A Primer on Finite Fields

Let K be a field and f(z) be a nonconstant polynomial of K[z|. Then f(z) is called irreducible
in Klz| if every factorization f(z) = a(z)b(z) in K[z] has {dega,degb} = {0,deg f}. (This
corresponds to prime numbers in Z.) Otherwise f(x) is reducible.

We begin with an important, general result. (It is Theorem A.2.22 of the Algebra Appendix.)

(A.2.22) Let f(z) € K[z| for K a field, with deg f > 1. Then the ring K[z| (mod f(z)) is a field
if and only if f(x) is irreducible.

PROOF. Assume that f(x) is irreducible. Everything needed for K[z] (mod f(x)) to be a field is clear except for the
claim that all nonzero elements have multiplicative inverses.

Suppose that g(x) is not zero in K[z] (mod f(z)). That is, suppose that g(x) is not a multiple of f(x). Then
ged(g(z), f(x)) = ged(r(x), f(x)), where r(z) is the remainder upon division of g(z) by f(z). The polynomial r(z)
has degree less than deg f and is nonzero since g(z) is not a multiple of f(z).

Thus ged(g(z), f(z)) = ged(r(z), f(z)) is a divisor of f(z) that has degree less than f(z). As f(z) is irreducible,
that degree must be 0. Therefore monic ged(g(z), f(z)) = ged(r(z), f(z)) = 1. Now by the Extended Euclidean
Algorithm, there are s(z) and ¢(z) in K[z] with s(z)g(z) + t(x)f(x) = 1. That is, s(x)g(x) =1 (mod f(z)), and
s(z) is an inverse for g(z) in the field K[z] (mod f(x)).

Conversely suppose that f(z) is reducible, and let f(z) = a(z)b(x) be a factorization with 0 < dega < deg f and
0 < degb < deg f. Then in the ring K[z] (mod f(x)) the elements a(z) and b(z) are nonzero but have zero product.
The ring is therefore not a field. o

From now on, I’ will denote a finite field.

(1) F contains a copy of Z, = F,, for some prime p. (This prime is called the characteristic of F.)

ProoOF. Consider the apparently infinite subset
{1,141, 14141, ...}

of the finite field F. O

(2) There is a positive integer d with |F| = p?.

PRrOOF. From the definitions, F'is a vector space over IF,,. Let ey, ..., eq be a basis. Then F' = { Z?:l a;e; | ay,...,aq

Thus |F| is the number of choices for the a;, namely p?. O

(3) Let a € F > F,, and let m(z) € F,[z] be a monic polynomial of minimal degree with m(a)) = 0.
(It exists since F' is finite.) Then m(z) is irreducible and

k
F,la] = { Zaiof k>0, a; € Fp}
i=0

is a subfield of F' that is a copy of F,[z] (mod m(x)).

PROOF. It is clear that the arithmetic of F,[a] is the same as that of F,[z] (mod m(x)).

Suppose that m(z) is reducible, and let m(xz) = a(z)b(z) be a factorization with 0 < dega < degm and
0 < degb < degm. Then a(a)b(er) = m(a) = 0. Therefore either a(ar) = 0 or b(a) = 0. But both contradict
our choice of m(x) as a nonzero polynomial of minimal degree having « as a root. So m(z) is not reducible and is
irreducible. In particular, by Theorem A.2.22, F,[a] is a field. a

er}.



The polynomial m(z) is called the minimal polynomial of a over F,, and is uniquely determined.
We sometimes write mq () or even mq,(«) for the minimal polynomial of a over F,,.

(4) It is possible to pick the o of (3) so that F' = F,la]. Indeed, it is possible to pick an o with
it =1, (where ¢ = |F| = p?) and

F={0}u{l,a,0?...,0a" ..., %}.

PROOF. (sketch)

(i). For every 8 in F\ {0}, the smallest positive h with 8" = 1 is a divisor of ¢ — 1. (Consider the equivalence
relation on F'\ {0} given by a ~ w if and only if aw™! is a power of 3.)

(ii). For every h that divides ¢ — 1 there are at most h elements 3 of F'\ {0} with 8" = 1 by Proposition A.2.10.

(iii). By counting, we see that the total number of elements of F'\ {0} that satify " = 1 for any h smaller than
g — 1 is itself less than g — 1. Therefore there is at least one o with 1, v, a2, ..., 272 all distinct and a9~ =1. O

An element o with F' = {0} U{1,,a?, ... ", ...,a% %} is called a primitive element in F, and its
minimal polynomial m,(x) is a primitive polynomial.

(5) (The converse of (2).) For every prime p and positive integer d, there is a finite field F' with
|F| = p.
This is harder to prove. One uses counting techniques similar to those of (4) to show that, for every positive

integer d, not all polynomials in Fp,[z] of degree d are reducible, therefore there is at least one irreducible polynomial
of degree d. The result then follows from Theorem A.2.22.

Examples

(E1) For every prime p the integers with arithmetic done mod p is a field F,,. The real numbers R and rational
numbers Q are also fields.

(E2) (i). The polynomial z? + 1 is irreducible in R[z] (as otherwise it would have a root in R). Therefore
R[z] (mod x? + 1) is a field. Indeed, it is a copy of the complex numbers C = R + Ri, where i is a root of 2 + 1 in
C.

(i1). The polynomial 2% + 1 is irreducible in F3[z] (as otherwise it would have a root in F3 = {0, 1,2}). Therefore
Fs[z] (mod 22 +1) is a field. Indeed, it is a field with nine elements Fg = F3 + F3i, where i is a root of 22 + 1 in Fy.
(Convince yourself that ¢ is not a primitive element but 1 + ¢ is.)

(7ii). The polynomial 2 + 1 is reducible in F5[x] since 2 is a root ((x — 2)(x + 2) = 2? — 4 = 2% + 1). Therefore
Fs[z] (mod 22 + 1) is not a field.

(E3) The polynomial 22 + 2 + 1 € Fy[z] is irreducible. Thus Fa[z] (mod 22 + 2 + 1) is a field Fy with 4 = 22
elements. Let w be a root of 22 + z + 1. Then Fy is Falw] = {0,1,w,w? = 1 + w}. The element w is primitive, and
the polynomial 22 + z + 1 is a primitive polynomial.

(E4) The polynomial 23 + x + 1 € Fy[x] is irreducible. Thus Fa[z] (mod 23 + x + 1) is a field Fg with 8 = 23
elements. Let o be a root of 3 + 4 1. Then Fg is Fo[a]. The element « is primitive, and the polynomial 2 + x + 1
is a primitive polynomial.



