A GRS decoding example

Consider the code $G R S_{10,4}(\boldsymbol{\alpha}, \mathbf{v})$ over \mathbb{F}_{11} with

$$
\boldsymbol{\alpha}=\mathbf{v}=(10,9,8,7,6,5,4,3,2,1)
$$

hence (by direct calculation or Problems 5.1.3/5.1.5) we may take

$$
\mathbf{u}=(1,1,1,1,1,1,1,1,1,1)
$$

Note that here $r=10-4=6$, so we can correct up to $r / 2=3$ errors.
We wish to decode the received word

$$
\mathbf{p}=(0,0,8,0,0,2,0,0,7,0)
$$

First calculate the syndrome polynomial:

$$
\begin{aligned}
& S_{\mathbf{p}}(z)=\sum_{j=1}^{10} \frac{u_{j} \cdot p_{j}}{1-\alpha_{j} z}=\frac{1 \cdot 8}{1-8 z}+\frac{1 \cdot 2}{1-5 z}+\frac{1 \cdot 7}{1-2 z} \quad\left(\bmod z^{6}\right) \\
& =\begin{array}{rrrrrr}
8\left(\begin{array}{rrrrr}
1 & +8 z & +9 z^{2} & +6 z^{3} & +4 z^{4} \\
+10 z^{5}
\end{array}\right) \\
+2\left(\begin{array}{rllll}
\\
1 & +5 z & +3 z^{2} & +4 z^{3} & +9 z^{4} \\
+z^{5}
\end{array}\right) & \left(\bmod z^{6}\right)
\end{array} \\
& +7\left(\begin{array}{cc}
1 & \left.+2 z+4 z^{2} \quad+8 z^{3}+5 z^{4}+10 z^{5}\right)
\end{array}\right. \\
& =6+0 z+7 z^{2}+2 z^{3}+8 z^{4}+9 z^{5} .
\end{aligned}
$$

We now (partially) calculate $\operatorname{gcd}\left(z^{6}, 9 z^{5}+8 z^{4}+2 z^{3}+7 z^{2}+6\right)=1$ over \mathbb{F}_{11}, the Euclidean Algorithm example discussed in class (and on a handout).

In our Euclidean Algorithm example, Step 3, where $r_{3}(z)=10 z^{2}+5 z+7$, is the first step j for which the degree of $r_{j}(z)$ is less than $r / 2=3$. So, in decoding, we stop at this step.

We have $t_{3}(z)=2 z^{3}+10 z+3$, hence $t_{3}(0)^{-1}=3^{-1}=4$. We thus set
$\sigma(z)=4\left(2 z^{3}+10 z+3\right)=8 z^{3}+7 z+1$ and $\omega(z)=4\left(10 z^{2}+5 z+7\right)=7 z^{2}+9 z+6$
(These are really our guesses $\hat{\sigma}(z)$ and $\hat{\omega}(z)$.)
The polynomial $\sigma(z)=8 z^{3}+7 z+1$ has roots 6,7 , and 9 :

$$
\begin{aligned}
& 0=8 \times 6^{3}+7 \times 6+1=8 \times 7+7 \times 6+1=56+42+1=99(\bmod 11) \\
& 0=8 \times 7^{3}+7 \times 7+1=8 \times 2+7 \times 7+1=16+49+1=66(\bmod 11) \\
& 0=8 \times 9^{3}+7 \times 9+1=8 \times 3+7 \times 9+1=24+63+1=88(\bmod 11)
\end{aligned}
$$

We then have

$$
\begin{aligned}
& 6^{-1}=2=\alpha_{9} \\
& 7^{-1}=8=\alpha_{3} \\
& 9^{-1}=5=\alpha_{6}
\end{aligned}
$$

Therefore we assume that the errors are located at positions 3,6 , and 9 .
To calculate the associated error values, in addition to the error evaluator polynomial $\omega(z)=7 z^{2}+9 z+6$ we also need

$$
\sigma^{\prime}(z)=\left(8 z^{3}+7 z+1\right)^{\prime}=24 z^{2}+7+0=2 z^{2}+7
$$

Now

$$
\begin{aligned}
e_{3} & =\frac{-\alpha_{3} \omega\left(\alpha_{3}^{-1}\right)}{u_{3} \sigma^{\prime}\left(\alpha_{3}^{-1}\right)}=\frac{-8 \times \omega\left(8^{-1}\right)}{1 \times \sigma^{\prime}\left(8^{-1}\right)}=\frac{3 \times\left(7 \times 7^{2}+9 \times 7+6\right)}{2 \times 7^{2}+7} \\
& =\frac{3 \times(7 \times 5+63+6)}{2 \times 5+7}=\frac{3 \times(2+8+6)}{6} \\
& =\frac{3 \times 5}{6}=4 \times 6^{-1}=4 \times 2=8
\end{aligned}
$$

and

$$
\begin{aligned}
e_{6} & =\frac{-\alpha_{6} \omega\left(\alpha_{6}^{-1}\right)}{u_{6} \sigma^{\prime}\left(\alpha_{6}^{-1}\right)}=\frac{-5 \times \omega\left(5^{-1}\right)}{1 \times \sigma^{\prime}\left(5^{-1}\right)}=\frac{6 \times\left(7 \times 9^{2}+9 \times 9+6\right)}{2 \times 9^{2}+7} \\
& =\frac{6 \times 5}{4}=\frac{8}{4}=2
\end{aligned}
$$

and

$$
\begin{aligned}
e_{9} & =\frac{-\alpha_{9} \omega\left(\alpha_{9}^{-1}\right)}{u_{9} \sigma^{\prime}\left(\alpha_{9}^{-1}\right)}=\frac{-2 \times \omega\left(2^{-1}\right)}{1 \times \sigma^{\prime}\left(2^{-1}\right)}=\frac{9 \times\left(7 \times 6^{2}+9 \times 6+6\right)}{2 \times 6^{2}+7} \\
& =\frac{9 \times 4}{2}=9 \times 2=7
\end{aligned}
$$

Therefore the error vector is equal to $(0,0,8,0,0,2,0,0,7,0)$. This was also the received vector \mathbf{p}, so we decode to

$$
(0,0,8,0,0,2,0,0,7,0)-(0,0,8,0,0,2,0,0,7,0)=(0,0,0,0,0,0,0,0,0,0)
$$

This is the expected result, since the minimal weight of the code is $n-k+1=$ $10-4+1=7$. The codeword $\mathbf{0}$ is the unique closest codeword to the weight 3 received vector \mathbf{p}.

