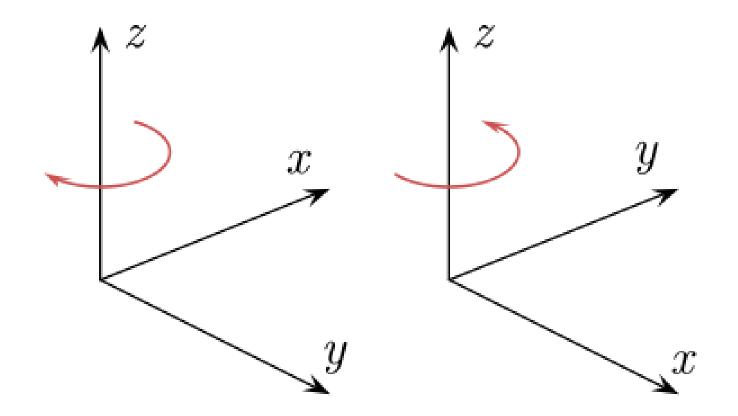
Multivariable calculus

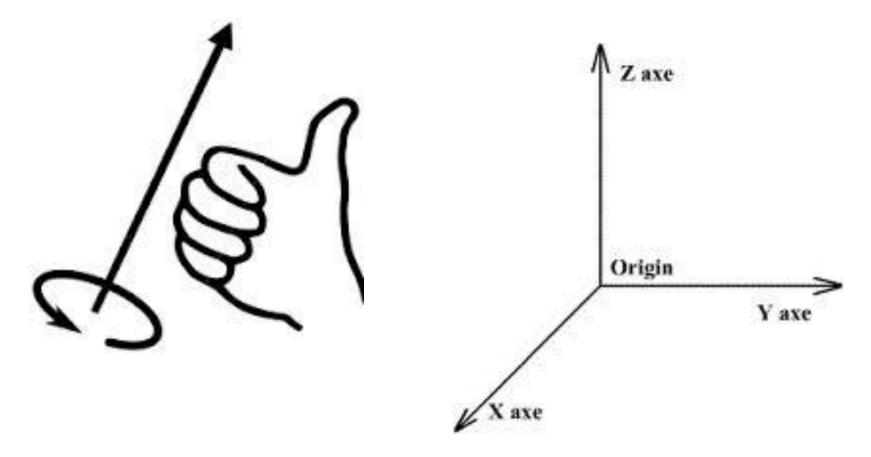
- MTH132 & 133: $f: R \rightarrow R$ one-dimensional functions Examples: $y = x^2, y = \sin x, ...$
- MTH234: $f: R^2 \rightarrow R \text{ or } f: R^3 \rightarrow R$ or $f: R \rightarrow R^2, R \rightarrow R^3$ Examples: $z = x^2 + y^2, (x, y) = (\sin t, \cos t)$

3-dimensional coordinate system

Left-handed (LH) system
Right-handed (RH) system

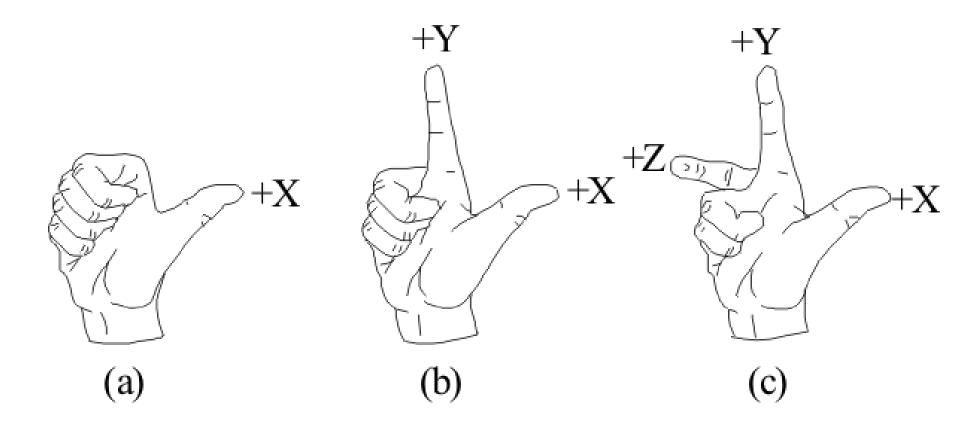


Right-handed coordinate system



Note: In this course, we will use the right-handed system.

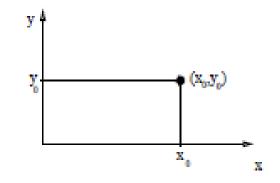
Right-handed coordinate system

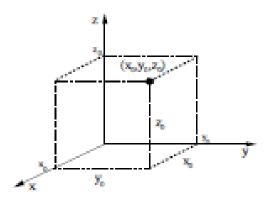


Cartesian coordinates.

Cartesian coordinates on \mathbb{R}^2 : Every point on a plane is labeled by an ordered pair (x, y) by the rule given in the figure.

Cartesian coordinates in \mathbb{R}^3 : Every point in space is labeled by an ordered triple (x, y, z) by the rule given in the figure.

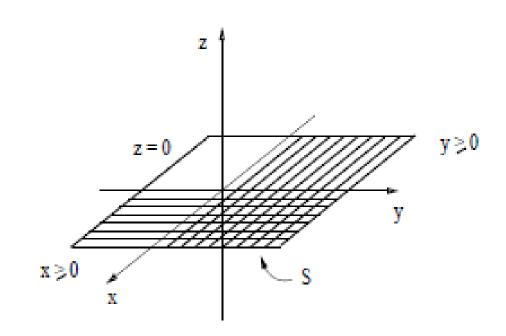




Cartesian coordinates.

Example Sketch the set $S = \{x \ge 0, y \ge 0, z = 0\} \subset \mathbb{R}^3$.

Solution:



 \triangleleft

Distance between 2 points:

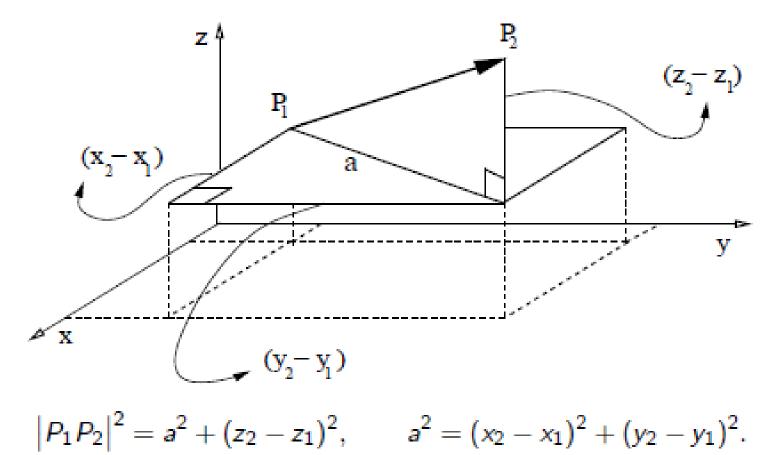
Theorem

The distance $|P_1P_2|$ between the points $P_1 = (x_1, y_1, z_1)$ and $P_2 = (x_2, y_2, z_2)$ is given by

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

The distance between points in space is crucial to define the idea of limit to functions in space.

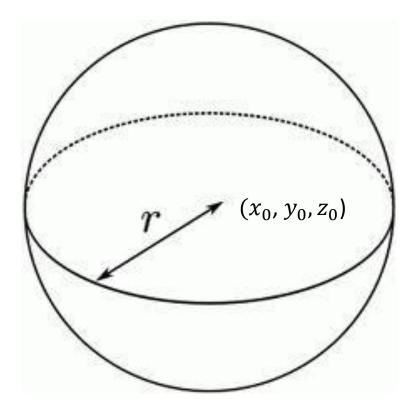
Proof. Pythagoras Theorem.



Н

Sphere equation

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$$



Equation of a sphere

Example Graph the sphere $x^2 + y^2 + z^2 + 4y = 0$.

Solution: Complete the square.

$$0 = x^2 + y^2 + 4y + z^2$$

$$0 = x^{2} + \left[y^{2} + 2\left(\frac{4}{2}\right)y + \left(\frac{4}{2}\right)^{2}\right] - \left(\frac{4}{2}\right)^{2} + z^{2}$$

$$0 = x^{2} + \left(y + \frac{4}{2}\right)^{2} + z^{2} - 4.$$

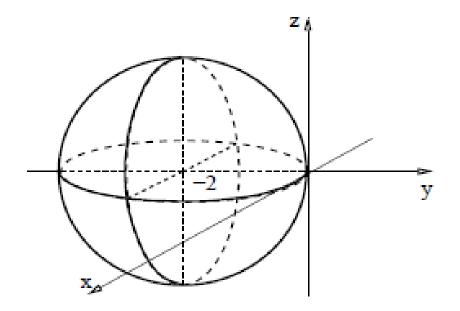
 $x^{2} + y^{2} + 4y + z^{2} = 0 \quad \Leftrightarrow \quad x^{2} + (y + 2)^{2} + z^{2} = 2^{2}.$

Equation of a sphere

Example

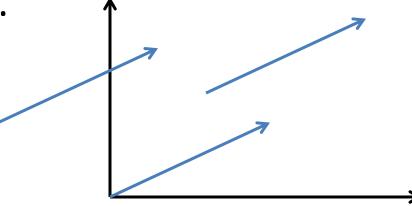
- Graph the sphere $x^2 + y^2 + z^2 + 4y = 0$.
- Solution: $x^2 + y^2 + 4y + z^2 = 0 \quad \Leftrightarrow \quad x^2 + (y+2)^2 + z^2 = 2^2$.

Then, we conclude that $P_0 = (0, -2, 0)$ and R = 2. Therefore,



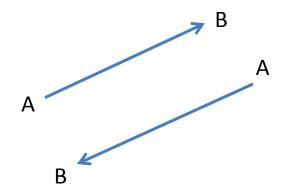
Vectors in R² and R³

<u>Definition</u>: A vector is a directed line, \overline{AB} from point A (initial point) to point B (terminal point) and has its length denoted by $|\overline{AB}|$. Two vectors are equal if they have the same length and direction.



Note

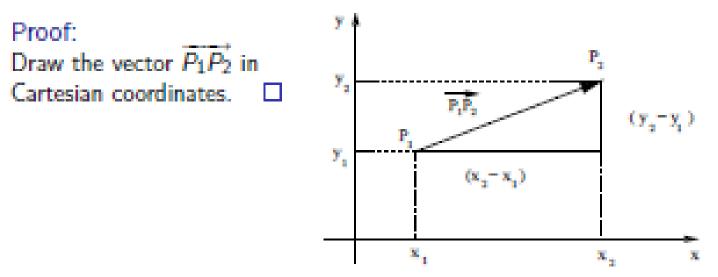
- Initial point and terminal point are not unique.
- \overrightarrow{AB} and \overrightarrow{BA} are of the same length but of opposite in directions.



Components of a vector in Cartesian coordinates

Theorem Given the points $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2) \in \mathbb{R}^2$, the vector $\overrightarrow{P_1P_2}$ determines a unique ordered pair, called vector components,

$$\langle \overrightarrow{P_1P_2} \rangle = \langle (x_2 - x_1), (y_2 - y_1) \rangle.$$



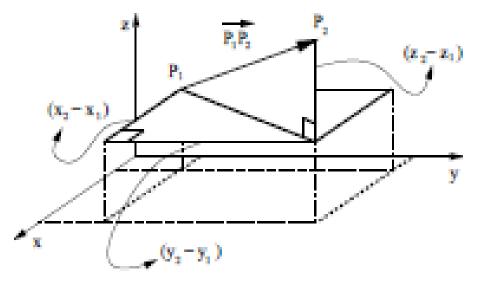
Remark: A similar result holds for vectors in space.

Components of a vector in Cartesian coordinates

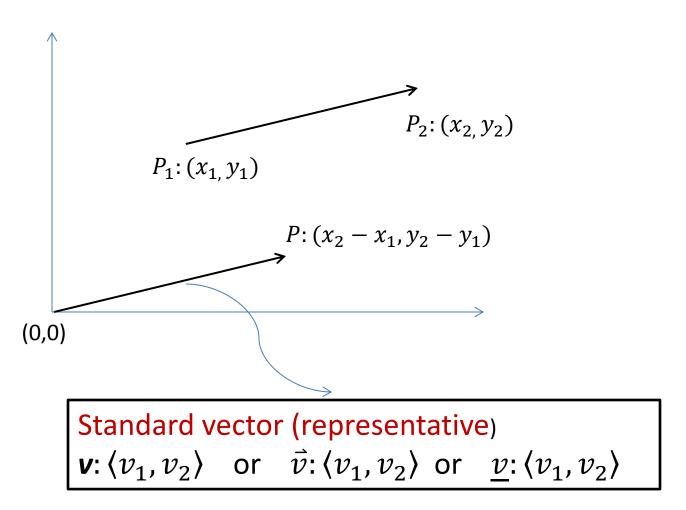
Theorem Given the points $P_1 = (x_1, y_1, z_1)$, $P_2 = (x_2, y_2, z_2) \in \mathbb{R}^3$, the vector $\overrightarrow{P_1P_2}$ fixes a unique ordered triple, called vector components,

$$\langle \overrightarrow{P_1P_2} \rangle = \langle (x_2 - x_1), (y_2 - y_1), (z_2 - z_1) \rangle.$$

Proof: Draw the vector $\overline{P_1P_2}^+$ in Cartesian coordinates.



Standard position



Remark: Similar concepts can be defined in 3-D

Vector algebra operations

• Addition:

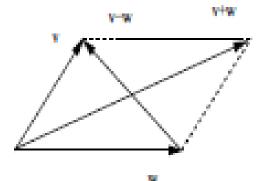
$$\vec{u} = \langle u_1, u_2, u_3 \rangle, \vec{v} = \langle v_1, v_2, v_3 \rangle$$

$$\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

• Scalar multiplications: Let r be a real number $r\vec{u} = < ru_1, ru_2, ru_3 >$

Addition and scalar multiplication.

Remark: The addition and difference of two vectors.



Remark: The scalar multiplication stretches a vector if a > 1 and compresses the vector if 0 < a < 1.

Magnitude of a vector and unit vectors.

Definition

The magnitude or length of a vector $\overrightarrow{P_1P_2}$ is the distance from the initial point to the terminal point.

▶ If the vector $\overrightarrow{P_1P_2}$ has components

$$\overrightarrow{P_1P_2} = \langle (x_2 - x_1), (y_2 - y_1), (z_2 - z_1) \rangle,$$

then its magnitude, denoted as $|\overline{P_1P_2}|$, is given by

$$\left|\overline{P_1P_2}\right| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

If the vector v has components v = (v_x, v_y, v_z), then its magnitude, denoted as |v|, is given by

$$|\mathbf{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}.$$

Magnitude of a vector and unit vectors.

Definition A vector **v** is a *unit vector* iff **v** has length one, that is, $|\mathbf{v}| = 1$.

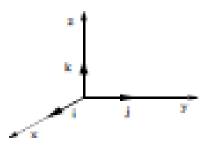
Example Show that $\mathbf{v} = \left\langle \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right\rangle$ is a unit vector.

Solution:

$$|\mathbf{v}| = \sqrt{\frac{1}{14} + \frac{4}{14} + \frac{9}{14}} = \sqrt{\frac{14}{14}} \quad \Rightarrow \quad |\mathbf{v}| = 1.$$

Example

The unit vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$ are useful to express any other vector in \mathbb{R}^3 .



Addition and scalar multiplication.

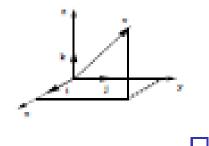
Theorem Every vector $\mathbf{v} = \langle \mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z \rangle$ in \mathbb{R}^3 can be expressed in a unique way as a linear combination of vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$ as follows

$$\mathbf{v} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}.$$

Proof: Use the definitions of vector addition and scalar multiplication as follows,

$$\mathbf{v} = \langle \mathbf{v}_x, \mathbf{v}_y, \mathbf{v}_z \rangle$$

= $\langle \mathbf{v}_x, \mathbf{0}, \mathbf{0} \rangle + \langle \mathbf{0}, \mathbf{v}_y, \mathbf{0} \rangle + \langle \mathbf{0}, \mathbf{0}, \mathbf{v}_z \rangle$
= $\mathbf{v}_x \langle \mathbf{1}, \mathbf{0}, \mathbf{0} \rangle + \mathbf{v}_y \langle \mathbf{0}, \mathbf{1}, \mathbf{0} \rangle + \mathbf{v}_z \langle \mathbf{0}, \mathbf{0}, \mathbf{1} \rangle$
= $\mathbf{v}_x \mathbf{i} + \mathbf{v}_y \mathbf{j} + \mathbf{v}_z \mathbf{k}$.



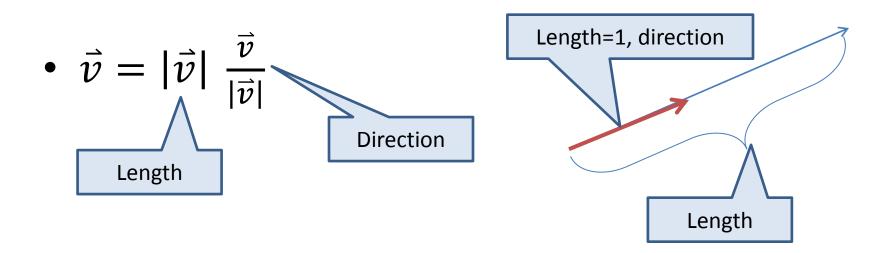
Addition and Scalar Multiplication

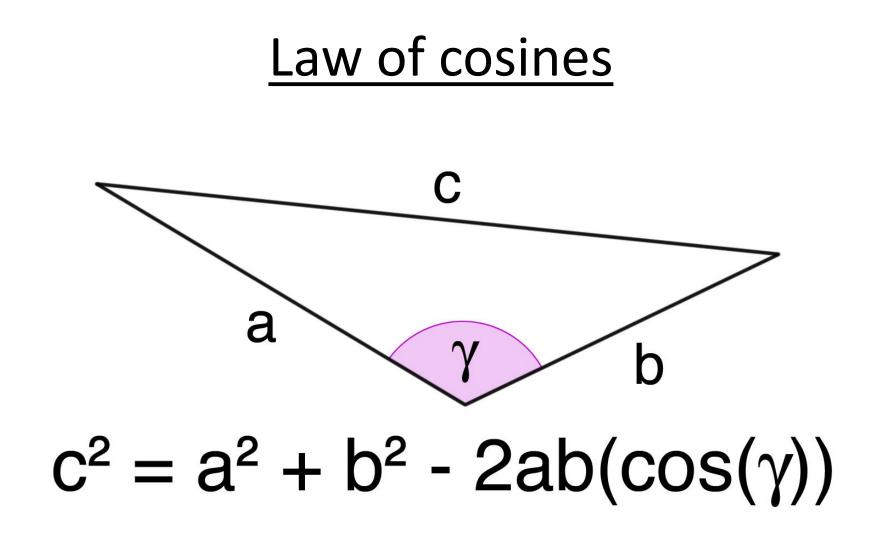
1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ 3. $\vec{a} + \vec{0} = \vec{a}$ 5. $c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$ 6. $(c+d)\vec{a} = c\vec{a} + d\vec{a}$

7. $(cd)\vec{a} = c(d\vec{a})$ 8. $1\vec{a} = \vec{a}$

Vector decompositions

• $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 k$

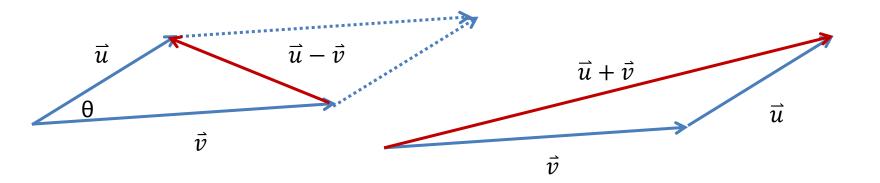


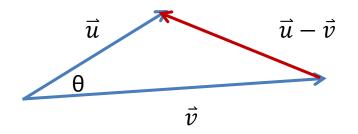


Theorem

Let $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ be two vectors (standard position) and θ be the angle between the two vectors. Then,

 $|\vec{u}||\vec{v}|\cos\theta = u_1v_1 + u_2v_2 + u_3v_3$





Idea of the proof: Law of cosines $\rightarrow 2|\vec{u}||\vec{v}|\cos\theta = |u|^2 + |\vec{v}|^2 - |\vec{u} - \vec{v}|^2$

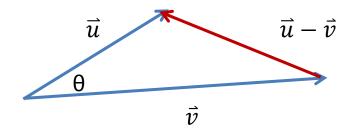
Also recall:
$$|u|^2 = u_1^2 + u_2^2 + u_3^2$$

Definition:

Let $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ be two vectors (standard position) and θ be the angle between the two vectors. Then,

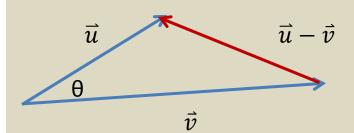
$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Is call the dot product of these two vectors



Definition

• Geometric definition: $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$



• Algebraic definition:

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

The dot product of two vectors is a scalar

Example

Compute $\mathbf{v} \cdot \mathbf{w}$ knowing that $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$, with $|\mathbf{v}| = 2, \mathbf{w} = \langle 1, 2, 3 \rangle$ and the angle in between is $\theta = \pi/4$.

Solution: We first compute $|\mathbf{w}|$, that is,

$$|\mathbf{w}|^2 = 1^2 + 2^2 + 3^2 = 14 \quad \Rightarrow \quad |\mathbf{w}| = \sqrt{14}.$$

We now use the definition of dot product:

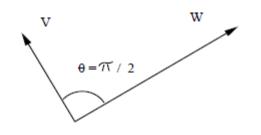
$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta) = (2) \sqrt{14} \frac{\sqrt{2}}{2} \Rightarrow \mathbf{v} \cdot \mathbf{w} = 2\sqrt{7}.$$

- The angle between two vectors usually is not know in applications.
- It is useful to have a formula for the dot product involving the vector components.

Perpendicular vectors have zero dot product.

Definition

Two vectors are *perpendicular*, also called *orthogonal*, iff the angle in between is $\theta = \pi/2$.



Theorem

The non-zero vectors \mathbf{v} and \mathbf{w} are perpendicular iff $\mathbf{v} \cdot \mathbf{w} = 0$.

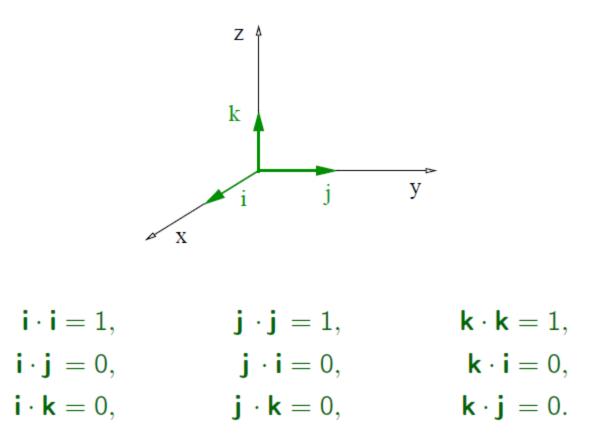
Proof.

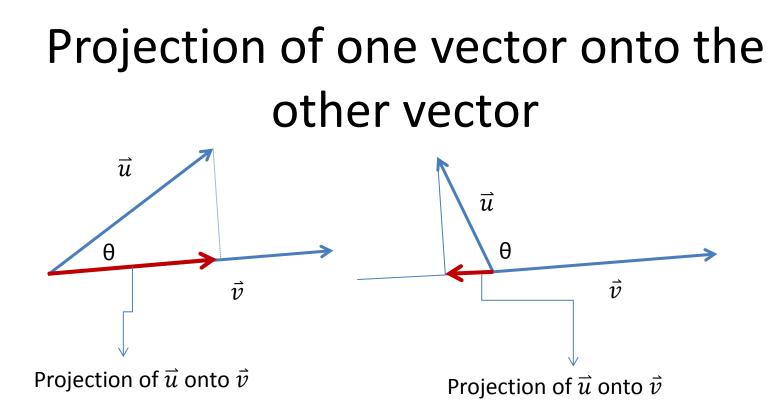
$$\begin{array}{l} 0 = \mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| \, |\mathbf{w}| \, \cos(\theta) \\ |\mathbf{v}| \neq 0, \quad |\mathbf{w}| \neq 0 \end{array} \right\} \quad \Leftrightarrow \quad \begin{cases} \cos(\theta) = 0 \\ 0 \leqslant \theta \leqslant \pi \end{array} \quad \Leftrightarrow \quad \theta = \frac{\pi}{2}.$$

The dot product of **i**, **j** and **k** is simple to compute Example

Compute all dot products involving the vectors **i**, **j**, and **k**.

Solution: Recall: $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, $\mathbf{k} = \langle 0, 0, 1 \rangle$.





 $|\vec{u}| \cos \theta = \begin{cases} length of the red arrow, \theta < \pi/2 \\ -length of the red arrow, \theta > \pi/2 \\ ----- Scalar component of$ **u**in the direction of**v** $. \\ (Definition) \end{cases}$

Definition

 $proj_{\vec{v}}\vec{u} = (|\vec{u}|\cos\theta)_{\frac{v}{|\vec{v}|}}$

Signed length Scalar component

Unit vector in the direction of \vec{v}

Definition (continue) $proj_{\vec{v}}\vec{u} = (|\vec{u}|\cos\theta)\frac{v}{|\vec{v}|}$ $|\vec{u}||\vec{v}|\cos\theta \ \vec{v}$ \vec{v} $|\vec{v}|$ $\vec{u} \cdot \vec{v}$ $|\vec{v}|^2$

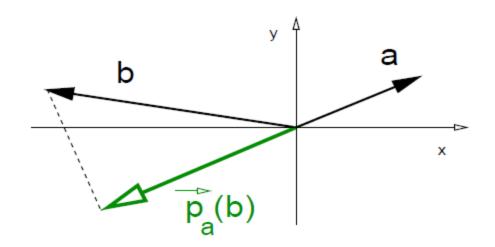
Example

Find the vector projection of $\mathbf{b} = \langle -4, 1 \rangle$ onto $\mathbf{a} = \langle 1, 2 \rangle$.

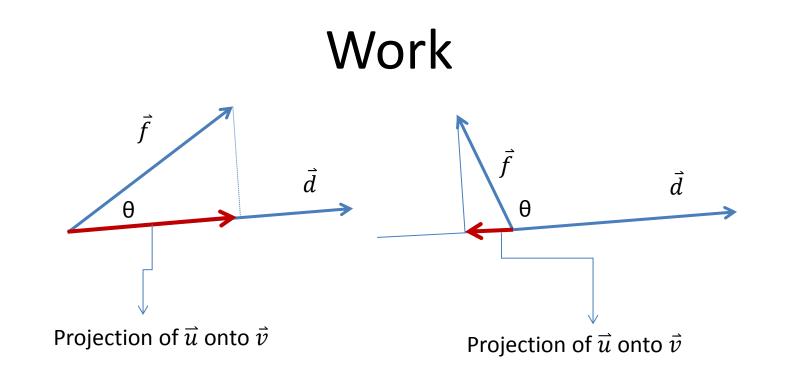
Solution: The vector projection of \mathbf{b} onto \mathbf{a} is the vector

$$\mathbf{p}_{a}(b) = \left(\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|}\right) \, \frac{\mathbf{a}}{|\mathbf{a}|} = \left(-\frac{2}{\sqrt{5}}\right) \frac{1}{\sqrt{5}} \, \langle 1, 2 \rangle.$$

We therefore obtain $\mathbf{p}_a(b) = -\left\langle \frac{2}{5}, \frac{4}{5} \right\rangle$.



Properties of dot product 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ 2. $(c\vec{u})\cdot\vec{v}=\vec{u}\cdot(c\vec{v})$ 3. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ 4. $\vec{u} \cdot \vec{u} = |\vec{u}|^2$ 5. $\vec{0} \cdot \vec{v} = 0$



 $Work = Scalar \ componet * \left| \vec{d} \right| = \left| \vec{f} \right| \cos \theta * \left| \vec{d} \right|$ $= \left| \vec{f} \cdot \vec{d} \right|$