Make sure you justify your statements completely and carefully.

1. Problem 5.1.3 from the Notes.
(Hint: The thing to realize initially is that, for a given \mathbf{c}, we can have both $\mathbf{c}=\mathbf{e v} \mathbf{v}_{\alpha, v}(f(x)) \in G R S_{n, k}(\boldsymbol{\alpha}, \mathbf{v})$ and $\mathbf{c}=\mathbf{e v}_{\beta, w}(g(x)) \in G R S_{n, k}(\boldsymbol{\beta}, \mathbf{w})$ for different polynomials $f(x)$ and $g(x)$.)
2. Problem A.2.26 from the Appendix 2 of the Notes. Prove first that

$$
(a(x)+b(x))^{\prime}=a^{\prime}(x)+b^{\prime}(x)
$$

3. Problem 5.1.5 from the Notes. In parts (b) and (c) you may assume, for a finite field F with $|F|=q$, that the set of all elements of F is precisely the set of roots of the polynomial $x^{q}-x$ and, hence, that the nonzero elements of F are precisely the roots of the polynomial $x^{q-1}-1$. (We will prove this later in the course.)
4. Let C and D be linear codes over the field F with $C=D^{\perp}$. Let $P C$ be the code C punctured at its last coordinate position, and let $S D$ be the code D shortened at its last coordinate position. Prove that $P C=S D^{\perp}$.

Remark. The code $P C$ is constructed by deleting the last coordinate position from all codewords of C. The code $S D$ is constructed by first selecting only those codewords of D that end in 0 , and then deleting from these that final 0 position.

For the final two problems, 'justifying your statements completely and carefully' means you should show your calculations in enough detail that I can follow them (and can try to locate any mistakes). Please do not do your calculations on a machine. As these two problems are largely computational, I ask that you not collaborate on them.
5. Problem 5.2.5 from the Notes.
6. Consider the code $G R S_{10,4}(\boldsymbol{\alpha}, \mathbf{v})$ over \mathbb{F}_{11} that was our classroom example.
(a) Use Euclidean Algorithm decoding to decode the received vector

$$
(0,5,9,0,1,4,5,0,6,0)
$$

(b) Use Euclidean Algorithm decoding to decode the received vector

$$
(1,1,1,1,0,0,0,0,0,0)
$$

