bX). So if supp f � bX, then (2.1) gives that on bX,

P
nf = ��1ĥ

Z
fd�̂ + ��2

1X
k=n+1

�̂(� > k)ĥ

Z
fd�̂ + Enf:

Replacing f by fh and using the fact
R
fhd� = �(f), we get that on bX,

P
n(fh) =

�( bX)

�( bX)
ĥ�(f) + �( bX)2

1X
k=n+1

�(� > k)

�( bX)

ĥ

�( bX)
�(f) + En(fh):

For any g 2 L1(X; �) with supp g 2 bX,
R
(fh) � (g � Tn)d� =

R
(Pn(fh) � gd�;

by observing also that �( bX)

�( bX)

R
gĥd� =

R
gd�; we �nally get:

Z
f � (g � Tn)d� = �(f)�(g) +

1X
k=n+1

�(� > k)�(f)�(g) +

Z
1

h
En(fh)gd�:
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The last term is bounded by

���Z 1

h
En(fh)gd�

��� = ���Z En(fh)gd�
��� � CakEnkBkhkBkfkBkgk1;

which ends the proof of the theorem.

Lemma 2.1. For every z 2 D, T (z) = (I �R(z))�1.

Proof. This is given in Proposition 1 in [Sr].

Lemma 2.2. Suppose that Assumption B(a) is satis�ed. If cP satis�es Lasota-

Yorke inequality (1.2) and �̂ is ergodic with respect to bT : bX ! bX, then 1 is a

simple isolated eigenvalue of cP.

Proof. It is well known that with Assumption B(a) on B, Lasota-Yorke inequal-
ity (1.2) implies that cP has at most �nitely many eigenvalues in the unit circle,

and all other points in the spectrum of cP are contained in a circle of radius

strictly smaller than 1. Moreover, since �̂ is ergodic, 1 is a simple isolated

eigenvalue. (See e.g. [BG], [Br], and [HH].)

Lemma 2.3. Suppose that Assumption B(a) is satis�ed. If �̂ is ergodic, then

I �R(z) is invertible on B for z 2 D n f1g.
Proof. We follow the proof of Lemma 6.7 in [Go].

By a theorem of Hennion ([He], see also [HH]), the de�nition of the norm

k � kB, the inequality (1.3), and the compactness of the inclusion B ,! L1( bX; �̂)
imply that for any z 2 D the spectral and essential spectral radius of R(z) on

B is bounded by jzj � 1 and jzj�̂ < 1 respectively. To obtain the invertibility

of I �R(z), it is enough to show that 1 is not an eigenvalue of R(z) for jzj = 1

with z 6= 1. So we �x 0 < t < 2� and let z = eit.

Suppose that R(z)f = f for some nonzero f 2 B. Recall that �̂ is a bT
invariant measure given by �̂(g) = �̂(ĥg) 8g 2 L1( bX; �̂), where ĥ satis�escPĥ = ĥ. De�ne the operator W : L1( bX; �̂)! L1( bX; �̂) by Wu = e�it�u � bT ,
where �(x) is the returning time of x. By the same arguments as in the proof

of the Lemma 6.6 in [Go], we get kWf � fk2 = 0, where k � k2 denotes the

L2( bX; �̂) norm. So we have Wf = f �̂-almost everywhere with respect to the

measure �̂. That is, e�it�f � bT = f almost everywhere. By the aperiodicity

condition (iv) we conclude that t = 0 and f is a constant �̂-almost everywhere

which is a contradiction.

3 Aperiodicity

The proof of Theorem B is based on a result in [ADSZ]. We brie
y mention the

terminology used there.
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A �bered system is a quintuple (X;A; �; T; �), where (X;A; �; T ) is a non-

singular transformation on a �-�nite measure space and � � A is a �nite or

countable partition (mod �) such that:

(1) �1 =
W1
i=0 T

�i� generates A;
(2) every A 2 � has positive measure;
(3) for every A 2 �, T jA : A! TA is bimeasurable invertible with nonsingular

inverse.

The transformation given in (1.5) is called the skew products over �. Con-

sider the corresponding transfer operator of fP = fP���. A �bred system

(X;A; �; T; �) with � �nite is called skew-product rigid if for every invariant

function eh(x; y) of fP of an arbitrary skew product eTS , the set feh(�; y) > 0g is
almost open (mod �) for almost every y 2 Y . In [ADSZ], a set U being almost

open (mod �) means that for � almost every x 2 U , there is a positive integer

n such that �(�n(x) n U) = 0. Since the partition � we are interested in sat-

is�es �(@A) = 0 for any A 2 �n and bT is piecewise smooth, the fact that �1
generates A implies that the de�nition given there is the same as we de�ned for

Assumption B(f).

A set that can be expressed in the form bTn�n(x), n � 1 and x 2 bX, is called

an image set. A cylinder C of length n0 is called a cylinder of full returns, if for

almost all x 2 C there exist nk %1 such that bTnk�nk+n0(x) = C. In this case

we say that bTn0(C) is a recurrent image set.

Our proof of Theorem B is based on a result given in Theorem 2 in [ADSZ]:

Theorem. Let (X;A; �; T; �) be a skew-product rigid measure preserving �bered
system whose image sets are almost open. Let G be a locally compact Abelian

polish group. If 
 � � = �f=f � T holds almost everywhere, where � : X ! G, �

measurable, 
 2 bG, � 2 S, then f is constant on every recurrent image set.

In the proof of Theorem B and the lemmas below we will work exclusively

on the induced space bX and with measures �̂ and �̂ and density ĥ. So we will

drop the hat on these notations.

Proof of Theorem B. Recall that � is an bT invariant measure with density h,

where h is the �xed point of cP in B. By Lemma 3.2 we know that � is ergodic.

So we only need to prove that eit� is aperiodic.

Denote by A the Borel �-algebra inherited from Rm. Take a countable

partition � of bX into fUig or �ner. We also require that each A 2 � is almost

open, and �B"(@ bT�) = O("), where @ bT� = [A2�@( bTA). The latter is possible
because we can take smooth surfaces as the boundary of the elements of �, in

addition to Assumption T(b). Since bT is uniformly expanding by Assumption

T(c), we know that each element of �1 =
W1
i=0

bT�i� contains at most one

point. So �1 generates A. We may regard that each A 2 � has positive measure,
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otherwise we can use bXnA to replace bX. Also, for every A 2 �, bT jA : A! bTA is

a di�eomorphism, and therefore bT jA is bimeasurable invertible with nonsingular

inverse. So the quintuple ( bX;A; �; bT ; �) is a measure preserving �bered system.

The construction of � implies that �(@�) = �(@�) = 0. Hence, �(@�n) =

�(@�n) = 0 for any n � 1. Note that the intersection of �nite number of almost

open sets is still almost open. Di�erentiability of bT on each Ui implies that all

elements �n(x) of �n are almost open, and therefore all image sets bTn�n(x) are
almost open with respect to �.

To get skew product rigidity, let us consider the skew product eTS de�ned

in (1.5) for any (Y;F ; �). Let fP = fP��� be the transfer operator and eh an

invariant function, that is, fPeh = eh. By Proposition 3.3 below we know thateh 2 eB. Hence, for �-almost every y 2 Y , eh(�; y) 2 B. By Assumption B(f),

feh(�; y) > 0g is almost open mod �. This gives the skew product rigidity.

So far we have veri�ed all conditions in the theorem of [ADSZ] stated above.

Applying the theorem to the equation eit� = f=f � bT almost everywhere, where

f : bX ! S is a measurable function, we get that f is constant on every recurrent

image sets J .

Now we prove aperiodicity, by following similar arguments in [Go]. Assume

the equation eit� = f=f � bT holds almost everywhere for some real number t and

a measurable function f : bX ! S. By Lemma 3.1 below we get that bX contains

a recurrent image set J with �(J) > 0. By the theorem above, we know that

f is constant, say c, almost everywhere on J . By the absolute continuity of �

and the fact that fh > 0g is �-almost open, we can �nd an open set J 0 � J of

positive �-measure. By Assumption T(d), T is topological mixing. Therefore

for all su�ciently large n, we have T�nJ 0 \ J 0 6= ;. Since the intersection is

openy , we get that �(T�nJ 0\J 0) > 0. So for any typical point x in T�nJ 0\J 0,
there is k > 0 such that Tnx = bT kx, and n =

Pk�1
i=0 �(

bT ix). Since eit� = f=f � bT
along the orbit of x, we have

eint = eit
Pk�1

0 �(bT ix) =
f(x)

f( bTx)
f( bTx)
f( bT 2x)

� � � f(
bT k�1x)
f( bT kx) =

f(x)

f( bT kx) =
c

c
= 1:

Since this is true for all large n, by replacing n by n+ 1 we get that eit = 1. It

follows that t = 0 and f = f � bT almost everywhere which implies that f must

be a constant almost everywhere since � is ergodic.

To prove Lemma 3.1, we need a result from Lemma 2 in Section 4 in [ADSZ].

We state it as the next lemma. The setting for the lemma is a conservative

�bered system. So it can be applied directly to our case.

Lemma. A cylinder C 2 �n0 is a cylinder of full returns if and only if there

exists a set K of positive measure such that for almost every x 2 K, there are

ni !1 with bTni�ni+n0(x) = C.

yStrictly speaking that intersection contains open sets since T and all its powers, although
not continuous, are local di�eomorphisms, on each domain where they are injective.
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Lemma 3.1. There is a recurrent image set J contained in bX with �J > 0.

Proof. Recall that s is given in Assumption T(c). Take C� > 0 such that

diamD � C� for all D 2 �. Set

A0k;n0 = fx 2 bX : x =2 BC�sk+n0 (@
bT�)g;

An;n0 =

n�1\
k=0

bTn�kA0k;n0 :
By the construction of �, there is C 0 > 0 such that �A0k;n0 � 1 � C 0C�s

k+n0 .

By Assumption B(b), khk1 < 1. So if we take C = C 0C�khk1=(1 � s), then

�Ak;n0 � 1 � C 0C�khk1sk+n0 = 1 � C(1 � s)sk+n0 . Since � is an invariant

measure, �An;n0 � 1� C(1� s)
Pn�1

i=0 s
i+n0 � 1� Csn0 . If we choose n0 large

enough, then �An;n0 is bounded below by a positive number for all n > 0, and

the bound can be chosen arbitrarily close to 1 by taking n0 su�ciently large.

Note that �n is a partition with at most countably many elements. For each

n0 > 0, let B0n0 be the union of �nite elements of �n0 such that �B0n0 > 1 �
Csn0=2. Then set Bn;n0 = B0n0 \ bT�nB0n0 . Clearly, �Bn;n0 � 1�Csn0 . Denote
Cn;n0 = An;n0\Bn;n0 . We have �Cn;n0 � 1�2Csn0 . Hence,

P1
n=0 �Cn;n0 =1

for all large n0.

A generalized Borel-Cantelli Lemma by Kochen and Stone ([KS], see also

[Ya]) gives that for any given n0 > 0, the set of points that belong to in�nitely

many Cn;n0 has the measure bounded below by

lim sup
n!1

P
1�i<k�n �Ci;n0�Ck;n0P

1�i<k�n �(Ci;n0 \ Ck;n0)
:

Note that if n0 ! 1, then both �Ci;n0 and �Ck;n0 approach to 1. Hence the

upper limit goes to 1 as n0 ! 1. Denote

�n0 = fx 2 bX : x 2 Cn;n0 in�nitely ofteng:

The above arguments gives ��n0 ! 1 as n0 !1.

Note that for a one to one map T , T (A \ T�1B) = B if and only if

B � TA. Since �n(x) = �(x) \ bT�1(�n�1( bTx)), and bT is a local di�eomor-

phism, we know that bT�n(x) = �n�1( bTx) if and only if �n�1( bTx) � bT�(x).
Inductively, bTn�n+n0(x) = �n0(

bTnx) if and only if �n�i+n0(
bT ix) � bT�( bT i�1x)

for i = 1; � � � ; n. If x 2 An;n0 for some n; n0 > 0, then bTn�ix =2 BC�si+n0 (@
bT�)

for all i = 1; � � � ; n. Since the diameter of each member of � is less then C�,

by Assumption T(c), diam �n(x) � C�s
n for any x 2 bX and n � 0. We get

�n�i+n0(
bT ix) � bT�( bT i�1x) and therefore bTn�n+n0(x) = �n0(

bTnx). Consequent-
ly, if x 2 �n0 , then x 2 Cni;n0 = Ani;n0 \ Bni;n0 for in�nitely many ni. Hence,bTni�ni+n0(x) = �n0(

bTnix) and bTnix 2 Bn0 for in�nitely many ni,
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Take n0 > 0 such that ��n0 > 0. Since Bn0 consists of only �nitely many

elements in �n0 , we know that there is an element C 2 �n0 with C � Bn0 such

that

�fx : bTn�n+n0(x) = �n0(
bTnx) = C in�nitely ofteng > 0: (3.1)

By the above lemma from [ADSZ], C is a cylinder of full returns. Hence,

J = bTn0C is a recurrent image set. Since � is an invariant measure, (3.1)

implies �C > 0 and therefore �J > 0.

Lemma 3.2. Suppose T and B satis�es Assumption T(d) and B(f) respective-

ly. Then there is only one absolutely continuous invariant measure � which is

ergodic.

Proof. Suppose � has two ergodic components �1 and �2 whose density func-

tions are h1 and h2 respectively. Hence, �(fh1 > 0g \ fh2 > 0g) = 0. Since

h1; h2 2 B, the sets fh1 > 0g and fh2 > 0g are almost open. We can take

open sets U1 and U2 such that �(U1 n fh1 > 0g) = 0 and �(U2 n fh1 > 0g) = 0.

Since T is topological mixing, there is n > 0 such that T�nU1 \U2 6= ;. Hence,
�(T�nU1 \ U2) > 0 and therefore �(U1 \ TnU2) > 0. It follows that there

is k > 0 such that �(U1 \ bT kU2) > 0. Since P̂h2 = h2, h2(x) > 0 implies

h2( bT kx) > 0. Hence �( bT kU2 n fh2 > 0g) = 0. Therefore, �(fh1 > 0g \ fh2 >
0g) � �(U1 \ bT kU2) > 0, which is a contradiction.

The next proposition is the key step for Lemma ??. The result was proved

for Gibbs-Markov maps in [AD]. We show that it holds in more general cases.

Proposition 3.3. Suppose that B satis�es Assumption B(d) and (e), and fP
satis�es Lasota-Yorke inequality (1.6). Then any L1(���) function eh on bX�Y
that satis�es fP���

eh = eh belongs to eB.
Proof. By Assumption B(d), B is dense in L1( bX; �). It is easy to see that eB
is dense in L1( bX � Y; � � �). Hence, for any " > 0 we can �nd a nonnegative

function ef" 2 eB such that k ef"�ehjjL1(���) < ". By the stochastic ergodic theorem

of Krengel ([Kr]), there exists a nonnegative function eh" 2 L1( bX�Y; ���) and
a subsequence fnkg such that

lim
k!1

1

nk

nk�1X
`=0

fP` ef" = eh" � � �-a.e. (3.2)

and fPeh" = eh".
Note that Lasota-Yorke inequality (1.6) implies that for any ef 2 eB, ` � 1,

jfP` ef j eB � e�`j ef j eB + eD�k efkL1(���) � eD2k efk eB; (3.3)

where eD� = eDe�=(1 � e�) � eD(e� + � � � + e�`�1) and eD2 = 1 + eD�. Denote  k =

1

nk

nk�1X
`=0

fP`f". By (3.3)  k � eD2k efk eB. (3.2) implies that lim inf
k!1

 k(x; y) =
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eh"(x; y) for �-a.e. x 2 bX, �-a.e. y 2 Y . Hence, by Assumption B(e) and Fatou's
lemma we obtain

jeh"j eB =

Z
Y

j lim
k!1

 k(�; y)jBd�(y) �
Z
Y

lim inf
k!1

j k(�; y)jBd�(y)

� lim inf
k!1

Z
Y

j k(�; y)jBd�(y) = lim inf
k!1

j kj eB � eD2jj ef"jj eB
(3.4)

It means eh" 2 eB.
By Fatou's Lemma and the fact that fP is a contraction on L1( bX�Y; ���),

it follows immediately that (3.2) and the fact fPeh = eh imply

keh� eh"kL1(���) � lim inf
k!1

1

nk

nk�1X
l=0

jjfP`(eh� ef")kL1(���) � keh� ef"kL1(���) � ":

By the �rst inequality of (3.3) we know that for any n � 1,

keh"k eB = kfPneh"k eB � e�nkeh"k eB + eD�keh"kL1(���):

Sending n to in�nity we get keh"k eB � eD�keh"kL1(���) � eD�(kehkL1(��� + ").

Replace now " with a decreasing sequence cn ! 0 as n!1. Since ehcn converges
in L1(� � �) to eh, there is a subsequence ni such that limi!1

ehcni = eh, ���-a.e..
Then by the same arguments as for (3.4), we see

jeh� ehcn j eB � lim inf
i!1

jehcni � ehcn j eB � 2 sup
0�"�1

keh"k eB � 2 eD1(kehkL1(���) + 1):

So we get eh� ehcn 2 eB.
Therefore h = (h� hcn) + hcn 2 eB and this completes the proof.

Part II: Applications to non-Markov Maps

We now apply our results to piecewise expanding non-Markov maps with

an indi�erent �xed point. We use di�erent Banach spaces for maps in one and

higher dimensional spaces.

4 Systems on the interval

The object of this section is twofold: to give an example of a Banach space

which �ts our assumptions, and to provide the lower bound for the decay of cor-

relations. Moreover, we will use a large space of observables, bounded variation

function instead of H�older continuous functions.

Let X = I = [0; 1] and � be the Lebesgue measure on X.
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Recall that for a map T : X ! X and a subset bX � X, the corresponding

�rst return map is denoted by bT : bX ! bX; �̂ will denote again the normalized

Lebesgue measure over bX.

Assume that T : X ! X is a map satisfying the following assumptions.

Assumption T0. (a) (Piecewise smoothness) There are points 0 = a0 <

a1 < � � � < aK = 1 such that for each j, Tj = T jIj is a C2 di�eomor-

phism on its image, where Ij = (aj�1; aj).

(b) (Fixed point) T (0) = 0.

(c) (Expansion) There exists z 2 I1 such that T (z) 2 I1 and � := inf
x2 bX

jT 0(x)j >
2 for any x 2 bX, where bX = [z; 1].

(d) (Distortion) � := sup
x2[z;1]

j bT 00(x)j=j bT 0(x)j2 � 1.

(e) (Topological mixing) T : I ! I is topological mixing.

Denote J = [0; z] and bX = bXJ = X n J . I0 = TJ n J � I1. We also denote

the �rst return map bT = bTJ by bTij if bT = T i1Tj . Further, we denote I01 = I1 nJ ,
I0j = Ij nT�1j J if j > 1, and Iij = bT�1i;j I0 for i > 0. Hence, fIij : i = 0; 1; 2; � � � g
form a partition of Ij = (aj ; bj) for j = 2; � � � ;K. Also, we denote �Iij = [aij ; bij ]

for any i = 0; 1; 2; � � � and j = 1; � � � ;K.

Recall that the variation of a real or complex valued function f on [a; b] is

de�ned by

V b
a (f) = V[a;b](f) = sup

�2�

nX
i=1

jf(x(`))� f(x(`�1))j;

where � is a �nite partition of [a; b] into a = x(0) < x(1) < � � � < x(n) = b and

� is the set of all such partitions. A function f 2 L1([a; b]; �), where � denotes

the Lebesgue measure, is of bounded variation if V[a;b](f) = infg V[a;b](g) < 1,

where the in�mum is taken over all the function g = f �-a.e.. Let B be the

set of functions f 2 L1( bX; �̂); f : bX ! R with V (f) := V bX(f) < 1. For

f 2 B, denote by jf jB = V (f), the total variation of f . Then we de�ne kfkB =

kfk1 + jf jB, where the L1 norm is intended with respect to �̂. It is well known

that k � kB is a norm, and with the norm, B becomes a Banach space.

To obtain the decay rates, we also assume that there are constants 0 < 
 < 1,


0 > 
 and C > 0 such that in a neighborhood of the indi�erent �xed point

p = 0,

T (x) = x+ Cx1+
 +O(x1+

0

);

T 0(x) = 1 + C(1 + 
)x
 +O(x

0

);

T 00(x) = C
(1 + 
)x
�1 +O(x

0�1):

(4.1)
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For any sequences of numbers fang and fbng, we will denote an � bn if

lim
n!1

an=bn = 1, and an � bn if c1bn � an � c2bn for some constants c2 � c1 > 0.

Denote

dij = supfj bT 0ij(x)j�1 : x 2 Iijg; dn = maxfdn;j : 2 � j � Kg: (4.2)

Theorem C. Let bX, bT and B are de�ned as above. Suppose T satis�es As-

sumption T 0 (a) to (e). Then Assumption B(a) to (f) and conditions (i) to (iv)

in Theorem A are satis�ed and kRnk � O(dn). Hence, if dn = O(n��) for some

� > 1, then there exists C > 0 such that for any functions f 2 B, g 2 L1(X; �)

with supp f; supp g � bX, (1.4) holds.

In particular, if T satis�es (4.1) near 0, then

1X
k=n+1

�(� > k) has the order

n�(1=
�1) and dn has the order O(n�(1=
+1)). So we have

Cov(f; g � Tn) �
1X

k=n+1

�(� > k)

Z
fd�

Z
gd� � 1=n1=
�1:

It is well known that if the map T allows a Markov partition, then the

rate of decay of correlations is of order O(n�(1=
�1)) (see e.g. [Hu], [Sr],[LSV],

[PY]). For non-Markov case, the upper bound estimate is given in [Yo2] and

[Sr] for observables with some H�older property. With the methods in [Sr], the

lower bound could be obtained by estimating the lower bound of the decay rate

of the tower. Since our methods do not require Markov properties, the decay

rates can be obtained directly from the size of the sets f� � kg. Moreover our

observables are functions with bounded variations, which are more general than

H�older functions.

Proof of Theorem C. By Lemma 4.1 below, B satis�es Assumption B(a) to (f).

By Lemma 4.2, we know that condition (i) and (ii) of Theorem A are satis�ed.

Notice that all requirements of Assumption T are satis�ed, since part (a), (c) and

(d) follow from Assumption T0(a), (c) and (e) directly, and part (b) follows from

the de�nition of bT . Moreover Lemma 4.2 (iii) gives (1.6). Hence Theorem B can

be applied and therefore conditions (iii) and (iv) of Theorem A are satis�ed.

The estimate kRnk = O(dn) follows from Lemma 4.3. Therefore (1.4) is

given by Theorem A.

Suppose that T also satis�es (4.1). Denote by zn 2 I1 the point such that

Tn(zn) = z. It is well known that zn � (
n)�1=
 (see e.g. Lemma 3.1 in

[HV]), and then we can obtain (T�n1 )0(x) = O(n�1=
�1). It follows that dn =

O(n�1=
+1). Since the density function h is bounded on bX, �(� > k) � C1�(� >

k) � C2zk for some C1; C2 > 0. Hence

1X
k=n+1

�(� > k) = O(n�1=
�1)).

Lemma 4.1. B is a Banach space satisfying Assumption B(a) to (f) with Ca =

Cb = 1.
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Proof. These are standard facts, see for instance [Zm].

Lemma 4.2. There exist constants � 2 (0; 1) and D; �D > 0 satisfying

(i) for any f 2 B, jcPf jB � �jf jB +DkfkL1(�̂);

(ii) for any f 2 B, kR(z)fkB � jzj��kfkB + �DkfkL1(�̂)

�
; and

(iii) for any f 2 eB, kfP efk eB � �k efk eB +Dk efkL1(�̂��):

Proof. (i) Denote xij = bT�1ij (x), and bg(xij) = j bT 0ij(xij)j�1. By the de�nition,

we have

cPf(x) =

KX
j=1

1X
i=0

f( bT�1ij x)bg( bT�1ij x)1bTIij (x):

Take a partition � of bTIij into bTijaij = x(0) < x(1) < � � � < x(kij) = bTijbij ,
where we assume bTijaij < bTijbij without loss of generality. Whenever bTIij may
intersect more than one intervals Ik = (ak; bk) in the case i = 0, then we put

the endpoints ak and bk into the partition. Denote x
(`)
ij = bT�1ij x(`). We have

kijX
`=1

��f(x(`)ij )bg(x(`)ij )� f(x
(`�1)
ij )bg(x(`�1)ij )

��

�
kijX
`=1

bg(x(`)ij )��f(x(`)ij )� f(x
(`�1)
ij )

��+ kijX
`=1

��f(x(`�1)ij )
����bg(x(`)ij )� bg(x(`�1)ij )

��:
(4.3)

By (4.2), bg(x(`)ij ) � dij . By de�nition,
Pkij

`=1

��f(x(`�1)ij ) � f(x
(`)
ij )
�� � VIij (f).

Also, by the mean value theorem and Assumption T0(d),

jg(bx(`)ij )� bg(x(`�1)ij )j
x
(`)
ij � x

(`�1)
ij

� jbg0(c(`)ij )j = j bT 00(c(`)ij )j=j bT 0(c(`)ij )j2 � �;

where c
(`)
ij 2 [x

(`�1)
ij ; x

(`)
ij ]. Using the fact that

lim
maxfjx

(`)
ij
�x

(`�1)
ij

jg!0

kijX
`=1

��f(x(`�1)ij )
��(x(`)ij � x

(`�1)
ij ) =

Z bij

aij

jf jd�̂;

we get from (4.3) that

VbTIij ((f � bg) � bT�1ij ) � dijVIij (f) + �

Z
Iij

jf jd�̂: (4.4)

Denote c = minf�( bTIij) : i = 1; 2; � � � ; 1 � j � Kg, where c > 0 because there

are only �nite number of images bTIij . It can be shown that (see e.g. [Br])

V (cPf) � 2

KX
j=1

1X
i=0

VbTIij ((f � bg) � bT�1ij ) + 2c�1kfk1:
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By Assumption T0(c), dij � ��1 for all i = 1; 2; � � � and j = 1; � � � ;K. Hence

jcPf jB = V (cPf) � 2��1V (f) + 2�

Z
jf jd�̂ + 2c�1kfk1 = �jf jB +Dkfk1;

where � = 2��1 < 1 and D = 2� + 2c�1 > 0.

Part (ii) and (iii) can be proved in a similar way for the proof of correspond-

ing part of Lemma 5.2.

Lemma 4.3. There exists a constant CR > 0 such that kRnkB � CRdn for all

n > 0.

Proof. For f 2 B, denote
Rijf = 1 bX �Pi(f1Iij )(x): (4.5)

Hence Ri =

KX
j=1

Rij and cP =

1X
i=0

KX
j=1

Rij by de�nition and linearity of cP.

Assume i > 0; since bTij [aij ; bij ] = I0 � I, by (4.2), �̂(Iij) � dij �̂(I0) < dij .

Hence, by Assumption B(b),Z
Iij

jf jd�̂ � kfk1�̂(Iij) � CbkfkB � dij �̂(I0) � CbdijkfkB: (4.6)

Note that VIij (f) � V (f) = jf jB < kfkB. By (4.4),

VbTIij ((f � bg) � bT�1ij ) � dijkfkB + �CbdijkfkB = (1 + �Cb)dijkfkB: (4.7)

Since Rijf(x) = 1 bX(x) � (f � bg) � bT�1ij (x); we have

jRijf jB � 2VbTIij ((f � bg) � bT�1ij ) + 2
1

�̂(I0)

Z
Iij

jf jd�̂:

By (4.6) and (4.7),

jRijf jB � 2(1 + �Cb)dijkfkB + 2CbdijkfkB:
On the other hand, by (4.5) and (4.6), we have

kRijfkL1 =

Z
bX
cPi+1(f1Iij )d�̂ =

Z
Iij

fd�̂ �
Z
Iij

jf jd�̂ � CbdijkfkB:

Hence, we get

kRijfkB = jRijf jB + kRijfkL1 � [2(1 + �Cb) + 3Cb]dijkfkB:
By the de�nition of Rij and dn, we get

kRnfkB �
KX
j=2

kRn�1;jfkB � K 0(2 + 2�Cb + 3Cb)dn;

where K 0 < K is the number of preimages of I0 that are not in I1. So the result

follows with CR = K 0(2 + 2�Cb + 3Cb).
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5 Systems on multidimensional spaces: general-

ities and the role of the derivative

The main di�culty to investigate the statistical properties for systems with an

indi�erent �xed point p in higher dimensional space is that near p the system

could have unbounded distortion in the following sense: there are uncountably

many points z near p such that for any neighborhood V of z, we can �nd ẑ 2 V
with the ratio

j detDT�n1 (z)j=jdetDT�n1 (ẑ)j
unbounded as n ! 1 (see Example in Section 2 in [HV]). For this reason

we need a more deeper analysis of the expanding features around the neutral

�xed point. This has been accomplished in the previous quoted paper and in

order to construct an absolutely continuous invariant measure by adding the

Assumption T 00 below, which, together with (5.4), will also be used to get the

rate of mixing.

5.1 Setting and Statement of results.

LetX � Rm,m � 1, be again a compact subset with intX = X, d the Euclidean

distance, and � the Lebesgue measure on X with �X = 1.

Assume that T : X ! X is a map satisfying the following assumptions.

Assumption T00. (a) (Piecewise smoothness) There are �nitely many dis-

joint open sets U1; � � � ; UK with piecewise smooth boundary such that X =SK
i=1 Ui and for each i, Ti := T jUi can be extended to a C1+�̂ di�eomor-

phism Ti :fUi ! B"1(TiUi), where
fUi � Ui, �̂ 2 (0; 1] and "1 > 0.

(b) (Fixed point) There is a �xed point p 2 U1 such that T�1p =2 @Uj for any
j = 1; : : : ;K.

(c) (Topological mixing) T : X ! X is topologically mixing.

For any "0 > 0, denote

GU (x; "; "0) = 2

KX
j=1

�(T�1j B"(@TUj) \B(1�s)"0(x))

�(B(1�s)"0(x))
:

Remark 5.1. We stress that the measure �(T�1j B"(@TUj) usually plays an

important role in the study of statistical properties of systems with discontinu-

ities. Here GU (x; "; "0) gives a quantitative measurement of the competition

between the expansion and the accumulation of discontinuities near x. We

refer to [Ss], Section 2, for more details about its geometric meaning. Fur-

thermore it is proved, still in [Ss] Lemma 2.1, that if the boundary of Ui con-

sists of piecewise C1 codimension one embedded compact submanifolds, then
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GU ("; "0) � 2NU

m�1

m

s"

(1� s)"0

�
1+o(1)

�
, where NU is the maximal number of

smooth components of the boundary of all Ui that meet in one point and 
m is

the volume of the unit ball in Rm.

From now on we assume that p = 0.

For any x 2 Ui, we de�ne s(x) as the inverse of the slowest expansion near

x, that is,

s(x) = min
�
s : d(x; y) � sd(Tx; Ty); y 2 Ui; d(x; y) � minf"1; 0:1jxjg

	
:

where the factor 0:1 makes the ball away from the origin, though any other

small factor would work as well.

Take an open neighborhood Q of p such that TQ � U1, then let

s = s(Q) = maxfs(x) : x 2 XnQg: (5.1)

Let bT = bTQ be the �rst return map with respect to bX = bXQ = X nQ. Then
for any x 2 Uj , we have bT (x) = Tj(x) if Tj(x) =2 Q, and bT (x) = T i1Tj(x) for

some i > 0 if Tj(x) 2 Q. Denote bTij = T i1Tj for i � 0.

Further, we take Q0 = TQ n Q. Then we denote U01 = U1 n Q, U0j =

Uj n T�1j Q if j > 1, and Uij = bT�1ij Q0 for i > 0. Hence, fUij : i = 0; 1; 2; � � � g
form a partition of Uj for j = 2; � � � ;K.

For 0 < " � "0, we denote

GQ(x; "; "0) = 2

KX
j=1

1X
i=0

�(T̂�1ij B"(@Q0) \B(1�s)"0(x))

�(B(1�s)"0(x))
;

and

G(x; "; "0) = GU (x; "; "0) +GQ(x; "; "0); G("; "0) = sup
x2 bX

G(x; "; "0): (5.2)

Remark 5.2. If T�1TQ \ @Uj = ; for any j, then for any small "0, ei-

ther GQ(x; "; "0) = 0 or GU (x; "; "0) = 0, and therefore we have G(x; "; "0) =

maxfGU (x; "; "0); GQ(x; "; "0)g.
Remark 5.3. If T has bounded distortion then GQ is roughly equal to the ratio

between the volume of B"0(@Q0) and the volume of Q0. Therefore if "0 is small

enough, then sup
x2 bX

fGQ(x; "; "0)g is bounded by sup
x2 bX

fGU (x; "; "0)g.

Assumption T00. (d) (Expansion) T satis�es 0 < s(x) < 1 8x 2 X n fpg.
Moreover, there exists an open region Q with p 2 Q � Q � TQ � TQ �
U1 and constants � 2 (0; �̂], � 2 (0; 1), such that for all "0 small,

s� + � � � < 1;
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where s is de�ned in (5.1) and

� = 2 sup
0<"�"0

G("; "0)

"�
"�0 : (5.3)

(e) (Distortion) For any b > 0, there exist J > 0 such that for any small "0
and " 2 (0; "0), we can �nd 0 < N = N(") � 1 with

j detDT�n1 (y)j
j detDT�n1 (x)j � 1 + J"� 8y 2 B"(x); x 2 B"0(Q0); n 2 (0; N];

and
1X

n=N

sup
y2B"(x)

j detDT�n1 (y)j � b"m+� 8x 2 B"4(Q0);

where � is given in part (d).

For sake of simplicity of notations, we may assume �̂ = �.

Remark 5.4. We put Assumption T 00(e) since near the �xed point distortion

for DT1 is unbounded in general. It requires that either distortion of DT�n1 is

small, or j detDT�n1 j itself is small.
Remark 5.5. There are some su�cient conditions under which Assumption

T 00(d) and (e) could be easily veri�ed. We refer [HV] for more details, see in

particular Theorems B and C in that paper.

If near p distortion is bounded, then Assumption T00(e) is automatically

satis�ed and it will be stated as follows (it could be regarded as the case N(") =

1 for any " 2 (0; "0)):

Assumption T00. (e0) (Bounded distortion) There exist J > 0 such that for

any small "0 and " 2 (0; "0),

j detDT�n1 (y)j
j detDT�n1 (x)j � 1 + J"� 8y 2 B"(x); x 2 B"0(Q0); n � 0:

Remark 5.6. It is well known that if dimX = m = 1, any system that has the

form given by (5.4) below near the �xed point satis�es Assumption T00(e0). The

systems given in Example 5.1 satisfy it too.

To estimate the decay rates, we often consider the following special cases:

There are constants 
0 > 
 > 0, Ci; C
0
i > 0, i = 0; 1; 2, such that in a neighbor-

hood of the indi�erent �xed point p = 0,

jxj�1� C 00jxj
 +O(jxj
0)� �jT�11 xj � jxj�1� C0jxj
 +O(jxj
0)�;
1� C 01jxj
 +O(jxj
0) �kDT�11 (x)k � 1� C1jxj
 +O(jxj
0);
C 02jxj
�1 +O(jxj
0�1) �kD2T�11 (x)k � C2jxj
�1 +O(jxj
0�1):

(5.4)
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We will now de�ne the space of functions particularly adapted to study the

action of the transfer operator on the class of maps just introduced. If 
 is

a Borel subset of bX, we de�ne the oscillation of f over 
 by the di�erence of

essential supremum and essential in�mum of f over 
:

osc(f;
) = Esup



f � Einf



f:

If B�(x) denotes the ball of radius � about the point x, then we get a measurable

function x! osc(f; B�(x)).

For 0 < � < 1 and "0 > 0, we de�ne the quasi-H�older seminorm of f with

supp f � bX asz

jf jB = sup
0<���0

���
Z
bX
osc(f;B�(x))d�̂(x); (5.5)

where �̂ is the normalized Lebsegue measure on bX, and take the space of the

functions as

B =
n
f 2 L1( bX; �̂) : jf jB <1

o
; (5.6)

and then equip it with the norm

k � kB = k � kL1( bX;�̂) + j � jB: (5.7)

Clearly, the space B does not depend on the choice of "0, though j � jB does.

Let sij = sup
�kD bT�1ij (x)k : x 2 B"0(Q0)

	
, and sn = max

�
sn�1;j : j =

2; � � � ;K	.
Theorem D. Let bX, bT and B be de�ned as above. Suppose T satis�es Assump-

tion T 00(a) to (e). Then there exist "0 � "1 > 0 such that Assumption B(a) to

(f) and conditions (i) to (iv) in Theorem A are satis�ed and kRnk � O(s�n).

Hence, if
P1

k=n+1 s
�
n � O(n��) for some � > 1, then there exists C > 0 such

that for any functions f 2 B, g 2 L1(X; �) with supp f; supp g � bX, (1.4)

holds.

Remark 5.7. For Lipschitz observables, the rates of decay of correlation are

given by the rates of decay of �f� > ng if the systems have Markov partitions

and bounded distortion. It is generally believed that for H�older observables, the

decay rates may be slower if the H�older exponents become smaller. It is unclear

to the authors whether the rates we get are optimal. In the next section, we

will put stronger conditions on the systems so that we can get optimal rates for

H�older observables with the H�older exponents larger than or equal to �.

zSince the boundary of bX is piecewise smooth, we could de�ne the space of the function
directly on bX instead of Rm as it was done in [Ss].
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Remark 5.8. For one dimensional systems the rates given in the theorem are

optimal, since the decreasing rates given by the norm of derivatives are the same

as those given by determinants (see the discussion in the Introduction or Section

6 for more details). So the theorem provides the same decay rates as Theorem C

does, but for di�erent sets of observables, since functions with bounded variation

are not necessary quasi-H�older functions and vice versa.

Before giving the proof, we present an example.

Example 5.1. Assume that T satis�es Assumption T00(a) to (d), and near the

�xed point p = 0, the map T satis�es

T (z) = z(1 + jzj
 +O(jzj
0));
where z 2 X � Rm and 
0 > 
.

Denote zn = T�n1 z. It is easy to see that jznj = 1

(
n)�
+ O

� 1

n�0

�
, where

� = 1=
 and �0 > � (see e.g. Lemma 3.1 in [HV]). Using this fact we can check

that T satis�es also Assumption T00(e 0). Hence, the theorem can be applied.

If the dimension m � 2, then kDT�n1 k is roughly proportional to jznj, since,
if higher order terms are ignored, T�n1 maps a sphere about the �xed point

of radius jzj to a sphere of radius jznj. So sn = O
� 1

n�

�
and

1X
k=n+1

s�k =

O
� 1

n���1

�
. If 
 2 (0; 1=2) is such that �� > 1, the series is convergent.

Note that �(� > n) is of the same order as zmn , and therefore �(� > n) =

O
� 1

nm��1

�
. It follows that

1X
k=n+1

�(� > k) = O
� 1

nm��2

�
. Since the order is

higher, by (1.4), we get ���Cov(f; g � Tn)��� � C=n���1:

for f 2 B, g 2 L1(X; �) with supp f; supp g � bX.

On the other hand, if m = 1, then kDT�n1 k is roughly proportional to

jzn � zn+1j. So sn = O
� 1

n�+1

�
and

1X
k=n+1

s�k = O
� 1

n�(�+1)�1

�
. If 
 2 (0; 1)

is such that �(� + 1) > 1, the series is convergent. Also,

1X
k=n+1

�(� > k) =

O
� 1

n��1

�
. So if �(� + 1) > �, the sum involving s�k is of higher order. We get

that the decay rate is given by

���Cov(f; g � Tn)��� = O(

1X
k=n+1

�(� > k)) = O
� 1

n��1

�
:
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5.2 Proof of Theorem D

Proof of Theorem D. Choose "0 > 0 as in Lemma 5.2, and de�ne B correspond-

ingly by using this "0. By Proposition 3.3 in [Ss], B is complete, and hence is a

Banach space. Then Assumption B(a) to (f) follow from Lemma 5.1.

By Lemma 5.2 we know that condition (i) and (ii) of Theorem A are sat-

is�ed. Assumption T00(a), (d) and (c) imply Assumption T (a), (c) and (d)

respectively. Assumption T(b) is implied by the construction of the �rst return

map. Lemma 5.2(iii) give (1.6). So all conditions for Theorem B are satis�ed.

Hence we obtain condition (iii) and (iv) of Theorem A. The fact kRnk = O(s�n)

follows from Lemma 5.3.

In order to deduce the spectral properties of P̂ from the Lasota-Yorke in-

equality, one needs to verify Assumption B on the space of functions B.
Lemma 5.1. B is a Banach space satisfying Assuptions B(a) to (f) with Ca =

2Cb = 2
�1m ��m0 , where 
m is the volume of the unit ball in Rm.

Proof. Parts (a), (b) and (c) are stated in Propositions 3.3 and 3.4 in [Ss] with

Cb = maxf1; "�g=
m"m0 and Ca = 2maxf1; "�g=
m"m0 . Part (d) follows from

the fact that H�older continuous functions with compact support in bX are dense

in L1( bX; �̂).
Let us now assume f(u) = limn!1 fn(u) for �̂-a.e. u 2 Rm. Take x 2 Rm,

and " 2 (0; "0). It is easy to see that for almost every pair of y; z 2 B"(x), we

have

jf(y)� f(z)j � lim
n!1

jfn(y)� fn(z)j � lim inf
n!1

osc(fn; B"(x)):

Hence, osc(f;B"(x)) � lim infn!1 osc(fn; B"(x)). By Fatou's lemma, we haveZ
osc(f;B"(x))d�̂ � lim inf

n!1

Z
osc(fn; B"(x))d�̂:

It implies jf jB � lim infn!1 jfnjB. We get part (e).

It leaves to show part (f). For a function f 2 B, denote

Dn(f) =
n
x 2 Rm : lim inf

"!0
osc(f;B"(x)) >

1

n

o
; D(f) =

1[
n=1

Dn(f):

Clearly D(f) is the set of discontinuous points of f . If �̂(D(f)) > 0, then

there exists N > 0 such that Leb(DN (f)) > � > 0. Notice that DN (f) =S
k�1 Sk, where Sk =

T
n�kfx : osc(f;B 1

n
(x)) > 1

N g is an increasing sequence

of measurable sets.

For k big enough we still have �̂(Sk) > � and therefore, for such a k:

jf jB � sup
">0

"�a
Z
DN (f)

osc(f;B"(x))d�̂(x) � sup
">0

"�a
Z
Sk

osc(f;B"(x))d�̂(x) =1:

This means f =2 B; in other words, any f 2 B satis�es �̂(D(f)) = 0.
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Take any f 2 B with f � 0 almost everywhere. If f(x) = 2c > 0 for some

x =2 D(f), then there is " > 0 such that osc(f;B"(x)) � c. Hence, f(x0) � c > 0

for almost every point x0 2 B"(x). So B"(x) n ff > 0g has Lebesgue measure

zero. This implies that ff > 0g is almost open and therefore part (f) follows.
Before stating the next Lemma, we remind that the space B depends on the

exponent � and the value of the seminorms on �0: as we did above, we will not

index B with these two parameters. Moreover all the integrals in the next proof

will be performed over bX.

Lemma 5.2. There exists "� > 0 such that for any "0 2 (0; "�), we can �nd

constants � 2 (0; 1) and D; D̂ > 0 satisfying

(i) for any f 2 B, jcPf jB � �jf jB +DkfkL1(�̂);

(ii) for any f 2 B, kR(z)fkB � jzj��kfkB + D̂kfkL1(�̂)

�
; and

(iii) for any ef 2 eB, kfP efk eB � �k efk eB +Dk efkL1(�̂��):

Proof. By Assumption T00 (d), s� + � < 1. Therefore if we �rst choose b small

enough, we obtain � = J according to Assumption T00(e), and then we could

take "0 small enough in order to get

� := (1 + �"�0 )(s
� + �) + 2
�1m bK 0 < 1; (5.8)

where K 0 is the number of j such that Uij 6= ;. Clearly, � is decreasing with "0.
Let us de�ne:

D := 2� + 2(1 + �"�0 )�="
�
0 + 2
�1m bK 0 > 0: (5.9)

For any x 2 bX, let us denote xij = bT�1ij x, bgij(x) = j detD bTij(x)j�1 and for

f 2 B:
Rijf = 1 bX �Pi(f1Uij )(x): (5.10)

Clearly,

Rijf(x) = f(xij)ĝ(xij)1Uij (xij): (5.11)

Hence Ri =
PK

j=1Rij and cP =
P1

i=0

PK
j=1Rij by de�nition and the linearity

of cP. We also de�ne

Gij(x; "; "0) = 2
�( bT�1ij B"(@ bTUij) \B(1�s)"0(x))

�(B(1�s)"0(x))
:

Clearly, G(x; "; "0) = 2
P1

i=0

PK
j=1Gij(G(x; "; "0).

For any " 2 (0; "0], take N = N(") > 0 as in Assumption T00(e).

For i � N(") and by the proof of Proposition 6.2 in [HV], we know that

osc(Rijf;B"(x)
�
= osc

�
(fbg) � bT�1ij 1bTUij ; B"(x)

�
=osc

�
(fbg) � bT�1ij ; B"(x)

�
1bTUij(x) +

�
2Esup
B"(x)

(fbg) � bT�1ij

�
1B"(@ bTUij)(x):

(5.12)
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The computation in the proof also gives

osc
�
fbg; bT�1ij B"(x) \ Uij

�
�(1 + �"�) osc

�
f; Bs"(xij) \ Uij

�bg(xij) + 2�"�jf(xij)jbg(xij):
Notice that osc

�
f; Bs"(xij)\Uij

� � osc
�
f; Bs"(xij)

�
. By integrating and using

(5.11) we get Z
osc
�
(fbg) � bT�1ij ; B"(�)

�
1bTUijd�̂

�
Z �

(1 + �"�)Rij osc
�
f; Bs"(�)

�
+ 2�"�Rij jf j

�
d�̂:

(5.13)

On the other hand, by the same arguments as in Section 4 of [Ss], we getZ
2
�
Esup
Bs"(x)

(fbg) � bT�1ij

�
1B"(@ bTUij)(x)d�̂

�2(1 + �"�)

Z
bX
Gij(x; "; "0)

�jf j(x) + osc(f;B"0(x))
�
d�̂:

(5.14)

Therefore by (5.12), (5.13) and (5.14),

jRijf jB = sup
0<"�"0

"��
Z

osc(Rijf;B"(�)
�
d�̂

� sup
0<"�"0

"��
Z �

(1 + �"�)Rij osc
�
f; Bs"(�)

�
+ 2�"�Rij jf j

�
d�̂

+ sup
0<"�"0

"��2(1 + �"�)

Z
bX
Gij(x; "; "0)

�jf j(x) + osc(f;B"0(x))
�
d�̂:

(5.15)

For i > N("), by the de�nition of oscillation we obtain directly that

osc(Rijf;B"(x)
� � 2kfk1 sup

bT�1
ij

B"(x)

bg:
Hence, by Assumption B(b) with Cb = 
�1m "�m0 , we have

jRijf jB = sup
0<"�"0

"��
Z

osc(Rijf;B"(�)
�
d�̂

�2kfk1"�� sup
0<"�"0

Z
sup

bT�1
ij

B"(x)

bg d�̂
�2(
m"m0 )�1(jf jB + kfk1) "�� sup

0<"�"0

Z
sup

bT�1
ij

B"(x)

bg d�̂:
(5.16)

(i) We �rst note that for all 0 < " � "0,

"��
N(")X
i=0

KX
j=1

Z
Rij osc

�
f; Bs"(�)

�
d�̂ � "��

Z cP osc
�
f; Bs"(�)

�
d�̂

�s�(s")��
Z

osc
�
f; Bs"(�)

�
d�̂ � s�jf jB;

(5.17)
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"��
N(")X
i=0

KX
j=1

Z
2(1 + �"�)Gij(�; "; "0)

�jf j+ osc(f;B"0(�))
�
d�̂

�"��2(1 + �"�)G("; "0)

Z �jf j+ osc(f;B"0(�))
�
d�̂

�(1 + �"�)�
�
"��0 kfk1 + jf jB

�
;

(5.18)

where we used (5.2) and (5.3). Also, by Assumption T00(e) and Assumption

B(b) with Cb = 
�1m "�m+�
0 , we have that for all 0 < " � "0:

"��kfk1
Z 1X

N(")

K0X
j=1

sup
bT�1
ij

B"(x)

bg d�̂ � "��kfk1 � bK 0"m+� � 
�1m bK 0kfkB:

(5.19)

Since cPf(x) =
P1

i=0

PK
j=1Rijf(x), by (5.15) and (5.16), and using (5.17)

to (5.19), we obtain that jcPf jB is bounded by

sup
0<"�"0

"��
hZ 1X

i=0

KX
j=1

osc(Rijf;B"(x))d�̂ +

Z 1X
i=0

KX
j=1

osc(Rijf;B"(x))d�̂
i

�(1 + �"�0 )s
�jf jB + 2�kfk1 + (1 + �"�0 )�("

��
0 kfk1 + jf jB) + 2
�1m bK 0kfkB

�[(1 + �"�0 )(s
� + �) + 2
�1m bK 0]jf jB + [2� + 2(1 + �"�0 )�="

�
0 + 2
�1m bK 0]kfk1:

By de�nition of � in (5.8) and D in (5.9) we get the desired inequality.

(ii) Note that for any real valued function f and z 2 C, we have osc(zf;B"(x)) =

jzj osc(f;B"(x)). Also, note that if fang is a sequence of positive numbers and

z 2 D, jP1
n=1 z

nanj � jzjP1
n=1 an. Hence we have

jR(z)f jB � jzj sup
0<"�"0

"��
1X
i=0

KX
j=1

Z
osc(Rijf;B"(x))d�̂ � jzjjcPf jB:

By part (i), the inequality becomes

jR(z)f jB � jzj(�jf jB +Dkfk1):
Also, since cP and Rn are positive operators,



R(z)fk1 � 1X
n=1



znRnf



1
� jzj

1X
n=1



Rnjf j



1
= jzj

 cPjf j



1
= jzj

f



1
:

It follows that

kR(z)fkB � jzj(�kfkB + (D + 1)kfk1):
Using induction on n, we get the expected result with D̂ = (D + 1)=(1� �).

(iii) The transfer operator fP has the form (see also [ADSZ])

(fP ef)(x; y) = 1X
n=0

KX
j=1

ef( bT�1ij x; S(Uij)
�1(y))g( bT�1ij x)1bTUij (x; y);
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for any ef 2 eB, where S(Uij) : Y ! Y are automorphisms. Let us denote:

( eRij
ef)(x; y) = ef( bT�1ij x; S(Uij)

�1(y))g( bT�1ij x)1bTUij (x; y):

Following the same computations as above, we get formulas similar to (5.15)

and (5.16) but with Rn and bTij replaced by eRn and eTij respectively, and f(�)
replaced by ef(�; y). Denote y1 = S(Uij)

�1(y). Instead of (5.15) and (5.16), we

get that for i < N("),

j eRij
ef(�; y)jB = sup

0<"�"0

"��
Z

osc( eRij
ef(�; y1); B"(�)

�
d�̂

� sup
0<"�"0

"��
Z h�

(1 + �"�) eRij osc
� ef(�; y1); Bs"(�)

�
+ 2�"� eRij j ef(�; y1)j�

+2Gij(x; "; "0)(1 + �"�)
�
osc( ef(�; y1); B"(�)) + j ef(�; y1)j�id�̂;

and for i � N("),

j eRij
ef(�; y)jB = sup

0<"�"0

"��
Z

osc( eRij
ef(�; y1); B"(�)

�
d�̂

�2(
m"m0 )�1(j ef(�; y1)jB + k( ef �; y1)kL1(�))"
�� sup

0<"�"0

Z
sup

bT�1
ij

B"(x)

bgd�̂:
We observe that for any x, S(Uij) : Y ! Y preserves the measure �. We set

�f(x) =

Z
S

ef(x; y1)d�(y); osc
� ef(�); B"(�)

�
=

Z
S

osc
� ef(�; y1); B"(�)

�
d�(y):

Integrating with respect to y, and using Fubini's theorem, we get

j eRij
ef j eB � sup

0<"�"0

"��
Z h�

(1 + �"�) eRijosc
� ef(�); Bs"(�)

�
+ 2�"� eRij j �f(�)j

�
+2Gij(xij ; "; "0)(1 + �"�)

�
osc( ef(�); B"(�)) + j �f(�)j

�i
d�̂:

and

j eRij
ef j eB � 2(
m"

m
0 )

�1(j ef j eB + k efkL1(�̂��)) "
�� sup

0<"�"0

Z
sup

bT�1
ij

B"(x)

bgd�̂
By Fubini's theorem, we have also j ef j eB = sup

0<"�"0

"��
Z

osc( ef(�); B"(�))d�̂,

and j ef jL1(�̂��) =

Z
j �f(�)jd�̂. Using the same arguments as in the proof of

part (i) we get

j eP ef(�; y)j eB �
1X
n=0

KX
j=1

j eRij
ef j eB � (1 + �"�0 )s

�j ef j eB + 2�k efkL1(�̂��)

+(1 + �"�0 )�
�j ef j eB + "��0 k efkL1(�̂��)

�
+2
�1m bK 0

�j ef j eB + k efkL1(�̂��)

�
;
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and therefore the result of part (iii) with the same � and D giving in (5.8) and

(5.9) respectively.

Lemma 5.3. There exists a constant CR > 0 such that kRnkB � CRs
�
n for all

n > 0.

Proof. Since Ri =
P

j Rij , we only need to prove the results for Rij .

Take " 2 (0; "0]. Choose any b > 0 and let N(") be given by Assump-

tion T00(e).

We �rst consider the case n = i+ 1 � N(").

By the de�nition of Rij given in (5.10), we have for any f 2 B,Z
Rijfd�̂ =

Z
1 bX �Pi+1(f1Uij )d�̂ =

Z
bX
f1Uijd�̂ =

Z
Uij

fd�̂: (5.20)

We now denote dij = sup
�jdetD bT�1ij (x) : x 2 B"(Q0)

	
. Since for any x,

j detD bT�1ij (x)j � kD bT�1ij (x)k, we have dij � sij . Since bTUij = Q0,

�(Uij) � dij�(Q0) � sij�(Q0): (5.21)

Hence by Assumption B(b),Z
Rijfd�̂ � kfkL1(�̂)�(Uij) � Cb�(Q0)sijkfkB: (5.22)

By similar arguments as for (5.20), we haveZ
bX
Rij osc

�
f; Bsij"(�)

�
d�̂ �

Z
bX
osc
�
f; Bsij"(�)

�
1Uijd�̂ � s�ij"

�jf jB: (5.23)

We note that for each j, bTUij = Q0 and the \thickness" of bT�1ij B"(@Q0) is

of order sij", since @Q0 consists of piecewise smooth surfaces. So Gij("; "0) �
CG"sij for some CG independent of i and j. Therefore we haveZ

bX
"��2(1 + �"�)Gij(�; "; "0)

�jf j+ osc(f;B"0(�))
�
d�̂

�2(1 + �"�)CG"
1��sij

�kfkL1(�̂) + "�0 jf jB
�
;

Hence by (5.15) we get that

jRijf jB � C 0Rs
�
ij

�kfkL1(�̂) + jf jB
�
= C 0Rs

�
ijkfkB

for C 0R = (1 + �"�0 )(1 + 2CG"
1��
0 ) + 2�Cb�̂(Q0).

We now consider the case n = i+1 > N("). As we mentioned in Remark 5.6,

in this case m � 2. By de�nition, there is Cs > 0 such that bg(xij) � C2
s s

2
ij for

any xij 2 bT�1ij B"(Q0) with j = 2; � � � ;K. By Assumption T00(e) we know that

for any x 2 B"(Q0),�
sup

bT�1
n�1;jB"(x)

bg�1=2 � � 1X
i=N(")

sup
bT�1
ij

B"(x)

bg�1=2 � p
b"(m+�)=2 �

p
b"�:
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Therefore by (5.16) we have

jRnf jB � C 00RsijkfkB � C 00Rs
�
ijkfkB

for C 00R = 2(
m"
m
0 )

�1
p
bCs.

Finally, by (5.22), we have

kRijfk1 �
Z
Rij jf jd�̂ � Cb�(Q0)sijkfkB:

Thus we have kRijfkB = (C 0R+C
00
R+Cb�(Q0))s

�
ijkfkB. The result of the lemma

then follows.

6 Systems on multidimensional spaces: the role

of the determinant

In this section we put additional conditions on the the map T that we stud-

ied in the previous chapter in order to get optimal estimates for the decay of

correlations.

6.1 Assumptions and statement of the results.

Let us suppose T satis�es Assumption T00(a), (d) and (e) in the last section.

We replace part (b) and (c) by the following

Assumption T00. (b0) (Fixed point and a neighborhood) There is a �xed

point p 2 U1 and a neighborhood V of p such that T�nV =2 @Uj for any

j = 1; : : : ;K and for any n � 0.

(c0) (Topological exactness) T : X ! X is topologically exact, that is, for any

x 2 X, " > 0, there is an eN = eN(x; ") > 0 such that T
eNB"(x) = X.

Remark 6.1. It is easy to see that if T has a �nite Markov partition, or a �nite

image structure (see e.g. [Yr]), then T satis�es Assumption T 00(b0) as long as

p is not on the boundary of the elements of the partition in the former case and

not on the boundary of the images in the latter case.

Remark 6.2. Clearly, topological exactness implies topological mixing.

We rename the seminorm and the Banach space de�ned in (5.7) and (??)

by replacing B with Q which will therefore depend on � and on �0, the latter

dependence a�ecting only the value of the seminorms. Then instead of (5.7) we

put

kfkQ = kfkL1(�̂) + jf jQ:
Recall that V is a neighborhood of p given in Assumption T 00(b). We denote

the preimages T�1ik
: : : T�1i1

V by Vi1:::�k or VI where I = i1 : : : �k. We also denote
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with I the set of all possible words i1 � � � ik such that T�1ik
: : : T�1i1

V is well

de�ned, where ik 2 f1; � � � ;Kg and k > 0.

For an open set O, letH := H�
"1 = H�

"1(O;H) be the set of H�older functions f

over O that satis�es jf(x)�f(y)j � Hd(x; y)� for any x; y 2 O with d(x; y) � "1.

Let ĥ be a �xed point of the transfer operator cP, which will be unique under

the assumptions of the theorem below. We now de�ne B by

B := B�"0;"1 =
n
f 2 Q : 9H > 0 s:t: (f=ĥ)jVI 2 H�

"1(VI ; H) 8I 2 I
o
; (6.1)

and for any f 2 B, let

jf jH := jf jH�
"1
= inffH : (f=ĥ)jVI 2 H�

"1(VI ; H) 8I 2 Ig:

Sublemmas 6.3 and 6.4 below imply that ĥ > 0 on all Vij , and therefore the

de�nition makes sense. Then we take j � jQ + j � jH as a seminorm for f 2 B and

de�ne the norm in B by

k � kB= k � k1 + j � jQ + j � jH: (6.2)

Clearly, B � Q and kfkB � kfkQ if f 2 B.
Recall that for any sequences of numbers fang and fbng, we use an � bn if

lim
n!1

an=bn = 1, and an � bn if c1bn � an � c2bn for some constants c2 � c1 > 0.

Let dij = sup
�j detD bT�1ij (x) : x 2 B"0(Q0)

	
, and dn = max

�
dn�1;j : j =

2; � � � ;K	.
Theorem E. Let bX, bT and B be de�ned as above. Suppose T satis�es As-

sumption T 00(a), (b 0), (c 0), (d) and (e). Then there exist "0 � "1 > 0 such that

Assumption B(a) to (f) and conditions (i) to (iv) in Theorem A are satis�ed

and kRnk � O(d
m=(m+�)
n ). Hence, if

P1
k=n+1 d

m=(m+�)
n � O(n��) for some

� > 1, then there exists C > 0 such that for any functions f 2 B, g 2 L1(X; �)

with supp f; supp g � bX, (1.4) holds.

Moreover, if T satis�es (5.4) near p = 0, then

1X
k=n+1

�(� > k) has the order

n�(m=
�1) or higher. In this case, if dn = O(n��
0

) for some �0 > 1 and if

� = �0 � m

m+ �
� 1 � maxf2; m



� 1g; (6.3)

then

Cov(f; g � Tn) �
1X

k=n+1

�(� > k)

Z
fd�

Z
gd� � 1=nm=
�1: (6.4)

In particular, if Assumption T 00(e 0) in the last section also holds, then the above

statemnets remain true if we replace m=(m+ �) by 1.
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Remark 6.3. For the case that T satis�es (5.4) near p, if h is bounded away

from 0 on the sets f� > ng, then �(� > n) and �(� > n) have the same order,

and
P1

k=n+1 �(� > k) = O(n�(m=
�1)). This is the case in Example 7.1, 7.2

and 7.4 below.

On the other hand, ĥ may be only supported on part of the sets f� > ng, and
therefore �(� > n) may have higher order, like in Example 7.3. In this case,P1

k=n+1 �(� > k) has an order higher than n�(m=
�1).

6.2 Examples

Before giving the proof, we present a few examples. We will always assume that

T satis�es Assumption T 00(a), (b 0), (c 0) and (d).

Example 6.1. Assume m = 3, and near the �xed point p = (0; 0; 0), the map

T has the form

T (w) =
�
x(1 + jwj2 +O(jwj3)); y(1 + jwj2 +O(jwj3)); z(1 + 2jwj2 +O(jwj3)�

where w = (x; y; z) and jwj =
p
x2 + y2 + z2.

This map is very similar to that in Example 1 in [HV], although it is now in

a three dimensional space. We could still use the same arguments to show that

Assumption T00 (e) is satis�ed.

Denote wn = T�n1 w; clearly, jwj+ jwj3 + O(jwj4) � jT (w)j � jwj+ 2jwj3 +
O(jwj4). By standard arguments we know that

1p
4n

+O
� 1p

n3

�
� jwnj � 1p

2n
+O

� 1p
n3

�

(see also Lemma 3.1 in [HV]). Since we are in a three dimensional space, we

now have �(� > k) � 1

km=

=

1

k3=2
, and therefore

1X
k=n+1

�(� > k) � 1

n1=2
.

It is easy to see that detDT (w) = 1 + 6x2 + 6y2 + 8z2 + O(jwj3). So we

have j detDT�11 (w)j � 1� 6jwj2 +O(jwj3). By Lemma 3.2 in [HV] with r(t) =

1�6t2+O(t3), 
 = 2, C 0 = 6 and C = 1, we get that j detDT�n1 (x)j = O(1=n3).

Hence we have �0 = 3 and � = 3m=(m+�)� 1 > 3 � 3=(3 + 1)� 1 = 5=4. Since

m=
 � 1 = 1=2, (6.3) holds, and therefore we have (6.4) with the decay rate of

order 1=
p
n.

Example 6.2. Assume m = 2, and near the �xed point p = (0; 0), the map T

has the form

T (z) =
�
x(1 + jzj
 +O(jzj
0)); y(1 + 2jzj
 +O(jzj
0))�

where z = (x; y), jzj =
p
x2 + y2, 
 2 (0; 1) and 
0 > 
.
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By methods similar to Example 1 in [HV] we can check that Assumption

T00 (e) is satis�ed. Denote zn = T�n1 z. Since jzj+ jzj1+
 +O(jzj
0) � jT (z)j �
jzj+ 2jzj
+1 +O(jzj
0), we have

1

(2
n)1=

+O

� 1

n�

�
� jznj � 1

(
n)1=

+O

� 1

n�

�

for some � > 1=
. So �(� > k) � 1

k2=

, and therefore

1X
k=n+1

�(� > k) � 1

n2=
�1
.

It is possible to show that jdetDT (z)j = 1 +
(3 + 
)x2 + (3 + 2
)y2

jzj2�
 +

O(jzj
0). Therefore j detDT�11 (z)j � 1�(3+
)jzj
+O(jzj
0), and j detDT�n1 (z)j =
O(1=n1+3=
). Hence �0 = 1 + 
=3 and � = (1 + 3=
) � 2=(2 + �) � 1 >

(1 + 3=
) � 2=3 � 1 = 2=
 � 1=3 > 2=
 � 1. It means (6.3) holds, and the

decay rates is of order 1=n2=
�1.

Example 6.3. Assume m = 2, and take the same map as in Example 1 in

[HV], namely, near the �xed point p = (0; 0), the map T has the form

T (x; y) =
�
x(1 + x2 + y2); y(1 + x2 + y2)2

�
;

where z = (x; y) and jzj =
p
x2 + y2.

The map allows an in�nite absolutely continuous invariant measure. Howev-

er, the map can be arranged in such a way that there is an invariant component

that supports a �nite absolutely continuous invariant measure �. Near the �xed

point, the region of this component has the form

fz = (x; y) : jyj < x2g:
We may regard X as this component, and T : X ! X satis�es the assumptions.

We could check that the map has bounded distortion near the �xed point

restricted to this region. Hence, the map satis�es Assumption T00(e0).

Since jznj = O(1=
p
n) and for z = (x; y), jyj � x2, we get �(� > k) � 1

k3=2
,

and

1X
k=n+1

�(� > k) � 1

n1=2
.

On the other hand, j detDT (z)j = 1 + 5x2 + 7y2 + O(jzj4). Since jyj �
x2, jzj = jxj + O(jzj2); thus j detDT (z)j = 1 + 5jzj2 + O(jzj4), and therefore

j detDT�n1 (z)j = O(1=n5=2). So �0 = 5=2 and � = 3=2. We obtain that the

decay rate is of order 1=n1=2.

Example 6.4. Assume m � 3 and near the �xed point p = (0; 0; 0), the map T

has the form

T (z) = z
�
1 + jzj
 +O(jzj
+1)

�
;

where m > 
 > 0.

35



These examples are comparable with those in Example 6.1, except for the

stronger topological assumptions which we now put on the maps. We know that

these maps satisfy Assumption, T00(e0).

Denote zn = T�n1 z. We have jznj = 1=(n
)1=
 + O
�
1=(n
)1=
+1

�
and

j detDT (z)j = 1 + (m + 
)jzj
 + O
�jzj
+1

�
. Hence, we get that j detDT�n1 j �

1=nm=
+1. (For the relative computations see Lemma 3.1 and 3.2 in [HV]).

Therefore �0 = m=
 + 1 and � = m=
.

On the other hand, we see that �(� > k) = O
�
1=km=


�
, and then

1X
k=n+1

�(� >

k) � 1

nm=
�1
. Since m > 
, the invariant measure � is �nite and � > 1. We

get that the decay rate is of order 1=nm=
�1.

6.3 Proof of the Theorem

Proof of Theorem E. Take "0 > 0 satisfying Lemma 5.2 in the last section,

and then choose "1 2 (0; "0] as in Lemma 6.2 below. We reduce "1 further if

necessary such that �0 := �+DH("0)"
�
1 < 1, where � < 1 is given in Lemma 5.2

and DH("0) > 0 is given in Lemma 6.2. Then we take B := B�"0;"1 as in (6.1).

With the norm given in (6.2), B satis�es Assumption B(a) to (f) by Lemma 6.1.

By Lemma 5.2 and 6.2, condition (i) of Theorem A is satis�ed with constants

� andD replaced by �0 de�ned as above andD+DH("0)"
�
1 respectively, whereD

is the number given in Lemma 5.2. Condition (ii) can be obtained in a similar

way. Assumption T00(a), (d) and (c0) imply Assumption T (a), (c) and (d)

respectively. Assumption T(b) follows from the construction of the �rst return

map. Lemma 5.2(iii) and 6.2(iii) give (1.6). Therefore all the conditions for

Theorem B are satis�ed. Hence we obtain condition (iii) and (iv) of Theorem A.

The facts kRnk = O(d
m=(m+�)
n ), and kRnk = O(dn) if Assumption T00(e0) is

satis�ed, follow from Lemma 6.5. Therefore (1.4) is given by Theorem A.

If T also satis�es (5.4), then we know that for any z close to p, jT�n1 zj is
of order n�1=
 . Hence �̂f� > kg has the order k�m=
 , and

P1
k=n+1 k

�m=
 =

O(n�m=
+1). Then the rest of the theorem is clear.

Lemma 6.1. B is a Banach space satisfying Assumption B(a) to (f) with Ca =

2Cb = 2
�1m "�m+�
0 , where 
m is the volume of the unit ball in Rm.

Proof. We already know that Q is a Banach space, and the proof of the com-

pleteness of B follows from standard arguments. So B is a Banach space.

Now we verify Assumption B(a) to (f).

By Lemma 5.1, the unit ball of Q is compact in L1( bX; �̂). Since jjf jjB �
jjf jjQ for any f 2 B � Q, the unit ball of B is contained in the unit ball of Q. S-
ince B is closed inQ, the unit ball of B is also compact. This is Assumption B(a).

36



Moreover, for any f 2 Q, kfk1 � CbkfkQ � CbkfkB with Cb = 
�1m "�m+�
0 .

We have thus got Assumption B(b).

Invoking again Lemma 5.1, we have for any f; g 2 Q, kfgkQ � CakfkQkgkQ,
where Ca = 2
�1m "�m+�

0 = 2Cb. It is easy to check that

jfgjH � kfk1jgjH + kgk1jf jH � CbkfkQjgjH + CbkgkQjf jH:
Hence,

kfgkB = kfgkQ + jfgjH � CakfkQkgkQ + CbkfkQjgjH + CbkgkQjf jH
�Ca

�kfkQ + jf jH
��kgkQ + jgjH

�
= CakfkBkgkB:

Therefore Assumption B(c) follow with Ca = 2
�1m "�m+�
0 = 2Cb.

Similarly, part (d) of Assumption B follows from the fact that B contains all

H�older functions, and H�older functions are dense in L1( bX; �̂).
Assume f(x) = limn!1 fn(x) for �̂-a.e. x 2 bX. By the proof of Lemma 5.1

we have jf jQ � lim infn!1 jfnjQ. For any y; z 2 VI , where I 2 I,
jf(y)� f(z)j
d(y; z)�

� lim
n!1

jfn(y)� fn(z)j
d(y; z)�

� lim inf
n!1

jfnjH:

It gives jf jH � lim infn!1 jfnjH. Since jf jB = jf jQ + jf jH, we get part (e).
Since B � Q, part (f) is directly from the fact that Q satis�es Assump-

tion B(f).

Lemma 6.2. Let "0 be as in Lemma 5.2. There exists DH = DH("0); �DH =
�DH("0) > 0 and "� 2 (0; "0] such that for any "1 2 (0; "�], and by using the

notation for the Banach space introduced in (6.1):

(i) for any f 2 B�"0;"1 , jcPf jH"1
� s�jf jH"1

+DH"
�
1 kfkQ"0

;

(ii) for any f 2 B�"0;"1 , jR(z)f jH"1
� jzj�sajf jH"1

+ �DH"
�
1 kfkQ"0

�
;

(iii) and for any f 2 eB�"0;"1 jfP ef j eH"1
� s�j ef j eH"1

+DH"
�
1 k efk eQ"0

:

Proof. (i) Let "� 2 (0; "0], Jĥ > 0 as in the proof of Sublemma 6.4 below.

Suppose " 2 (0; "�], and jf jH"1
= H for some f . Take x; y 2 VI for some

I 2 I with d(x; y) = " � "�. Then by Assumption T00(e), we can take J > 0,

N = N(") > 0 for b = 1. Note that

cPf(x)

ĥ(x)
�
cPf(y)

ĥ(y)
=

KX
j=1

1X
i=1

ĝ(xij)ĥ(xij)

ĥ(x)

�f(xij)
ĥ(xij)

� f(yij)

ĥ(yij)

�

+

KX
j=1

NX
i=1

f(yij)

ĥ(yij)

� ĝ(xij)ĥ(xij)
ĥ(x)

� ĝ(yij)ĥ(yij)

ĥ(y)

�

+

KX
j=1

1X
i=N+1

f(yij)

ĥ(yij)

� ĝ(xij)ĥ(xij)
ĥ(x)

� ĝ(yij)ĥ(yij)

ĥ(y)

�
:

(6.5)
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Since jf jH = H, we have f(xij)=ĥ(xij) � f(yij)=ĥ(yij) � Hd(xij ; yij)
� �

s�Hd(x; y)�. Now, cPĥ = ĥ implies

KX
j=1

1X
i=1

ĝ(xij)ĥ(xij)=ĥ(x) = 1: (6.6)

Thus the �rst sum of the inequality is bounded by s�Hd(x; y)� � s�jf jHd(x; y)�.
Note that by our assumption, Vij does not intersect discontinuities. By

Sublemma 6.4, ĥ(y)=ĥ(x) � eJĥd(x;y)
�

, and by Assumption T00(e), ĝ(y)=ĝ(x) �
eJd(x;y)

�

if i � N("). So [ĝ(yij)ĥ(yij)=ĥ(y)]=[ĝ(xij)ĥ(xij)=ĥ(x)] � eJ
0d(x;y)� for

some J 0 > 0. We take "� 2 (0; "�] small enough such that eJ"
�
1 � 1 � 2J 0"�1 for

any "1 � (0; "�]. Then for d(x; y) = " � "1, we have��� ĝ(xij)ĥ(xij)
ĥ(x)

� ĝ(yij)ĥ(yij)

ĥ(y)

��� � 2J 0
ĝ(xij)ĥ(xij)

ĥ(x)
� d(x; y)�: (6.7)

Therefore by (6.6), the second sum in (6.5) is bounded by

KX
j=1

NX
i=1

f(yij)

ĥ(yij)

ĝ(xij)ĥ(xij)

ĥ(x)
� 2J 0d(x; y)� � 2J 0ĥ�1� kfk1d(x; y)�;

where ĥ� is the essential lower bound of ĥ given by Sublemma 6.3.

By using Assumption T00(e), the third sum in (6.5) is bounded by

KX
j=1

1X
i=N+1

f(yij)

ĥ(yij)

ĝ(xij)ĥ(xij)

ĥ(x)
� ĥ�2� kĥk1kfk1 �K 0b"m+�

=ĥ�2� kĥk1CbkfkB �K 0b"md(x; y)� = CbK
0b"m1 ĥ

�2
� kĥk1kfkBd(x; y)�;

where Cb is given in Lemma 5.1 which depends on "0.

Hence the result of part (1) holds with DH = Cbĥ
�1
� (2J 0+K 0b"m1 ĥ

�1
� kĥk1).

Part (ii) and (iii) can be proved by using the same estimates with the same

adjustments as in the proof of Lemma 5.2.

Sublemma 6.3. There is a ĥ� > 0 such that ĥ(x) � ĥ� for �-a.e. x 2 bX.

Proof. By Lemma 3.1 in [Ss], there is a ball B"(z) � bX such that Einf
B"(x)

ĥ � ĥ�

for some constant ĥ� > 0. By Assumption T00(c0), there is eN > 0 such that

T
eNB"(z) � X. Then for any x 2 eX, there is y0 2 B"(z) such that T

eNy0 = x.

Since j detDT j is bounded above, we have g� := inffg(y) : y 2 Xg > 0. Hence,

for �̂-almost every x,

ĥ(x) = (P
eN ĥ)(x) =

X
T fNy=x

ĥ(y)

eN�1Y
i=0

g(T iy) � ĥ(y0)

eN�1Y
i=0

g(T iy0) � ĥ�g
eN
� :

The result follows with ĥ� = ĥ�g
eN
� .
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Sublemma 6.4. Let "0 be as in Lemma 5.2. Then there exists Jĥ > 0 and

"� 2 (0; "0] such that for any x; y 2 VI with d(x; y) � "�, I 2 I,
ĥ(x)

ĥ(y)
� eJĥd(x;y)

�

:

Proof. Since ĥ is the unique �xed point of cP, we know that ĥ = limn!1
cPn1 bX ,

where the convergence is in L1(�̂). Now we consider the sequence fn := cPn1 bX .
We will prove that there is Jĥ > 0 and "� 2 (0; "0] such that for any n � 0,

for any x; y 2 VI , I 2 I, with d(x; y) � "�,

fn(y)

fn(x)
� eJĥd(x;y)

�

: (6.8)

Clearly (6.8) is true for n = 0 since f0(x) = 1 for any x. We assume that it

is true up to fn�1. Consider fn.

Note that fn=ĥ = (1=ĥ)cPn(h � 1 bX=ĥ) = bLn(1 bX=ĥ), where bL is a normalized

transfer operator de�ned by bL(f) = (1=ĥ)cP(ĥf). Then there are f� � ĥ�=ĥ
�

and f� � ĥ�=ĥ� such that f� � fn(x) � f� for every x 2 bX and n � 0, where

ĥ� and ĥ� are the essential upper and lower bound of ĥ respectively. Let also

set: g� = infx f1(x) = infx
PK

j=1

P1
i=0 ĝ(xij).

Let us set again b = 1. Then put J > 0 as in Assumption T00(e). Let us take

Jĥ > 2Js�=(1� s�) so that we have (Jĥ + J)s� � Jĥ(1 + s�)=2. Then we take

"� 2 (0; "0] small enough such that for any " 2 [0; "�],

eJĥ(1+s
�)"�=2 +

f�K 0b"m+�

f�(g� �K 0b"m+�)
� eJĥ"

�

:

For any x; y in the same VI with d(x; y) =: " � "�, we choose N = N(") as in

Assumption T00(e). Let us denote with [fn]N (x) =
PK

j=1

PN
i=0 ĝ(xij)fn�1(xij)

and ffngN (x) = fn(x)� [fn]N (x) =
PK

j=1

P1
i=N+1 ĝ(xij)fn�1(xij). We have

[fn]N (y)

[fn]N (x)
=

PK
j=1

PN
i=0 ĝ(yij)fn�1(yij)PK

j=1

PN
i=0 ĝ(xij)fn�1(xij)

� sup
1�j�K;0<i�N

eJd(xij ;yij)
�

eJĥd(xij ;yij)
� � e(J+Jĥ)s

�d(x;y)� � eJĥ(1+s
�)"�=2:

We also get

ffngN (y) =
KX
j=1

1X
i=N+1

ĝ(yij)fn�1(yij) � f�
KX
j=1

1X
i=N+1

ĝ(yij) � f�K 0bem+�:

On the other hand,

[fn]N (x) =

KX
j=1

1X
i=N+1

ĝ(yij)fn�1(yij) � f�

KX
j=1

NX
i=1

ĝ(yij) � f�(g� �K 0bem+�):

39



By the choice of "�, we obtain

fn(y)

fn(x)
� [fn]N (y) + ffngN (y)

[fn]N (x)
� eJĥ(1+s

�)"�=2 +
f�K 0b"m+�

f�(g� �K 0b"m+�)
� eJĥ"

�

:

This means (6.8) for n since we have set " = d(x; y).

Lemma 6.5. There exists a constant CR > 0 such that kRnkB � CRd
m=(m+�)
n

for all n > 0.

If, moreover, T satis�es Assumption T00(e0), then kRnkB � CRdn for all

n > 0.

Proof. Since Ri =
P

j Rij , we only need to prove the results for Rij .

Let sij(x) be the norm of jjD bT�1ij (x)jj, and sij = maxfsi;j(x) : x 2 B"0(Q0)g.
Note that f� > ig � T�1V for all large i. We may suppose that i is su�ciently

large so that Bsij"1(Uij) � bT�1ij V .

Take f 2 B with kfkB = 1.

By using (5.20) and (5.21), we apply arguments similar to (5.22) and get

kRijfk1 =
Z
Uij

jf jd�̂ � kfk1�̂(Uij) � Cb�̂(Q0)dijkfkB: (6.9)

Next, we consider jRijf jB. Note that for any I 2 I, f jVI 2 H�(VI ; H) for

some H � kfkB. So osc
�
f=ĥ; Bs"(�)

� � 2�s�"�H � 2�s�"�kfkB. Note that

Sublemma 6.4 implies osc
�
ĥ; B"(x)

� � 2�J 0
ĥ
"� for all x with B"(x) 2 VI for

some J 0
ĥ
� Jĥ > 0. By Proposition 3.2(3) in [Ss],

osc
�
f; Bsij"(�)

� � osc
�
f=ĥ; Bsij"(�)

�
ĥ�+osc

�
ĥ; Bsij"(�)

�kfk1=ĥ� � b1"
�kfkB;

where b1 = 2�(Hĥ� + J 0
ĥ
Cbh

�1
� )s�ij . By arguments similar to (5.20) and (5.21),Z

Rij osc
�
f; Bsij"(�))d�̂ =

Z
Uij

osc
�
f; Bsij"(�))d�̂

�b1"�kfkB�̂(Uij) � b1"
�dij �̂(Q0)kfkB � a1"

�dijkfkB;
(6.10)

where a1 = b1�(Q0). Also,

�̂
� bT�1ij B"(@ bTUij)� =

Z
B"(@ bTUij)

ĝd�̂ � dij � �̂
�
B"(@U0)

� � dij � b2";

for some b2 > 0 independent of ". Hence,

Gij(x; "; "0) = 2dij � b2"=�̂(B(1�s)"0(x)) � a2dij"; (6.11)

where a2 = 2b2=�̂(B(1�s)"0(x)). Note that
R
osc(f;B"0(xij))d�̂ � "�0 jf jQ, and

kfk1 + "�0 jf jQ � kfkQ � kfkB. So for any " 2 (0; "0] and i < N("), we use

(5.15), (6.10), (6.9) and (6.11) to get

jRijf jQ �
�
(1 + �"�)a1 + 2�Cb�(Q0) + 2(1 + �"�)a2"

1��
�
dijkfkB

�C 02dijkfkB;
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where C 02 = (1 + �"�)a1 + 2�Cb�(Q0) + 2(1 + �"�)a2"
1��.

For " 2 (0; "0] and i > N("), by Assumption T00(e) we have dij � b"m+�.

Hence, "�a � (b�1dij)
��=(m+�). So by (5.16), we have

jRijf jQ �2(
m"m0 )�1 � kfkQ � "�� � dij
�2(
m"m0 )�1b�=(m+�)d

1��=(m+�)
ij kfkQ = C 002 d

m=m+�
ij kfkB;

(6.12)

where C 002 = 2(
m"
m
0 )

�1b�=(m+�). Therefore we get that jRijf jQ � C2d
m=m+�
i ,

where C2 = maxfC 02; C 002 g.
Now we consider jRijf jH. As in the proof of Lemma 6.2, for any x; y 2 Uij ,���Rijf(x)

ĥ(x)
� Rijf(y)

ĥ(y)

��� ���� ĝ(xij)f(xij)
ĥ(x)

� ĝ(yij)f(yij)

ĥ(y)

���
=
ĝ(xij)ĥ(xij)

ĥ(x)

���f(xij)
ĥ(xij)

� f(yij)

ĥ(yij)

���
+
jf(yij)j
ĥ(yij)

��� ĝ(xij)ĥ(xij)
ĥ(x)

� ĝ(yij)ĥ(yij)

ĥ(y)

���:
(6.13)

Note that
���f(xij)=ĥ(xij) � f(yij)=ĥ(yij)

��� � jf jHd(xij ; yij)� � kfkBs�ijd(x; y)�.
Also, ĝ(xij)ĥ(xij)=ĥ(x) � (ĥ�=ĥ�)dij . Then the �rst term in the right hand side

of (6.13) is bounded by a3dijkfkBd(x; y)�, where a3 = (ĥ�=ĥ�)s
�
ij .

Let us take " = d(x; y); if i � N("), then by (6.7),

jĝ(xij)ĥ(xij)=ĥ(x)� ĝ(yij)ĥ(yij)=ĥ(y)j � 2J 0(ĥ�=ĥ�)dijd(x; y)
�:

Since f(yij)=ĥ(yij) � kfk1=ĥ� � Cbĥ
�1
� kfkB, the last term in (6.13) is bounded

by a4dijkfkBd(x; y)�, where a4 = 2CbJ
0(ĥ�=ĥ2�). Therefore we obtain jRijf jH �

C 03dijkfkB, where C 03 = b1 + b2.

If i � N("), then by the �rst inequality of (6.13), the left side of the inequality

is bounded by maxfĝ(xij)f(xij)=ĥ(x); ĝ(yij)ĥ(yij)=ĥ(y)g � dijkfk1=ĥ�. By

the same arguments as for (6.12) we can get that

jRijf jH�"��dijkfk1=ĥ� � Cbĥ
�1
� b�=(m+�)d

m=(m+�)
ij kfkB= C 003 d

m=(m+�)
ij kfkB;

where C 003 = Cbĥ
�1
� b�=(m+�)kfkB. Then we conclude that jRijf jH � C3d

m=(m+�)
ij kfkB,

where C3 = maxfC 03; C 003 g.
The conclusion of the �rst part follows by setting CR = C1 + C2 + C3.

If T satis�es Assumption T00(e0), then we can regard N(") = 1 for any

" > 0. Hence we get kRijfkB � CRdijkfkB with CR = C1 + C2 + C 03.
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