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Abstract

A partially hyperbolic diffeomorphism f is structurally quasi-stable if for any diffeomorphism g

C1-close to f , there is a homeomorphism π of M such that π◦g and f ◦π differ only by a motion τ

along center directions. f is topologically quasi-stable if for any homeomorphism g C0-close to f ,

the above holds for a continuous map π instead of a homeomorphism. We show that any partially

hyperbolic diffeomorphism f is topologically quasi-stable, and if f has C1 center foliation W c
f ,

then f is structurally quasi-stable. As applications we obtain continuity of topological entropy

for certain partially hyperbolic diffeomorphisms with one or two dimensional center foliation.

0 Introduction

The motivation of this paper is to study topological properties of partially hyperbolic systems which

are similar to those of uniformly hyperbolic systems.

Partial hyperbolicity theory was first studied in the work of Brin and Pesin ([5]) which emerged in

attempts to extend the notion of complete hyperbolicity. A closely related notion of normal hyperbol-

icity was introduced earlier by Hirsh, Pugh and Shub [6]. For general theory of partial hyperbolicity

and normal hyperbolicity, we refer to [12], [7], [2] and [3].

It is well known that Anosov diffeomorphisms are structurally stable([1]), that is, if f is an Anosov

diffeomorphism on a compact manifold M then any diffeomorphism g C1-close to f is topologically

conjugate to f , i.e., there exists a homeomorphism π on M such that

π ◦ g = f ◦ π. (0.1)

Moreover, f is also topologically stable([15]), that is, for any homeomorphism g C0-close to f , there

exists a continuous map π from M onto M such that equation (0.1) holds. For partially hyperbolic
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diffeomorphisms, we can not expect such stabilities because of the existence of the center direction.

However, since the systems have both stable and unstable directions, we should be able to obtain

some similar properties if we look at the behavior of the hyperbolic part, and “ignore” the motions

along the center direction.

In this paper, we shall investigate the “stability” property of partially hyperbolic systems under

C0 and C1 perturbations. Let f be a partially hyperbolic diffeomorphism. We show in Theorem A

that for any homeomorphism g C0-close to f , there exist a continuous map π from M to itself and a

family of locally defined continuous maps {τx : x ∈ M}, which send points along the center direction,

such that

π ◦ g(x) = τf(x) ◦ f ◦ π(x) for all x ∈ M. (0.2)

In this case we say that f is topologically quasi-stable. Moreover, if center foliation Wc
f of f exists and

is of C1, then we can choose a new family {τx : x ∈ M}, which map points along the center leaves

such that an equation similar to (0.2) holds. The results are given in Theorem B. Theorem B′ deal

with a particular case, i.e., one dimensional center foliation, in which the map τ can be determined

by a flow along the foliation. In Theorem C we obtain structural quasi-stability property of f under

C1 perturbation. That is, if the center foliation Wc
f is C1, then for any diffeomorphism g C1-close to

f , π is a leaf conjugacy between f and g.

As applications of the results, we obtain that if f is the time 1 map of an Anosov flow generated

by a C1 vector field, then any diffeomorphism g C1-close to f is a time 1+τ ◦f map of a flow, and the

topological entropy of f and g are close (Theorem D). Also, if f has almost parallel center foliation

(see next section for the precise definition), then so does any diffeomorphism g C1-close to f , and

the topological entropy function is locally constant at f in Diff1(M) in the case of one dimensional

center foliation, and continuous at f in Diff∞(M) in the case of two dimensional center foliation

(Theorem E).

Our results concerning topological quasi-stability and structural quasi-stability can be regarded

as generalizations of topological stability and structural stability for hyperbolic systems ([1] and [15])

to partially hyperbolic systems. They can also be regarded as generalizations of leaf conjugacy for

the case that f has C1 center foliation ([7] and [12]). However, for topologically quasi-stability, we

do not require any additional assumption on f except for partial hyperbolicity. The methods we use

for topological and structural quasi-stability are basically the same. We construct an operator in

the Banach space consisting all continuous sections of the tangent bundle TM which is contracting

in a neighborhood of the zero section such that under the inverse of the exponential map exp−1, π

and τ are given by the fixed point of the operator. The methods are adopted from [15, 11] and are

different from that used in [7]. We notice that there is another strategy to investigate the topological

quasi-stability of partially hyperbolic diffeomorphism using the similar idea in [16], in which Walters

obtained topological stability for expansive homeomorphisms with shadowing property. Actually,

adapting the unified approach in this paper we will show in a forthcoming paper [8] that any partially

hyperbolic diffeomorphism has the so-called “quasi-shadowing” property. Hence, we can obtain the

similar results in Theorem A, Theorem B and Theorem B′.

With some additional condition Y. Hua showed that the topological entropy is continuous near

the time one map f of an Anosov flow ([9]). Now the fact becomes a direct consequence of our result
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and a result in [14]. Our results for topological entropy of diffeomorphisms with almost parallel center

foliation are similar to that in [10], which is under the assumption that the strongly unstable and

stable foliations stably carry some unique nontrivial homologies.

This paper is organized as the following. The statements of results are given in Section 1. We also

define some words and notations in the section. In Section 2 we deal with topological quasi-stability,

including the proof of Theorem A, Theorem B and Theorem B′. The case of structural quasi-stability

is discussed in Section 3, where we use the facts obtained in Section 2 to prove that the map π is a

homeomorphism to obtain Theorem C. Section 4 is concerning the applications to topological entropy,

where Theorem D and Theorem E are proved.

1 Definition, statement of results and notations

Let M be an m-dimensional C∞ compact Riemannian manifold. We denote by ‖·‖ and d(·, ·) the norm

on TM and the metric on M induced by the Riemannian metric respectively. Denote by Diffr(M)

the set of Cr diffeomorphisms of M , 1 ≤ r ≤ ∞.

A diffeomorphism f ∈ Diffr(M) is said to be (uniformly) partially hyperbolic if there exist numbers

λ, λ′, µ and µ′ with 0 < λ < 1 < µ and λ < λ′ ≤ µ′ < µ, and an invariant decomposition TxM =

Es
x ⊕ Ec

x ⊕ Eu
x ∀x ∈ M , such that for any n ≥ 0,

‖dxfnv‖ ≤ Cλn‖v‖ as v ∈ Es(x),

C−1(λ′)n‖v‖ ≤ ‖dxfnv‖ ≤ C(µ′)n‖v‖ as v ∈ Ec(x),

C−1µn ‖v‖ ≤ ‖dxfnv‖ as v ∈ Eu(x)

hold for some number C > 0. Es
x, Ec

x and Eu
x are called stable, center and unstable subspace, respec-

tively. Via a change of Riemannian metric we always assume that C = 1. Moreover, for simplicity of

notation, we assume that λ =
1
µ

.

Since M is compact, we can take constant ρ0 > 0 such that for any x ∈ M , the standard exponential

mapping expx : {v ∈ TxM : ‖v‖ < ρ0} → M is a C∞ diffeomorphism to the image. Clearly, we have

d(x, expx v) = ‖v‖ for v ∈ TxM with ‖v‖ < ρ0. For any diffeomorphism f : M → M , we take

ρ = ρf ∈ (0, ρ0/2) such that for any x, y ∈ M with d(f−1(x), y) ≤ ρ, v ∈ TyM with ‖v‖ ≤ ρ,

d(x, f ◦ expy v) ≤ ρ0/2.

Reduce ρ if necessary such that both sides in equation (2.3) and (2.20), in the proof of Theorem A

and Theorem B respectively, are contained in the set {v ∈ TxM : ‖v‖ < ρ0}.
For any given continuous center section u = {u(x) ∈ Ec

x : x ∈ M} with supx∈M ‖u(x)‖ < ρ, we

define a smooth map τ
(1)
x = τ

(1)
x (·, u) on B(x, ρ) for any x ∈ M by

τ (1)
x (y) = expx(u(x) + exp−1

x y).

Theorem A. Let f ∈ Diffr(M) be a partially hyperbolic diffeomorphism. Then there exists ε0 ∈
(0, ρ) satisfying the following conditions: For any ε ∈ (0, ε0) there exists δ > 0 such that for any
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homeomorphism g of M with d(f, g) < δ there exist a continuous center section u and a surjective

continuous map π : M → M such that

π ◦ g(x) = τ
(1)
f(x) ◦ f ◦ π(x), x ∈ M. (1.1)

Moreover, u and π can be chosen uniquely so as to satisfy the following conditions:

d(π, idM ) < ε,

exp−1
x (π(x)) ∈ Es

x ⊕ Eu
x for x ∈ M.

(1.2)

We mention again here that the theorem does not require any additional condition, provided f is

a partially hyperbolic diffeomorphism, and g is a homeomorphisms C0 close to f .

If f has C1 center foliation Wc
f , then we can require τ to move along the center foliation. In

this case, we denote for any ε > 0, Σε(x) = expx(Hx(ε)), where Hx(ε) is the ε−ball in Es
x ⊕ Eu

x .

Obviously, Σε(x) is a smooth disk transversal to Ec
x at x. Since the center foliation Wc

f is C1, we can

conclude that if y is close enough to x, then there exist a locally defined smooth map τ
(2)
x on some

neighborhood U(x) of x and a constant K1 > 1 independent of x such that for any y ∈ U(x), we have

τ (2)
x (y) ∈ Σε(x) ∩Wc

f (y) (1.3)

and

d(τ (2)
x (y), x) < K1d(y, x). (1.4)

Theorem B. Assume that f ∈ Diffr(M) is a partially hyperbolic diffeomorphism with C1 center

foliation Wc
f . Then there exists ε0 ∈ (0, ρ) satisfying the following conditions: For any ε ∈ (0, ε0)

there exists δ > 0 such that for any homeomorphism g of M with d(f, g) < δ there exists a surjective

continuous map π : M → M such that

π ◦ g(x) = τ
(2)
g(x) ◦ f ◦ π(x), x ∈ M. (1.5)

Moreover, π can be chosen uniquely so as to satisfy the conditions in (1.2).

As a special case, if the center foliation Wc
f is C1 and of dimension one, then we can define τ more

directly. Let u ∈ Xc with ‖u(x)‖ = 1 for any x ∈ M , and ϕt be the flow generated by u. For any

continuous function τ̃ : M → R, define a smooth map τ
(3)
x = τ

(3)
x (·, τ̃) of B(x, ρ) for any x ∈ M by

τ (3)
x (y) = ϕτ̃(x)(y).

Theorem B′. Assume that f ∈ Diffr(M) is a partially hyperbolic diffeomorphism with one dimen-

sional C1 center foliation Wc
f . Then there exists ε0 ∈ (0, ρ) satisfying the following conditions: For

any ε ∈ (0, ε0) there exists δ > 0 such that for any homeomorphism g of M with d(f, g) < δ there

exists a continuous function τ̃ : M → R and a surjective continuous map π : M → M such that

π ◦ g(x) = τ
(3)
f(x) ◦ f ◦ π(x), x ∈ M. (1.6)

Moreover, τ̃ and π can be chosen uniquely so as to satisfy the conditions in (1.2).
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Now we consider the structural quasi-stability as g is C1-close to f .

A diffeomorphism f is called dynamically coherent if Ecu := Ec⊕Eu, Ec, and Ecs := Ec⊕Es are

integrable, and everywhere tangent toWcu
f , Wc

f andWcs
f , the center-unstable, center and center-stable

foliations, respectively; and Wc
f and Wu

f are subfoliations of Wcu
f , while Wc

f and Ws
f are subfoliations

of Wcs
f . By Theorem 2.3 of [13], if f is as in Theorem B then it is dynamically coherent and this

property is permanent under C1 perturbation.

Theorem C. Under the assumption of Theorem B (resp. Theorem B′), if g is a diffeomorphism

C1-close to f , then π can be chosen to be a homeomorphism and hence there exists a homeomorphism

τ (2) in Theorem B (resp. τ (3) in Theorem B′) such that π ◦ g = τ (2) ◦ f ◦π (resp. π ◦ g = τ (3) ◦ f ◦π).

Also, π and τ (2) (resp. τ (3)) can be chosen uniquely so as to satisfy the conditions in (1.2) if we

replace Es
x and Eu

x in (1.2) by their smooth approximation Ẽs
x and Ẽu

x respectively.

Moreover, π sends Wcu
g , Wc

g and Wcs
g to Wcu

f , Wc
f and Wcs

f respectively. In particular, π is a leaf

conjugacy from (g,Wc
g) to (f,Wc

f ).

Remark 1.1. In fact, if π is one to one, then for any y ∈ M , x = π−1(f−1(y)) is uniquely determined.

Hence we can define τ (2) : M → M by τ (2)(y) = τ
(2)
g(π−1◦f−1(y))(y) and obtain

π ◦ g(x) = τ (2) ◦ f ◦ π(x), x ∈ M.

τ (3) can be defined in a similar way.

The main result of Theorem C, in particular, leaf conjugacy, is well known ([7], [12]). Our proof

provides a different approach.

Example. Let N be a smooth compact Riemannian manifold and h : N −→ N be an Anosov diffeo-

morphism. Then the diffeomorphism

f = h× idS1 : N × S1 −→ N × S1

is quasi-stable. In particular, if R is a rotation on S1 close to the identity, and

g = h×R : N × S1 −→ N × S1,

then we can take π = idN×S1 and τ (2) = idN ×R in Theorem C.

Moreover, Theorem E below gives that the topological entropy is constant in a neighborhood of f

in C1 topology.

As applications of Theorem C, we have the following results about the continuity of the entropy.

We say that a diffeomorphism g is a time 1 + τ map of a flow ψ for some real function τ on M if

g(x) = ψ1+τ(x)(x) for any x ∈ M .

Theorem D. Let f be the time one map of an Anosov flow ϕ. Then for any diffeomorphism g C1-

close to f , there is a flow ψ and a continuous real function τ on M such that g is the time 1 + τ ◦ f

map of the flow ψ. Hence the topological entropy function is continuous at f in Diff1(M) with C1

topology.
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Y. Hua proved the second part of the theorem under the condition that f is topologically transitive

([9]).

Let f be a partially hyperbolic diffeomorphism with center foliation Wc
f . For a smooth surface Σ,

we denote Σ ⊥ Wc
f if for any x ∈ Σ ∩Wc

f , TxΣ ⊥ Ec
f (x). For any two surfaces Σ1 and Σ2 that are

smooth or are images of homeomorphisms of some smooth surfaces, the holonomy map θc : Σ1 → Σ2

is a continuous map defined by sliding along the Wc
f -leaves, i.e. for x ∈ Σ1, θc(x) ∈ Σ2 ∩Wc

f (x).

Definition 1.2. A partially hyperbolic diffeomorphism f with integrable center foliation Wc
f is said

to have almost parallel center foliation if for any α > 0, there exists constant β > 0, such that for

any smooth surfaces Σ1,Σ2 with Σ1 ⊥ Wc
f and Σ2 ⊥ Wc

f , for any x, y ∈ Σ1 with d(x, y) ≤ β, we have

d(θc(x), θc(y)) ≤ α whenever they are defined.

Remark 1.3. In the definition we require Σ1 ⊥ Wc
f and Σ2 ⊥ Wc

f only for convenience. It is clear

that we can change the definition by requiring the angles between Σ1, Σ2 and Wc
f uniformly bounded

from below.

Remark 1.4. The requirements of the definition mean that the holonomy maps along the center

foliation are equicontinuous for all possible holonomy maps whenever they are defined.

It is clear that each of the maps f and g given by the above example has almost parallel center

foliation, while Anosov flows do not.

Theorem E. Let f be a partially hyperbolic diffeomorphism as in Theorem B. If the center foliation

of f is almost parallel, then any diffeomorphism g that is C1-close to f also has almost parallel center

foliation.

Moreover, if the center foliation of f is one dimensional, then the topological entropy function is

locally constant in Diff1(M); if f ∈ Diff∞(M) and the center foliation of f is two dimensional, then

the topological entropy function is continuous near f in Diff∞(M) with C1 topology.

For the case that the dimension of center subbundle of f is one or two, the same conclusions are

obtained in [10] under the assumption that the strongly stable and unstable foliations of f stably

carry some unique nontrivial homologies. Our proof uses some idea in the paper.

Denote by X the Banach space of continuous vector fields on M with the norm

‖ω‖ = sup
x∈M

‖ω(x)‖, w ∈ X.

In other words, each element of X is a continuous section of the tangent bundle TM . Similarly, we

denote by Xs,Xc and Xu the space of continuous sections of the stable, center and unstable bundles

Es, Ec and Eu respectively. Also, we denote Xus = Xu ⊕ Xs. Let Πs
x : TxM → Es

x be the projection

onto Es
x along Ec

x ⊕ Eu
x . Πc

x and Πu
x are defined in a similar way.

Recall that ‖ · ‖ is the norm on TM . We define the norm ‖ · ‖1 on TM by ‖w‖1 = ‖u‖ + ‖v‖ if

w = u+v ∈ TxM with u ∈ Ec
x and v ∈ Eu

x ⊕Es
x. Similarly, if w = u+v ∈ X with u ∈ Xc and v ∈ Xus,

we also define ‖w‖1 = ‖u‖+ ‖v‖. By triangle inequality and the fact that the angles between Ec and

Eu ⊕ Es are uniformly bounded away from zero, we know that there exists a constant L such that

‖w‖ ≤ ‖w‖1 ≤ L‖w‖. (1.7)
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For any ε > 0, we denote

B(ε) = {w ∈ X : ‖w‖ ≤ ε}, Bus(ε) = {w ∈ Xus : ‖w‖ ≤ ε},

B1(ε) = {w ∈ X : ‖w‖1 ≤ ε}.

2 Topological quasi-stability

2.1 The general case

Proof of Theorem A. We choose

ε0 ∈ (0, ρ) (2.1)

small enough such that any map π with d(π, idM ) < ε0 must be surjective (see e.g. Lemma 3 of [15]

for existence of such ε0).

To find a continuous center section u ∈ Xc and a surjective continuous map π : M −→ M satisfying

(1.1) and the conditions in (1.2) of this theorem, we shall first try to solve the equation

π ◦ g(x) = τ
(1)
f(x) ◦ f ◦ π(x) (2.2)

for unknown u and π. Putting h = g ◦ f−1 and π(x) = expx(v(x)) for v ∈ Bus(ρ), and replacing x by

f−1(x), we see that (1.1) is equivalent to

exp−1
x ◦ exph(x)

(
v(h(x))

)
= exp−1

x ◦τ (1)
x ◦ f ◦ expf−1(x)

(
v(f−1(x))

)
. (2.3)

By the definition of τ
(1)
x , we have

exp−1
x ◦τ (1)

x ◦ f ◦ expf−1(x)

(
v(f−1(x))

)
= u(x) + exp−1

x ◦f ◦ expf−1(x)

(
(v(f−1(x))

)
.

Define an operator β : B(ρ) → X and a linear operator F : X → X by

β(w)(x) = exp−1
x ◦f ◦ expf−1(x)

(
(w(f−1(x))

)
, (2.4)

(Fw)(x) = df−1(x)fw(f−1(x)). (2.5)

Clearly, Fw = d0βw. Let

η(w)(x) = β(w)
(
x
)− (d0βw)

(
x
)
. (2.6)

Then we can write

exp−1
x ◦τ (1)

x ◦ f ◦ expf−1(x)(v(f−1(x))) = (Fv)(x) + u(x) + η(v)(x). (2.7)

Define a linear operator Jh : B(ρ) → X by

(Jhw)(x) =
∑

i=s,c,u

Πi
x ◦ d0(exp−1

x ◦ exph(x)) ◦Πi
h(x)w(h(x)) (2.8)

for any w ∈ B(ρ). Set

θh(w)(x) = exp−1
x ◦ exph(x)(w(h(x)))− d0(exp−1

x ◦ exph(x))w(h(x))

+
∑

i,j=s,c,u,i 6=j

Πi
x ◦ d0(exp−1

x ◦ exph(x)) ◦Πj
h(x)w(h(x)).
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Then we have

exp−1
x ◦ exph(x)(v(h(x))) = (Jhv)(x) + θh(v)(x). (2.9)

Also we mention that by definition,

θh(0)(x) = exp−1
x ◦ exph(x) 0 = exp−1

x h(x). (2.10)

Therefore, by (2.9) and (2.7), (2.3) is equivalent to

Jhv + θh(v) = Fv + u + η(v),

further, is equivalent to

−J−1
h u + (idX − J−1

h F )v = J−1
h (η(v)− θh(v)).

Define a linear operator Ph from a neighborhood of 0 ∈ X to X by

Phω = −J−1
h u + (idX − J−1

h F )v (2.11)

for ω = u + v ∈ X, where u ∈ Xc and v ∈ Xus.

Define an operator Φh from a neighborhood of 0 ∈ X to X by

Φh(u + v) = P−1
h J−1

h (η(v)− θh(v)).

Hence, equation (2.2) is equivalent to

Φh(u + v) = u + v, (2.12)

namely, u + v is a fixed point of Φh.

By Lemma 2.1 below, we know that for any ε ∈ (0, ε0) there exists δ = δ(ε) such that for any

homeomorphism h with d(h, idM ) ≤ δ, Φh : B1(ε) → B1(ε) is a contracting map, and therefore has a

fixed point in B1(ε). Hence, (2.2) has a unique solution.

Lemma 2.1. We can reduce ε0 in (2.1) if necessary such that for any ε ∈ (0, ε0) there exists δ =

δ(ε) > 0 such that for any homeomorphism h of M with d(h, idM ) ≤ δ, Φh(B1(ε)) ⊂ B1(ε) and for

any ω, ω′ ∈ B1(ε),

‖Φh(ω)− Φh(ω′)‖1 ≤ 1
2
‖ω − ω′‖1.

Proof. Recall that the constant L is given in (1.7).

Reduce ε0 if necessary such that for any ε ∈ (0, ε0),

4L

1− λ
C(ε) <

1
4
, (2.13)

where C(ε) is the Lipschitz constant of η(v) given in Sublemma 2.3. This is possible since by the

sublemma, C(ε) → 0 as ε → 0. Note that ε only depends on f .

Then we take δ = δ(ε) such that
4L

1− λ
δ <

1
4
ε; (2.14)
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and such that for any homeomorphism h with d(h, idM ) < δ,

max{‖Jh‖, ‖J−1
h ‖} ≤ min

{
2,

1 + λ−1

2

}
, (2.15)

where Jh is defined in (2.8), and
4L

1− λ
K(h) <

1
4
, (2.16)

where K(h) is the Lipschitz constant of θh(·) given in Sublemma 2.4. This is possible since by the

sublemma, K(h) → 0 as ε → 0.

By (2.15), Sublemma 2.2 below can be applied and therefore we get

‖P−1
h ‖1 ≤ 2

1− λ
. (2.17)

Note that Jh(Xi) = Xi for i = s, c, u. Then it is easy to check that ‖J−1
h ‖1 ≤ ‖J−1

h ‖. Hence by

(2.15), we have ‖J−1
h ‖1 ≤ 2. Also, by (2.4), β(0) = 0 and therefore by (2.6), η(0) = 0; and by (2.10),

‖θh(0)‖ ≤ δ.

Take ω = u + v ∈ B1(ε) with u ∈ Xc and v ∈ Xus. By using the above estimates, Sublemma 2.3

and Sublemma 2.4, and then (2.13), (2.14) and (2.16), we can get

‖Φh(ω)‖1 ≤ ‖P−1
h ‖1 · ‖J−1

h ‖1 · ‖η(v)− θh(v)‖1
≤ 2

1− λ
· 2 · L‖η(v)− θh(v)‖

≤ 4L

1− λ
(‖η(v)− η(0)‖+ ‖θh(v)− θh(0)‖+ ‖θh(0)‖)

≤ 4L

1− λ
(C(ε)‖ω‖1 + K(h)‖ω‖1 + δ)

≤ 1
4
‖ω‖1 +

1
4
‖ω‖1 +

1
4
ε ≤ 3ε

4
,

which implies that Φh(B1(ε)) ⊂ B1(ε).

Similarly, for two elements ω = u + v, ω′ = u′ + v′ ∈ B1(ε) with u, u′ ∈ Xc and v, v′ ∈ Xus, we

have

‖Φh(ω)− Φh(ω′)‖1 ≤ 4
1− λ

(‖η(v)− η(v′)‖1 + ‖θh(v)− θh(v′)‖1)

≤ 4L

1− λ
(‖η(v)− η(v′)‖+ ‖θh(v)− θh(v′)‖)

≤ 4L

1− λ
(C(ε0)‖ω − ω′‖1 + K(h)‖ω − ω′‖1)

≤ 1
2
‖ω − ω′‖1.

This proves that Φh : B1(ε) → B1(ε) is a contraction.

Sublemma 2.2. For any homeomorphism h of M such that Jh satisfies (2.15), Ph is invertible and

‖P−1
h ‖1 ≤ 2

1− λ
. (2.18)
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Proof. By the definitions of F and Jh, we have F (Xi) = Xi and Jh(Xi) = Xi for i = u, s, c. Let F i =

F |Xi , J i
h = Jh|Xi for i = u, s, c. By the definition of Ph we have Ph|Xi = idXi − (J i

h)−1 ◦ F i, i = s, u,

and Ph|Xc = −(Jc
h)−1. So we also have Ph(Xi) = Xi for i = s, c, u.

Since ‖F s‖, ‖(Fu)−1‖ ≤ λ, by (2.15) we know that

‖(Js
h)−1 ◦ F s‖, ‖((F (u))−1 ◦ J

(u)
h )‖ ≤ λ · (1 + λ−1)/2 = (1 + λ)/2 < 1.

Hence, both Ph|Xs and Ph|Xu are invertible and

(Ph|Xs)−1 = (idXs − (Js
h)−1 ◦ F s)−1 =

∞∑

k=0

((Js
h)−1 ◦ F s)k,

(Ph|Xu)−1 = (idXu − (Ju
h )−1 ◦ Fu)−1 = −

∞∑

k=1

((Fu)−1 ◦ Ju
h )k.

It follows that

‖(Ph|Xus)−1‖ ≤ max
{‖(Ph|Xs)−1‖, ‖(Ph|Xu)−1‖} ≤ 1

1− (1 + λ)/2
=

2
1− λ

.

By (2.15) we also have

‖(Ph|Xc)−1‖ ≤ ‖Jh‖ ≤ 2.

So we obtain

‖P−1
h ‖1 ≤ max

{‖(Ph|Xus)−1‖, ‖(Ph|Xc)−1‖} ≤ 2
1− λ

.

This is what we need.

Sublemma 2.3. For any 0 < ε ≤ ρ, there exists constant C(ε) > 0 such that for any w, w′ ∈ B(ε),

‖η(w′)− η(w)‖ ≤ C(ε)(‖w′ − w‖).

Moreover, C(ε) can be chosen in such a way that C(ε) → 0 as ε → 0.

Proof. Let βx : Tf−1(x)M −→ TxM be the map defined by βx(ξ) = exp−1
x ◦f ◦ expf−1(x) ξ. Therefore

β(w)(f−1(x)) = βx(w(f−1(x))) for any w ∈ X. Then by (2.6), for any w, w′ ∈ X with ‖w‖, ‖w′‖ < ε,

‖η(w′)(x)− η(w)(x)‖
=‖βx(w′(f−1(x)))− βx(w(f−1(x)))− d0βx(w′(f−1(x))− w(f−1(x)))‖

=
∥∥∥
∫ 1

0

dw(f−1(x))+t(w′(f−1(x))−w(f−1(x)))βx(w′(f−1(x))− w(f−1(x)))dt

− d0βx(w′(f−1(x))− w(f−1(x)))
∥∥∥

≤ sup
w∗∈Ix

‖dw∗βx − d0βx‖ · ‖w′(f−1(x))− w(f−1(x))‖,

where Ix = {w(f−1(x)) + t(w′(f−1(x))− w(f−1(x))) : t ∈ [0, 1]}. Since dw∗βx is continuous with w∗

and the continuity is uniform with respect to x, we can take

C(ε) = sup
{‖dw(f−1(x))βx − d0βx‖ : w ∈ B1(ε), x ∈ M

}
.

Now the results of the lemma are clear.
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Sublemma 2.4. For any h with d(h, idM ) ≤ ρ, there exists a constant K = K(h) > 0 such that for

any w, w′ ∈ B(ε),

‖θh(w′)− θh(w)‖ ≤ K(h)‖w′ − w‖.
Moreover, K(h) can be chosen in such a way that K(h) → 0 as d(h, idM ) → 0.

Proof. Since the map θ is C∞ with respect to w and h, we can use the same method in the proof of

the previous lemma to get the inequality.

Note that if h = idM , then the partial derivative of θ with respect to w is zero. So we get K(h) → 0

as d(h, idM ) → 0.

2.2 The center foliation Wc
f is C1

2.2.1 The general case

Proof of Theorem B. The proof is similar to that of Theorem A.

To find π satisfying (1.5) and the conditions in (1.2) of this theorem, we shall try to solve the

equation

π ◦ g(x) = τ
(2)
g(x) ◦ f ◦ π(x) (2.19)

for unknown π. Putting π(x) = expx(v(x)) with v ∈ Bus(ρ), we see that (2.19) is equivalent to

v(x) = exp−1
x ◦τ (2)

x ◦ f ◦ π(v(g−1(x))). (2.20)

Define an operator β : Bus(ρ) → Xus and a linear operator A : Bus(ρ) → Xus by

(β(v))(x) = exp−1
x ◦τ (2)

x ◦ f ◦ π(v(g−1(x))), (2.21)

(Av)(x) = (As
g−1(x) + Au

g−1(x))v(g−1(x)), (2.22)

where

As
g−1(x) = Πs

x ◦ d0(exp−1
x ◦τ (2)

x ◦ f ◦ expg−1(x)) ◦Πs
g−1(x)

and

Au
g−1(x) = Πu

x ◦ d0(exp−1
x ◦τ (2)

x ◦ f ◦ expg−1(x)) ◦Πu
g−1(x).

Let η = β −A. By (2.21) and (2.22), (2.20) is equivalent to

v = Av + η(v),

further, is equivalent to

v −Av = η(v).

Define a linear operator P from a neighborhood of 0 ∈ Xus to Xus by

Pv = (idXus −A)v (2.23)

for v ∈ Xus.

Define an operator Φ from a neighborhood of 0 ∈ Xus to Xus by

Φ(v) = P−1η(v).
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Hence, the equation (2.19) is equivalent to

Φ(v) = v, (2.24)

namely, v is a fixed point of Φ.

The remaining work is to show that for any ε ∈ (0, ε0) there exists δ = δ(ε) such that for any

homeomorphism g with d(g, f) ≤ δ, Φ : B(ε) → B(ε) is a contracting map, and therefore has a fixed

point in B(ε). Hence, (2.19) has a unique solution. To this end we only need to modify the proof of

Lemma 2.1 to a easer version since in this case we need not to concern with the center direction. We

leave the details to the reader.

2.2.2 Wc
f is of one dimensional

Proof of Theorem B′. The proof is also similar to that of Theorem A.

To find π and τ̃ satisfying (1.6) and the conditions in (1.2) of this theorem, we shall try to solve

the equation

π ◦ g(x) = τ
(3)
f(x) ◦ f ◦ π(x) (2.25)

for unknown τ̃ and π. Putting h = g ◦ f−1 and π(x) = expx(v(x)) with v ∈ Xus, we see that (2.25) is

equivalent to

exp−1
x ◦ exph(x)(v(h(x))) = exp−1

x ◦ϕτ̃(x) ◦ f ◦ expf−1(x)

(
v(f−1(x))

)
. (2.26)

Define β : B(ρ)× C(ρ) → X, where C(ρ) = {τ̃ ∈ C0(M) : ‖τ̃‖ ≤ ρ}, by

β(ω, τ̃)(x) = exp−1
x ◦ϕτ̃(x) ◦ f ◦ expf−1(x)

(
ω(f−1(x))

)
. (2.27)

It is easy to see that (
d(0,0)β(ω, τ̃)

)
(x) = (Fω)(x) + τ̃(x) · u(x),

where F : X → X is defined in (2.5) (also recall that in this case u is a unit center vector field). Let

η(ω, τ̃)(x) = β
(
ω, τ̃

)
(x)− (

d(0,0)β(ω, τ̃)
)
(x). (2.28)

Then we can write

exp−1
x ◦ϕτ̃(x) ◦ f ◦ expf−1(x)(v(f−1(x))) = (Fv)(x) + τ̃(x) · u(x) + η(v, τ̃)(x). (2.29)

By (2.9) and (2.29), (2.26) is equivalent to

Jhv + θh(v) = Fv + τ̃ · u + η(v, τ̃).

where Jh is a linear operator defined in (2.8). Further, the equation is equivalent to

−J−1
h (τ̃ · u) + (idX − J−1

h F )v = J−1
h (η(v, τ̃)− θh(v)).

Similarly we define a linear map Ph by

Phω = −J−1
h (τ̃ · u) + (idX − J−1

h F )v (2.30)
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for ω = τ̃ · u + v ∈ X with v ∈ Bus(ρ) and τ̃ ∈ C(ρ). Hence, the above equation becomes

Ph(τ̃ · u + v) = J−1
h (η(v, τ̃)− θh(v)).

Define a map Φh from a neighborhood of 0 ∈ X to X by

Φh(τ̃ · u + v) = P−1
h J−1

h (η(v, τ̃)− θh(v)).

Hence, the equation (2.25) is equivalent to

Φh(τ̃ · u + v) = τ̃ · u + v, (2.31)

namely, τ̃ · u + v is a fixed point of Φh.

Also similar to what we have done in the proof of Theorem A, there exists ε0 ∈ (0, ρ) such that

for any ε ∈ (0, ε0) there exists δ = δ(ε) such that for any homeomorphism h with d(h, idM ) ≤ δ,

Φh : B1(ε) → B1(ε) is a contracting map, and therefore has a fixed point in B1(ε). Hence, (2.25) has

a unique solution. We leave the details to the reader.

3 Structural quasi-stability

Proof of Theorem C. We only prove this theorem under the assumption of Theorem B. We shall find

π and u using the similar strategy in the proof of Theorem B. Furthermore, in order to obtain a leaf

conjugacy π we shall give some necessary modification in techniques.

Since the center foliation of f is C1, hence from Theorem 5.10 of [12] and Section 6 of [6], we know

that if a diffeomorphism g is sufficiently close to f in C1 topology, then it is also partially hyperbolic,

the corresponding splitting Es
g⊕Ec

g⊕Eu
g is near that of f and the center distribution Ec

g is integrable.

Now choose C1 bundle Ẽs ⊕ Ẽu sufficiently close to Es
g ⊕ Eu

g , and hence close to Es
f ⊕ Eu

f . We want

to find a continuous center section u ∈ Xc and a homeomorphism π : M −→ M ε close to idM such

that (1.5) holds and

exp−1
x (π(x)) ∈ Ẽs

x ⊕ Ẽu
x (3.1)

for x ∈ M . Put h = g ◦ f−1 and π(x) = expx(v(x)) for v ∈ X̃s ⊕ X̃u, where X̃s and X̃u denote the

spaces of continuous sections of Ẽs and Ẽu respectively. We see that (1.5) is equivalent to

exp−1
x ◦ exph(x)(v(h(x))) = exp−1

x ◦τ (2)
x ◦ f ◦ expf−1(x)

(
v(f−1(x))

)
. (3.2)

Then we can write

exp−1
x ◦τ (2)

x ◦ f ◦ expf−1(x)(v(f−1(x))) = (Fv)(x) + u(x) + η(w)(x), (3.3)

where ω = u + v ∈ X with u ∈ Xc and v ∈ X̃us,

(Fv)(x) =
∑

i=s,u

Π̃i
x ◦ df−1(x)f ◦ Π̃i

f−1(x)v(f−1(x))

and

η(w)(x) = exp−1
x ◦τ (2)

x ◦ f ◦ expf−1(x)

(
v(f−1(x))

)

−d0

(
exp−1

x ◦τ (2)
x ◦ f ◦ expf−1(x)

)
v(f−1(x))

+
∑

i=s,c,u,j=s,u,i 6=j

Π̃i
x ◦ df−1(x)f ◦ Π̃j

f−1(x)v(f−1(x)), (3.4)
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in which Π̃s
x is the projection from TxM onto Ẽs

x along Ẽc
x ⊕ Ẽu

x , where Π̃c
x = Πc

x. Π̃c
x and Π̃u

x are

defined in the similar manner. It is clear that F (X̃s) = X̃s, F (X̃u) = X̃u. Moreover, for any λ < λ̃ < 1,

we can choose g sufficiently close to f , Ẽs ⊕ Ẽu sufficiently close to Es
f ⊕ Eu

f such that

‖F |Xs‖, ‖F−1|Xu‖−1 ≤ λ̃.

Similar to (2.9), we have

exp−1
x ◦ exph(x)(v(h(x))) = (Jhv + θh(v))(x), (3.5)

where Jh and θh is redefined with respect to X̃ = X̃s⊕ X̃c⊕ X̃u. By (3.3) and (3.5), (3.2) is equivalent

to

Jhv + θh(v) = Fv + u + η(w).

From now, we can find π and u in a similar way as we have done in the proof of Theorem B. We omit

the details.

In the following, we prove that π obtained above is a leaf conjugacy from (g,Wc
g) to (f,Wc

f ). Since

the bundle Ẽs⊕ Ẽu is C1, (3.1) implies that the restriction of π to each center leaf of g is one-to-one.

If we can get that π sends center leaves of g to that of f then by the same arguments of Pesin in

Lemma 5.11 of [12] we can conclude that π is a leaf conjugacy. Therefore, the remaining work is to

prove that π sends center leaves of g to that of f .

Now we show that for any x ∈ M , π(W c
g (x)) ⊂ W c

f (πx). It is enough to show that the set π(W c
g (x))

is tangent to Ec
f (πx) for any x ∈ M . Suppose not, then there exist a small number c1 > 0 and a

sequence of points {yk} ⊂ W c
g (x) with yk → x as k →∞ such that

d(πz′k, πzk) + d(πzk, πyk) ≥ c1d(πx, πyk), (3.6)

where z′k and zk are the unique points such that πzk ∈ Wu
f (πyk) and πz′k ∈ W s

f (πzk) ∩W c
f (πx). By

taking a subsequence we may assume that d(πzk, πyk) ≥ d(πz′k, πzk) for all k > 0, and the other case

can be discussed similarly by using f−1.

For each k > 0, there exists n = n(k) > 0 such that

d(gi(x), gi(yk)) ≤ (µ′g)
id(x, yk) ≤ ε ∀ 0 ≤ i ≤ n,

where µ′g is the upper bounds of ‖Dg|Ec
g
‖ given in the definition of partially hyperbolic diffeomorphism.

We can see that n(k) ∼ − log d(x, yk)/ log µ′g if µ′g > 1, and we regard n(k) = ∞ if otherwise. Since

d(π, idM ) < ε, we have

d
(
π(gix), π(giyk)

) ≤ 3ε ∀ 0 ≤ i ≤ n. (3.7)

Since the foliation Wc
f is smooth, for any x ∈ M there is a coordinate chart Ux at x of size r > 0

such that the local leaves of the center foliation can be viewed as parallel disks. For any z ∈ Ux, denote

such a local center disk passing through z by Bc
f (z). We consider the coordinate charts Uπ(gix) at

π(gix) of size r, i = 0, 1, · · · , n. We assume that r > 0 is small and the coordinates are taken in a way

such that the metrics on the charts are close to the metric on the manifold. Also, we assume that ε

and δ are small such that as d(f, g) < δ, all the points π(giw) and f(π(gi−1w)) are in the chart Uπ(gix),
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where w = x, yk, zk, z′k. Since τ is a motion along leaves, we have Bc
f (π(gx)) = Bc

f (f(πx)). So by the

fact that d(f(πzk), f(πyk)) ≥ µfd(πzk, πyk), we get

d(Bc
f (π(gzk)), Bc

f (π(gyk))) ≥ µ̃d(Bc
f (πzk), Bc

f (πyk))

for some max{1, µ′g} < µ̃ < µf . Inductively, we have

d
(
Bc

f (π(gnzk)), Bc
f (π(gnyk)

) ≥ µ̃nd
(
Bc

f (πzk), Bc
f (πyk)

)
.

Since πz′k ∈ W s
f (πzk) and Bc

f (π(gnz′k)) = Bc
f (π(gnx), we have

d
(
Bc

f (π(gizk)), Bc
f (π(gix))

) → 0 as i →∞.

Hence

d
(
Bc

f (π(gnx)), Bc
f (π(gnyk))

) ≥ µ̃nd
(
Bc

f (πzk), Bc
f (πyk)

)
.

Since πzk ∈ Wu
f (πyk), it is easy to see that d

(
Bc

f (πzk), Bc
f (πyk)

) ≥ c2d(πzk, πyk) for some constant

c2 > 0 only depends on the system. Also by (3.6) and the fact that d(πzk, πyk) ≥ d(πz′k, πzk), we

have d(πzk, πyk) ≥ 0.5c1d(πx, πyk). Since yk ∈ W c
g (x) and the map π(x) is along Ẽu

x ⊕ Ẽs
x, which is

a smooth tangent subbundle, we have d(πx, πyk) ≥ c3d(x, yk) for some c3 > 0 independent of x and

yk. Therefore, we have

d
(
Bc

f (π(gnx)), Bc
f (π(gnyk))

) ≥ Cµ̃nd(x, yk),

where C is a constant independent of x, yk and n. Since n = n(k) increases like − log d(x, yk)/ log µ′g
and min{1, µ′g} < µ̃, we have µ̃nd(x, yk) →∞ as d(x, yk) → 0. This contrdicts to (3.7) which implies

that d
(
Bc

f (π(gnx)), Bc
f (π(gnyk))

)
is bounded.

Replacing the center leaves by the center-stable leaves or the center-unstable leaves and using

similar arguments in the above paragraph, we can prove that π sends Wcs
g and Wcu

g to Wcs
f and Wcu

f

respectively.

4 Applications in the entropy theory

In this section, we apply our results to continuity of entropy. It is well known that continuity properties

of entropy are very delicate. Obviously, the topological entropy of Anosov diffeomorphisms is locally

a constant since it is structurally stable. For partially hyperbolic systems, Hua, Saghin and Xia ([10])

proved that for the case that the unstable and stable foliations stably carry some unique nontrivial

homologies, the topological entropy is locally constant if the center foliation is one dimensional, and

continuous if the center foliation is two dimensional. Hua ([9]) showed that the topological entropy

is continuous at the time one map of transitive Anosov flows. In this section, we will use our results

on the structural quasi-stability to investigate continuity of entropy for some partially hyperbolic

diffeomorphisms.

4.1 Time one map of Anosov flow

Proof of Theorem D. Let g be a diffeomorphism sufficiently close to f . By Theorem B′ and The-

orem C, there exist a homeomorphism π : M → M with d(π, idM ) sufficiently small and a small
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τ̃ : M → R such that

π ◦ g(x) = ϕτ̃◦f(x)(f ◦ π(x)) ∀x ∈ M.

Now we can define a flow ψ by ψt(x) = π−1ϕt(π(x)) for x ∈ M and t ∈ R. Obviously, ϕ and ψ are

conjugate and

g(x) = ψ1+τ̃◦f(x)(x) (4.1)

for any x ∈ M . By Theorem B of [14], we have that

(1 + min
x∈M

τ̃(x))h(ϕ) ≤ h(ψ) ≤ (1 + max
x∈M

τ̃(x))h(ϕ), (4.2)

where h(ϕ) and h(ψ) are the topological entropies of ϕ and ψ respectively. From Proposition 21 of

[4], we have that for any t ∈ R,

h(ϕt) = |t|h(ϕ1) = |t|h(f) and h(ψt) = |t|h(ψ1). (4.3)

By (4.1),

h(ψ
1+min

x∈M
τ̃(x)

) ≤ h(g) ≤ h(ψ
1+max

x∈M
τ̃(x)

). (4.4)

Therefore, by (4.2), (4.3) and (4.4), we have

(1 + min
x∈M

τ̃(x))2h(f) ≤ h(g) ≤ (1 + max
x∈M

τ̃(x))2h(f).

Note that |τ̃ | → 0 as g → f . Hence we conclude that the topological entropy function is continuous

at f .

4.2 Systems with almost parallel center foliation

For a smooth surface Σ, y ∈ Σ and r > 0, we denote

Σ(y, α) = {z ∈ Σ : d(z, y) < r}.

The volume growth rate of the unstable foliation of f is defined by

χu(x, r) = lim sup
n→∞

1
n

log Vol(fnWu
f (x, r)),

and

χu(f) = sup
x∈M

χu(x, r).

(See [10].) Clearly, χu(f) is independent of r. χs(f) is defined similarly by using stable manifolds

Ws
f .

Proof of Theorem E. The first part of the theorem follows from Lemma 4.1 below. By Lemma 4.2

below, the volume growth satisfies χu(f) = χu(g). So, following the same arguments in the proof of

Theorem 1.1 in [10], we can obtain the second part of the theorem.

Recall that θc is a holonomy map defined by sliding the center leaves. When we use the map, we

will allow the domain to be a nonsmooth surface or even an arbitrary set. Also, we use θc
f and θc

g to

denote the maps along the center leaves of f and g respectively.
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Lemma 4.1. Let f be a partially hyperbolic diffeomorphism as in Theorem B and g be a diffeomor-

phism that is C1-close to f . If f has almost parallel center foliation, then so does g.

Moreover, for any x, y ∈ M with y ∈ Wc
f (π(x)), and any smooth surfaces Σf (x) and Σg(y) with

Σf (x) ⊥ Wc
f and Σg(y) ⊥ Wc

g , the map θc
g ◦ π : Σf (x) → Σg(y) is uniformly continuous with respect

to x and y.

Proof. Take β > 0. Take x ∈ M and y ∈ Wc
g(x). Let Σg(x) and Σg(y) denote the smooth surfaces

with Σg(x) ⊥ Wc
g and Σg(y) ⊥ Wc

g . Denote Σg(x, β) = {z ∈ Σg(x) : d(x, z) ≤ α}. We need to show

that there exists α > 0 independent of x and y such that θc
g(Σg(x, α)) ⊂ Σg(y, β).

Denote Rg(y, β) = ∪z∈Σg(y,β)Wc
g(z, β), where Wc

g(z, β) is the local center leaf of g at z of size β.

Clearly, Rg(y, β) contains a ball about y of radius β. Since π is a homeomorphism, π−1 is uniformly

continuous on M . So there is β′ > 0 independent of y such that π
(Rg(y, β)

)
contains a ball of radius

β′ about π(y). In particular, π(Rg(y, β)) ⊃ Σf (π(y), β′), where Σf (π(y), β′) is the part of a smooth

surface Σf (π(y)) that is contained in a ball of radius β′, and Σf (π(y)) ⊥ Wc
f .

Note that by Theorem C, π(Wc
g(y)) = Wc

f (π(y)). Since f has almost parallel center foliation,

there is α′ > 0 independent of π(y) such that θc
f (Σf (π(x), α′)) ⊂ Σf (π(y), β′).

Consider the set Rf (π(x), α′) = ∪z∈Σf (π(x),β′)Wc
f (z, α′). It contains a ball of radius α′ about π(x).

Since π is uniformly continuous, there exists α > 0 only depending on α′, such that π−1
(Rf (π(x), α′)

)

contains a ball of radius α about x. In particular, it contains Σg(x, α).

Now it is easy to check that θc
g

(
Σg(x, α)

) ⊂ Σg(y, β).

The proof of the second part of the lemma can be obtained in a similar way.

Lemma 4.2. Let f and g be as in Lemma 4.1. Then we have

χu(g) = χu(f).

Proof. Take x ∈ M and r > 0.

By the last lemma we know that there exists r∗ ≥ r′ > 0 such that

Wu
f (π(x), r′) ⊂ (θc ◦ π)(Wu

g (x, r)) ⊂ Wu
f (π(x), r∗), (4.5)

where θc is the holonomy map into Wu
f (π(x), r∗).

Define ψn = θc
n ◦ π, where θc

n is the holonomy map into fnWu
f (π(x), r∗). It is easy to check that

(4.5) implies

fnWu
f (π(x), r′) ⊂ ψn(gnWu

g (x, r)) ⊂ fnWu
f (π(x), r∗)

for any n > 0. Moreover, by the second part of Lemma 4.1, we know that for any α > 0, there exists

β > 0 such that for any x ∈ M , n > 0, and y ∈ gnWu
g (x, r),

ψnWu
g (y, β) ⊂ Wu

f (ψn(y), α).

The inclusions mean that Condition (b) of Sublemma 4.3 below is satisfied with ψn = ψ, W =

gnWu
g (x, r) and W ′ = fnWu

f (π(x), r′) for all n ≥ 0. Since Wu
f and Wu

g are smooth submanifolds with

bounded curvature, Condition (a) of the sublemma holds.
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Now we apply Sublemma 4.3 to get that there is C > 0 independent of n such that for all n ≥ 0,

Vol(fnWu
f (x, r′)) ≤ C Vol(gnWu

g (x, r)).

Since this is true for any x, we get χu(f) ≤ χu(g).

We can apply similar arguments, by using the inverse of π and the fact that g has almost parallel

center foliation, to get χu(g) ≤ χu(f).

Sublemma 4.3. Let W,W ′,W ∗ ⊂ M be k dimensional manifolds with W ′ ⊂ W ∗ and ψ : W → W ∗

be a one to one map such that W ′ ⊂ ψ(W ). Suppose that for all n ≥ 0,

(a) there are constants C and C such that for any small α > 0, y′ ∈ W ′ and y ∈ W ,

VolW ′(y′, α) ≤ Cαk, Cαk ≤ VolW (y, α);

(b) for any α > 0, there is a constant β > 0 such that for any y ∈ W with ψ(y) ∈ W ′,

ψ(W (y, β)) ⊂ W ′(ψ(y), α).

Then there exists C > 0, only depending on C, C, α and β, such that

Vol(W ′) ≤ C Vol(W ).

Proof. Fix α > 0. Take a 2α separated set y′1, · · · , y′`n
∈ W ′, that is, d(y′i, y

′
j) ≥ 2α for any 1 ≤ i, j ≤

`n. We also require that the set has maximal cardinality. Hence, {BW ′(y′i, 2α)} form a cover of W ′.

So by part (a) we have

Vol(W ′) ≤ `n · C(2α)k.

Take β > 0 as in Condition (b) of the sublemma. Since the balls in {W ′(y′i, α)} are pairwise

disjoint, and ψW (yi, β) ⊂ BW ′(y′i, α), where yi = ψ−1y′i ∈ W , we see that {W (yi, β)} are pairwise

disjoint. Hence,

Vol(W ) ≥ `n · Cβk.

So we have

Vol(W ′) ≤ C Vol(W ),

where C = C(2α)k/Cβk.
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