Let K be a field and f(x) be a nonconstant polynomial of K[x]. Then f(x) is called *irreducible* in K[x] if every factorization f(x) = a(x)b(x) in K[x] has $\{\deg a, \deg b\} = \{0, \deg f\}$. (This corresponds to prime numbers in \mathbb{Z} .) Otherwise f(x) is *reducible*.

We begin with an important, general result. (It is Theorem A.2.22 of the Algebra Appendix.)

(A.2.22) Let $f(x) \in K[x]$ for K a field, with deg $f \ge 1$. Then the ring $K[x] \pmod{f(x)}$ is a field if and only if f(x) is irreducible.

PROOF. Assume that f(x) is irreducible. Everything needed for $K[x] \pmod{f(x)}$ to be a field is clear except for the claim that all nonzero elements have multiplicative inverses.

Suppose that g(x) is not zero in $K[x] \pmod{f(x)}$. That is, suppose that g(x) is not a multiple of f(x). Then gcd(g(x), f(x)) = gcd(r(x), f(x)), where r(x) is the remainder upon division of g(x) by f(x). The polynomial r(x) has degree less than deg f and is nonzero since g(x) is not a multiple of f(x).

Thus gcd(g(x), f(x)) = gcd(r(x), f(x)) is a divisor of f(x) that has degree less than f(x). As f(x) is irreducible, that degree must be 0. Therefore monic gcd(g(x), f(x)) = gcd(r(x), f(x)) = 1. Now by the Extended Euclidean Algorithm, there are s(x) and t(x) in K[x] with s(x)g(x) + t(x)f(x) = 1. That is, $s(x)g(x) = 1 \pmod{f(x)}$, and s(x) is an inverse for g(x) in the field $K[x] \pmod{f(x)}$.

Conversely suppose that f(x) is reducible, and let f(x) = a(x)b(x) be a factorization with $0 < \deg a < \deg f$ and $0 < \deg b < \deg f$. Then in the ring $K[x] \pmod{f(x)}$ the elements a(x) and b(x) are nonzero but have zero product. The ring is therefore not a field.

From now on, F will denote a finite field.

(1) F contains a copy of $\mathbb{Z}_p = \mathbb{F}_p$, for some prime p. (This prime is called the *characteristic* of F.) PROOF. Consider the *apparently infinite* subset

$$\{1, 1+1, 1+1+1, \dots\}$$

of the *finite* field F.

(2) There is a positive integer d with $|F| = p^d$.

PROOF. From the definitions, F is a vector space over \mathbb{F}_p . Let $\mathbf{e}_1, \ldots, \mathbf{e}_d$ be a basis. Then $F = \left\{ \sum_{i=1}^d a_i \mathbf{e}_i \mid a_1, \ldots, a_d \in \mathbb{F}_p \right\}$. Thus |F| is the number of choices for the a_i , namely p^d .

(3) Let $\alpha \in F \geq \mathbb{F}_p$, and let $m(x) \in \mathbb{F}_p[x]$ be a monic polynomial of minimal degree with $m(\alpha) = 0$. (It exists since F is finite.) Then m(x) is irreducible and

$$\mathbb{F}_p[\alpha] = \left\{ \left| \sum_{i=0}^k a_i \alpha^i \right| k \ge 0, \ a_i \in \mathbb{F}_p \right\}$$

is a subfield of F that is a copy of $\mathbb{F}_p[x] \pmod{m(x)}$.

PROOF. It is clear that the arithmetic of $\mathbb{F}_p[\alpha]$ is the same as that of $\mathbb{F}_p[x] \pmod{m(x)}$.

Suppose that m(x) is reducible, and let m(x) = a(x)b(x) be a factorization with $0 < \deg a < \deg m$ and $0 < \deg b < \deg m$. Then $a(\alpha)b(\alpha) = m(\alpha) = 0$. Therefore either $a(\alpha) = 0$ or $b(\alpha) = 0$. But both contradict our choice of m(x) as a nonzero polynomial of minimal degree having α as a root. So m(x) is not reducible and is irreducible. In particular, by Theorem A.2.22, $\mathbb{F}_p[\alpha]$ is a field.

The polynomial m(x) is called the *minimal polynomial* of α over \mathbb{F}_p and is uniquely determined. We sometimes write $m_{\alpha}(x)$ or even $m_{\alpha,\mathbb{F}_p}(x)$ for the minimal polynomial of α over \mathbb{F}_p .

(4) It is possible to pick the α of (3) so that $F = \mathbb{F}_p[\alpha]$. Indeed, it is possible to pick an α with $\alpha^{q-1} = 1$, (where $q = |F| = p^d$) and

$$F = \{0\} \cup \{1, \alpha, \alpha^2, \dots, \alpha^i, \dots, \alpha^{q-2}\}.$$

PROOF. (sketch)

(i). For every β in $F \setminus \{0\}$, the smallest positive h with $\beta^h = 1$ is a divisor of q - 1. (Consider the equivalence relation on $F \setminus \{0\}$ given by $\alpha \sim \omega$ if and only if $\alpha \omega^{-1}$ is a power of β .)

(*ii*). For every h that divides q-1 there are at most h elements β of $F \setminus \{0\}$ with $\beta^h = 1$ by Proposition A.2.10.

(*iii*). By counting, we see that the total number of elements of $F \setminus \{0\}$ that satisfy $\beta^h = 1$ for any h smaller than q-1 is itself less than q-1. Therefore there is at least one α with $1, \alpha, \alpha^2, \ldots, \alpha^{q-2}$ all distinct and $\alpha^{q-1} = 1$. \Box

An element α with $F = \{0\} \cup \{1, \alpha, \alpha^2, \dots, \alpha^i, \dots, \alpha^{q-2}\}$ is called a *primitive element* in F, and its minimal polynomial $m_{\alpha}(x)$ is a *primitive* polynomial.

(5) (*The converse of* (2).) For every prime p and positive integer d, there is a finite field F with $|F| = p^d$.

This is harder to prove. One uses counting techniques similar to those of (4) to show that, for every positive integer d, not all polynomials in $\mathbb{F}_p[x]$ of degree d are reducible, therefore there is at least one irreducible polynomial of degree d. The result then follows from Theorem A.2.22.

Examples

(E1) For every prime p the integers with arithmetic done mod p is a field \mathbb{F}_p . The real numbers \mathbb{R} and rational numbers \mathbb{Q} are also fields.

(E2) (i). The polynomial $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ (as otherwise it would have a root in \mathbb{R}). Therefore $\mathbb{R}[x] \pmod{x^2 + 1}$ is a field. Indeed, it is a copy of the complex numbers $\mathbb{C} = \mathbb{R} + \mathbb{R}i$, where i is a root of $x^2 + 1$ in \mathbb{C} .

(*ii*). The polynomial $x^2 + 1$ is irreducible in $\mathbb{F}_3[x]$ (as otherwise it would have a root in $\mathbb{F}_3 = \{0, 1, 2\}$). Therefore $\mathbb{F}_3[x] \pmod{x^2 + 1}$ is a field. Indeed, it is a field with nine elements $\mathbb{F}_9 = \mathbb{F}_3 + \mathbb{F}_3 i$, where *i* is a root of $x^2 + 1$ in \mathbb{F}_9 . (Convince yourself that *i* is not a primitive element but 1 + i is.)

(*iii*). The polynomial $x^2 + 1$ is reducible in $\mathbb{F}_5[x]$ since 2 is a root $((x-2)(x+2) = x^2 - 4 = x^2 + 1)$. Therefore $\mathbb{F}_5[x] \pmod{x^2 + 1}$ is not a field.

(E3) The polynomial $x^2 + x + 1 \in \mathbb{F}_2[x]$ is irreducible. Thus $\mathbb{F}_2[x] \pmod{x^2 + x + 1}$ is a field \mathbb{F}_4 with $4 = 2^2$ elements. Let ω be a root of $x^2 + x + 1$. Then \mathbb{F}_4 is $\mathbb{F}_2[\omega] = \{0, 1, \omega, \omega^2 = 1 + \omega\}$. The element ω is primitive, and the polynomial $x^2 + x + 1$ is a primitive polynomial.

(E4) The polynomial $x^3 + x + 1 \in \mathbb{F}_2[x]$ is irreducible. Thus $\mathbb{F}_2[x] \pmod{x^3 + x + 1}$ is a field \mathbb{F}_8 with $8 = 2^3$ elements. Let α be a root of $x^3 + x + 1$. Then \mathbb{F}_8 is $\mathbb{F}_2[\alpha]$. The element α is primitive, and the polynomial $x^3 + x + 1$ is a primitive polynomial.