Lecture 4: Cylinder and Quadric Surfaces. What is exlinder? Take any Plane Curve (curve which lies in some -plane) and draw a straight lines which pass through that curre and which are perpendicular to that place acylinder Example

Renewh: 1) The is a cylinder 2) Plane ? a cylinder 3) Any equation in 310 in which we are missing at least one variable is a cylinder is a fuglinder Example Cylinden Pirfare

TABLE 12.1 Graphs of Quadric Surfaces

ELLIPSOID

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

The line $z = -\frac{c}{b}y$ The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the yz-plane z = c in the plane z = cThe line $z = \frac{c}{a}x$ in the xz-plane $x = \frac{c}{a}x$ $x = \frac{c}{a}x$

ELLIPTICAL CONE

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

Part of the hyperbola $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$ in the xz-plane

HYPERBOLOID OF ONE SHEET

HYPERBOLOID OF TWO SHEETS
$$\frac{z^2}{c^2} - \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

HYPERBOLIC PARABOLOID
$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z}{c}$$
, $c > 0$

Exercises 12.6

Matching Equations with Surfaces

In Exercises 1-12, match the equation with the surface it defines. Also, identify each surface by type (paraboloid, ellipsoid, etc.) The surfaces are labeled (a)-(1).

1.
$$x^2 + y^2 + 4z^2 = 10$$

2.
$$z^2 + 4v^2 - 4x^2 = 4$$

3.
$$9v^2 + z^2 = 16$$

4.
$$v^2 + z^2 = x^2$$

5.
$$x = v^2 - z^2$$

6.
$$x = -y^2 - z^2$$

7.
$$x^2 + 2z^2 = 8$$

8.
$$z^2 + x^2 - v^2 = 1$$

9.
$$x = z^2 - y^2$$

10.
$$z = -4x^2 - y^2$$

11.
$$x^2 + 4z^2 = y^2$$

12.
$$9x^2 + 4y^2 + 2z^2 = 36$$

d.

e.

g.

h.

i.

k.

l.

Drawing

Sketch the surfaces in Exercises 13-44.

CYLINDERS

13.
$$x^2 + y^2 = 4$$

14.
$$z = v^2 - 1$$

15.
$$x^2 + 4z^2 = 16$$

16.
$$4x^2 + y^2 = 36$$

ELLIPSOIDS

17.
$$9x^2 + y^2 + z^2 = 9$$

18.
$$4x^2 + 4y^2 + z^2 = 16$$

19.
$$4x^2 + 9y^2 + 4z^2 = 36$$

20.
$$9x^2 + 4y^2 + 36z^2 = 36$$

PARABOLOIDS AND CONES

21.
$$z = x^2 + 4v^2$$

22.
$$z = 8 - x^2 - y^2$$

$$23. \ x = 4 - 4y^2 - z^2$$

24.
$$y = 1 - x^2 - z^2$$

25.
$$x^2 + y^2 = z^2$$
HYPERBOLOIDS

26.
$$4x^2 + 9z^2 = 9y^2$$

27.
$$x^2 + y^2 - z^2 = 1$$

28.
$$v^2 + z^2 - x^2 = 1$$

29.
$$z^2 - x^2 - v^2 = 1$$

30.
$$(v^2/4) - (x^2/4) - z^2 = 1$$

HYPERBOLIC PARABOLOIDS

31.
$$y^2 - x^2 = z$$

32.
$$x^2 - y^2 = z$$

ASSORTED

33.
$$z = 1 + v^2 - x^2$$

34.
$$4x^2 + 4y^2 = z^2$$

35.
$$v = -(x^2 + z^2)$$

36.
$$16x^2 + 4y^2 = 1$$

37.
$$x^2 + v^2 - z^2 = 4$$

36.
$$16x^2 + 4y^2 =$$

38.
$$x^2 + z^2 = y$$

39.
$$x^2 + z^2 = 1$$

40.
$$16v^2 + 9z^2 = 4x^2$$

41.
$$z = -(x^2 + y^2)$$

42.
$$y^2 - x^2 - z^2 = 1$$

43.
$$4y^2 + z^2 - 4x^2 = 4$$

44.
$$x^2 + y^2 = z$$

Theory and Examples

45. a. Express the area A of the cross-section cut from the ellipsoid

$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$

by the plane z = c as a function of c. (The area of an ellipse with semiaxes a and b is πab .)

- **b.** Use slices perpendicular to the z-axis to find the volume of the ellipsoid in part (a).
- c. Now find the volume of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Does your formula give the volume of a sphere of radius a if a = b = c?