A Primer on Finite Fields

Let K be a field and $f(x)$ be a nonconstant polynomial of $K[x]$. Then $f(x)$ is called irreducible in $K[x]$ if every factorization $f(x)=a(x) b(x)$ in $K[x]$ has $\{\operatorname{deg} a, \operatorname{deg} b\}=\{0, \operatorname{deg} f\}$. (This corresponds to prime numbers in \mathbb{Z}.) Otherwise $f(x)$ is reducible.

We begin with an important, general result. (It is Theorem A.2.22 of the Algebra Appendix.)
(A.2.22) Let $f(x) \in K[x]$ for K a field, with $\operatorname{deg} f \geq 1$. Then the $\operatorname{ring} K[x](\bmod f(x))$ is a field if and only if $f(x)$ is irreducible.

Proof. Assume that $f(x)$ is irreducible. Everything needed for $K[x](\bmod f(x))$ to be a field is clear except for the claim that all nonzero elements have multiplicative inverses.

Suppose that $g(x)$ is not zero in $K[x](\bmod f(x))$. That is, suppose that $g(x)$ is not a multiple of $f(x)$. Then $\operatorname{gcd}(g(x), f(x))=\operatorname{gcd}(r(x), f(x))$, where $r(x)$ is the remainder upon division of $g(x)$ by $f(x)$. The polynomial $r(x)$ has degree less than $\operatorname{deg} f$ and is nonzero since $g(x)$ is not a multiple of $f(x)$.

Thus $\operatorname{gcd}(g(x), f(x))=\operatorname{gcd}(r(x), f(x))$ is a divisor of $f(x)$ that has degree less than $f(x)$. As $f(x)$ is irreducible, that degree must be 0 . Therefore monic $\operatorname{gcd}(g(x), f(x))=\operatorname{gcd}(r(x), f(x))=1$. Now by the Extended Euclidean Algorithm, there are $s(x)$ and $t(x)$ in $K[x]$ with $s(x) g(x)+t(x) f(x)=1$. That is, $s(x) g(x)=1(\bmod f(x))$, and $s(x)$ is an inverse for $g(x)$ in the field $K[x](\bmod f(x))$.

Conversely suppose that $f(x)$ is reducible, and let $f(x)=a(x) b(x)$ be a factorization with $0<\operatorname{deg} a<\operatorname{deg} f$ and $0<\operatorname{deg} b<\operatorname{deg} f$. Then in the ring $K[x](\bmod f(x))$ the elements $a(x)$ and $b(x)$ are nonzero but have zero product. The ring is therefore not a field.

From now on, F will denote a finite field.
(1) F contains a copy of $\mathbb{Z}_{p}=\mathbb{F}_{p}$, for some prime p. (This prime is called the characteristic of F.) Proof. Consider the apparently infinite subset

$$
\{1,1+1,1+1+1, \ldots\}
$$

of the finite field F.
(2) There is a positive integer d with $|F|=p^{d}$.

Proof. From the definitions, F is a vector space over \mathbb{F}_{p}. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ be a basis. Then $F=\left\{\sum_{i=1}^{d} a_{i} \mathbf{e}_{i} \mid a_{1}, \ldots, a_{d} \in \mathbb{F}_{p}\right\}$. Thus $|F|$ is the number of choices for the a_{i}, namely p^{d}.
(3) Let $\alpha \in F \geq \mathbb{F}_{p}$, and let $m(x) \in \mathbb{F}_{p}[x]$ be a monic polynomial of minimal degree with $m(\alpha)=0$. (It exists since F is finite.) Then $m(x)$ is irreducible and

$$
\mathbb{F}_{p}[\alpha]=\left\{\sum_{i=0}^{k} a_{i} \alpha^{i} \mid k \geq 0, a_{i} \in \mathbb{F}_{p}\right\}
$$

is a subfield of F that is a copy of $\mathbb{F}_{p}[x](\bmod m(x))$.
Proof. It is clear that the arithmetic of $\mathbb{F}_{p}[\alpha]$ is the same as that of $\mathbb{F}_{p}[x](\bmod m(x))$.
Suppose that $m(x)$ is reducible, and let $m(x)=a(x) b(x)$ be a factorization with $0<\operatorname{deg} a<\operatorname{deg} m$ and $0<\operatorname{deg} b<\operatorname{deg} m$. Then $a(\alpha) b(\alpha)=m(\alpha)=0$. Therefore either $a(\alpha)=0$ or $b(\alpha)=0$. But both contradict our choice of $m(x)$ as a nonzero polynomial of minimal degree having α as a root. So $m(x)$ is not reducible and is irreducible. In particular, by Theorem A.2.22, $\mathbb{F}_{p}[\alpha]$ is a field.

The polynomial $m(x)$ is called the minimal polynomial of α over \mathbb{F}_{p} and is uniquely determined. We sometimes write $m_{\alpha}(x)$ or even $m_{\alpha, \mathbb{F}_{p}}(x)$ for the minimal polynomial of α over \mathbb{F}_{p}.
(4) It is possible to pick the α of (3) so that $F=\mathbb{F}_{p}[\alpha]$. Indeed, it is possible to pick an α with $\alpha^{q-1}=1$, (where $q=|F|=p^{d}$) and

$$
F=\{0\} \cup\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{i}, \ldots, \alpha^{q-2}\right\} .
$$

Proof. (sketch)
(i). For every β in $F \backslash\{0\}$, the smallest positive h with $\beta^{h}=1$ is a divisor of $q-1$. (Consider the equivalence relation on $F \backslash\{0\}$ given by $\alpha \sim \omega$ if and only if $\alpha \omega^{-1}$ is a power of β.)
(ii). For every h that divides $q-1$ there are at most h elements β of $F \backslash\{0\}$ with $\beta^{h}=1$ by Proposition A.2.10.
(iii). By counting, we see that the total number of elements of $F \backslash\{0\}$ that satify $\beta^{h}=1$ for any h smaller than $q-1$ is itself less than $q-1$. Therefore there is at least one α with $1, \alpha, \alpha^{2}, \ldots, \alpha^{q-2}$ all distinct and $\alpha^{q-1}=1$.

An element α with $F=\{0\} \cup\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{i}, \ldots, \alpha^{q-2}\right\}$ is called a primitive element in F, and its minimal polynomial $m_{\alpha}(x)$ is a primitive polynomial.
(5) (The converse of (2).) For every prime p and positive integer d, there is a finite field F with $|F|=p^{d}$.

This is harder to prove. One uses counting techniques similar to those of (4) to show that, for every positive integer d, not all polynomials in $\mathbb{F}_{p}[x]$ of degree d are reducible, therefore there is at least one irreducible polynomial of degree d. The result then follows from Theorem A.2.22.

Examples

(E1) For every prime p the integers with arithmetic done $\bmod p$ is a field \mathbb{F}_{p}. The real numbers \mathbb{R} and rational numbers \mathbb{Q} are also fields.
(E2) (i). The polynomial $x^{2}+1$ is irreducible in $\mathbb{R}[x]$ (as otherwise it would have a root in \mathbb{R}). Therefore $\mathbb{R}[x]\left(\bmod x^{2}+1\right)$ is a field. Indeed, it is a copy of the complex numbers $\mathbb{C}=\mathbb{R}+\mathbb{R} i$, where i is a root of $x^{2}+1$ in \mathbb{C}.
(ii). The polynomial $x^{2}+1$ is irreducible in $\mathbb{F}_{3}[x]$ (as otherwise it would have a root in $\mathbb{F}_{3}=\{0,1,2\}$). Therefore $\mathbb{F}_{3}[x]\left(\bmod x^{2}+1\right)$ is a field. Indeed, it is a field with nine elements $\mathbb{F}_{9}=\mathbb{F}_{3}+\mathbb{F}_{3} i$, where i is a root of $x^{2}+1$ in \mathbb{F}_{9}. (Convince yourself that i is not a primitive element but $1+i$ is.)
(iii). The polynomial $x^{2}+1$ is reducible in $\mathbb{F}_{5}[x]$ since 2 is a root $\left((x-2)(x+2)=x^{2}-4=x^{2}+1\right)$. Therefore $\mathbb{F}_{5}[x]\left(\bmod x^{2}+1\right)$ is not a field.
(E3) The polynomial $x^{2}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible. Thus $\mathbb{F}_{2}[x]\left(\bmod x^{2}+x+1\right)$ is a field \mathbb{F}_{4} with $4=2^{2}$ elements. Let ω be a root of $x^{2}+x+1$. Then \mathbb{F}_{4} is $\mathbb{F}_{2}[\omega]=\left\{0,1, \omega, \omega^{2}=1+\omega\right\}$. The element ω is primitive, and the polynomial $x^{2}+x+1$ is a primitive polynomial.
(E4) The polynomial $x^{3}+x+1 \in \mathbb{F}_{2}[x]$ is irreducible. Thus $\mathbb{F}_{2}[x]\left(\bmod x^{3}+x+1\right)$ is a field \mathbb{F}_{8} with $8=2^{3}$ elements. Let α be a root of $x^{3}+x+1$. Then \mathbb{F}_{8} is $\mathbb{F}_{2}[\alpha]$. The element α is primitive, and the polynomial $x^{3}+x+1$ is a primitive polynomial.

