Make sure you justify your statements completely and carefully.

- 1. Problem 3.1.8 from the **Notes**.
- 2. Problem 3.1.9 from the Notes.

3. Define the Hadamard product

$$\mathbf{x} * \mathbf{y} = (x_1 y_1, \dots, x_n y_n)$$

for the vectors $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ of F^n . For instance, over \mathbb{F}_{13} ,

$$(1, 2, 3, 4) * (2, 3, 4, 5) = (2, 6, 12, 7).$$

(a) Prove: the dot product $\mathbf{c} \cdot \mathbf{d}$ is the sum of the entries in $\mathbf{c} * \mathbf{d}$, and in particular for binary \mathbf{c} and \mathbf{d} (in \mathbb{F}_2^n) we have $\mathbf{c} \cdot \mathbf{d} = w_H(\mathbf{c} * \mathbf{d}) \pmod{2}$.

(b) Prove that, for vectors $\mathbf{x} = (x_1, \ldots, x_n)$, $\mathbf{y} = (y_1, \ldots, y_n)$ in the vector space F^n over the field F, we have

$$w_{\rm H}(x+y) \ge w_{\rm H}(x) + w_{\rm H}(y) - 2 w_{\rm H}(x*y)$$
.

Prove additionally that, for the binary field $F = \mathbb{F}_2$, we have equality:

$$w_{\rm H}(x+y) = w_{\rm H}(x) + w_{\rm H}(y) - 2 w_{\rm H}(x*y).$$

- 4. Problem 3.1.11 from the **Notes**. (HINT: The last part of the previous problem might be of help in part (a).)
- 5. (a) Give a syndrome dictionary for the [8, 4] binary code C with the following check matrix:

0	0	1	1	1	0	0	1]
1	0	0	0	1	0	1	1
1	1	1	1	1	1	1	1
1	0	0	1	0	1	0	1

(b) Use your dictionary to decode the received word:

$$(1, 0, 1, 0, 1, 1, 0, 0)$$
.

(c) Use your dictionary to decode the received word:

$$(0, 1, 1, 1, 0, 0, 0, 0)$$
.

(d) Use your dictionary to decode the received word:

$$(1, 1, 1, 0, 1, 1, 0, 1)$$
.

6. Problem 4.1.5 from the Notes.

7. Problem 4.1.8 from the **Notes**.