Make sure you justify your statements completely and carefully.

1. Problem 3.1.8 from the Notes.
2. Problem 3.1.9 from the Notes.
3. Define the Hadamard product

$$
\mathbf{x} * \mathbf{y}=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

for the vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ of F^{n}. For instance, over \mathbb{F}_{13},

$$
(1,2,3,4) *(2,3,4,5)=(2,6,12,7)
$$

(a) Prove: the dot product $\mathbf{c} \cdot \mathbf{d}$ is the sum of the entries in $\mathbf{c} * \mathbf{d}$, and in particular for binary \mathbf{c} and \mathbf{d} (in \mathbb{F}_{2}^{n}) we have $\mathbf{c} \cdot \mathbf{d}=\mathrm{w}_{\mathrm{H}}(\mathbf{c} * \mathbf{d})(\bmod 2)$.
(b) Prove that, for vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in the vector space F^{n} over the field F, we have

$$
\mathrm{w}_{\mathrm{H}}(x+y) \geq \mathrm{w}_{\mathrm{H}}(x)+\mathrm{w}_{\mathrm{H}}(y)-2 \mathrm{w}_{\mathrm{H}}(x * y) .
$$

Prove additionally that, for the binary field $F=\mathbb{F}_{2}$, we have equality:

$$
\mathrm{w}_{\mathrm{H}}(x+y)=\mathrm{w}_{\mathrm{H}}(x)+\mathrm{w}_{\mathrm{H}}(y)-2 \mathrm{w}_{\mathrm{H}}(x * y) .
$$

4. Problem 3.1.11 from the Notes. (Hint: The last part of the previous problem might be of help in part (a).)
5. (a) Give a syndrome dictionary for the $[8,4]$ binary code C with the following check matrix:

$$
\left[\begin{array}{llllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

(b) Use your dictionary to decode the received word:

$$
(1,0,1,0,1,1,0,0)
$$

(c) Use your dictionary to decode the received word:

$$
(0,1,1,1,0,0,0,0)
$$

(d) Use your dictionary to decode the received word:

$$
(1,1,1,0,1,1,0,1)
$$

6. Problem 4.1.5 from the Notes.
7. Problem 4.1.8 from the Notes.
