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Abstract

We give conditions under which nonuniformly expanding maps have
polynomial decay of correlations. We show that if the Lasota-Yorke type
inequalities for the transfer operator of a first return map are satisfied in
a Banach space B, and the absolutely continuous invariant measure ob-
tained is weak mixing, in terms of aperiodicity, then under some renewal
condition, the maps has polynomial decay of correlations for observables
in B. We also provide some general conditions that give aperiodicity for
expanding maps in higher dimensional spaces. As applications, we ob-
tain polynomial decay, including lower bound in some cases, for piecewise
expanding maps with an indifferent fixed point and for which we also al-
low non-markov structure and unbounded distortion. The observables are
functions that have bounded variation or satisfy quasi-Hdolder conditions

respectively.
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0 Introduction

The purpose of this paper is to study polynomial decay of correlations for in-
variant measures which are absolutely continuous with respect to some reference
measures. Typically the maps T which we consider are non uniformly expanding
and they may neither have a Markov partition nor exhibit bounded distortion.
The main tool we use is the transfer operator on induced subsystems endowed
with the first return map. Let us call ||R,|| a suitable norm (see below) of the
n-th power of the transfer operator restricted to the level sets with first return
time 7 = n. We will show that if Lasota-Yorke inequalities can be verified for
the transfer operator of the first return maps, and if ||R,|| converges to 0 at
a speed 1/nt! B > 1, then the decay rates are given by the measure of the
sets {7 = n}. In the second part of the paper we apply the results to piecewise
expanding maps with an indifferent fixed point in one dimensional and high-
er dimensional spaces to get polynomial decay of correlations. The results for
maps in higher dimensional spaces with D f, = id at the indifferent fixed point
p is new, and in all the cases, the observables are more general than Holder
functions.

We now explain in more details the content of this paper. Let us consider
a non uniformly expanding map T defined on a compact subset X C R"™, with
or without discontinuities. Since we do not have necessarily bounded distortion
or Markov partitions, Hélder continuous functions are not preserved under the
transfer operator. Therefore we will work on Banach spaces B consisting of
some L! functions, and endow a norm || - ||z stronger than the L! norm || - ||z:.
We give some conditions on B under which the results apply (see Assumption
B); notice that the norm of R,, will be taken in B.



Let us now take a subset X C X and define the first return map T. The
first ingredient of our theorem is the Lasota-Yorke inequality for the transfer
operator & of T with respect to the norm || - ||z and || - |z:. Hence, 2 has a
fixed point & that defines an absolutely continuous measure /i invariant under
T. The measure [t can be extended to a measure p on X invariant under 7.
We may assume ergodicity for fi, otherwise we can take an ergodic component.
Then the ergodicity of i gives ergodicity of u. However, we also need some
mixing property for u. Therefore our second ingredient is to require that the
function 7 given by the first return time is aperiodic, which is equivalent to the
weak mixing of p for T. The third ingredient is the renewal condition, which
could be stated by asking that ||R,|| decays at least as n=(5+1)  with g > 1.
Such a decay gives also an estimate of the error term, which should be faster
than the decay rates of u(7 > n) in order to get an optimal rate for the decay
of correlations. With these conditions our theorem (Theorem A) states that
the decay of correlations Cov(f,goT™) :=|[f goT™ du— [ fdu [g dul, is
polynomial for functions f € B and g € L*°(X,v) with supp f,suppg C X.

The assumption on aperiodicity is usually difficult to check. We provide some
general conditions in Theorem B for the maps 7" under which aperiodicity follows
automatically. The conditions include piecewise smoothness, finite image and
uniform expansion for an induced maps and topological mixing for the original
maps.

As applications we studied piecewise smooth expanding maps with an indif-
ferent fixed point in one and higher dimensional spaces. In the one-dimensional
case we use the set of bounded variation functions for the Banach space B, and
we found that the decay rates are of the order n®~1 if near the fixed point the
maps has the form T'(z) =z + 217, v € (0,1) and 8 = 1/7.

One of our main goal in the paper is to obtain polynomial decay of corre-
lations for piecewise smooth expanding maps with an indifferent fixed point in
higher dimensional space.

For a large class of those maps, we constructed, in a previous paper ([HV]),
absolutely continuous invariant measures by using the Lasota-Yorke inequality.
Our maps could be written in the form of (5.4) near the indifferent fixed point
p, where the local behavior is precisely given by an isometry plus homogeneous
terms and higher order terms. In the present paper we show that such maps
have polynomial decay of correlations for observables in B. As we said above,
in the estimates we should compare the decay of ||R,|| with the measure of
the level sets with the first return time larger than n. The former could be
determined by the norms ||DT~"|| or the determinants | det DT~"|*, where the
latter, denoted by u(r > n), is often of order n="/7, with m = dim X and
is given in (5.4). If ||R,|| decreases as |det DT ™|, then it usually approaches
to 0 faster than p(r > n) does, and therefore both upper and lower estimates

*Notice that T'"~" denotes the inverse of 7" restricted to the domain of injectivity contain-
ing p.



for decay rates of correlations are of the same order as >, u(r > k). This
is the case we have optimal rates of decay of correlations. We obtain optimal
rates under the assumption that all preimages of some neighborhood of p do
not intersect discontinuities, (see Theorem E and examples in Section 7 for
more details). This is satisfied whenever 7" has a Markov partition or a finite
range structure (see Remark 6.1). Whenever ||R,|| decreases as ||[DT"||, we
get polynomial upper bound (Theorem D).

Our first theorem, Theorem A, is based on works of Sarig ([Sr], see also
[Go]), but contrarily to them, we do not assume existence of absolutely contin-
uous invariant measures. Our conditions are given by the Lasota-Yorke type
inequalities, which imply existence of absolutely continuous invariant measures
and the conditions on spectral gap as they required. Since such conditions are
easier to verify for maps without Markov partitions, it makes it possible to verify
those inequalities for observables beyond Holder continuous functions.

The proof of aperiodicity in Theorem B is particularly technical. We use
some results in the theory developed in the paper [ADSZ], where aperiodici-
ty is proved for a large class of interval maps, and some methods in [AD] for
skew product rigidity. We extended aperiodicity result to the multidimensional
setting without Markov partition. The authors in [ADSZ] mentioned that ape-
riodicity for non-Markov case was not so well understood. Our results indicate
that under some general conditions, if we could find a suitable Banach space
for which a Lasota-Yorke type of inequality (see (1.6)) can be verified, then
aperiodicity follows.

For piecewise expanding interval maps with indifferent fixed points, it is
relatively easy to get the desired spectral properties on the space of bounded
variation functions and to estimate decreasing rates for ||Ry||: our theorem
allows then to get optimal polynomial decay rates of correlation.

The higher dimensional case is much more complicated. Part of reason is
due to unbounded distortion of the systems caused by different expansion rates
in different directions as a point move away from the indifferent fixed point.
Moreover it is not easy to estimate the decreasing rates of the norm ||R,|| for
quasi-Holder spaces: Theorems D and E deals with these situations, by assuming
certain hypothesis. One surely needs more work to weaken those assumptions
and achieve optimal decay for a much larger class of maps.

To study statistic properties for non uniformly hyperbolic or expanding sys-
tems, it is common to find some “good” part on which we can get bounded
distortion, like Pesin’s blocks ([Ps]), elements in Young’s tower ([Yol, Yo2]),
or some neighborhood near points that have hyperbolic time ([ABV]). Another
approach is to work directly on some Banach spaces, like bounded variation func-
tions ([LY]) or quasi-Holder functions ([Ss]), that are preserved by the transfer
operator of the dynamical system. Our paper follows the latter way and we give
some conditions on Banach spaces through which one can obtain some statistical
properties such as existence of physical measure and decay of correlations.



We would like to remark at this point that the functional space is abstract,
as long as certain general assumptions (Assumption B(d) to (f)) are satisfied.
In the applications, we present two type of Banach spaces. It seems interesting
to find more different spaces to deal with different kinds of dynamical systems.

Part I: Conditions for Polynomial Decay Rates

1 Assumptions and statements of results

Let X C R™ be a subset with positive Lebesgue measure v. We assume v.X = 1.
Let d be the (euclidean) metric induced from R™.

The transfer (Perron-Frobenius) operator & = £, : L'(X,v) — L'(X,v)
is defined by [ o T¢dv = [ Pdv V¢ € LY (X,v), ¢ € L=(X,v).

Let X C X be a measurable subset of X with positive Lebesgue measure.

Recall that the first return map of 7" with respect to X C X is defined by
f( ) = T7) (), where 7(z) = min{i > 1: Tz € X} is the return time. We
put U the normahzed Lebesgue measure on X. Then we let & = ,@ be the
transfer operator of T.

Moreover we define

Ruf =1g - P"(fliyeny) and Tpf =1g- 2"(flg) (1.1)

for any function f on X. For any z € C, denote R(z Z 2"R,. It is clear

that 2 = R(1) = > 7 | Ry,.

For simplicity of notation, we regard the space LY(X,?) as a subspace
L'(X,v) consisting of functions supported on X, and we denote it with L' (?) or
L' sometimes and when no ambiguity arises. We point out that in the following
we will mainly work on the induced space and its “objects” will be indicated
with an “77”.

Suppose that there is a seminorm | - |p for functions in L' ()?, V). Consider

the set B = B(X) = {f € L'(X,?) : |f|z < oo}. Define a norm on B by

18 =1f18 +Ifllx
for f € B, where ||f]|; is the L' norm. We assume that B satisfies the following.

Assumption B. (a) (Compactness) B is a Banach space and the inclusion
B < LY(D) is compact; that is, any bounded closed set in B is compact in
L ().

(b) (Boundness) The inclusion B — L* (D) is bounded; that is, Cy > 0 such
that || flle < Collfll5 for any f € B.



(c¢) (Algebra) B is an algebra with the usual sum and product of functions, in
particular there exists a constant Cy such that ||fgllz < Collfllsllgllz for
any f,g € B.

Recall that for the system (f, V), if the Lasota-Yorke’s inequality (1.2) below
is satisfied for any function f € B, and if the Banach space B satisfies Assump-
tion B(a), then £ has a fixed point h € B with A > 0 and Ph = h, and the
measure i defined by fi(f) = 0(fh) is T invariant.

Denote D={z€ C:|z| <1} and S={z € C: |z| = 1}.

Theorem A. Let X C R™ be compact subset with vX = 1 and XCXbea
compact subset of X.

LetT : X — X be a map whose first return map with respect to XisT = T,
and B be a Banach space satisfying Assumption B(a) to (¢). We assume the
following.

(i) (Lasota-Yorke inequality) There exist constants n) € (0,1) and D > 0 such
that for any f € B,

\Zf15 < ulfls + DIIfIi; (1.2)

(i) (Spectral radius) There ezist constants B, D > 0 and 7 € (0,1) such that
for any f € B, z €D,

IR(2)"flls < |="| (B |flls + DIl fII); (1.3)

(ili) (Ergodicity) The measure fi given by i(f) = o(hf) is ergodic, where h is
a fized point of & .

(iv) (Aperiodicity) The function €™ given by the return time is aperiodic, that
is, the only solution for '™ = f/foT almost everywhere with a measurable
function f: X — S are f constant almost everywhere and t = 0.

If for anyn > 1, R, satisfies Y ;" ||Rells = O(n=") for some B > 1, then
there exists a constant C'> 0 such that for any function f € B, g € L>®(X,v)
with supp f, suppg C X,

oo

Cofgo) = (X ur>0) [ fau [ gdu] < CElglllflls, (19

k=n-+1
where Fg(n) = 1/n? if B > 2, (logn)/n? if =2, and 1/n**~2 if2 > 3 > 1.

Remark 1.1. By a result of Hennion ([He], see also [HH]), (1.3) implies that
the spectral radius and essential spectra radius of R(z) are bounded by |z| and
7|z| respectively.



Remark 1.2. Practically, (1.3) usually can be obtained in a similar way as
(1.2), (for example, see the proof of Theorem D). On the other hand, since
P = R(1), (1.8) implies the Lasota-Yorke inequality for L for some n > 0
with Bi™ < 1.

Remark 1.3. The measure i can be extended to an absolutely continuous in-
variant measure p on X in the usual way (see e.g. [Kk]). It is well known that
if i1 is ergodic, so is p.

Remark 1.4. As we said in the Introduction, Assumption (iv) is actually e-
quivalent to the fact that p is weak mizing for T (see e.g [PP]). Since decay of
correlations implies mizing, we obtain that with Lasota-Yorke inequality, weak
mizing implies mizing. This fact is also implied in the theorem of Ionescu- Tulcea
and Marinescu ([IM]).

Assumption (iv) is usually difficult to check. However, for piecewise expand-
ing systems, the condition could be verified and we will give some sufficient
conditions in Theorem B below.

The more general version of aperiodicity is as the following. Let G be a
locally compact Abelian polish group. A measurable function ¢ : X = G is
aperiodic if the only solutions for yo ¢ = Af/ f o T almost everywhere with
v € G, |A| = 1 and a measurable function f : X — G are y = 1, A = 1 and
f constant almost everywhere. (See [ADSZ] and references thereln.) Here we
only consider the case v = id, and ¢ = €7, and G being the smallest compact
subgroup of S containing e?.

We denote by B.(T') the € neighborhood of a set T' C X.

Assumption T. (a) (Piecewise smoothness) There are countably many dis-
joint open sets Uy, Us, -+, with X = UZ 1 U; such that for each i, T; :=
f|Ui extends to a C*** diffeomorphism from U; to its image, and 7|y, is
constant; we will use the symbol ﬁ to denote the extension as well.

(b) (Finite images) {TU; : i = 1,2,---} is finite, and vB.(0TU;) = O(e)
Vi=1,2,---.

(c) (Expansion) There exists s € (0,1) such that d(fx,fy) > s td(z,y)
Yo,y € U; Vi > 1.

(d) (Topological mixing) T': X — X is topological mizing.

Remark 1.5. Conditions (b) and (c) in Assumption T correspond to condi-
tions (F) and (U) in [ADSZ]. There is there a third assumption, (A), which
1s distortion and which is not necessarily guaranteed in our systems. With this
precision, we could regard the systems satisfying Assumption T(a)-(c) as higher
dimensional “AFU systems”.



Remark 1.6. We mention that if T has relatively prime return time on almost
all points © € X, then Condition (d) is satisfied.

Also we put some more assumptions on the Banach space B.
A set U C X is said to be almost open with respect to ¥ if for 7 almost every
point « € U, there is a neighborhood V' (z) such that &(V(z) \ U) = 0.

Assumption B. (d) (Denseness) The image of the inclusion B < L'(7) is
dense in L*(D).
(e) (Lower semicontinuity) For any sequence {f,} C B with 1i_>m fon=1Ff
n—oo

v-almost everywhere, |f|p < liminf |f,|s.
n—o

(f) (Openness) For any nonnegative function f € B, the set {f > 0} is almost
open with respect to v.

Remark 1.7. Assumption B(f) means that functions in B are not far from
continuous functions.

Take a partition & of X. Consider a family of skew-products of the form
T=Ts:XxY 5 XxY, Ts(z,y) = (Tz, SE@)(y)),  (L5)

where (Y, F,p) is a Lebesgue probability space, Aut(Y) is the collection of
its automorphisms, that is, invertible measure-preserving transformations, and
S : & — Aut(Y) is arbitrary.

Consider functions f € L*(¥ x p) and define

Fls= /Y FClsdo(). 1l = 1Flg+ 1 Fliosn-

Then we let B B N
B={feL'(rxp):|flg < oo}
It is easy to see that with the norm || - ||z, B is a Banach space.

The transfer operator P = %Xp acting on L' (¥ x p) is defined as the dual
of the operator f—> fo T from L*> (v x p) to itself. Note that if Y is a space
consisting of a single point, then we can identify X x Y, T and & with )?, T
and & respectively.

Theorem B. Suppose T satisfies Assumption T(a) to (d) and B satisfies As-
sumption B(d) to (f), and & satisfies the Lasota-Yorke inequality

(@ )lg <l flg + DIl oxp) (1.6)

for some 77 € (0,1) and D > 0. Then the absolutely continuous invariant
measure fi obtained from the Lasota-Yorke inequality (1.2) is ergodic and '™ is

aperiodic. Therefore Condition (iii) and (iv) in Theorem A follow.



Remark 1.8. The theorem is for ergodicity and aperiodicity of p. As we men-
tioned in Remark 1.5, aperiodicity of p is equivalent to weak mixing for u with
respect to T'. So practically, if we know that p is mizing or weak mizing for T,
then we do not need to use the theorem.

Remark 1.9. Same as for (1.3), the inequality (1.6) may be obtained in a sim-
ilar way as (1.2). This is because any S(£(x)) is a measure preserving trans-

formation, and therefore & and & have the same potential function. (See the
proof of Theorem D).

Remark 1.10. It is well known that for C'*t®, a > 1, uniformly expanding
maps or uniformly hyperbolic diffeomorphisms, the absolutely continuous in-
variant measures i are ergodic if the maps are topological mixing. However, it
is not the case if the conditions on C'*% or uniformty of hyperbolicity fails. In
[Qu] the author gives an example of C* uniformly expanding maps of the unite
circle, and in [HPT] the authors provide an example of C™ diffeomorphisms,
where Lebesgue measures are preserved and topological mixing does not give er-
godicity. In the proof of the theorem we in fact give some additional conditions
under which topological mizing implies ergodicity (see Lemma 3.2).

2 Rates of Decay of Correlations

We prove Theorem A in this section. The proof is based on the results of Sarig
[Sr] and Gouézel [Go]. Here we take Gouézel’s version.

Theorem. Let T, be bounded operators on a Banach space B such that T(z) =
I+3%,,2"T, converges in Hom(B, B) for every z € D. Assume that:

(1) (Renewal equation) for every z € D, T(z) = (I — R(z))™!, where R(z) =
Yon>1 2" B, Ry € Hom(B, B) and 3-, 5, ||Ry] < +o0.

(2) (Spectral gap) 1 is a simple isolated eigenvalue of R(1).
(3) (Aperiodicity) for every z € D\ {1}, I — R(2) is invertible.

Let P be the eigenprojection of R(1) at 1. If Y, [IRxll = O(1/n?) for some
B>1 and PR'(1)P # 0, then for all n,

1 j—
T,=~-P+ — Py + E,, 2.1
e 2 Bt =

where X is given by PR'(1)P = AP, P, = Y, PRyP and E, € Hom(B,B)

satisfies || En|| = O(1/n?) if B > 2, O(logn/n?) if B = 2, and O(1/n?$~2) if
2>p>1.



Proof of Theorem A. Let T,, and R,, be defined by (1.1).

With the assumption Y7 . [|Rxlls = O(n=7), B > 1, given in Theorem A,
Lemma 2.1 to 2.3 imply conditions (1) to (3) respectively

Let h € B be the eigenfunction of = R(1) at 1 with [ hdi = 1, where
7 is the normalized Lebesque measure on X. That is, #(X) = 1. Also, let /i be
the 7' invariant measure over X given by dj = hdp. Tt is well known that i can
be extended to a T invariant absolutely continuous probability ergodic measure
pon X ([KkJ).

Since Pf = h [ fdi and [hdi =1 for any f € B, we have [ Pfdy = [ fdi
and also [Pfdv = [ fdv. Denote f = [g fdi. By the definition, R,Pf =
1 Wn(fﬁl{rzn}). Integrating over X, we get

/RnPfdﬁ = /1)?9”(%1{7:”})6119 = /1)? o T" fhlg,—pydi = Fa({r = n}).

Hence, by the fact Pf = ([¢ fdi)h, we immediately get

PR, Pf = (/ RnPfdﬁ)ﬁ = Fu({r = n})h = a({r = n})PF. (2.2)

Note that g({r = n}) = p({r = n})/,u()A() By the Kac formula and the
fact that p is ergodic,

PR(1)'Pf=) nPR,Pf=Y nji(r =n)Pf = 1 Pf.
n=1 n=1 MCK)
It follows that A = (u()?))_l. Also, (2.2) gives
Puf = > PRPf= Y pr=i)Pf=j(r> k)(/fdﬁ)ﬁ.
i=k+1 i=k+1

Note that T, f = 152" (f1¢). So if supp f C )A(, then (2.1) gives that on )A(,

oo

Wf:xliz/fdﬁﬂ—Q > ﬂ(T>k)iL/fd19+Enf.

k=n+1

Replacing f by fh and using the fact | fhdv = p(f), we get that on X,

pr k) _h En(fh).
T e+ B

P (fh) = "g; )+ n(? S
k=n-+1

<

For any g € L>®(X,v) with suppg € X, J(fh)-(goT™)dv = [(P"(fh) - gdv;
by observing also that % [ ghdv = [ gdu, we finally get:

o0

[ o =pputo) + Y. utr>uthulo) + [ FEa(Mgdn

k=n+1

10



The last term is bounded by

|[ 3 Eamygdn| = | [ Eatrmigav]| < ColENallHls] Aol

which ends the proof of the theorem. O
Lemma 2.1. For every z € D, T(z) = (I — R(2))~!.
Proof. This is given in Proposition 1 in [Sr]. O

Lemma 2.2. Suppose that Assumption B(a) is satisfied. IfAﬁ satisfies Lasota-
Yorke inequality (1.2) and i is ergodic with respect to T : X — X, then 1 is a
simple isolated eigenvalue of &.

Proof. Tt is well known that with Assumption B(a) on B, Lasota-Yorke inequal-
ity (1.2) implies that & has at most finitely many eigenvalues in the unit circle,
and all other points in the spectrum of & are contained in a circle of radius

strictly smaller than 1. Moreover, since fi is ergodic, 1 is a simple isolated
eigenvalue. (See e.g. [BG], [Br], and [HH].) O

Lemma 2.3. Suppose that Assumption B(a) is satisfied. If fi is ergodic, then
I — R(2) is invertible on B for z € D\ {1}.

Proof. We follow the proof of Lemma 6.7 in [Go).

By a theorem of Hennion ([He], see also [HH]), the definition of the norm
Il - |, the inequality (1.3), and the compactness of the inclusion B < L! ()A(, v)
imply that for any z € D the spectral and essential spectral radius of R(z) on
B is bounded by |z| < 1 and |2|f} < 1 respectively. To obtain the invertibility
of I — R(z), it is enough to show that 1 is not an eigenvalue of R(z) for |z| =1
with z # 1. So we fix 0 < ¢t < 27 and let z = e¥t.

Suppose that R(z)f = f for some nonzero f € B. Recall that i is a T
invariant measure given by fi(g) = »(hg) Vg € L! ()/i\',ﬁ), where h satisfies
Ph = h. Define the operator W : LOO()?,/)) — L™ ()A(,ﬂ) by Wu = e #"uo f,
where 7(z) is the returning time of z. By the same arguments as in the proof
of the Lemma 6.6 in [Go], we get ||Wf — f|l2 = 0, where || - || denotes the
L? ()?,ﬂ) norm. So we have W f = f ji-almost everywhere with respect to the
measure ji. That is, e %7 f o T = f almost everywhere. By the aperiodicity
condition (iv) we conclude that ¢t = 0 and f is a constant fi-almost everywhere
which is a contradiction. O

3 Aperiodicity

The proof of Theorem B is based on a result in [ADSZ]. We briefly mention the
terminology used there.

11



A fibered system is a quintuple (X, A,v,T,¢), where (X, A,v,T) is a non-
singular transformation on a o-finite measure space and £ C A is a finite or
countable partition (mod v) such that:

(1) éoo = V2o TU¢ generates A;
(2) every A € ¢ has positive measure;

(3) forevery A€, T|4: A— TAisbimeasurable invertible with nonsingular
inverse.

The transformation given in (1.5) is called the skew products over . Con-
sider the corresponding transfer operator of P = é’:,x o A fibred system
(X, A, v, T,¢) with v finite is called skew-product rigid if for every invariant
function E(w,y) of @ of an arbitrary skew product T, the set {ﬁ(,y) >0} is
almost open (mod v) for almost every y € Y. In [ADSZ], a set U being almost
open (modv) means that for v almost every x € U, there is a positive integer
n such that v(&,(z) \ U) = 0. Since the partition £ we are interested in sat-
isfies ¥(0A) = 0 for any A € &, and T is piecewise smooth, the fact that £
generates A implies that the definition given there is the same as we defined for
Assumption B(f).

A set that can be expressed in the form T”fn(x), n>1landze€ )?, is called
an image set. A cylinder C of length ng is called a cylinder of full returns, if for
almost all z € C there exist n; oo such that T Enptno (@) = C. In this case
we say that f”O(C) is a recurrent image set.

Our proof of Theorem B is based on a result given in Theorem 2 in [ADSZ]:

Theorem. Let (X, A, u, T, &) be a skew-product rigid measure preserving fibered
system whose image sets are almost open. Let G be a locally compact Abelian
polish group. If yod = Af/foT holds almost everywhere, where ¢ : X — G, &
measurable, v € @, A €S, then f is constant on every recurrent image set.

In the proof of Theorem B and the lemmas below we will work exclusively
on the induced space X and with measures 7 and i and density h. So we will
drop the hat on these notations.

Proof of Theorem B. Recall that p is an T invariant measure with density h,
where h is the fixed point of & in B. By Lemma 3.2 we know that p is ergodic.
So we only need to prove that €7 is aperiodic.

Denote by 4 the Borel o-algebra inherited from R™. Take a countable
partition & of X into {U;} or finer. We also require that each A € £ is almost
open, and I/Be(aff) = O(e), where oT¢ = UAega(fA). The latter is possible
because we can take smooth surfaces as the boundary of the elements of £, in
addition to Assumption T(b). Since T is uniformly expanding by Assumption
T(c), we know that each element of & = /1oy T~i¢ contains at most one
point. So £, generates A. We may regard that each A € £ has positive measure,
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otherwise we can use X\A to replace X. Also, for every A € &, f|,4 c A TAis
a diffeomorphism, and therefore f| 4 is bimeasurable invertible with nonsingular
inverse. So the quintuple ()A( A, T, £) is a measure preserving fibered system.

The construction of ¢ implies that u(9¢) = v(0€) = 0. Hence, u(9¢,) =
v(0&,) = 0 for any n > 1. Note that the intersection of finite number of almost
open sets is still almost open. Differentiability of T on each U; implies that all
elements &, () of &, are almost open, and therefore all image sets T7&,, (z) are
almost open with respect to .

To get skew product rigidity, let us consider the skew product TS defined
in (1.5) for any (Y, F,p). Let & = 2,4, be the transfer operator and h an
invariant function, that is, Ph = h. By Proposition 3.3 below we know that
l~z~€ B. Hence, for p-almost every y € Y, }NL(,y) € B. By Assumption B(f),
{h(-,y) > 0} is almost open mod v. This gives the skew product rigidity.

So far we have verified all conditions in the theorem of [ADSZ] stated above.
Applying the theorem to the equation €™ = f/fo T almost everywhere, where
f: X — Sis a measurable function, we get that f is constant on every recurrent
image sets J.

Now we prove aperiodicity, by following similar arguments in [Go]. Assume
the equation e''™ = f/f oT holds almost everywhere for some real number ¢ and
a measurable function f : X 5 S. By Lemma 3.1 below we get that X contains
a recurrent image set J with p(J) > 0. By the theorem above, we know that
f is constant, say ¢, almost everywhere on J. By the absolute continuity of p
and the fact that {h > 0} is v-almost open, we can find an open set .J' C .J of
positive p-measure. By Assumption T(d), 7' is topological mixing. Therefore
for all sufficiently large n, we have T-"J' N J' # (). Since the intersection is
open' | we get that u(7-"J'N.J') > 0. So for any typical point x in T-"J'N.J',
there is k > 0 such that T"z = Tz, and n = Y%} 7(T'z). Since €™ = f/foT
along the orbit of z, we have

it _ ke J@) ST JE) S e

f(Tz) f(I?x)  f(Tkz) — f(T*z) ¢

Since this is true for all large n, by replacing n by n + 1 we get that e’ = 1. It
follows that ¢t = 0 and f = f o T almost everywhere which implies that f must
be a constant almost everywhere since p is ergodic. O

To prove Lemma 3.1, we need a result from Lemma 2 in Section 4 in [ADSZ].
We state it as the next lemma. The setting for the lemma is a conservative
fibered system. So it can be applied directly to our case.

Lemma. A cylinder C € &, is a cylinder of full returns if and only if there
ezists a set K of positive measure such that for almost every x € K, there are
n; = 00 with T &y, 4 n, () = C.

JfStrictly speaking that intersection contains open sets since T" and all its powers, although
not continuous, are local diffeomorphisms, on each domain where they are injective.
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Lemma 3.1. There is a recurrent image set J contained in X with nJ > 0.

Proof. Recall that s is given in Assumption T(c). Take C¢ > 0 such that
diam D < C¢ for all D € €. Set

Ao = {2 € X 12 ¢ Be guino (0TE)},

Anno = m Tn kAkno
k=0

By the construction of §, there is C* > 0 such that vA4j -~ >1-— C'Cgsktmo,
By Assumption B(b), ||hljcc < 00. So if we take C' = C'C¢||h||oo /(1 — s), then
Ak ny > 1 — C'Ce|lh||ws®t™ = 1 — C(1 — s)s*T70. Since p is an invariant
measure, 1A, », > 1— C(1—s) Y1) s > 1 — Cs™. If we choose ng large
enough, then pA,, ,, is bounded below by a positive number for all n > 0, and
the bound can be chosen arbitrarily close to 1 by taking ng sufficiently large.

Note that &, is a partition with at most countably many elements. For each
no > 0, let B, be the union of finite elements of &,, such that uB; > 1—
Cs"0 /2. Then set By, », = B, N T\’”B;LO. Clearly, uBy, n, > 1 —Cs". Denote
Chnno = ApnoNByony. We have uC, o > 1—2Cs™. Hence, Yoo uCh pg = 00
for all large ng.

A generalized Borel-Cantelli Lemma by Kochen and Stone ([KS], see also
[Ya]) gives that for any given ng > 0, the set of points that belong to infinitely
many C, ,, has the measure bounded below by

lim sup Zl§i<k§n uci,no MC&HO
n—00 Zl§i<k§n M(Cimo N Ck,no)

Note that if ng — oo, then both uC;,, and uCl ,, approach to 1. Hence the
upper limit goes to 1 as ng — 1. Denote

I, ={z¢€ X:ze Ch n, infinitely often}.

The above arguments gives ul',,, =+ 1 as ng — oo.

Note that for a one to one map T, T(ANT 'B) = B if and only if
B C TA. Since {,(z) = &(z) N ({n \(Tz)), and T is a local diffeomor-
phism, we know that T¢,(z) = fn (Tz) if and only if En— \(T'z) C ff( ).
Inductively, 7€, (2) = &o(T72) if and only if &, iin, (T'x) € TE(T ' a)
fori=1,---,n. Ifx € A, ,, for some n,ny > 0, then Tn—ig ¢ B, sitno (8T€)
for all i = 1,--- ,n. Since the diameter of each member of £ is less then Cg,
by Assumptlon T( ) diam &, (x) < Ces™ for any z € X and n > 0. We get
En—itno (T 'z) C T§(T’ 1) and therefore f”fmrno (x) = &ny (f”m) Consequent-
ly, if z € 'y, then z € Oy, ny = Ani no N Bh, n, for infinitely many n;. Hence,
T & ng () = &ny (T x) and T™ x € By, for infinitely many n;,
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Take ng > 0 such that pul'y, > 0. Since B, consists of only finitely many
elements in &,,, we know that there is an element C' € &,, with C C B, such
that

1t T gy (¥) = &ng (T"x) = C infinitely often} > 0. (3.1)

By the above lemma from [ADSZ], C is a cylinder of full returns. Hence,
J = T™(C is a recurrent image set. Since p is an invariant measure, (3.1)
implies uC' > 0 and therefore puJ > 0. O

Lemma 3.2. Suppose T' and B satisfies Assumption T(d) and B(f) respective-
ly. Then there is only one absolutely continuous invariant measure p which is
ergodic.

Proof. Suppose p has two ergodic components py and pus whose density func-
tions are hy and hs respectively. Hence, v({hy > 0} N {ha > 0}) = 0. Since
hi,hy € B, the sets {hy > 0} and {hy > 0} are almost open. We can take
open sets Uy and Us such that v(U; \ {hy > 0}) = 0 and v(Us \ {h1 > 0}) = 0.
Since T is topological mixing, there is n > 0 such that T-"U; NUs # (). Hence,
v(T~"U; NUy) > 0 and therefore v(U; N T"Us) > 0. It follows that there
is k > 0 such that v»(U; N T’“Uz) > 0. Since Phy = ha2, ha(z) > 0 implies
ho(T*z) > 0. Hence v(T*U, \ {hy > 0}) = 0. Therefore, v({hy > 0} N {hy >
0}) > v(U; NT*Us,) > 0, which is a contradiction. O

The next proposition is the key step for Lemma ?7. The result was proved
for Gibbs-Markov maps in [AD]. We show that it holds in more general cases.

Proposition 3.3. Suppose that B satisfies Assumption B(d) and (e), and P
satisfies Lasota- Yorke inequality (1.6). Then any L'(v x p) function h on X xY
that satisfies &, «,h = h belongs to B.

Proof. By Assumption B(d), B is dense in Ll()?,u). It is easy to see that B
is dense in L' ()A( x Y,v X p). Hence, for any € > 0 we can find a nonnegative
function f. € B such that ||f;—ﬁ| |L1(vxp) < €. By the stochastic ergodic theorem
of Krengel ([Kr]), there exists a nonnegative function he € Ll()? xY,v X p) and
a subsequence {ny} such that

np—1
klgrolo nik ;_ZO Pf. = h. v X p-a.e. (3.2)
and %5 = he. ~ -
Note that Lasota-Yorke inequality (1.6) implies that for any f € B, £ > 1,
12" Flg < T1Fl5+ D1 fllrwp < Dellfllg: (3:3)
where ?* =Dij/(1—=7) > D@+ --- + 7*1) and Dy = 1+ D*. Denote 1, =
Ne—
i [2_; P'f.. By (3.3) ¢y < Ds||fllz- (3:2) implies that liminf ¢y (2, ) =
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he (z,y) for v-a.e. = € )?, p-a.e. y € Y. Hence, by Assumption B(e) and Fatou’s
lemma we obtain

il = [ 1 Jim vu.)lodoto) < [ it o) lado(o)
Y o (3.4)
<liminf / [0 9)lsdply) = limin il < Dol ol

k—o0

It means iNzE €B. . R
By Fatou’s Lemma and the fact that &2 is a contraction on L*(X xY,v x p),
it follows immediately that (3.2) and the fact £2h = h imply

nr—1

12— Teell 12 o p) <11m1nf— ST P M~ F)llLiwxp < b= Fellorwsp <&
=0

By the first inequality of (3.3) we know that for any n > 1,
1hellg = 127 hellg < T l1ellg + D*M1hellLr (vxp)-

Sending n to infinity we get ||hellz < D*|[helri(xp) 5*(||E||L1 (wxp T €)-
Replace now ¢ with a decreasing sequence ¢, — 0 asn — oo. Since hC converges
in L1 (v x p) to h there is a subsequence n; such that lim;_, ., hcn = h VX p-a.e..
Then by the same arguments as for (3.4), we see

|h —he, |5 <liminf [h., —he, |5 <2 sup ||hellz < 2Di(Allr(xp) + 1)
1—0Q 0<e<1

So we getﬁ—ﬁcn € B. B
Therefore h = (h — he, ) + h., € B and this completes the proof. O

Part II: Applications to non-Markov Maps

We now apply our results to piecewise expanding non-Markov maps with
an indifferent fixed point. We use different Banach spaces for maps in one and
higher dimensional spaces.

4 Systems on the interval

The object of this section is twofold: to give an example of a Banach space
which fits our assumptions, and to provide the lower bound for the decay of cor-
relations. Moreover, we will use a large space of observables, bounded variation
function instead of Holder continuous functions.

Let X =1 =10,1] and v be the Lebesgue measure on X.
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Recall that for a map T : X — X and a subset X C X, the corresponding
first return map is denoted by T:X > X v will denote again the normalized
Lebesgue measure over X.

Assume that 7': X — X is a map satisfying the following assumptions.

Assumption T'. (a) (Piecewise smoothness) There are points 0 = ag <
a; < --- < ag = 1 such that for each j, T; = T|IJ, is a C? diffeomor-
phism on its image, where I; = (a;_1,qa;).

(b) (Fixed point) T'(0) = 0.
(c) (Expansion) There ezists z € I such thatT(z) € I and A := inf |T'(z)| >

zeX
2 for any r € X, where X = [z,1].

(d) (Distortion) T := sup |T"(z)|/|T"(z)]* < oo.
z€[z,1]

(e) (Topological mixing) T : I — I is topological mizing.

Denote J = [0, 2] and X XJ =X\J. Iy =TJ\J C L. We also denote
the first return map T = TJ by T,J if T = TlT Further, we denote Iy = I\ J,
Ioj = L\T; ' Jif j > 1,and I; = Tm Iy for i > 0. Hence, {I;; : i =0,1,2,---}
form a partition of I; = (a;,b;) for j = 2,--- , K. Also, we denote I;; = [a;;, bi;]
forany i =0,1,2,--- and j=1,--- | K.

Recall that the variation of a real or complex valued function f on [a,b] is
defined by

V() = Viaw (f) —supZ|f ©) = f=1)),

where ¢ is a finite partition of [a,b] into a = z(® < z(1) < ... < z(® =p and
Z is the set of all such partitions. A function f € L!([a,b],v), where v denotes
the Lebesgue measure, is of bounded variation if Vi, 4 (f) = inf, V], 4(9) < o0,
where the infimum is taken over all the function g = f v-a.e.. Let B be the
set of functions f € L}(X,7), f: X — R with V(f) := Vg(f) < oo. For
f € B, denote by |f|g = V(f), the total variation of f. Then we define ||f||g =
lfllx + | f]5, where the L! norm is intended with respect to 2. It is well known
that || - ||z is a norm, and with the norm, B becomes a Banach space.

To obtain the decay rates, we also assume that there are constants 0 < v < 1,
v > v and C > 0 such that in a neighborhood of the indifferent fixed point

p=0,
T(z) =z 4+ Cz't + O(a't),
T'(z) =1+ C(1+7)z” + Oz, (4.1)
T"(z) = Cy(1 + )z + O(m”’_l).
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For any sequences of numbers {a,} and {b,}, we will denote a,, ~ b, if
lim a,/b, =1, and a,, ~ b, if c1b,, < a,, < c2by, for some constants ca > ¢; > 0.
n—oQ

Denote

dij = sup{|T};(z)| ™" 1z € I;}, dy =max{d,;:2<j <K} (4.2)

Theorem C. Let )?, T and B are defined as above. Suppose T satisfies As-
sumption T’ (a) to (e). Then Assumption B(a) to (f) and conditions (i) to (iv)
in Theorem A are satisfied and |R,|| < O(d,,). Hence, if d, = O(n™?) for some
B > 1, then there exists C > 0 such that for any functions f € B, g € L*(X,v)
with supp f, suppg C )/(\', (1.4) holds.

[oe]
In particular, if T satisfies (4.1) near 0, then Z w(T > k) has the order
k=n+1
n~U/7=Y and d,, has the order O(n="/7t1). So we have

o0

k=n+1

It is well known that if the map T allows a Markov partition, then the
rate of decay of correlations is of order O(n~(1/71) (see e.g. [Hu], [S1],[LSV],
[PY]). For non-Markov case, the upper bound estimate is given in [Yo2] and
[Sr] for observables with some Holder property. With the methods in [Sr], the
lower bound could be obtained by estimating the lower bound of the decay rate
of the tower. Since our methods do not require Markov properties, the decay
rates can be obtained directly from the size of the sets {r > k}. Moreover our
observables are functions with bounded variations, which are more general than
Hélder functions.

Proof of Theorem C. By Lemma 4.1 below, B satisfies Assumption B(a) to (f).
By Lemma 4.2, we know that condition (i) and (ii) of Theorem A are satisfied.
Notice that all requirements of Assumption T are satisfied, since part (a), (c) and
(d) follow from Assumption T'(a), (c) and (e) directly, and part (b) follows from
the definition of 7. Moreover Lemma, 4.2 (iii) gives (1.6). Hence Theorem B can
be applied and therefore conditions (iii) and (iv) of Theorem A are satisfied.

The estimate ||R,| = O(d,) follows from Lemma 4.3. Therefore (1.4) is
given by Theorem A.

Suppose that T also satisfies (4.1). Denote by z, € I; the point such that
T"(2,) = z. It is well known that z, ~ (yn)~/7 (see e.g. Lemma 3.1 in
[HV]), and then we can obtain (T, ")'(x) = O(n~"/7~1). Tt follows that d, =
O(n=1/7+1). Since the density function & is bounded on X, pu(r > k) < Cyv(r >

k) < Cqzy for some Cq,Cs > 0. Hence Z u(r > k)= 0(n=7"1), O
k=n+1

Lemma 4.1. B is a Banach space satisfying Assumption B(a) to (f) with C, =
Cy, =1
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Proof. These are standard facts, see for instance [Zm]. O
Lemma 4.2. There exist constants n € (0,1) and D, D > 0 satisfying
(i) for any f € B, 17 {5 < nlfls + DlIfll11s);
(i) for any f € B, |R(2)flls < |2|(nllflls + DlIfllr2(s));5 and
(it)) for any f € B, |2 flig < nllfll5+ Dlfllz op)-

Proof. (i) Denote z;; = T” (2), and g(zi;) = |ﬁ-’j(wij)|_1. By the definition,

K o
Pfx) =33 [T 05T o)1z, (2).

j=14i=0

we have

Take a partltlon & of TI” into Tmaw =20 < 20 < ... < glki5) = ﬁ-jbij,
where we assume T”aw < T” b;; without loss of generahty Whenever TI i may
intersect more than one intervals Iy = (ag,by) in the case i = 0, then we put
the endpoints a; and by into the partition. Denote SU( ) = T L2, We have

S l#aaEd) - sl gl )|
(=1

(4.3)
kij kij
<2t = e+ 0| a6 — 8 )]
=1 =1

By (4.2), (\Y) < dj. By definition, Y4 |f(z{;™") — f(a{)] < Vi, (f).
Also, by the mean value theorem and Assumption T (d),

~(£ ~ {—
19(@) — gl )]

(D
i <D = 1T DT ()P < T,
Tij =Ty
where cgf) € [mgffl), EJ)] Using the fact that
S @@ = oy = [
max{\z“) (z 1)\}—>OZ; z] Z’ij ): /Mj |f|dl/7
we get from (4.3) that
Vi, (Do D5 <dViy (0 +T [ 1flav, (4.4)
ij
Denote ¢ = min{u(f[ij) :1=1,2,---,1 <j < K}, where ¢ > 0 because there

are only finite number of images ffij. It can be shown that (see e.g. [Br])

V(2f) <2ZZVTI 9 o T;Y) +2¢ Y| f|h-

j=1 =0
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By Assumption T'(c), djj < A~ forall i = 1,2,--- and j = 1,---, K. Hence
Z1a = V() <287V (f) 20 [ [f1do+ 27l =nlfls+ DIl

where = 2A7! < 1and D = 2T +2¢7! > 0.
Part (ii) and (iii) can be proved in a similar way for the proof of correspond-
ing part of Lemma 5.2. 0

Lemma 4.3. There exists a constant Cr > 0 such that ||R, ||z < Crd,, for all
n > 0.

Proof. For f € B, denote

K - co K -
Hence R; = Z R;j and & = Z Z R;; by definition and linearity of &.

j=1 i=0 j=1
Assume i > 0, since ﬁj[aij,b,-j] = I() - I, by (42), ’;(Iz]) S d”l;(.[o) < dl]
Hence, by Assumption B(b),

[ 1410 < 1$l10(T) < Culf - i) < Cudilslls.— (46)

k)

Note that Vz,,(f) < V(f) = |fls < I/lls. By (4.4),
Ver, (F-8) 0 T5") < dyllfls + Dol | flls = (1 4+ TCdilIf s (47)

Since Ri; f(z) =15 (z) - (f-§) o T;;'(x), we have

A 1 N
IRisflo <2V, (-8 0 T") + 255 [ 1las.

ij
By (4.6) and (4.7),
|Rij fls < 2(1+ TCh)dyjl flls + 2Chdi; | fl|-

On the other hand, by (4.5) and (4.6), we have

1R fl = [ Z )b = [ gav< [ 1710 < Cud i

X Iij I,’j
Hence, we get
|Rij flls = |Rij fls + || Rij fllor < [2(1 + T Cy) + 3Cs]dj| f1| -

By the definition of R;; and d,, we get

K
|Rnflls <D IRa-1,;flls < K'(2+20Cy + 3Cy)dy,

j=2
where K’ < K is the number of preimages of I that are not in I;. So the result
follows with Cr = K'(? + 2I'Cy + 30[,). O
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5 Systems on multidimensional spaces: general-
ities and the role of the derivative

The main difficulty to investigate the statistical properties for systems with an
indifferent fixed point p in higher dimensional space is that near p the system
could have unbounded distortion in the following sense: there are uncountably
many points z near p such that for any neighborhood V of z, we can find Z € V
with the ratio

| det DT " (2)|/| det DT ™ (2)]

unbounded as n — oo (see Example in Section 2 in [HV]). For this reason
we need a more deeper analysis of the expanding features around the neutral
fixed point. This has been accomplished in the previous quoted paper and in
order to construct an absolutely continuous invariant measure by adding the
Assumption T ” below, which, together with (5.4), will also be used to get the
rate of mixing.

5.1 Setting and Statement of results.

Let X C R™, m > 1, be again a compact subset with int X = X, d the Euclidean
distance, and v the Lebesgue measure on X with v.X = 1.
Assume that 7': X — X is a map satisfying the following assumptions.

Assumption T”. (a) (Piecewise smoothness) There are finitely many dis-
joint open sets Uy, -+ , Uk with piecewise smooth boundary such that X =
Ufil U; and for each i, Y diffeomor-
phism T; : U; — B, (TyU;), where U; D Us, é € (0,1] and £, > 0.

(b) (Fixed point) There is a fized point p € Uy such that T~'p ¢ U; for any
ji=1,... K.

(c) (Topological mixing) T : X — X is topologically mizing.
For any €9 > 0, denote

T; ' B.(0TU;) N B1—s)e, (7))
Gy(z,e,e0) = 22 B(1_s)50($))

Remark 5.1. We stress that the measure V(Tj_lBE(aTUj) usually plays an
important role in the study of statistical properties of systems with discontinu-
ities. Here Gy(x,e,e0) gives a quantitative measurement of the competition
between the expansion and the accumulation of discontinuities near x. We
refer to [Ss], Section 2, for more details about its geometric meaning. Fur-
thermore it is proved, still in [Ss|] Lemma 2.1, that if the boundary of U; con-
sists of piecewise C' codimension one embedded compact submanifolds, then
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TYm—1

Ym (1 — S)EO
smooth components of the boundary of all U; that meet in one point and vy, is
the volume of the unit ball in R™.

Gyle,e0) <2Ny—— (1 +0(1)), where Ny is the mazimal number of

From now on we assume that p = 0.
For any x € U;, we define s(x) as the inverse of the slowest expansion near
x, that is,

s(z) = min{s : d(z,y) < sd(Tw,Ty),y € U;,d(z,y) < min{e,0.1|z|} }.

where the factor 0.1 makes the ball away from the origin, though any other
small factor would work as well.
Take an open neighborhood @ of p such that TQ) C Uy, then let

s = s(Q) = max{s(z) : x € X\Q}. (5.1)

Let T = fQ be the first return map with respect to X = )?Q =X\ Q. Then
for any = € Uj, we have T(m) = Tj(z) if Tj(z) ¢ Q, and f(x) = T\Tj(x) for
some i > 0 if Tj(z) € Q. Denote Tj; = TiTy for i > 0.

Further, we take Q9 = TQ \ Q. Then we denote Uy = U, \ Q, Up; =
U; \Tj_lQ if j >1,and U;; = ﬁ;lQo for i > 0. Hence, {U;; : i =0,1,2,---}
form a partition of U; for j =2,--- , K.

For 0 < € < ¢gg, we denote

A 6620) N B(l s)eo( ))
Gg =2 )
(=:€.0) ZZ V(B(1—)ey ()

and

G(z,e,e0) = Gu(z,e,60) + Go(z,e,e0), Gle,e0) = sup G(z,e,60). (5.2)
ace)?

Remark 5.2. If T7'TQ N OU; = O for any j, then for any small £o, ei-
ther Gg(x,e,e0) = 0 or Gy(z,e,60) = 0, and therefore we have G(z,€,e09) =
max{Gy(z,¢e,&0),Go(x,e,¢0)}.

Remark 5.3. If T has bounded distortion then G is roughly equal to the ratio
between the volume of B.,(0Qo) and the volume of Qo. Therefore if ey is small
enough, then sup{Gq(z,¢,e0)} is bounded by sup{Guv(z,e,c0)}.

zeX x€X

Assumption T”. (d) (Expansion) T satisfies 0 < s(z) < 1 Vx € X \ {p}.

Moreover, there exists an open region Q withp € Q C Q C TQ C TQ C
Ui and constants a € (0,&], n € (0,1), such that for all g small,

sS“+HA<n<,
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where s is defined in (5.1) and

A=2 sup G(e. 20)

€q. 5.3
0<e<eg e 0 ( )

(e) (Distortion) For any b > 0, there exist J > 0 such that for any small &g
and € € (0,e9), we can find 0 < N = N(g) < oo with

| det DT " (y)|
Pt P4 W o 14 je* vy B.(a), € By (Qo), ne (0N,
|det DT, ") = 77 WY (z), = (Qo), m € (0, N]

and
o0

> sup |det DT, "(y)| < be™*  Va € Be,(Qo),
n:NyeBs(w)

where « is given in part (d).
For sake of simplicity of notations, we may assume & = «.

Remark 5.4. We put Assumption T" (e) since near the fized point distortion
for DT} is unbounded in general. It requires that either distortion of DT| " is
small, or | det DT ™| itself is small.

Remark 5.5. There are some sufficient conditions under which Assumption
T"(d) and (e) could be easily verified. We refer [HV] for more details, see in
particular Theorems B and C in that paper.

If near p distortion is bounded, then Assumption T"(e) is automatically
satisfied and it will be stated as follows (it could be regarded as the case N () =
oo for any € € (0,&0)):

Assumption T". (¢') (Bounded distortion) There exist J > 0 such that for

any small g9 and € € (0,&¢),

| det DT, "(y)]

|det DT} " (z)| <1+ Je* Vyé€ B:(z), z € B:,(Qo), n>0.

Remark 5.6. It is well known that if dim X = m = 1, any system that has the
form given by (5.4) below near the fized point satisfies Assumption T (¢'). The
systems given in Example 5.1 satisfy it too.

To estimate the decay rates, we often consider the following special cases:
There are constants v/ >y > 0, C;,C} > 0,4 = 0,1, 2, such that in a neighbor-
hood of the indifferent fixed point p = 0,

|z (1 = Chlz|” + O(|2]")) <|T7 x| < || (1 = Colz|” + O(|2]")),
1= Cila|” + O(2") <||DT; (@) < 1= Calz|” + O(|a|"), (5.4)
Cle "™ + O(le["") <SID*TT (@) < ol + Ol ).
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We will now define the space of functions particularly adapted to study the
action of the transfer operator on the class of maps just introduced. If Q is
a Borel subset of X , we define the oscillation of f over {2 by the difference of
essential supremum and essential infimum of f over Q:

osc(f, ) = Esup f — Einf f.
Q Q

If B.(z) denotes the ball of radius € about the point z, then we get a measurable
function & — osc(f, Be(x)).

For 0 < @ < 1 and €y > 0, we define the quasi-Holder seminorm of f with
supp f C X ast

fls = sup e_"‘/)?osc(f,Be(m))dﬁ(m), (5.5)

0<e<eg

where ¥ is the normalized Lebsegue measure on X , and take the space of the
functions as

={re L' (X.9) 11115 < 0}, (5.6)
and then equip it with the norm
||'||B:||'||L1()?7,))+|'|B- (57)

Clearly, the space B does not depend on the choice of €y, though | - |z does.
Let s;; = sup{||D "(2)]| : ¢ € B-y(Qo)}, and s, = max{s,_1; : j =
2,-- ,K}.

Theorem D. Let )?, T and B be defined as above. Suppose T satisfies Assump-
tion T' (a) to (e). Then there exist g > €1 > 0 such that Assumption B(a) to
(f) and conditions (i) to (iv) in Theorem A are satisfied and ||Ry| < O(s%).
Hence, if Zf:nﬂ 5¢ < O(n=P) for some B > 1, then there exists C > 0 such
that for any functions f € B, g € L*®(X,v) with supp f, suppg C X, (1.4)
holds.

Remark 5.7. For Lipschitz observables, the rates of decay of correlation are
given by the rates of decay of p{T > n} if the systems have Markov partitions
and bounded distortion. It is generally believed that for Hélder observables, the
decay rates may be slower if the Hélder exponents become smaller. It is unclear
to the authors whether the rates we get are optimal. In the next section, we
will put stronger conditions on the systems so that we can get optimal rates for
Holder observables with the Holder exponents larger than or equal to .

fSince the boundary of X is piecewise smooth, we could define the space of the function
directly on X instead of R™ as it was done in [Ss].

24



Remark 5.8. For one dimensional systems the rates given in the theorem are
optimal, since the decreasing rates given by the norm of derivatives are the same
as those given by determinants (see the discussion in the Introduction or Section
6 for more details). So the theorem provides the same decay rates as Theorem C
does, but for different sets of observables, since functions with bounded variation
are not necessary quasi-Hélder functions and vice versa.

Before giving the proof, we present an example.

Example 5.1. Assume that T satisfies Assumption T" (a) to (d), and near the
fized point p =0, the map T satisfies

T(2) = z(1+ |2 + O(|2[")),
where z € X C R™ and v' > ~.

1 1
Denote z, = T} "z. It is easy to see that |z,| = Gy + O(W)’ where

B =1/yand B’ > 8 (see e.g. Lemma 3.1 in [HV]). Using this fact we can check

that 7" satisfies also Assumption T"(e’). Hence, the theorem can be applied.
If the dimension m > 2, then || DTy "|| is roughly proportional to |z,], since,

if higher order terms are ignored, 7, " maps a sphere about the fixed point

. . 1 .-
of radius |z| to a sphere of radius |z,|. So s, = O(n—ﬁ) and Z sy =
k=n+1
1
O(W) If v € (0,1/2) is such that af > 1, the series is convergent.

Note that v(r > n) is of the same order as 27,

and therefore p(r > n) =

1 e 1
O(nmﬂ—l)' It follows that Z u(r > k) = O(W) Since the order is
k=n-+1
higher, by (1.4), we get
‘Cov(f,g oT™)| < C/n*F71,

for f € B, g € L*>®(X,v) with supp f, suppg C X.
On the other hand, if m = 1, then ||DT; "|| is roughly proportional to

1 = . 1
|Zn _ZTL+1|' So Sp = O(W) and Z S = O(W) If’}/ € (0,1)
k=n-+1
(o0}
is such that «(8 + 1) > 1, the series is convergent. Also, Z u(t > k) =
k=n-+1

1
0 (F) So if (B + 1) > 3, the sum involving s¢ is of higher order. We get
that the decay rate is given by

o0

oY uir> k) :o(#).

k=n-+1

‘Cov(f, goT™)
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5.2 Proof of Theorem D

Proof of Theorem D. Choose €9 > 0 as in Lemma 5.2, and define B correspond-
ingly by using this 7. By Proposition 3.3 in [Ss], B is complete, and hence is a
Banach space. Then Assumption B(a) to (f) follow from Lemma 5.1.

By Lemma 5.2 we know that condition (i) and (ii) of Theorem A are sat-
isfied. Assumption T"(a), (d) and (c) imply Assumption T (a), (c¢) and (d)
respectively. Assumption T(b) is implied by the construction of the first return
map. Lemma 5.2(iii) give (1.6). So all conditions for Theorem B are satisfied.
Hence we obtain condition (iii) and (iv) of Theorem A. The fact ||R,|| = O(s%)
follows from Lemma 5.3. O

In order to deduce the spectral properties of P from the Lasota-Yorke in-
equality, one needs to verify Assumption B on the space of functions B.

Lemma 5.1. B is a Banach space satisfying Assuptions B(a) to (f) with C, =
20, = 27, eg ™, where vy, is the volume of the unit ball in R™.

Proof. Parts (a), (b) and (c) are stated in Propositions 3.3 and 3.4 in [Ss| with
Cy = max{1,e*} /el and C, = 2max{1l,e*}/ynmel’. Part (d) follows from
the fact that Holder continuous functions with compact support in X are dense
in L}(X, D).

Let us now assume f(u) = lim,_,o fr(u) for v-a.e. u € R™. Take xz € R™,
and ¢ € (0,e9). It is easy to see that for almost every pair of y,z € B.(z), we
have

@) = FEI < lim [faly) — fa(e)| < liminf osc(fo, B ().

Hence, osc(f, B:(¢)) < liminf,,_, o, osc(fn, B:(x)). By Fatou’s lemma, we have

n—oQ

/osc(f, B.(x))dv < liminf | osc(fy,,B:(z))dp.

It implies | f|p < liminf, | fn|z. We get part (e).
It leaves to show part (f). For a function f € B, denote

Da(f) = {w € R™ :liminf osc(f, B.(x)) > %} D(f) = {J Dulh)

Clearly D(f) is the set of discontinuous points of f. If #(D(f)) > 0, then
there exists N > 0 such that Leb(Dx(f)) > ¢ > 0. Notice that Dn(f) =
Uk>1 Sk, where S = (1,5 { : osc(f, Bi(z)) > +1} is an increasing sequence
of measurable sets.

For k big enough we still have ©(Sy) > ¢ and therefore, for such a k:

|flg > supes*“/ osc(f, B:(z))dv(z) > supzs*“/ osc(f, B<(z))dv(z) = oo.
€>0 Dy (f) S

e>0

This means f ¢ B; in other words, any f € B satisfies o(D(f)) = 0.
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Take any f € B with f > 0 almost everywhere. If f(z) = 2¢ > 0 for some
x ¢ D(f), then there is € > 0 such that osc(f, B.(z)) < ¢. Hence, f(z') > ¢>0
for almost every point &' € B.(z). So B.(z) \ {f > 0} has Lebesgue measure
zero. This implies that {f > 0} is almost open and therefore part (f) follows. O

Before stating the next Lemma, we remind that the space B depends on the
exponent, & and the value of the seminorms on €3: as we did above, we will not
index B with these two parameters. Moreover all the integrals in the next proof
will be performed over X.

Lemma 5.2. There exists €. > 0 such that for any g9 € (0,e.), we can find
constants € (0,1) and D, D > 0 satisfying

(i) for any f € B, |Zf|5 < nlf|s + DIIfll: s);
(ii) for any f € B, |R(2)fll5 < |2|(nllfllz + DI|fll2()); and

(iii) for any f € B, |2 fllz < nllfllz+ DIFllLioxp)-

Proof. By Assumption T” (d), s + A < 1. Therefore if we first choose b small
enough, we obtain { = J according to Assumption T"(e), and then we could
take g9 small enough in order to get

n = (14¢e8)(s* + A) +27,,'bK’ < 1, (5.8)

where K’ is the number of j such that U;; # 0. Clearly, 7 is decreasing with &q.
Let us define:
D :=2¢ +2(1 + Ce§)N /el + 2y bK' > 0. (5.9)
For any = € X, let us denote Ty = figlx, g;j(z) = | det Dﬁj(x)rl and for
feB: '
Rijf = 1)? . W’(flUl.j)(m). (510)
Clearly,
Rijf(z) = f(zi5)g(2i5)1u,; (2i5)- (5.11)
Hence R; = Z]K:1 R;; and P = Yoo Z]K:1 R;; by definition and the linearity
of 2. We also define
v(T;;* Bo(0TU;;) N B(1—g)e, (7))
V(B(l—S)Eo (z)) '
Clearly, G(z,e,20) =2 12, Zszl Gij(G(z,€,€0).
For any € € (0,¢¢], take N = N(g) > 0 as in Assumption T (e).
For i < N(e) and by the proof of Proposition 6.2 in [HV], we know that

osc(Ri; f, B.(x)) = osc((f§) e Ty; 13y,,» B-(x))

=osc((fg) o ﬁ;l,Bg(x))lfUﬁ(w) +[2 115315&1))(]0.5) ° ﬁ;l] 1BE(aTUij)(m)-

Gij(x,E,Eo) =2

(5.12)

27



The computation in the proof also gives
osc(fg, ﬁ;lBE(:L“) N Uij)
<1+ ¢e®)osc(f, Bse(wij) NUsj)g(wij) + 2Ce%| f(wi)|g(2ij)-
Notice that osc(f, B (z4;)N Uij) < osc(f, B,. (a:,j)) By integrating and using
(5.11) we get

(5.13)
S/[(l + (e®)Rijosc(f, Bse(:)) +2Ce“Ryj|f|]do.

On the other hand, by the same arguments as in Section 4 of [Ss], we get

/ 2[Esup (fg) o T\Jl] g (070, (z)dv
Beele) (5.14)

§2(1+(5“)/)?Gij(x,5,50)[|f|(a:)-|-osc(f,B50(:1:))]d17.

Therefore by (5.12), (5.13) and (5.14),

|Rijfls = sup 5_a/OSC(RijfaBE('))dﬁ
0<e<ep

< sup 57&/[(1 + (e*)Ryj 0sc(f, Bs:(:)) + 2¢e*Ry;| f|] div (5.15)

0<e<eg

+ sup 5_6“2(1+Caa)/AGij(a:,a,sg)Uﬂ(a:)+osc(f,B50(ac))]dﬁ.
0<e<eg X

For i > N(e), by the definition of oscillation we obtain directly that

osc(Rij f, B:(z)) < 2[|flls sup g
T Be(x)

Hence, by Assumption B(b) with C, = 7,,,'e5™, we have

|Rijfls = sup 5_a/OSC(RijfaBE('))d’9
0<e<ep

<fle swp [ sup gao
ot S 7-1B, (a) (5.16)

<2mel)  (fls +Ifll) e sup / sup g di.
0<E§60 j:inge(m)

(i) We first note that for all 0 < e < ¢,

N(e) K

g™ @ Z/Rij osc(f, BSE(-))dﬁgs_a/ﬁosc(f, By () di
i=0 j=1 (5.17)

gso‘(ss)*“/osc(f, B ())dv < 5%|f|s,
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2

() K
=YY [ 20 G ) [] + 05l By ()]

Jj=1

1§
)

7

(5.18)
<e7¥2(1 + (e¥)G(e, o) /[Ifl + osc(f, B, (+))] dv

<+ Ce™)A[eg lIfll + 1 f15],
where we used (5.2) and (5.3). Also, by Assumption T"(e) and Assumption
B(b) with Cp = 7;,teg ™", we have that for all 0 < & < &¢:

1 loe / ZZ sup G i < | flloe DRI <A I f s

=1 T 'B.(z)
(5.19)
Since P f(x) = Y2y iy Rijf(w), by (5.15) and (5.16), and using (5.17)
o0 (5.19), we obtain that |2 f|s is bounded by

sup e~ /ZZOSC R;;f.B dy+/220sc R;;f,B:(z))d ]

0<e<eo

i=0 j=1 =0 j=1
<(1+¢e§)s®| fls + 2¢|flln + (14 ¢e§)A(eg I f 11 + | £l8) + 27, 0K || £l
<[+ ¢ed)(s™ + A) + 29, bK ]| f1B + [2¢ + 2(1 + (e§)A /el + 27, bK ]| f]]1.-

By definition of 7 in (5.8) and D in (5.9) we get the desired inequality.

(ii) Note that for any real valued function f and z € C, we have osc(z f, B:(z)) =
|z| osc(f, B:(z)). Also, note that if {a,} is a sequence of positive numbers and
z€D, |30, 2"a,| < |2| Y e an. Hence we have

RO <] sip 33 [ osclisf, Bu(a))dv < 12| 7 1

0<e<eo =0 j=1
By part (i), the inequality becomes
|R(2)fls < 2|l f|5 + DI fll1)-

Also, since Z and R,, are positive operators,
IR Al < SOl Raf |, < 12l SORAIA, = 121 2111, = 1200 £, -
n=1 n=1

It follows that
IR(2) flls < 2l flls + (D + DI f]]1)-

Using induction on n, we get the expected result with D = (D +1)/(1 — 7).
(iii) The transfer operator & has the form (see also [ADSZ])

(2f)(@,y) ZZfT 2, S(Uy) " W)g(T5 o) gy, (2,y),

n=0 j=1

29



for any fe g, where S(Uj;) : Y = Y are automorphisms. Let us denote:
(Bij D(a,y) = [T e, SU) " )9(Ty5 )13y, (,9)-

Following the same computations as above, we get formulas similar to (5.15)
and (5.16) but with R,, and T” replaced by R,, and T” respectively, and f(- )

replaced by f(-,y). Denote y; = S(Ui;) " (y). Instead of (5.15) and (5.16), w
get that for i < N(g),

By Fy)ls = sup 6_0“/osc(él’jf(-,yl),BE(-))dﬁ

0<e<eog

< sup 6’“/[((1-%46“)31 osc(f(vy1), Bse(")) +246“§ij|f(-,y1)|)

0<e<eq

2G5, 2,20)(1+ (&) (05e(Fl, 1), Be () + 1 F (o)) |,
and for ¢ > N(e),

By fy)ls = sup a—a/osc(éijf(-,yl),BE(-))da

0<e<eg

<2(ymeg)  (F o)l + 1y ) Sup/ sup  gdp.
T,

O0<esco T7'B.(x)

We observe that for any z, S(U;;) : Y = Y preserves the measure p. We set

- /S Fam)dow), ose(F0), B.() = / osc(F( 1), Bo() dp(y).

s
Integrating with respect to y, and using Fubini’s theorem, we get

|Rijflg < sup E_C“/[((l +C5a)§ijm(f('): By (+)) +2<5a§ij|.f(')|)

0<e<eg

2G5 (w35, 2,20) (1 + () (056(F(), B-() + |F()]) | ai

and
e Pl < 20me8) " (Flg + 1) e sup [ sup gao
0<e<eg i_'lBa (z)
By Fubini’s theorem, we have also |f|g = sup E*O‘/W(f( ), B:(+))dv,
0<e<eg

and |]7|L1(,;Xp) = /|f()|dz7 Using the same arguments as in the proof of
part (i) we get

|Pf(, ZZ IRiiflg < (1+Ce§)s%| flg + 2¢N il (oxp)

n=0 j=1
+(1+ DAl + €5 Nt ) 270K (1 F g + 1 1Lt 90 )
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and therefore the result of part (iii) with the same 7 and D giving in (5.8) and
(5.9) respectively. O

Lemma 5.3. There exists a constant Cr > 0 such that ||Ry||g < Crs$ for all
n > 0.

Proof. Since R; = Zj R;j, we only need to prove the results for R;;.

Take € € (0,g0]. Choose any b > 0 and let N(e) be given by Assump-
tion T (e).

We first consider the case n =i+ 1 < N(e).

By the definition of R;; given in (5.10), we have for any f € B,

/Rijfdﬁ = /1)? - P (fly,,)dy = /A fly,dv = fdi. (5.20)
e Usj
We now denote d;; = sup{|det Di;l(x) : @ € B:(Qo)}. Since for any z,
| det Df;l(xﬂ < ||D1A’Z;1(J:)||, we have d;; < s;;. Since fUij = Qo,
v(Uij) < dijv(Qo) < s4v(Qo). (5.21)

Hence by Assumption B(b),

[ Risfdo < 1= < Qs (5.22)

By similar arguments as for (5.20), we have

/A R;; OSC(f, BSijE('))dﬁ < /A OSC(f, BSiJ‘E(‘))lUijdﬁ < S%5a|f|8- (5.23)
X X

We note that for each j, fUij = Qo and the “thickness” of fingg(aQo) is
of order s;;e, since 0Q¢ consists of piecewise smooth surfaces. So G;;(e,e0) <
Cges;; for some Cg independent of 4 and j. Therefore we have

/A 7921+ (e*)Giy (-, 2,20) [| | + 0sc(f, Bey ()] di

X
<21+ ¢e*)Cqe' ™% si; [ fllLr (o) + €51 18]

Hence by (5.15) we get that
|Rij fls < Crsi[Iflleie) +1fls] = Crsi;lIfls

for Cp, = (1 + (e§)(1 + 2Cqey ™) + 2¢Cy2(Qo).
We now consider the case n = i+1 > N(g). As we mentioned in Remark 5.6,
in this case m > 2. By definition, there is Cs > 0 such that g(z;;) < C2s?; for

5 °4j

any x;; € ﬁ;lBE(QO) with j = 2,--- , K. By Assumption T"(e) we know that
for any « € B:(Qo),

1/2 1/2
(A sup §) _sup §) < Vbemtal/2 < \pee,
i1, Be(2) i=N(e) Ti; ' B ()

o0

IN
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Therefore by (5.16) we have
IR fls < Cgsi;llflls < Crsiiliflls

for C = 2(Ymeld") ' VbCs.
Finally, by (5.22), we have

IRy flli < / Ryj|fldi < Cor(Qo)sis I f .

Thus we have || R;; fl|s = (Cr+Cg+Cyv(Qo))sf || flls. The result of the lemma
then follows. O

6 Systems on multidimensional spaces: the role
of the determinant

In this section we put additional conditions on the the map T that we stud-
ied in the previous chapter in order to get optimal estimates for the decay of
correlations.

6.1 Assumptions and statement of the results.

Let us suppose T satisfies Assumption T"(a), (d) and (e) in the last section.
We replace part (b) and (c) by the following

Assumption T”. (b’) (Fixed point and a neighborhood) There is a fized
point p € Ur and a neighborhood V' of p such that T~V ¢ 0U; for any
j=1,...,K and for any n > 0.

(c¢") (Topological exactness) T : X — X is topologically ezact, that is, for any
z € X, e >0, there is an N = N(z,e) > 0 such that TN B.(z) = X.

Remark 6.1. It is easy to see that if T has a finite Markov partition, or a finite
image structure (see e.g. [Yr]), then T satisfies Assumption T" (V') as long as
p is not on the boundary of the elements of the partition in the former case and
not on the boundary of the images in the latter case.

Remark 6.2. Clearly, topological exactness implies topological mizing.

We rename the seminorm and the Banach space defined in (5.7) and (??)
by replacing B with @ which will therefore depend on « and on €y, the latter
dependence affecting only the value of the seminorms. Then instead of (5.7) we
put

Iflle = [1fllzr @) + | fle-

Recall that V' is a neighborhood of p given in Assumption T "(b). We denote
the preimages Tij ... TiIIV by Vi,..1, or Vi where I =4y ...1;,. We also denote
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with Z the set of all possible words 4 ---i; such that Tizl ... TglV is well
defined, where iy € {1,--- ;| K} and k > 0.
For an open set O, let H := H2 = H (O, H) be the set of Holder functions f
over O that satisfies | f(z)— f(y)| < Hd(z,y)® for any z,y € O with d(z,y) < ;.
Let & be a fixed point of the transfer operator eﬁ, which will be unique under
the assumptions of the theorem below. We now define B by

€051

B:=B% _ = {f € Q:3H >0 s.t. (f/h)|y, € HE (Vi H) VI € I} . (6.1)
and for any f € B, let
|fl3 = |flae, = inf{H : (f/B)|v, € HE (Vi, H) VI € T}.

Sublemmas 6.3 and 6.4 below imply that h > 0 on all Vij, and therefore the
definition makes sense. Then we take |- |g + |- |% as a seminorm for f € B and
define the norm in B by

-lls= 111l +1- o+ |n- (6.2)

Clearly, B C Q and ||f||g > ||fllo if f € B.
Recall that for any sequences of numbers {a,} and {b,}, we use a,, = b, if

lim a,/b, =1, and a, ~ b, if ¢1b, < a,, < coby, for some constants co > ¢; > 0.
n—o0

Let d;; = sup{|det Dﬁ;l(a:) tx € BEO(QO)}, and d,, = max{dn,lﬂ- 1=
2,--- ,K}.

Theorem E. Let )?, T and B be defined as above. Suppose T satisfies As-
sumption T" (a), (b'), (¢'), (d) and (e). Then there exist eg > €1 > 0 such that
Assumption B(a) to (f) and conditions (i) to (iv) in Theorem A are satisfied
and ||R,|| < O(dn/ ™). Hence, if > hent1 m/mte) < O(n=B) for some
B > 1, then there exists C > 0 such that for any functions f € B, g € L*°(X,v)
with supp f, suppg C )A(, (1.4) holds.

Moreover, if T satisfies (5.4) near p =0, then Z u(T > k) has the order
k=n+1
n (/71 or higher. In this case, if dp = O(n?) for some 8’ > 1 and if
,  m m
=4 -1> 2, ——1 .
B=p =1 max2, - 1) (63)
then
Cofgo™) m Y wlr>K) [ fdu [odu ~ 1/ (6
k=n+1

In particular, if Assumption T" (e') in the last section also holds, then the above
statemnets remain true if we replace m/(m + «) by 1.
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Remark 6.3. For the case that T satisfies (5.4) near p, if h is bounded away
from 0 on the sets {T > n}, then pu(t > n) and v(T > n) have the same order,
and Y07 (T > k) = O(n=(m/7=1)) . This is the case in Ezample 7.1, 7.2
and 7.4 below.

On the other hand, h may be only supported on part of the sets {T > n}, and
therefore u(t > n) may have higher order, like in Ezample 7.8. In this case,
> neni1 K(T > k) has an order higher than n—(m/r=1)

6.2 Examples

Before giving the proof, we present a few examples. We will always assume that
T satisfies Assumption T"(a), (b’), (¢') and (d).

Example 6.1. Assume m = 3, and near the fixved point p = (0,0,0), the map
T has the form

T(w) = (z(1 + wl* + O(wl*), y(1 + [w]* + O(wl*)), 2(1 + 2w|* + O(jwl*))

where w = (z,y,2) and |w| = /a7 + 57 + 22.

This map is very similar to that in Example 1 in [HV], although it is now in
a three dimensional space. We could still use the same arguments to show that
Assumption T" (e) is satisfied.

Denote w, = Ty "wj; clearly, |w| + |w]® + O(jw|*) < |T(w)| < |w| + 2Jw|®* +
O(Jw|*). By standard arguments we know that

\/%4-0(\/%) < Jwn] < \/%71+0(\/%)

(see also Lemma 3.1 in [HV]). Since we are in a three dimensional space, we
1 1 — 1
T = A and therefore k2+1 v(tr > k)~ iz
=n

It is easy to see that det DT'(w) = 1+ 622 + 6y* + 822 + O(Jw|?). So we
have | det DT, ' (w)| < 1 — 6[w|? + O(Jw|?). By Lemma 3.2 in [HV] with r(t) =
1-6t2+0(t?),y=2,C" =6 and C = 1, we get that | det DT} "(z)| = O(1/n?).
Hence we have f' =3 and f =3m/(m+a)—1>3-3/(3+1)—1=>5/4. Since
m/y —1=1/2, (6.3) holds, and therefore we have (6.4) with the decay rate of

order 1/+/n.

Example 6.2. Assume m = 2, and near the fized point p = (0,0), the map T
has the form

now have v(r > k) ~

T(z) = (z(1+ 2" + O(|2]")), y(1+2[2]" + O(|2|")))

where z = (z,y), |z] = /2?2 +y?, v € (0,1) and v' > 7.
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By methods similar to Example 1 in [HV] we can check that Assumption
T" (e) is satisfied. Denote z, = Ty "z. Since |z| + |z|"*7 + O(|z|") < |T(2)] <
2| + 2|2t + O(|2|"), we have

Wl)w +O(%) < lowl < (Wl)l/v +O(%)

o

and therefore Z v(t > k)~

k=n+1

(B+7)z* + 3+ 2y)y”
|22~

O(|z|71). Therefore |det DT, 1 (2)| < 1—(349)|2]"+0(|2|"), and | det DT " (z)| =

O(1/n**3/7). Hence ' = 1 +v/3 and B = (1 +3/7)-2/2+a)—-1 >

(14+3/v)-2/3—1=2/y—-1/3 > 2/y — 1. It means (6.3) holds, and the

decay rates is of order 1/n?/7=1.

1

1
for some § > 1/v. So v(1 > k) ~ Lk 21

It is possible to show that |det DT'(z)|] = 1 +

Example 6.3. Assume m = 2, and take the same map as in Example 1 in
[HV], namely, near the fized point p = (0,0), the map T has the form

T(z,y) = (z(1+2” +y%), y(1+2° +¢°)?),

where z = (z,y) and |z| = \/z? + y>.

The map allows an infinite absolutely continuous invariant measure. Howev-
er, the map can be arranged in such a way that there is an invariant component
that supports a finite absolutely continuous invariant measure u. Near the fized
point, the region of this component has the form

{z = (z,9) : [yl < 2?}.
We may regard X as this component, and T : X — X satisfies the assumptions.

We could check that the map has bounded distortion near the fixed point
restricted to this region. Hence, the map satisfies Assumption T"(e').

Since |z,| = O(1/+/n) and for z = (x,y), |y| < 22, we get v(T > k) ~ FETE
(o0}
1

and Z v(r > k)~ veR

k=n-+1

On the other hand, |det DT(z)| = 1+ 5z + 7Ty? + O(Jz|!). Since |y| <
22, |z| = |z| + O(|2|*); thus |det DT(2)| = 1 + 5|z|> + O(]z|*), and therefore
|det DT ™(2)| = O(1/n®/?). So B' = 5/2 and B = 3/2. We obtain that the
decay rate is of order 1/n'/?,

Example 6.4. Assume m > 3 and near the fized point p = (0,0,0), the map T
has the form
T(z) = z(1+ 2] + O(|]=]"11)),

where m >~ > 0.
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These examples are comparable with those in Example 6.1, except for the
stronger topological assumptions which we now put on the maps. We know that
these maps satisfy Assumption, T (e’).

Denote z, = T; "z. We have |z,| = 1/(n7)"/7 + O(1/(nv)*/7*!) and
|det DT ()| = 1+ (m +v)|2]” + O(|z|"™"). Hence, we get that |det DT} ™| ~
1/n™/7*1. (For the relative computations see Lemma 3.1 and 3.2 in [HV]).
Therefore f' =m/v+1 and g =m/~.

o

On the other hand, we see that v(7 > k) = O(1/k™/7), and then Z v(r >
k=n+1
1
B)
get that the decay rate is of order l/nm/’Y_l.

Since m > ~, the invariant measure y is finite and g > 1. We

6.3 Proof of the Theorem

Proof of Theorem E. Take gy > 0 satisfying Lemma 5.2 in the last section,
and then choose ¢; € (0,¢0] as in Lemma 6.2 below. We reduce e; further if
necessary such that 7’ := n+ Dy (e0)e < 1, where 1 < 1 is given in Lemma 5.2
and Dy(gg) > 0 is given in Lemma 6.2. Then we take B := B2 _ as in (6.1).
With the norm given in (6.2), B satisfies Assumption B(a) to (f) by Lemma 6.1.

By Lemma 5.2 and 6.2, condition (i) of Theorem A is satisfied with constants
n and D replaced by n' defined as above and D+ Dy, (eg)e respectively, where D
is the number given in Lemma 5.2. Condition (ii) can be obtained in a similar
way. Assumption T"(a), (d) and (c') imply Assumption T (a), (c) and (d)
respectively. Assumption T(b) follows from the construction of the first return
map. Lemma 5.2(iii) and 6.2(iii) give (1.6). Therefore all the conditions for
Theorem B are satisfied. Hence we obtain condition (iii) and (iv) of Theorem A.

The facts ||Ry|| = O(dnm/(m+a)), and ||R,|| = O(d,,) if Assumption T"(e) is
satisfied, follow from Lemma 6.5. Therefore (1.4) is given by Theorem A.

If T also satisfies (5.4), then we know that for any z close to p, |1} "z| i
of order n='/7. Hence #{r > k} has the order k~"/7, and Y et kv =
O(n=™/7+1). Then the rest of the theorem is clear.

2]

O

Lemma 6.1. B is a Banach space satisfying Assumption B(a) to (f) with C,
2C) = 2y, eg ™, where vy, is the volume of the unit ball in R™.

Proof. We already know that Q is a Banach space, and the proof of the com-
pleteness of B follows from standard arguments. So B is a Banach space.

Now we verify Assumption B(a) to (f).

By Lemma 5.1, the unit ball of Q is compact in L' ()/(:,19) Since ||f||s >
[|f]lo for any f € B C Q, the unit ball of B is contained in the unit ball of Q. S-
ince B is closed in Q, the unit ball of B is also compact. This is Assumption B(a).
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Moreover, for any f € Q, || flloo < Chllflla < Cbllflls with Cp = v,," e ™.
We have thus got Assumption B(b).
Invoking again Lemma 5.1, we have for any f,g € Q, || fglla < C.l|fllcllgll o,

where C,, = 2vy,,le; ™" = 2C,. Tt is easy to check that

|£glae < N fllsolgla + llgllsol flae < Collfllelgla + Collgllal f12-

Hence,

1£9lls = Ifglle + [fgln < Callfllllglle + Cullfllalgln + Cullgllal flan
<Ca(llflle +1£12) (llglle + lglr) = Callfllsllglls.

Therefore Assumption B(c) follow with C, = 2y;;te; ™ = 2C,.

Similarly, part (d) of Assumption B follows from the fact that B contains all
Hélder functions, and Holder functions are dense in L* ()/(\', D).

Assume f(z) = lim,_,o0 fn(z) for D-a.e. # € X. By the proof of Lemma 5.1
we have |f|g < liminf, o |fn|g- For any y,z € Vi, where I € Z,

@) = FE _ o @) = Fal2)

< liminf | f, |-
Ay Al g S iminflfal

It gives |fly < liminf, oo |fn|#. Since |f|g = |flo + | fln, we get part (e).
Since B C Q, part (f) is directly from the fact that Q satisfies Assump-
tion B(f). O

Lemma 6.2. Let ¢y be as in Lemma 5.2. There exists Dy = Dy(q), Dy =
Dy(eg) > 0 and e € (0,g9] such that for any 1 € (0,e_], and by using the
notation for the Banach space introduced in (6.1):

(i) for any f € BS .., |2 flu., < s%|flu., + Duetllflle.,;
(ii) for any f € B .., |R(2)fln., <12|(s*|fln., + Duetllflla.,);
(iii) and for any f € Ego,gl L@ﬂﬁsl < 5‘1|]7|ﬁ51 +DH5?||ﬂ|éEO.

Proof. (i) Let e, € (0,&0], J; > 0 as in the proof of Sublemma 6.4 below.
Suppose € € (0,e.], and |f[3, = H for some f. Take z,y € V; for some
I € T with d(x,y) = € < &,. Then by Assumption T"(e), we can take J > 0,
N = N(e) >0 for b= 1. Note that

Pf@) Py s~ g@i)h@y) (F@) )
h(w) h(y) ;; h(z) (ﬁ(mz’j) il(yij))
K N ~ ~
fiz) (9(@ip)h(ziz)  9(yii)h(yis)
L) LT w6




Since |fly = H, we have F@i) [ h(@i;) — Flyig)/hys;) < Hd(wij,yi5)® <
s*Hd(z,y)*. Now, Zh = h implies

K oo R R
D0 lwip)hlay) /hle) = 1. (6.6)
j=1i=1
Thus the first sum of the inequality is bounded by s* Hd(z,y)* < s%|f|yd(z,y)*.
Note that by our assumption, V;; does not intersect discontinuities. By
Sublemma 6.4, h(y)/h(z) < e’ d(’“Vy)a, and by Assumption T"(e), §(y)/4(z) <

eV i i < N(e). So [3(yig)hlyi) b))/ [§(xi)h(zij) /()] < e 40" for
some J’ > 0. We take e_ € (0,¢,] small enough such that e’*7 —1 < 2J'&$ for
any €1 < (0,e_]. Then for d(x,y) = e < &1, we have

‘ g(z

f) (zij) g(yiz‘)h(yij) < 2J,g($iz')h(fﬂz‘j) - d(z, ). (6.7)
h(z) h(y) h(z)
Therefore by (6.6), the second sum in (6.5) is bounded by

where 71* is the essential lower bound of h given by Sublemma 6.3.
By using Assumption T"(e), the third sum in (6.5) is bounded by

A

g x” Yh(zij;)

) 2 d(2,y)* < 20'hY| flleod(2, y)®,
:L’

m\h

Z Z fl(Zu; g(ﬂh;l)(zgwu) <h 2||h||00||f||00 Kipemta
j=14i{=N+1 ij

=h, ?[|llocColl |l - K'be™d(z,y)* = CoI b7 b, ||hl|oo | fl] s (2, ),

where C} is given in Lemma 5.1 which depends on &q.
Hence the result of part (1) holds with Dy, = Cyhy ' (20" + K'be7"h " ||h]| oo )-
Part (ii) and (iii) can be proved by using the same estimates with the same
adjustments as in the proof of Lemma 5.2. O

Sublemma 6.3. There is a h, > 0 such that ﬁ(w) > h. for v-a.e. T € X.

Proof. By Lemma 3.1 in [Ss], there is a ball B.(z) C X such that Ei(nf) h>h_
<(z

for some constant i_ > 0. By Assumptlon T"(c'), there is N > 0 such that

TNB.(z) D X. Then for any = € X, there is yo € B.(z) such that TNy, = z.

Since | det DT is bounded above, we have g, := inf{g(y) : y € X} > 0. Hence,

for p-almost every z,

N-1 N-1
hw) = (@) (@)= > Wy) [] 9(T'y) > h(yo) [] 9(TPw0) > h-g¥
TNy=z i=0 i=0
The result follows with A, = h_ gff U
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Sublemma 6.4. Let gg be as in Lemma 5.2. Then there exists J; > 0 and
€ (0,e0] such that for any x,y € Vi with d(z,y) <e., [ €T,

{L(:L') < eJ;Ld(w,y)a.

h(y)
Proof. Since his the unique fixed point of 3/'7\, we know that h = lim,, oo ,/97"1)?,
where the convergence is in L' (7). Now we consider the sequence f,, := P,

We will prove that there is J; > 0 and €, € (0,€0] such that for any n > 0,
for any x,y € Vy, I € Z, with d(z,y) < €.,

fn(y) sd(e,y)®
fulw) S (68)

Clearly (6.8) is true for n = 0 since fo(z) =1 for any . We assume that it
is true up to f,— 1- Consider_f,.

Note that f,,/h = (l/h)J"(h 1s / ): ( X/h) where £ is a normalized
transfer operator defined by [,( ) = (1/h) 2 ( f). Then there are f. > h. | h*
and f* < ﬁ*/ﬁ* such that f. < f,(x) < f* for every z € X and n > 0, where
h* and h. are the essential upper and lower bound of h respectively. Let also
set: g, = inf, fi(z) = inf, Zfil Yoco G(ij).

Let us set again b = 1. Then put J > 0 as in Assumption T (e). Let us take
J;, > 2Js%/(1 = s%) so that we have (.J; + J)s® < J; (1 + s%)/2. Then we take
g+ € (0,€0] small enough such that for any € € [0, &,],

* [T om+a
eJ;L(1+sa)6"/2 + f K'be < eJi.EQ_
Folge — K'bem+ay =

For any x,y in the same V; with d(z,y) =: € < ., we choose N = N(¢) as in
Assumption T"(e). Let us denote with [f,]n(z) = Zle Zé\;o G9(zi5) fr1(zij)
and {fo}n () = fa(@) = [falv (@) = T2 S i1 §(@i) faor (@i5)- We have

aln () _ i1 S Wi Famr ()
[faln (@) S0, S (wsg) fua (i)

< sup e Ui i)™ oI dl@isyii)® < (JHT3)s%d(@,y) « oI (148%)e™/2
1<G<K;0<i<N

We also get

K [e'e) K oo
{fn}N Z Z ?Ju fn 1 yz] <f Z 2 y” < K pemte,
j=1i=N+

j=1i=N+1

On the other hand,

[fn Z Z ym ) fn1 yz] >f*ZZg y” > fi(9« K’beera).

j=1li=N+1 Jj=11i=1
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By the choice of €, we obtain

fn(y) < [fn]N(y) + {fn}N(y)
fn(@) = [fn]n ()

This means (6.8) for n since we have set £ = d(x,y). O

* m+a
edi(1+s%)e% /2 frK'be < eTie™
ful(ge — K'bem+a) =

<

Lemma 6.5. There ezists a constant Cg > 0 such that |R,||p < Crdy/(m+e)

for allmn > 0.

If, moreover, T satisfies Assumption T"(¢'), then ||R,||z < Crd, for all
n > 0.

Proof. Since R; = Zj R;;, we only need to prove the results for R;;.

Let s;;(z) be the norm 0f||Dfi;1(x)||, and s;; = max{s; ;(x) : £ € B,(Qo)}.
Note that {7 > i} C T~V for all large i. We may suppose that i is sufficiently
large so that B, ., (U;;) C :Fl.;lv.

Take f € B with ||f||z = 1.

By using (5.20) and (5.21), we apply arguments similar to (5.22) and get

1R fl = [ 1fla5 < Il (Us) < Coo (@)l flls. (69)

Next, we consider |R;;f|g. Note that for any I € Z, flv, € H*(V}, H) for
some H < [|fllg. So osc(f/h, Bs(-)) < 2%s*e*H < 2*s*¢®||f||5. Note that
Sublemma 6.4 implies osc(h, B:(z)) < 20.J;e® for all z with B.(z) € V7 for
some J; > J; > 0. By Proposition 3.2(3) in [Ss],

OSC(f, BsijE(')) S OSC(f/iL, Bsije('))il* +OSC(iL7 Bs”f;‘())”fnoo/il* S bl‘sa”f“b”
where by = 2%(Hh, + J;LCbh*_l)s?j. By arguments similar to (5.20) and (5.21),
/Rij OSC(f, leys())dﬁ = / OSC(f, BSijE(.))dﬁ

Uij (610)
<bie?||flls?(Ui;) < bre®dy;o(Qo)l| flls < are®dysl| £,
where a; = b1v(Qy). Also,
v(T;;' B.(9TU;;)) :/ _ gdi < dy; - 9(B.(3Up)) < dyj - bae,
B.(8TU:5)
for some by > 0 independent of €. Hence,
Gij(m,s,ag) = Qdij . b26/ﬁ(3(1,5)50 (.’E)) S CLQdUE, (611)

where ay = 2by/0(B(1_g)e, (¢)). Note that [osc(f, Be,(zi;))dv < e§|f|q, and
1Fl +e§lfle < IIflle < IIfllg. So for any € € (0,e0] and i < N(e), we use
(5.15), (6.10), (6.9) and (6.11) to get

|Rij flo <[(1+ (e)ar + 2¢Cyr(Qo) + 2(1 + (e¥)aze' ~*]di; || f1I5
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where C} = (1 + (e%)ay + 2¢Cpv(Qo) + 2(1 + (e¥)aze! ~°.
For ¢ € (0,e0] and i > N(e), by Assumption T"(e) we have d;; < be™*t?,
Hence, e=¢ < (b=1d;;)~*/(m+) So by (5.16), we have

|Rijflo <2(vmed) ™" -l -7 - dij

_ —a/(m+a m m+ta (612)
<2(ymep) Lo/t g T £l o = CEd | £ |,

where Cf = 2(ymel) =102/ (m+0)  Therefore we get that |R;; f|o < Cad™ ™",
where Cy = max{C5, C}'}.
Now we consider |R;; f|7;. As in the proof of Lemma 6.2, for any z,y € U;;,

Ri; f(z) szf ‘<‘g i) f(iy) _ﬁ(yiz)f(yij)‘
h(z) h(x) h(y)
_§@iph(y) | f@y)  fi)
=50 Vi (61
+ |-f(yl])| ‘g(wzz)ﬁ(wl]) _ g(ylz)ﬁ(ym) ‘
h(yi;) h(z) h(y)

Note that |f(z;)/h(i;) — f(yij)/il(yu)‘ <A flud(@ig, yig)® < | fllssgd(z,y)*.
Also, g(ac”)iz(x”)/ﬁ(x) < (ﬁ*/ﬁ*)dlj Then the first term in the right hand side
of (6.13) is bounded by azd;;|f||sd(z,y)®, where az = (h*/h.)s;.

Let us take € = d(z,y); if ¢ < N(¢), then by (6.7),

19(zi)h(xi3) /1) = §(yig)h(yis) [h(y)] < 20" (0" [ha)dsjd(, ).
Since f(y”)/h(y”) <\ lloe/Bs < Cohy 1||f||3, the last term in (6.13) is bounded
by asd;;|| fllsd(z, y)*, where as = 2C,.J' (h* /h2). Therefore we obtain |Ri;i flu <
Céd“HfHB, where C = b1 + bg.
Ifi > N(e), then by the first inequality of (6.13), the left side of the inequality

is bounded by max{g(z;)f (x’tj)/h( z),9(yij)h (ij)/iL(y)} < dz]”f”oo/ﬁ* By
the same arguments as for (6.12) we can get that

|Rij fln <&~ dij| flloo /he < Cphy 60/t @2/ k) 115 = oot @ )| 1] 5,

where CYf = Cyh, b*/(™+)|| f||5. Then we conclude that |Ry; fl < C3dl ™™ || f 15,
where C3 = max{C}, C{}.

The conclusion of the first part follows by setting Cr = C; + C3 + Cs.

If T satisfies Assumption T"(e’), then we can regard N(e) = oo for any
€ > 0. Hence we get ||R;; f|lg < Crdi;|| fllg with Cr = C1 + C2 + CY. O
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