
A Primer on Finite Fields

Let K be a field and f(x) be a nonconstant polynomial of K[x]. Then f(x) is called irreducible
in K[x] if every factorization f(x) = a(x)b(x) in K[x] has {deg a, deg b} = {0, deg f}. (This
corresponds to prime numbers in Z.) Otherwise f(x) is reducible.

We begin with an important, general result. (It is Theorem A.2.22 of the Algebra Appendix.)

(A.2.22) Let f(x) ∈ K[x] for K a field, with deg f ≥ 1. Then the ring K[x] (mod f(x)) is a field
if and only if f(x) is irreducible.

Proof. Assume that f(x) is irreducible. Everything needed for K[x] (mod f(x)) to be a field is clear except for the
claim that all nonzero elements have multiplicative inverses.

Suppose that g(x) is not zero in K[x] (mod f(x)). That is, suppose that g(x) is not a multiple of f(x). Then
gcd(g(x), f(x)) = gcd(r(x), f(x)), where r(x) is the remainder upon division of g(x) by f(x). The polynomial r(x)
has degree less than deg f and is nonzero since g(x) is not a multiple of f(x).

Thus gcd(g(x), f(x)) = gcd(r(x), f(x)) is a divisor of f(x) that has degree less than f(x). As f(x) is irreducible,
that degree must be 0. Therefore monic gcd(g(x), f(x)) = gcd(r(x), f(x)) = 1. Now by the Extended Euclidean
Algorithm, there are s(x) and t(x) in K[x] with s(x)g(x) + t(x)f(x) = 1. That is, s(x)g(x) = 1 (mod f(x)), and
s(x) is an inverse for g(x) in the field K[x] (mod f(x)).

Conversely suppose that f(x) is reducible, and let f(x) = a(x)b(x) be a factorization with 0 < deg a < deg f and
0 < deg b < deg f . Then in the ring K[x] (mod f(x)) the elements a(x) and b(x) are nonzero but have zero product.
The ring is therefore not a field. 2

From now on, F will denote a finite field.

(1) F contains a copy of Zp = Fp, for some prime p. (This prime is called the characteristic of F .)

Proof. Consider the apparently infinite subset

{1 , 1+1 , 1+1+1 , . . . }

of the finite field F . 2

(2) There is a positive integer d with |F | = pd.

Proof. From the definitions, F is a vector space over Fp. Let e1, . . . , ed be a basis. Then F =
{ ∑d

i=1 aiei

∣∣∣ a1, . . . , ad ∈ Fp

}
.

Thus |F | is the number of choices for the ai, namely pd. 2

(3) Let α ∈ F ≥ Fp, and let m(x) ∈ Fp[x] be a monic polynomial of minimal degree with m(α) = 0.
(It exists since F is finite.) Then m(x) is irreducible and

Fp[α] =

{
k∑
i=0

aiα
i

∣∣∣∣∣ k ≥ 0, ai ∈ Fp

}

is a subfield of F that is a copy of Fp[x] (mod m(x)).

Proof. It is clear that the arithmetic of Fp[α] is the same as that of Fp[x] (mod m(x)).
Suppose that m(x) is reducible, and let m(x) = a(x)b(x) be a factorization with 0 < deg a < degm and

0 < deg b < degm. Then a(α)b(α) = m(α) = 0. Therefore either a(α) = 0 or b(α) = 0. But both contradict
our choice of m(x) as a nonzero polynomial of minimal degree having α as a root. So m(x) is not reducible and is
irreducible. In particular, by Theorem A.2.22, Fp[α] is a field. 2
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The polynomial m(x) is called the minimal polynomial of α over Fp and is uniquely determined.
We sometimes write mα(x) or even mα,Fp(x) for the minimal polynomial of α over Fp.

(4) It is possible to pick the α of (3) so that F = Fp[α]. Indeed, it is possible to pick an α with
αq−1 = 1, (where q = |F | = pd) and

F = {0} ∪ {1, α, α2, . . . , αi, . . . , αq−2} .

Proof. (sketch)
(i). For every β in F \ {0}, the smallest positive h with βh = 1 is a divisor of q − 1. (Consider the equivalence

relation on F \ {0} given by α ∼ ω if and only if αω−1 is a power of β.)
(ii). For every h that divides q− 1 there are at most h elements β of F \ {0} with βh = 1 by Proposition A.2.10.

(iii). By counting, we see that the total number of elements of F \ {0} that satify βh = 1 for any h smaller than

q − 1 is itself less than q − 1. Therefore there is at least one α with 1, α, α2, . . . , αq−2 all distinct and αq−1 = 1. 2

An element α with F = {0} ∪ {1, α, α2, . . . , αi, . . . , αq−2} is called a primitive element in F , and its
minimal polynomial mα(x) is a primitive polynomial.

(5) (The converse of (2).) For every prime p and positive integer d, there is a finite field F with
|F | = pd.

This is harder to prove. One uses counting techniques similar to those of (4) to show that, for every positive
integer d, not all polynomials in Fp[x] of degree d are reducible, therefore there is at least one irreducible polynomial
of degree d. The result then follows from Theorem A.2.22.

Examples

(E1) For every prime p the integers with arithmetic done mod p is a field Fp. The real numbers R and rational
numbers Q are also fields.

(E2) (i). The polynomial x2 + 1 is irreducible in R[x] (as otherwise it would have a root in R). Therefore
R[x] (mod x2 + 1) is a field. Indeed, it is a copy of the complex numbers C = R + Ri, where i is a root of x2 + 1 in
C.

(ii). The polynomial x2 + 1 is irreducible in F3[x] (as otherwise it would have a root in F3 = {0, 1, 2}). Therefore
F3[x] (mod x2 + 1) is a field. Indeed, it is a field with nine elements F9 = F3 + F3i, where i is a root of x2 + 1 in F9.
(Convince yourself that i is not a primitive element but 1 + i is.)

(iii). The polynomial x2 + 1 is reducible in F5[x] since 2 is a root ((x− 2)(x+ 2) = x2 − 4 = x2 + 1). Therefore
F5[x] (mod x2 + 1) is not a field.

(E3) The polynomial x2 + x + 1 ∈ F2[x] is irreducible. Thus F2[x] (mod x2 + x + 1) is a field F4 with 4 = 22

elements. Let ω be a root of x2 + x + 1. Then F4 is F2[ω] = {0, 1, ω, ω2 = 1 + ω}. The element ω is primitive, and
the polynomial x2 + x+ 1 is a primitive polynomial.

(E4) The polynomial x3 + x + 1 ∈ F2[x] is irreducible. Thus F2[x] (mod x3 + x + 1) is a field F8 with 8 = 23

elements. Let α be a root of x3 +x+ 1. Then F8 is F2[α]. The element α is primitive, and the polynomial x3 +x+ 1
is a primitive polynomial.
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