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Chapter 1
Introduction

1.1 Unique factorization

We are familiar with

(1.1). Theorem. For n a positive integer at least 2, let

n =

k∏
i=1

pi

and

n =

m∏
j=1

qj

where each pi and qj is prime. Then k = m and there is a permutation π with
pi = qπ(j), for all i. 22

Here a prime is a positive integer not 1 and only divisible by 1 and itself.
A group S is simple if it is not 1 and has only 1 and itself as homomorphic

images. The appropriate unique factorization theorem for finite groups is then

(1.2). Theorem. (Jordan-Hölder) For G a nontrivial finite group, let

G = G0 �G1 � · · ·�Gk = 1

and
G = H0 �H1 � · · ·�Hm = 1

where each Pi = Gi−1/Gi and Qj = Hj−1/Hj is simple. Then k = m and there
is a permutation π with Pi ' Qπ(j), for all i. 22

A big difference between the two factorization results is that the first admits
the natural converse. Two positive integers with the same multiset of prime

1



2 CHAPTER 1. INTRODUCTION

divisors are equal, but two groups (even abelian groups) with the same multiset
of composition factors might not be isomorphic. So while number theory can
focus on properties of the prime numbers, in finite group theory we must not
only examine the simple groups but also study in what ways they can be glued
together.

A major result identifies the possible factors in a Jordan-Hölder composition
series:

(1.3). Theorem. (Classification of Finite Simple Groups) (1983, 2004)
A finite simple group is isomorphic to one of:

(1) a cyclic group of prime order p: Zp;

(2) an alternating group: Alt(n);

(3) a classical group: PSLn(q), PSpn(q), PSUn(q), PΩεn(q);

(4) an exceptional Lie type group 2B2(q), 3D4(q), E6(q), 2E6(q), E7(q), E8(q),
F4(q), 2F4(q)′, G2(q), 2G2(q);

(5) a sporadic simple group, of which there are twenty-six. 22

Here n is an integer at least 2 and q is a prime power. Most choices of these
two parameters do in fact give simple groups. The classical groups provide four
two-parameter infinite families, so one could say loosely that most finite simple
groups are classical. These are the families of groups that will be of greatest
interest to us, but there will rarely be any advantage in restricting our attention
to those that are finite.

With CFSG in hand, to find all finite groups, we are faced with the problem
of gluing things together: extension theory. One of the reasons to study the
examples (and especially the classical groups) is that additional knowledge can
aid us is solving such questions. For instance Theorem (1.1) can be refined to:

(1.4). Theorem. If A is a finite abelian group, then A is isomorphic to a

direct sum
⊕k

i=1Ai, for cyclic subgroups Ai of order paii , with pi prime and ai
a positive integer. Furthermore, if A is also isomorphic to

⊕m
j=1Bj for cyclic

subgroups Bj of order q
bj
j , with qj prime and bj a positive integer, then k = m

and there is a permutation π with pi = qπ(j) and ai = bπ(j), for all i. 22

This is clearly a “unique factorization” result, but it is also a Jordan-Hölder
theorem. Indeed theorems of Jordan-Hölder type are valid for many lattices,
provided certain properties hold and appropriate definitions are made. So, for
Theorem (1.4) we require that all factors are indecomposable and that all ex-
tensions split.

1.2 Some notation

Let G be a group. If H is a subgroup of G, then we write H ≤ G and G ≥ H.
We write H �G and G�H if H is a normal subgroup of G. For the subset X
of G, 〈X〉 is the subgroup of G generated by X.
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For x, h ∈ G we write xh for h−1xh, the conjugate of x by h. More generally,
for subsets X and H of G, we set XH = {xh | x ∈ X , h ∈ H }. Be warned:
in some group theory texts [Rob82], XH is defined to be the subgroup 〈XH〉.
That is not our convention.

1.3 Categories

We shall not focus on categories and their role in modern algebra (which is
large), but they provide us for a convenient language for setting up our work.

A category C is a class Obj(C) of objects. For each pair A,B ∈ Obj(C),
there is a set HomC(A,B), pairwise disjoint, of C-morphisms For each triple of
objects A,B,C, there is a composition map

◦ : HomC(A,B)×HomC(B,C) −→ HomC(A,C) ,

the image ◦(f, g) usually being written f ◦ g or just fg.1 The following are
required:

(i) Always for a ∈ HomC(A,B), b ∈ HomC(B,C), and c ∈ HomC(C,D) we
have

(a ◦ b) ◦ c = a ◦ (b ◦ c) ∈ HomC(A,D) .

(ii) For every object X there is a unique morphism 1X ∈ HomC(X,X), such
that always for a ∈ HomC(A,B) and b ∈ HomC(B,C) we have

a ◦ 1B = a and 1B ◦ b = b .

The notation 1A can be confusing in those situations where the objects
themselves have identity elements; for instance, we use 1G to denote the identity
element of the group G. Usually the usage will be clear from the context, but
for clarity we will at times use IdA to denote an identity map on some object
A.

A motivating model for a category has Obj consisting of all sets with the
morphism set Hom(A,B) be all set maps (functions) from A to B. Composition
is then the usual composition of maps, and (i) observes that composition is
associative. Then (ii) records the properties of the identity map 1X = IdX from
the set X to itself. We will denote this category Set.

Two objects A and B of the category C are isomorphic if there are morphisms
a ∈ HomC(A,B) and b ∈ HomC(B,A) with ab = 1A and ba = 1B . For instance,
two sets are isomorphic in Set precisely when they are in bijection.

It is crucial to note that the definition of a category does not require Obj(C)
to be a set. This is important since, for instance, we know that there is no such
thing as the set of all sets. A category in which the class of objects is actually

1An alternative and common convention is to write g ◦ f and gf for the composition of f
followed by g; see Section 1.5.
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a set is a small category. Our definition is somewhat restrictive. By requiring
that each HomC(A,B) actually be a set, we have confined ourselves to those
categories that are locally small.

A subcategory D of C is a category for which every object D of D is also
an object of C and such that, for D,E ∈ Obj(D), we have HomD(D,E) ⊆
HomC(D,E). The subcategory D of C is full if we always have the equality
HomD(D,E) = HomC(D,E). The subcategory D of C is dense if, for every
object C of C there is an object D of D that is isomorphic to C in C. For
instance, the full subcategory FSet of finite sets within Set has, in turn, the full
and dense subcategory ZFSet whose objects are the finite subsets of the integers.

A category C is concrete if it is a subcategory of Set. That is, if the objects
of C are sets, perhaps decorated with additional structure, and the morphisms
of HomC(A,B) are set maps, perhaps with additional, required properties. Our
prime example is Grp, the category of all groups in which the morphisms are
the group homomorphisms.

We have already introduced the two important categories Set and Grp. For
us the third category of primary interest is DVec, the category of all left vec-
tor spaces over the division ring D. (Of course, we should really precede this
by discussion of the categories Fld of fields and DivRing of division rings—not
necessarily commutative fields.) Here the morphisms are the D-linear transfor-
mations from one D-space to another.

These three main categories have important full subcategories: the category
FSet of finite sets (mentioned above); the category FGrp of finite groups and the
category AbGrp of abelian groups; and the category DFVec of finite dimensional
left D-spaces.

Other categories of vector spaces will also be important to us. The categories
VecD, and FVecD are the right-space counterparts to the left-space categories

DVec and DFVec. A more subtle example is the category Vec of all left vector
spaces. (It has righthanded counterpart RVec.) Here the objects are pairs
(D,V ) (or DV ) of a division ring D and a left D-space V . The morphisms must
then also be pairs: [σ, s] ∈ HomVec(DV,EW ) where σ is a homomorphism from
D to E (a morphism from DivRing) and s is an abelian group homomorphism
(from AbGrp) that are compatible, in that for a, b ∈ D with

a
σ−→ a′ and b

σ−→ b′

and u, v ∈ V with
u

s−→ u′ and v
s−→ v′

we always have

au+ bv
[σ,s]−→ a′u′ + b′v′ .

Such maps are semilinear. It is important to realize that DVec is a subcategory
of Vec that is typically not full, since, even for two spaces V and W both over
D = E, the latter allows σ to be a nontrivial automorphism of the division ring
D.
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There are other categories we may encounter: rings Ring, modules RMod and
ModR, and associative algebras Assoc.2 These concrete categories are addition-
ally additive categories. This means that each object set has a natural structure
as abelian group and that each morphism is an abelian group homomorphism.

For categories C and D a functor F from C to D associates to each object
C of C an object FC of D and to each morphism f ∈ HomC(A,B) a morphism
F(f) of HomD(FA,FB), such that always

F(f)F(g) = F(fg) and F(1A) = 1FA .

An obvious functor from C to itself is the identity functor 1C with 1CA = A
and 1C(f) = f . The two categories C and D are isomorphic provided there are
functors F : C −→ D and G : D −→ C with FG = 1D and GF = 1C.

Although isomorphism gives us an equivalence relation on the collection of
all categories, it is not a terribly helpful one. We have observed above that
the category FSet of finite sets has the full, dense subcategory ZFSet of finite
subsets of the integers. These two categories are certainly not isomorphic, since
the second is a small category while the first is not. On the other hand it seems
relatively clear that the two categories do not differ in any other substantive
way. More useful than isomorphism is category equivalence. Two categories are
equivalent provided they have isomorphic full, dense subcategories. In particular
FSet and ZFSet are equivalent categories.

In the category C, the morphisms of HomC(A,A) are the C-endomorphisms,
and we will write EndC(A) for HomC(A,A). Those endomorphisms of A that are
invertible, that is, are isomorphisms of A with itself, are the C-automorphisms,
written AutC(A) even Aut(A). As we see in the next section, these automor-
phism groups will play a central role for us. For instance AutSet(A) = Sym(A).

1.4 Representation and action

In group theory as in most parts of mathematics, in order to study an object
carefully we wish to have a description of it that is easy to work with. For
groups, this is done by representing them through their action upon something.
Such actions may also be the reasons we are studying the groups in the first
place. For instance, Galois was the first to consider finite groups seriously, and
he encountered these groups as permutations of polynomial roots.

Let A be an object of the category C. Then a C-representation of the group
G on A is a homomorphism ρ : G −→ AutC(A). In this case we say that G is a
group of operators on A and that G acts on A via ρ. This action of G on A is
faithful if the kernel of ρ is the identity.

Three types of categories C and the associated representations within AutC(·)
will be of particular interest to us:

2Hooray for the Oxford comma.
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(1) In Set each object A is a set (with no further structure). Its
automorphism group AutC(A) = AutSet(A) is then Sym(A), the
symmetric group of all permutations on the set A. The associated
representations are permutation representations.

(2) For the category C = DVec of vector spaces V over the division
ringD, the automorphism group is the general linear group GLD(V ),
also written GL(DV ) or GL(V ). The associated representations are
the D-linear representations.3 If instead we take the vector space

DV as an object in the category Vec (with no uniformly specified
coefficient ring) then we have AutVec(DV ) = ΓLD(V ) or ΓL(DV ) or
(with some abuse) ΓL(V ). The representations are now semilinear,
since they may involve nontrivial automorphisms of D.

(3) If C = Grp, the category of groups, then we are concerned with
group automorphisms.

In concrete categories, such as these, if G acts on the object A and B is a
subset of A with Bg ⊆ B for all g ∈ G, then we say that B is G-invariant. If
B is actually a subobject of A, then G acts on B via the restriction of g to B,
which we write as g|B .

If the object B of C is isomorphic to A via the morphism f : A −→ B, then
the commutative diagram:

A A

B B

f

h

f

h∗

provides an isomorphism f∗ : AutC(A) −→ AutC(B) given by

h
f∗−→ h∗ = f−1hf .

Any representation ρA of G on A then has a naturally associated represen-
tation ρB = ρAf

∗ on B; the following diagram commutes:

G AutC(A)

AutC(B)

ρB

ρA

f∗

In this case ρA and ρB are said to be equivalent representations. If G is iso-
morphic to the group H via the map γ : G −→ H, and the following diagram

3In many places, a linear representation is required to be acting on a finite dimensional
space from DFVec. This restriction will not be made here.
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commutes:

G AutC(A)

G AutC(B)

γ

ρA

f∗

ρB

then the two representations ρA and ρB are said to be semi-equivalent with

ρB = ρ
[γ,f ]
A .

The equivalence f∗ is just the semi-equivalence [IdG, f ]:

G AutC(A)

G AutC(B)

IdG

ρA

f∗

ρB

where we have used IdG to denote the identity endomorphism of G in Grp.

If C is an additive category, then the set of C-endomorphisms EndC(A) =
HomC(A,A) has a natural structure as a ring under composition and (pointwise)
addition. In this case, we may also define a C-representation of a ring R as a
ring homomorphism ϕ : R −→ EndC(A) for A and object of C, where we must
require the identity of the ring R to map to 1A. The group AutC(A) is the group
of units of EndC(A), so for additive categories a representation of the group G
leads to a representation of the group ring ZG. This can provide a powerful tool
for study of G. We have concepts of equivalence and semiequivalence similar to
those above.

1.5 Right versus left

Action on the left is exhibited by function composition,

f(g(x)) = (fg)(x) ,

while action on the right is modeled by exponentiation,

(xf )g = xfg .

The distinction is largely a matter of convention. Analysts almost always
favor left action, since they are regularly dealing with functions and their proper-
ties. Algebraists often prefer right action, and that is usually the case here. This
is evidenced by our composition map for morphisms; our definitions h∗ = f−1hf
in the previous section and of conjugation by xg = g−1xg; and our chosen con-
vention for permutation multiplication:

(1, 2, 3, 4, 5)(2, 4, 6, 8) = (1, 4, 5)(2, 3, 6, 8) .
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We do not demand right action always. For instance, above we have written
functors as functions and compose them as functions. And even when our action
is on the right, we sometimes use function notation, for instance in characterizing
a group homomorphism ϕ : G −→ H by ϕ(g)ϕ(h) = ϕ(gh) (but here we must
be careful to avoid casual composition).

Our preferred notation for right action is exponentiation

a
f−→ af ,

but there may be times when is it helpful to use af or even a.f rather than af .
(In particular, nested exponentiation can look very confusing.)

In any event, there are situations where the correct thing is to use both right
and left action. For instance our preferences for right action of morphisms and
left scalar action on vector spaces go hand in hand:

(1.5). Proposition. Let V and W be left vector spaces over the division ring
D, and let g be a D-endomorphism (linear transformation) from V to W . That
is, for u, v ∈ V and x,w ∈W with

u
g−→ x and v

g−→ w ,

and, for α, β ∈ D, we have

αu+ βv
g−→ αx+ βw .

Let e1, . . . , ei, . . . , em be a basis of V , so that v =
∑m
i=1 viei of V is repre-

sented in the left D-space of row vectors Dm by

~v = (v1, . . . , vi, . . . , vm) .

Similarly let f1, . . . , fj , . . . , fn be a basis of W with w =
∑n
j=1 wjfj of W rep-

resented in Dn by
~w = (w1, . . . , wj , . . . , wn) .

Define the scalars gij from D by

ei
g−→

n∑
j=1

gijfj ,

and then let G = (gij)ij be the matrix of Dm,n with (i, j)-entry gij. Then

~vG = ~w . 2

The point here is the action of the morphism g taking the left D-space V
to the left D-space W is naturally represented via right multiplication by the
matrix G.

Let V and W be left D-spaces with Hom(V,W ) the set of abelian group
homomorphisms from V to W and HomD(V,W ) (= Hom

DVec(V,W )) the cor-
responding set of linear transformations—homomorphisms as left D-spaces. In
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this situation one often says that the f of HomD(V,W ) are those homomor-
phisms whose group action “commutes” with the scalar action of D. Instead it
might be better to say that these actions “associate,” since the condition that
f of Hom(V,W ) belongs to HomD(V,W ) is

(αx)f = α(xf) ,

for all α ∈ D and x ∈ V .
Of course, the matrix spaces

Dm(= D1,m = Mat1,m(D)) and Dm,n (= Matm,n(D))

have natural structure as both left and right D-spaces. But if D is a noncom-
mutative division ring, care must be taken since, in general, α~x and ~xα are
different as are γG and Gγ. The identity (from Proposition (1.5))

(α~v)(Gγ) = α(~vG)γ

tells us that Dm,n = Hom
DVec(D

m, Dn), taking left D-space Dm to left D-space
Dn, has its natural structure as a right D-space. (This is particularly important
in discussion of dual spaces V ∗ = Hom

DVec(V,D).)

(1.6). Problem.

(a) Verify Proposition (1.5).

(b) In the situation of Proposition (1.5), let h be a second D-endomorphism from V
to W and H the corresponding matrix representing h with respect to the bases
e1, . . . , ei, . . . , em and f1, . . . , fj , . . . , fn. Prove that the D-endomorphism g+ h is
represented by the matrix G+H and so that, as abelian groups, HomD(V,W ) and
Matm,n(D) are isomorphic.

(c) Consider the special case V = W and ei = fi, for all i. Prove that EndD(V ) and
Matn(D) are isomorphic as rings.

Remark. When rephrased appropriately, these remarks remain valid for arbitrary
rings R with identity where V and W are free R-modules.
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Chapter 2
Basic group theory

2.1 Cosets and double cosets

If X and Y are subsets of G, then

XY = {xy | x ∈ X, y ∈ Y } .

In particular, if X ≤ G and Y = {y} then Xy is a coset of X in G (as is yX).1

The number of distinct cosets Xy in G is the index of X in G, written [G:X].
(It is equal to the number of distinct cosets yX in G; see Problem (2.36).)

The basic result on cosets is:

(2.1). Lemma. Let H ≤ G and x, y ∈ G.

(a) Hx ∩Hy is either Hx = Hy or is empty.

(b) xH ∩ yH is either xH = yH or is empty.

(c) |Hx| = |Hy| = |xH| = |yH|.

(d) For H ≤ G, Hx = Hy if and only if yx−1 ∈ H; and xH = yH if and only
if xy−1 ∈ H. 2

We immediately have the central result of finite group theory.

(2.2). Theorem. (Lagrange’s Theorem) If G ≥ H then |G| = [G:H]|H|.
2

Also of interest are double cosets HxK for subgroups H,K ≤ G. The double
coset HxK is a union of various cosets Hxk of H and of various cosets hxK
of K. As with cosets, two double cosets are either equal or disjoint, but unlike

1These days Hy is usually called a right coset and yH a left coset [Asc00], but in the past
[Hll59] it was often the other way around.

11
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cosets, double cosets can have varying orders. For instance H1H = H but other
double cosets HxH will likely contain more than one coset of H.

The set {Hx | x ∈ G } is often denoted H\G and correspondingly we write
{xH | x ∈ G } = G/H.2 Similarly {HxK | x ∈ G } = H\G/K.

The product of cosets HxHy is the disjoint union of the cosets Hxhy and al-
ways contains the coset Hxy = Hx1y. The identity HxHy = Hxy characterizes
H as a normal subgroup of H, as discussed below.

Double coset multiplication will also be of interest. Especially HxH.HyH
is always the union of the double cosets HxhyH and contains the double coset
HxyH.

2.2 Quotients and isomorphism

Two groups A and B are isomorphic provided they are the same group only
with names changed. That is, there is a bijection ϕ : A −→ B with

a1 · a2 = a3 if and only if ϕ(a1) · ϕ(a2) = ϕ(a3) .

If we are not concerned about the specific map ϕ, we write A ' B to indicate
that A and B are isomorphic.

Homomorphisms are more complicated. They are maps ϕ : A −→ B still
satisfying ϕ(a1)ϕ(a2) = ϕ(a1a2), but they need no longer be injective or surjec-
tive. Surjectivity can be forced by replacing B with the image ϕ(A). Still, we
are not just renaming elements; we may be ignoring the distinctions between
certain elements and identifying them with each other.

An arbitrary subgroup K of the group G is a normal subgroup of G if it is
the kernel of some homomorphism. This is a qualitative definition. There are
equivalent quantitative statements. In particulat the subgroup K is normal if,
for every x ∈ G, Kx = xK. Thus K is normal in G precisely when Kx = K,
for all x ∈ G.

It is helpful to realize that the subgroup K is normal in G precisely when
SK = KS, for every subset S of G. In particular, when K is normal, the cosets
G/K = {Kx | x ∈ G } do multiply naturally as sets:

KxKy = Kxy .

The group G/K (with this multiplication) is the factor group or quotient group
of G by K.

For any homomorphism ϕ : G −→ H, the subgroup { g ∈ G | ϕ(g) = 1H } is
the kernel of ϕ, written kerϕ, and is normal in ϕ(G).

(2.3). Theorem. (First Isomorphism Theorem) Let ϕ : G −→ H be a
homomorphism of groups. Then the image ϕ(H) is isomorphic to the factor
group G/K, where K = kerϕ = { g ∈ G | ϕ(g) = 1H }. The isomorphism is
given by ϕ(g) 7→ Kg. 2

2Care must be taken with this, since for many it implies that H is a normal subgroup.
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The First Isomorphism Theorem is critical in all group theory. It says that
every homomorphism has a canonical model.

(2.4). Theorem. (Second Isomorphism Theorem) Let H ≤ G and K�G.
Then HK = KH ≤ G, and HK/K ' H/H ∩K via the map Kh 7→ (H ∩K)h.

2

(2.5). Theorem. (Third Isomorphism Theorem) Let G � N and G ≥
K ≥ N . Then K is normal in G if and only if K/N is normal in G/N . In that
case, G/K ' (G/N)/(K/N). 2

The Second and Third Isomorphism Theorems discuss the lattices of sub-
groups and normal subgroups of a group. In particular the First and Third Iso-
morphism Theorems tell us that, for any surjective homomorphism ϕ : G −→ H,
there is a natural bijection between the lattice of normal subgroups of H and
the lattice of normal subgroups of G that contain kerϕ.

The First and Third Isomorphism Theorems are often invoked without men-
tion, while use the Second often occasions remark.

The isomorphism theorems together allow us to do a great deal of group
theory. If in a category C we have some counterpart to them, then C becomes a
much more manageable place to work. In particular, concepts like simplicity and
results of Jordan-Hölder type are more approachable. Concrete categories like

RMod and ModR have them, and the definition of abelian categories is designed
to guarantee them in an appropriate form.

2.3 Subgroups and action

Each g of the group G acts on G via conjugation:

(xy)g = g−1xyg = g−1xgg−1yg = xgyg .

Our conjugacy definition xg = g−1xg makes conjugacy into a right action3:

(xg)h = h−1(g−1xg)h = (gh)−1x(gh) = xgh .

The induced automorphism ιg is called an inner automorphism of G. The image
of the representation ι : G −→ Aut(G) (= AutGrp(G)) is the inner automorphism
group Inn(G) and is normal in Aut(G). The kernel of the representation ι
consists of everything fixed by conjugation. That is the center Z(G) of G:

Z(G) = { z ∈ G | zg = gz for all g ∈ G } ;

so Inn(G) is isomorphic to G/Z(G). The quotient Aut(G)/Inn(G) is the outer
automorphism group of G, denoted Out(G).

3Those who prefer left action will define the conjugate of x by g to be gxg−1, which can
be denoted gx giving h(gx) = hgx.
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For any subset H of G, the normalizer of H in G denoted NG(H), is

NG(H) = { g ∈ G | Hg = H } .

This is is the largest subgroup of G within whichH is a normal subset. Therefore
a subgroup H is normal in G precisely when G = NG(H).

The group NG(H) acts on H by conjugation, and the kernel of this action
CG(H) is the centralizer of H in G:

CG(H) = { g ∈ G | gh = hg for all h ∈ H } .

The normalizer of a subgroup H always contains H itself, but the centralizer of
H can be very small even if H is large. In any event, CG(H) � NG(H). If the
set H contains the single element h, then NG(H) = CG(h) (which we write in
place of CG({h})).

(2.6). Lemma. Let H be a subset of group G. Then the number of distinct
conjugates of H in G is [G:NG(H)].

Proof. Let gi, for i ∈ I be a complete set of representatives for distinct
cosets of NG(H) in G. Then for every g ∈ G there are unique n ∈ N and i ∈ I
with g = ngi. Then Hg = Hngi = Hgi , so the Hgi give all conjugates. On the
other hand Hgi = Hgj gives gi(gj)

−1 ∈ NG(H), hence i = j. 2

(2.7). Proposition. (The Class Equation) Let gi, for 1 ≤ i ≤ n, be
representatives for the conjugacy classes of noncentral elements in the finite
group G. Then

|G| = |Z(G)|+
n∑
i=1

[G:CG(gi)] .

Proof. The group G is the disjoint union of its distinct conjugacy classes.
A class contains one element if and only if it is in the center of G; that is,
the union of the classes of size 1 has cardinality |Z(G)|. The noncentral class
containing each gi has cardinality [G:CG(gi)] by Lemma (2.6). 2

If A acts on G and H is a subset of G with Ha = H for all a ∈ A then H is
A-invariant. (See Section 1.4.) For instance N is normal in G precisely when
it is Inn(G)-invariant. The nonidentity group G is a simple group provided 1
and G are the only normal subgroups of G, that is, the only Inn(G)-invariant
subgroups of G.

A subgroup of G is characteristic in G when it is Aut(G)-invariant. Clearly
this is a stronger requirement than normality. A group G that is Aut(G)-simple
is characteristically simple. That is, its only characteristic subgroups are 1 and
G itself.

(2.8). Proposition.

(a) If P char Q char R, then P char R.

(b) If P char R and Q/P char R/P , then Q char R.
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(c) If P char Q�R, then P �R. 2

If M and N be subgroups of G with N�M , then the quotient group M/N is
called a section of G. Sections form the basis of an important group theoretical
technique call internal representation theory.

(2.9). Lemma. Let M and N be A-invariant subgroups of G with N �M .
(This happens, for instance, if A ≤ NG(M) and N char M .) Then A acts on
the section M/N by (Nm)a = Nma for m ∈M and a ∈ A. 2

2.4 Commutator theory

We have gh = hg.g−1h−1gh; so we define the commutator

[g, h] = g−1h−1gh

to gauge the extent to which g and h commute4. Obviously, they commute if
and only if [g, h] = 1. We iterate by defining [g, h, k] = [[g, h], k]. For H,K ≤ G,
we set [H,K] = 〈 [h, k] | h ∈ H, k ∈ K 〉 (= [K,H] by Lemma (2.11)(b)).
Furthermore [H,K,L] = [[H,K], L].

(2.10). Lemma. If ϕ is a homomorphism from G to M then [x, y]ϕ = [xϕ, yϕ].
Thus if I ≤ H ≤ G and J ≤ K ≤ G, then [I, J ] ≤ [H,K] and ϕ([H,K]) =
[ϕ(H), ϕ(K)]. In particular, if H and K are characteristic subgroups of G, then
[H,K] is also characteristic in G. 2

(2.11). Lemma. Let x, y, z ∈ G.

(a) [x, y] = [y, x]−1.

(b) [x, y] = (y−1)xy; [x, y] = x−1xy.

(c) [xy, z] = [x, z]y[y, z]; [x, yz] = [x, z][x, y]z.

(d) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1. 2

(2.12). Corollary.

Let H,K ≤ G.

(a) NG(H) ≥ K if and only if H ≥ [H,K].

(b) [K,H] = [H,K] � 〈H,K〉.

(c) 〈HG〉 = H[H,G].

Proof. (a) We have NG(H) ≥ K if and only if hk ∈ H, for all h ∈ H
and k ∈ K. This happens precisely when, for all h ∈ H and k ∈ K, we have
(using Lemma (2.11)(b)) h−1hk = [h, k] ∈ H, which is the case if and only if
H ≥ [H,K].

4In places where left action is preferred to right action, the opposite notation [g, h] =
ghg−1h−1 is often used.
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(b) From Lemma (2.11)(a) we find [K,H] = [H,K]. For all g, h ∈ H and
k ∈ K, we have

[h, k]g = [hg, k][g, k]−1 ∈ [H,K]

by Lemma (2.11)(e). Hence H ≤ NG([H,K]), and similarly for K.

(c) By (b) the subgroup [H,G] is normal in G. In particular, H[H,G] is a
subgroup. As hg = h[h, g], we have

〈HG〉 ≤ H[H,G] ≤ 〈h, hg | h ∈ H, g ∈ G 〉 = 〈HG〉 . 2

(2.13). Lemma. (Three subgroups lemma) Let X,Y, Z ≤ G. If [X,Y, Z] =
[Y,Z,X] = 1, then [Z,X, Y ] = 1.

Proof. By Lemma (2.11)(e), for all x ∈ X, y ∈ Y , and z ∈ Z, we have

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 .

Since by hypothesis [x, y−1, z]y = [y, z−1, x]z = 1, we have

[z, x−1, y] = [z, x−1, y]x = 1 ,

for all appropriate x, y, z. That is, every y ∈ Y commutes with all [z, x−1] ∈
[Z,X]. As these constitute a generating set for [Z,X], in fact [Z,X, Y ] = 1, as
desired. 2

The proof of the next corollary makes use of a very standard group theoretic
practice: a bar convention. In these situations, the image ϕ(H) of the homo-
morphism ϕ from the group H is denoted H̄ (or H̃ or Ĥ, and so forth); then for
each subset A of H, the subset ϕ(A) of H̄ is denoted Ā (respectively, H̃, Ĥ).

(2.14). Corollary. Let X,Y, Z ≤ G and N � G. If [X,Y, Z] ≤ N and
[Y,Z,X] ≤ N , then [Z,X, Y ] ≤ N .

Proof. We make use of the bar convention Ḡ = G/N . By hypothesis,
[X̄, Ȳ , Z̄] = 1̄ and [Ȳ , Z̄, X̄] = 1̄. Therefore by the Three Subgroups Lemma
(2.13), we have [Z̄, X̄, Ȳ ] = 1̄. That is, [Z,X, Y ] ≤ N . 2

(2.15). Corollary. If [X,X] = X and [Y,X,X] = 1, then [Y,X] = 1.

Proof. We have, by assumption, [X,Y,X] = [Y,X,X] = 1; so from the
Three Subgroups Lemma (2.13), we get 1 = [X,X, Y ] = [[X,X], Y ] = [X,Y ] =
[Y,X]. 2

The subgroup [G,G] = G′ is the derived subgroup of G, a normal, indeed
characteristic, subgroup of G (see Lemma (2.10)).

(2.16). Theorem. If N is normal in G with G/N abelian, then N ≥ G′.
Conversely if N ≥ G′, then N is normal in G and G/N is abelian.
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Proof. Let5 Ḡ = G/N . Thus Ḡ is abelian if and only if [ḡ, h̄] = 1̄ (for all
ḡ, h̄ ∈ Ḡ) if and only if [g, h] ∈ N (for all g, h ∈ G) if and only if G′ ≤ N . In
the abelian group6 G̃ = G/G′, the subgroup Ñ is certainly normal; therefore N
is normal in G. 2

(2.17). Proposition. If G = 〈HG〉, then G/G′ is isomorphic to H/G′ ∩H.
In particular, G/G′ is a quotient of H/H ′.

Proof. We have G = 〈HG〉 = H[H,G] by Corollary (2.12). Thus [H,G]
is a normal subgroup of G with H ′ = [H,H] ≤ [H,G] ≤ [G,G] = G′. By the
Dedekind modular law we have G′ = (H ∩G′)[H,G], so the result follows from
the isomorphism theorems. 2

A group G with G = G′ is a perfect group. By the theorem, G is perfect
if and only if its only abelian quotient is 1. A group G is quasisimple if it is
perfect and G/Z(G) is simple.

(2.18). Proposition. A simple group is either perfect or cyclic of prime
order.

Proof. If G is not perfect, then G > G′. For simple G, this forces G′ = 1;
so G is abelian. Let 1 6= g ∈ G. Then 〈g〉 is normal in abelian G = 〈g〉. If
|g| = |G| was not prime then some 〈ge〉 would be a nontrivial proper subgroup
of G, also normal; so G is cyclic of prime order. 2

2.5 Extensions

An arbitrary group G with N � G and G/N ' H is an extension of N by H.
Returning to unique factorization, we investigate the extent to which knowledge
of N and H determines G in the extension

1 −→ N −→ G −→ H −→ 1

There are two basic issues:

(a) What is the action of H on N ; that is, the homomorphism ϕ : H −→
Aut(N)?

(b) Given an action of H on N , what are the possible extension types G?

Here is an important observation: given any action of a group H on a group
N , there is always at least one solution G to the extension problem described
above.

Let ϕ : H −→ Aut(N) be a homomorphism, and define on the set H × N
the multiplication

(h1, n1)(h2, n2) = (h1h2, n
ϕ(h2)
1 n2)

5a first bar convention
6a second bar convention
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We write H nϕ N for this set endowed with this multiplication. It is called the
semidirect product of N by H or the split extension of N by H.

(2.19). Theorem.

(a) The semidirect product M = H nϕ N is a group. The inverse of (h, n) is

(h−1, (n−1)ϕ(h−1)).

(b) H0 = { (h, 1) | h ∈ H } is a subgroup of M isomorphic to H.

(c) N0 = { (1, n) | n ∈ H } is a normal subgroup of M isomorphic to N .

(d) H0 ∩N0 = 1, M = H0N0, and M/N0 ' H0. 22

This is the “external” semidirect product. The corresponding “internal”
semidirect product motivates the external definition.

(2.20). Corollary. Let G have subgroups H and N with H ≤ NG(N) and
H ∩ N = 1. Then 〈H,N〉 = HN ' H nϕ N , where ϕ : H −→ Aut(N) is
conjugation, given by nϕ(h) = nh = h−1nh .

Proof. h1n1 · h2n2 = h1(h2h
−1
2 )n1h2n2 = h1h2 n

h2
1 n2 . 2

Thus the semidirect product is a tool for realizing automorphisms of groups
via inner automorphisms in larger groups. In it, the action of H on N is always
given by conjugation. Generally if A acts on K, then we often write [a, x]
for xax−1 and [x, a] for x−1xa, since these are the natural commutators in
the semidirect product A n K. Also when we write [A,K] and [K,A], the
calculations are done within An K.

As just done, we often drop the subscript and write

〈H,N〉 = HN ' H n N

when the intended action is understood. Since N is normal in HN , we have
HN = NH. This suggests that we can also write internal semidirect products
as NH = N o H. The multiplication is

n1h1 · n2h2 = n1n
h−1

1
2 h1h2 .

This, in turn, suggests the definition for another external semidirect product:
N oϕ H is defined on the set N ×H with multiplication given by

(n1, h1) · (n2, h2) = (n1n
ϕ(h1)−1

2 , h1h2) ,

where, as before ϕ : H −→ Aut(N) is a homomorphism.

(2.21). Lemma. The subgroup isomorphisms (h, 1) 7→ (1, h), for h ∈ H, and
(1, n) 7→ (n, 1), for n ∈ N , extend to an isomorphism of H nϕ N and N oϕ H.

2
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2.6 Solvable groups

Subnormality is the transitive extension of normality. The finite series7

G = G0 ≥ G1 ≥ · · · ≥ Gi ≥ · · · ≥ Gn = 1

is a finite subnormal series if each Gi+1 is normal in Gi. Similarly it is a
normal series or characteristic series if all its members are normal and then
characteristic in G. A finite subnormal series is more frequently called finite
series. (We refrain from defining general series.) A subgroup H is subnormal
in G if it is a member of some subnormal series starting at G. The defect of
subnormal H is the length of the shortest subnormal series from G and finishing
at H. For instance G has defect 0 in G while any normal subgroup N has defect
1.

The group G is solvable if it has a finite subnormal series

G = G0 �G1 � · · ·�Gi � · · ·�Gn = 1

in which all the factors Gi/Gi+1 are abelian. It is important that we not assume
the series to be a composition series; an abelian group is always solvable, but
only finite abelian groups have finite composition series.

Set G = G(0) and, for i ≥ 1,

G(i) = [G(i−1), G(i−1)] .

Then {G(i) | i ≥ 0 } is the derived series of G. This is a characteristic series by
Lemma (2.10). We set G(∞) =

⋃
i≥0G

(i), a characteristic and perfect subgroup
of G.

We encountered G(1) = [G,G] = G′, the derived subgroup of G earlier. By
Theorem (2.16), each factor G(i)/G(i+1) is abelian. Therefore, if G(n) = 1, for
some n, then G is solvable. Indeed we see next that a group is solvable if and
only if there is an n with G(n) = 1.

(2.22). Theorem. Let G = G0 � G1 � · · · � Gk with all factors Gi−1/Gi
abelian. Then Gi ≥ G(i) for all i.

Proof. The case k = 1 is contained in Theorem (2.16). The general case
follows by induction. 2

(2.23). Corollary. G is solvable if and only if G(k) = 1 for some k. 2

Calculation of the derived series can thus be thought of as a “greedy algo-
rithm” for verifying solvability. One consequence is that, if n is chosen minimal
subject to G(n) = 1, then any subnormal series testifying to the solvability of
G must have length at least n; and there is such a series of length exactly n
(namely, the derived series). This n is called the derived length of the solvable
group G.

7We are actually describing chains rather than series, but the terminology is standard.
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(2.24). Theorem.

(a) Subgroups and quotient groups of solvable groups are solvable.

(b) For N �G, if N and G/N are solvable then G is solvable.

(c) If A and B are normal and solvable in G, then AB is normal and solvable
in G.

Proof. If H ≤ G, then H(k) ≤ G(k); so subgroups of solvable groups are
solvable. Also, for any homomorphism, ϕ(G′) = ϕ(G)′ (by Lemma (2.10)); so
quotients of solvable groups are solvable.

We can stick together series with abelian factors for G/N and N to produce
one for G. In particular this is possible when G = AB and N = A. 2

(2.25). Corollary. If G is a finite group, then it has a unique maximal
normal solvable subgroup.

Proof. By the last part of the theorem, in a finite group all normal solvable
subgroups generate a solvable normal subgroup, clearly the largest. 2

The normal subgroup of the corollary is the solvable radical of G and is, in
fact, characteristic in G.

2.7 Nilpotent groups

Let L0(G) = G and, for i ≥ 1,

Li(G) = [Li−1(G), G] .

By Lemma (2.10) this gives a characteristic series {Li(G) | i ≥ 0 }, which is
called the lower central series for G. By design each Li−1(G)/Li(G) is central
in G/Li(G), but again it is not certain that there is some n with Ln(G) = 1.

The lower central series is initially the same as the derived series. Indeed
L0(G) = G = G(0) and L1(G) = [G,G] = G(1); but then they can diverge,
since L2(G) = [[G,G], G] will generically have G(2) = [[G,G], [G,G]] as a proper
subgroup.

Again, let Z0(G) = 1, Z1(G) = Z(G), and, for i ≥ 1,

Zi+1(G)/Zi(G) = Z(G/Zi(G)) ;

that is, Zi+1(G) is the preimage in G of the center of G/Zi(G). The series
{Zi(G) | i ≥ 0 } is the upper central series for G. By Proposition (2.8)(b) each
Zi+1(G) is characteristic in G. In this case the subgroup 1 belongs to the series,
but G might not.

(2.26). Theorem. Let

G = G0 �G1 � · · ·�Gi � · · ·�Gn = 1

be a normal series in the group G with, for each i ≥ 0,

Gi/Gi+1 ≤ Z(G/Gi+1) .
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(a) Li(G) ≤ Gi, hence Ln(G) = 1.

(b) Zi(G) ≥ Gn−i, hence Zn(G) = G.

Proof. (a) Induct on i, with the case i = 0 being clear. If Li(G) ≤ Gi then

Li+1(G) = [Li(G), G] ≤ [Gi, G] ≤ Gi+1 .

(b) Induct on i, with the case i = 0 clear. Set Ḡ = G/Z(G). Then by the
definition of the upper central series,

Zi(Ḡ) = Zi+1(G) = Zi+1(G)/Z(G) .

By the Third Isomorphism Theorem (2.5) we have Ḡi � Ḡ with

Ḡi/Ḡi+1 ≤ Z(Ḡ/Ḡi+1) .

In particular, Ḡn−1 = 1̄ as Gn−1 ≤ Z(G). By induction Ḡ(n−1)−i ≤ Zi(Ḡ).
Taking preimages in G, we find Gn−(i+1) ≤ Zi+1(G), as desired. 2

A normal series as in the theorem is a central series for G. Thus G has a
central series if and only if its lower central series reaches 1 in a finite number
n of steps if and only if its upper central series reaches G in a finite number m
of steps. In this case, the group G is nilpotent. The theorem goes on to tell us
that the smallest such n and m are equal. This number n = m is the nilpotence
class of the group G.

We next have a nilpotent counterpart to Theorem (2.24), although part (b)
should really be viewed as the failure within nilpotent groups of a basic property
of solvable groups: an extension of a solvable group by a solvable group by a
solvable group is solvable, while a (noncentral) extension of a nilpotent group
by a nilpotent group is rarely nilpotent, as Sym(3) and Alt(4) testify. This also
means that extracting (c) from (b) is more complicated.

(2.27). Theorem.

(a) Subgroups and quotient groups of nilpotent groups are nilpotent.

(b) For N �G, if N ≤ Z(G) and G/N is nilpotent then G is nilpotent.

(c) If A and B are normal and nilpotent in G, then AB is normal and nilpotent
in G.

(d) Let G be nilpotent and 1 6= N �G. Then Z(G) ∩N 6= 1.

Proof. (a) By Lemma (2.10) always Li(H) ≤ Li(G) and ϕ(Li(G)) =
Li(ϕ(G)).

(b) By (a) we may assume N = Z(G). But then the preimage of the upper
central series for G/N is the upper central series for G.

(c) By induction on nilpotence class in G/Z(G), we have ABZ(G)/Z(G)
nilpotent. Then by (b) the preimage AGZ(G) is nilpotent as is its subgroup
AB (by (a)).
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(d) Choose the smallest i with N ∩ Zi(G) 6= 1. As N is normal

[G,N ∩ Zi(G)] ≤ N ∩ Zi−1(G) = 1 ,

and 1 6= N ∩ Zi(G) ≤ Z(G). 2

We are used to doing induction in finite groups on order. Nipotent groups
allow induction on class even when infinite. Similarly solvable groups allow
induction on derived length even when infinite.

(2.28). Proposition. Let G be a nilpotent group.

(a) U < NG(U) for all U < G.

(b) U is subnormal in G for all U ≤ G.

(c) [N,G] < N for all nonidentity normal N .

(d) Z(G/N) is nontrivial for all proper normal N .

Proof. Part (d) follows from Theorem (2.27)(a).
(a) Choose the largest i with Zi(G) ≤ U . Then

[U,Zi+1(G)] ≤ [Zi+1(G), G] ≤ Zi(G) ≤ U .

Thus Zi+1(G) ≤ NG(U) by Corollary (2.12), but Zi+1(G) is not in U .
(a) By our proof of (a), the subnormal series

U < NG(U) < NG(NG(U)) < · · ·

reaches G in a number of steps at most the nilpotence class of G.
(c) Choose the largest i with N ≤ Li(G). Then

[N,G] ≤ [Li(G), G] = Li+1(G) .

As N is not contained in Li+1(G), we must have [N,G] < N . 2

For finite groups G, each of these properties actually characterizes G as being
nilpotent. (See Problem (2.41).)

(2.29). Corollary. If G is a finite group, then it has a unique maximal
normal nilpotent subgroup. 2

This subgroup, called the Fitting subgroup of G, is then clearly characteristic
in G.

2.8 Finite p-groups and Sylow’s First Theorem

Let p be a prime. The finite group G is a p-group if it has order a power of the
prime p.8

8Sylow’s First Theorem and Lagrange’s Theorem imply that this is equivalent to requiring
all elements to have order a power of p. This second version is a better definition in that it
has content for infinite groups as well.
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(2.30). Lemma. Let G be a finite p-group. Then G is nilpotent. Let P ≤ G
with |P | = pa and |G| = pb. Then for each integer c with a ≤ c ≤ b there is a
subgroup Q with P ≤ Q ≤ G and |Q| = pc.

Proof. Recall the Class Equation of Proposition (2.7):

|G| = |Z(G)|+
n∑
i=1

[G:CG(gi)] ,

where the gi are representatives for the distinct conjugacy classes of noncentral
elements in G. Each [G:CG(gi)] is a multiple of p, as is |G|. Therefore |Z(G)|
is also a multiple of p, which is to say that Z(G) is nontrivial. Therefore P
is nilpotent by Theorem (2.27)(b) and induction. The rest then follows by
Proposition (2.28)(a) since, for proper Q, the p-group NG(Q)/Q has a nontrivial
center. 2

(2.31). Theorem. (Sylow’s First Theorem) If the finite group G has
order |G| = pam with p prime, a ∈ N, and gcd(p,m) = 1, then G contains
subgroups of order pa and index m.

Proof. Consider again the Class Equation or Proposition (2.7):

|G| = |Z(G)|+
n∑
i=1

[G:CG(gi)] .

If any of the indices [G:CG(gi)] is not a multiple of p, then CG(gi) is a proper
subgroup of G whose order is a multiple of pa, and we are done by induction.

Thus we can assume that
∑n
i=1[G:CG(gi)] is a multiple of p, and hence (as in

the previous lemma) Z(G) has order a multiple of p. By the structure theory of
finite abelian groups (see Theorem (1.4)) Z(G) contains a subgroup Z of order
p. Now we are done by induction in G/Z. 2

Such subgroups are Sylow subgroups or Sylow p-subgroups or p-Sylow sub-
groups of G.

(2.32). Lemma. Let P be a Sylow subgroup of the group G. Then NG(NG(P )) =
NG(P ).

Proof. The Sylow subgroup P is not only normal in NG(P ) but also char-
acteristic. Therefore P � NG(NG(P )), forcing NG(NG(P )) = NG(P ). 2

2.9 Direct products and sums

For any two groups H and N there is always the trivial map ϕ : H −→ Aut(N)
that sends each element of H to the trivial automorphism of N . In that case
the semidirect product is actually the direct product

H nϕ N = H ×N .
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In this case [H,N ] = 1, and N also acts trivially on the normal subgroup H:

H ×N ' N n H = N ×H .

Once we have defined the direct product of two groups, we immediately have
the direct product of any finite set of groups via

H1 ×H2 ×H3 = (H1 ×H2)×H3 ' H1 × (H2 ×H3) .

More generally, let Gi, i ∈ I, be a set of groups. The direct product of
the Gi, written

⊗
i∈I Gi is the group consisting of those sequences (gi)i∈I with

multiplication is defined pointwise:

(gi)i∈I(hi)i∈I = (gihi)i∈I .

For |I| = 2, indeed for finite I, this is just the direct product defined above.
The direct product is sometimes referred to as the external direct product

since it is a group constructed from the collection of groups Gi, initially external
to the product. The next result produces a direct product from inside a group:

(2.33). Theorem. (Chinese Remainder Theorem) Let Ni, for i ∈ I, be
normal subgroups of the group G with G = 〈Ni | i ∈ I 〉, and set Gi = G/Ni.
Then the map

g −→ (Nig)i∈I

is a homomorphism of G into the direct product
⊗

i∈I Gi with kernel
⋂
i∈I Ni.

Proof. The map g −→ (Nig)i∈I is certainly a homomorphism, since each
of its projections πi : g 7→ Nig is the natural factor map πi : G −→ G/Ni = Gi.
The kernel is then

{ g ∈ G | Nig = Ni, for all i ∈ I } =
⋂
i∈I

Ni . 2

Indeed, more is true. For each j, the described coordinate projection πj : g 7→
(Nig)i∈I 7→ Njg is onto Gj . In general, a subgroup of H ≤

⊗
i∈I Gi for which

each projection πi(H) is onto Gi, is a subdirect product of the Gi. An important
example of a subdirect product is the the embedding of the group G on the
diagonal of G×G via g 7→ (g, g).

The Chinese Remainder Theorem reveals the direct product as the cate-
gorical product in Grp relative to the various projections πi. The categorical
coproduct in Grp is the free product. This shall not be of much direct interest
to us, but it does have a quotient that is important.

For each i we have the natural injection ιi of Gi into
⊗

i∈I Gi that takes
g ∈ Gj to the I-tuple (gi)i∈I with gj = g and gi = 1Gi for i 6= j. The group⊕

i∈I Gi is the subgroup 〈 ιi(Gi) | i ∈ I 〉 of
⊗

i∈I Gi. This is then the normal
subgroup of

⊗
i∈I Gi consisting of those (gi)i∈I with gi = 1Gi for all but a finite
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number of i. In particular if I is finite, then
⊕

i∈I Gi =
⊗

i∈I Gi, but if I is
infinite then the containment is proper.

The group
⊕

i∈I Gi is a kind of coproduct in Grp in that is the natural
quotient of the coproduct subject to the additional relations

[ιi(Gi), ιj(Gj)] = 1 for all i 6= j .

In particular, in the category of abelian groups AbGrp this is the coproduct. For
this reason, we call

⊕
i∈I Gi the direct sum of the Gi.

The reason we make these distinctions here is that, just as with the Chinese
Remainder Theorem and direct products, there is a natural context in which
we encounter direct sums.

(2.34). Theorem. If, in the group G, the subgroups Gi, for i ∈ I, normalize
each other and, for all i ∈ I satisfy

Gi ∩ 〈Gj | j 6= i 〉 = 1 ,

then the subgroup 〈Gi | i ∈ I 〉 is isomorphic to the direct sum
⊕

i∈I Gi.

Proof. The isomorphism from
⊕

i∈I Gi to G is given by

(gi)i∈I 7→
∏
i∈I

gi .

This is well-defined since all but a finite number of the gi are 1G and for i 6= j
the elements gi and gj of G commute. 2

This theorem explains why the direct sum is often called the internal direct
product. There are various different terms for these two products, and that can
be confusing. The (external) direct product is also the Cartesian product and
the unrestricted direct product while the direct sum (internal direct product) is
also the restricted direct product and sometimes, even, the direct product. We
shall only refer to the direct sum as the direct product when I is finite so they
are equal, as in the next theorem.

(2.35). Theorem. A finite group is nilpotent if and only if it is the direct
product of its Sylow subgroups.

Proof. A finite group that is the direct product of p-groups is nilpotent by
Theorem (2.27) and Lemma (2.30).

Now let G be finite and nilpotent. For each Sylow subgroup P , we have
NG(NG(P )) = NG(P ) by Lemma (2.32). As G is nilpotent, this forces NG(P ) =
P by Proposition (2.28)(a). That is, every Sylow subgroup of G is normal. Let
Pi, for 1 ≤ i ≤ n, be the (unique) Sylow pi-subgroup (with pi 6= pj , for i 6= j).
For each i the subgroup 〈Pj | j 6= i 〉 =

∏
j 6=i Pj has p′i order and so is disjoint

from the pi-group Pi. Therefore G is the direct sum, hence product, of the Pi
by Theorem (2.34). 2
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2.10 Problems

(2.36). Problem. Prove that the inverse map g 7→ g−1 is an anti-automorphism of
every group G that, for each subgroup H of G, induces a bijection between the set of
right cosets of H and the set of left cosets of H.

(2.37). Problem. Let (G, ·) be a group. Let a ∈ G. Define, on the set G, a new
multiplication ◦ by

x ◦ y = x · a · y .
Prove that there is a bijection ϕ : G −→ G with ϕ(g)◦ϕ(h) = ϕ(g ·h) . for all g, h ∈ G.
What is the identity element of (G, ◦)?

(2.38). Problem. (Reidermeister Quadrangle Condition) Let A be a Latin
square with entries from the set X. That is, A is an X × X array in which every
element of X occurs exactly once in each row and exactly once in each column.

Prove that the rows and columns of A can be relabeled to make it into the multi-
plication table of some group if and only if, for all a, b, c ∈ X, whenever the pattern

...
...

· · · a · · · b · · ·
...

...
· · · c · · · d · · ·

...
...


occurs in rows i, j and columns m,n and

...
...

· · · a · · · b · · ·
...

...
· · · c · · · d′ · · ·

...
...


is in rows i′, j′ and columns m′, n′, then d = d′.
(Let C be the set all triples (r, c, e) ∈ X3 for which e is the entry to be found in the
cell of A at the intersection of row r and column c. Then the hypothesis is: for all
i, j,m, n, i′, j′,m′, n′ ∈ X,

(i,m, a), (i, n, b), (j,m, c), (j, n, d), (i′,m′, a), (i′, n′, b), (j′,m′, c), (j′, n′, d′) ∈ C

implies d = d′.)

(2.39). Problem. Let B ≤ G. Prove that BxB.ByB ⊇ BxyB, for all x, y ∈ G,
and that equality always holds if and only if B is normal in G.

(2.40). Problem.

(a) Prove that if G is solvable then U ′ < U for all 1 6= U ≤ G.

(b) Let G be finite. Prove that G is solvable if and only if U ′ < U for all 1 6= U ≤ G.

(2.41). Problem. Let G be a finite group with any one of the following properties:
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(a) U < NG(U) for all U < G.

(b) U is subnormal in G for all U ≤ G.

(c) [N,G] < N for all nonidentity normal N .

(d) Z(G/N) is nontrivial for all proper normal N .

Prove that G is nilpotent. (That is, for finite groups each of the properties of Propo-
sition (2.28) characterizes nilpotent groups. This is false for each when we include
infinite groups.)

(2.42). Problem. Prove that in arbitrary G we have Li(G) ≥ G(i) for all i ≥ 0.

(2.43). Problem. Let P be nilpotent of class at most 2. (That is, P ′ ≤ Z(P )). Set
P̄ = P/Z(P ). Prove

(a) [a, b][a, c] = [a, bc].

(b) [a, c][b, c] = [ab, c]

(c) akbk = (ab)k[a, b](
k
2).

(d) The map f(x̄, ȳ) = [x, y] is a well-defined biadditive map from the abelian group
P̄ into the abelian group Z(P ).

(e) If P̄ and Z(P ) are elementary abelian p-groups, then the map q(x̄) = xp is a well-
defined map from the Zp-space P̄ to the Zp-space Z(P ) that is linear for p odd and
for p = 2 satisfies f(x̄, ȳ) = q(x̄+ ȳ) + q(x̄) + q(ȳ).

(2.44). Problem. Prove that in a finite group, any subnormal nilpotent subgroup is
contained in the Fitting subgroup.

(2.45). Problem. Let G contain the normal abelian subgroups Ni for 1 ≤ i ≤ n.
Set N = 〈Ni | 1 ≤ i ≤ n 〉, which is nilpotent by Theorem (2.27)(c). Prove that N has
nilpotence class at most n.

(2.46). Problem.

(a) Let G =
⊕

i∈I Gi be the direct sum of the nonabelian simple groups Gi. Show that
H is subnormal in G if and only if H =

⊕
j∈J Gj, for some subset J of I.

Remark. This result is not true if two of the simple groups Gi are abelian and
isomorphic.

(b) Prove that direct sum of isomorphic simple groups is characteristically simple.
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Chapter 3
Permutation and Linear Groups

Groups are often encountered as permutation groups or linear groups. These
are often the right places to look for factorization (reduction) methods.

3.1 Permutation groups

3.1.1 Basics

Recall that for the set Ω, the symmetric group Sym(Ω) is the group AutSet(Ω) of
all bijections of Ω with itself. For finite |Ω| = n, the group Sym(Ω) is isomorphic
to Sym({1, 2, . . . , n}), which we usually write as Sym(n).

(3.1). Lemma. For n a positive integer, |Sym(n)| = n! . 2

If ϕ : G −→ Sym(Ω) is a permutation representation (that is, a Set-representation),
then we say that Ω is a G-space. We write kerG(Ω) for the kernel of the rep-
resentation ϕ, and the representation ϕ is faithful if its kernel is trivial. If
G ≤ Sym(Ω) then we say that (G,Ω) is a permutation group. We also abuse
this terminology by extending it to include faithful permutation representations
ϕ : G −→ Sym(Ω).

If f is a bijection (that is, Set-isomorphism) of the two sets Ω and ∆, then
we have the induced isomorphism f∗ of Sym(Ω) = AutSet(Ω) and Sym(∆) =
AutSet(∆), as in Section 1.4

Ω Ω

∆ ∆

f

a

f

a∗

with
a 7→ af

∗
= a∗ = f−1af .

29
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For the permutation representation ρΩ : G −→ Sym(Ω) this provides us with
the equivalent representation ρ∆ : G −→ Sym(∆) given by ρ∆ = ρΩf

∗:

G Sym(Ω)

Sym(∆)

ρ∆

ρΩ

f∗

In this case, Ω and ∆ are said to be isomorphic G-spaces. If further (G,Ω) and
(H,∆) are permutation groups, and there is a group isomorphism ϕ : G −→ H
for which the following diagram commutes:

G Sym(Ω)

G Sym(∆)

ϕ

ρΩ

f∗

ρ∆

then the semi-equivalence (ϕ, f) is a permutation isomorphism of (G,Ω) and
(H,∆).

Permutation representations are important for at least two reasons. They
are relatively easy to work with and calculate in, and every group has a faithful
representation as a permutation group. We have discussed G acting on itself by
conjugation, but a more elementary action exists.

(3.2). Theorem. (Cayley’s Theorem) Every group G is faithfully repre-
sented in Sym(G) via right translation:

g 7→ ρ(g) where xρ(g) = xg for x ∈ G .

Proof. We have

(xρ(g))ρ(h) = (xg)h = x(gh) = xρ(gh) .

The action is faithful since 1ρ(g) = g implies that ρ(g) is nontrivial when g is
not the identity. 2

The associated representation ρ : G −→ Sym(G) is called the right regular rep-
resentation.

3.1.2 Transitivity

For ω in the G-space Ω, we set

ωG = {ωg | g ∈ G } ,
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the orbit (or G-orbit) of ω for this action. If the only orbit is Ω, then we say
that G is transitive on Ω. Otherwise G is intransitive.

In most situations, questions about permutation groups can be reduced to
questions about transitive permutation groups.

(3.3). Proposition. If G is a permutation group on Ω with orbits Ωi, for i ∈
I, then G is isomorphic to a subdirect product of the groups Gi = G/ kerG(Ωi),
each acting faithfully and transitively on Ωi.

Proof. This follows from the Chinese Remainder Theorem (2.33). 2

The subgroup
Gω = { g ∈ G | ωg = ω } ,

is the stabilizer of ω in G. We sometimes also use the notation StabG(ω).
If ∆ is a subset of Ω, then

G∆ = StabG(∆) = { g ∈ G | ∆g = ∆ } ,

the global stabilizer of ∆, while

G[∆] =
⋂
δ∈∆

Gδ = { g ∈ G | δg = δ, all δ ∈ ∆ }

is the pointwise stablizer of ∆. It probably would be better to denote (as some
do) the global stabilizer of ∆ by NG(∆) and the pointwise stabilizer by CG(∆).

A permutation representation ϕ : G −→ Sym(Ω) is semiregular if Gω = 1,
for all ω ∈ Ω. (In particular, it is faithful.) It is regular if it is semiregular and
transitive (as in the right regular representation).

Just as factor groups give us canonical models for homomorphic images, so
coset spaces give us canonical models for transitive permutation spaces.

For H ≤ G, consider the coset space H\G = {Hx | x ∈ G },1 which is
naturally a G-space under the action of right translation:

ρH : G −→ Sym(H\G) given by (Hx)ρH(g) = Hxg ,

so that
((Hx)ρH(g))ρH(k) = (Hxg)k = Hx(gk) = HxρH(gk) .

Of course, the right regular representation is ρ1G .

(3.4). Theorem. Let G be transitive on Ω. For a fixed ω ∈ Ω, set H = Gω
and H\G = {Hg | g ∈ G }. Then the set Ω and the coset space H\G are
isomorphic as G-spaces. In particular |ωG| = [G:Gω].

Proof. For hx in the coset Hx we have ωhx = (ωh)x = ωx. Conversely,
if ωx = ωy, then yx−1 ∈ H and Hx = H(yx−1)x = Hy. Therefore the map
f : Ω −→ H\G given by

α
f−→ Hx ⇐⇒ α = ωx

1This can be viewed as the set of H-orbits for in the left regular representation of G; see
Problem (3.25).
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is a well-defined bijection. If g is in G then αg = (ωx)g = ωxg, so we have the
commutative diagram

α αg

Hx Hxg

f

gρΩ

f

gρH

That is, ρH = ρΩf
∗; and the two G-spaces are isomorphic, as claimed.

As G is transitive on Ω,

|ωG| = |Ω| = |H\G| = [G:Gω] . 2

(3.5). Lemma. If αh = β, then (αg)h
g

= βg.

Proof. (αg)h
g

= (αg)g
−1hg = (αh)g = βg. That is, the diagram

α β

αg βg

g

h

g

hg

commutes. 2

So if h has cycle representation

h = . . . (. . . , α, β, . . .) . . .

then hg has cycle representation

hg = . . . (. . . , αg, βg, . . .) . . .

The permutation h ∈ Sym(Ω) has cycle type 1a12a2 . . . iai . . . , where ai is
the number of orbits of length i that h has in Ω. Those terms with ai = 0
are always deleted. The term 1a1 is also usually deleted as well (although for
infinite Ω this can cause confusion).

The lemma tells us that conjugacy in Sym(Ω) preserves cycle type. Indeed,
two elements of Sym(Ω) are conjugate if and only if they have the same cycle
type.

(3.6). Corollary. If Ω is a G-space and ω ∈ Ω, then (Gω)g = Gωg for all
g ∈ G. 2

If H is a subgroup of G, then the core kerG(H) of H in G is the largest
normal subgroup of G contained in H.

(3.7). Corollary. If Ω is a transitive G-space and ω ∈ Ω, then the core of
Gω is kerG(Ω). 2
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(3.8). Lemma. (A Frattini argument) Let G be transitive on Ω and ω ∈ Ω.
For N ⊆ G, we have ωN = Ω if and only if G = GωN .

Proof. Assume ωN = Ω. For g ∈ G, we have ωg = α = ωn, for some n ∈ N .
Therefore gn−1 ∈ Gω, and g = (gn−1)n ∈ GωN . Conversely, if G = GωN , then
for any α ∈ Ω, there is a g ∈ G with ωg = α. Then g = g1n1, for g ∈ Gω and
n1 ∈ N , so that ωn1 = ωg1n1 = ωg = α. Hence ωN = Ω. 2

If Ω is a G-space, then so is each Ωk, with action in each coordinate. We are
particularly interested in the case k = 2.

Any subset of Ω2 is a relation and any union of orbits of G on Ω2 is an
invariant relation. An orbit of G on Ω2 is an orbital of G. We may think of an
invariant relation as a directed graph whose automorphism group contains G.
We may even think of it as an edge-colored graph, with the edges from orbital
Oi colored with i.

To each orbital O, there is associated a paired orbital O∪ given by

(a, b) ∈ O ⇐⇒ (b, a) ∈ O∪ .

Every G-invariant relation Γ has an underlying G-invariant undirected graph
Γ ∪ Γ∪, and any G-invariant relation Γ = Γ∪ is naturally an undirected graph.

The rank of transitive G on Ω is the number of G-orbits on Ω2. The diagonal

∆ = { (α, α) | α ∈ Ω }

is always an orbital, so G has rank 1 on Ω if and only if |Ω| = 1. The transitive
group (G,Ω) has rank 2 precisely when |Ω| > 1 and G is transitive on

Ω2 \∆ =

[
Ω

2

]
.

That is, for all pairs α 6= β and α′ 6= β′ from Ω, there is a g ∈ G with α.g = α′

and β.g = β′. In this case G is said to be 2-transitive or doubly transitive on Ω.

(3.9). Proposition.

(a) If G is transitive on Ω then the rank of G on Ω is the number of orbits of
of Gω on Ω.

(b) If G is transitive on Ω then the rank of G on Ω is the number of H − H
double cosets in H\G/H.

Proof. By Theorem (3.4) these are equivalent.
For (a), let Σ be an orbit of of Gω in Ω. Then there is a unique orbital O

with
O ∩ { (α, ω) | α ∈ Ω } = { (α, ω) | α ∈ Σ } .

This gives a bijection between orbitals and orbits of Gω. 2

(3.10). Corollary. G is 2-transitive on Ω if and only if G is transitive on
Ω and Gω is transitive on Ω \ ω. 2
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More generally, G ≤ Sym(Ω) is said to be k-transitive on Ω if it is transitive
on
[
Ω
k

]
. If G is k-transitive on Ω, then it is also k′-transitive, for all k′ ≤ k.

Additionally, G is k-homogeneous on Ω if it is transitive on
(

Ω
k

)
. Of course

k-transitivity implies k-homogeneity, but the converse is far from true. Indeed,
for |Ω| = k finite, the only k-transitive subgroup of Sym(Ω) is Sym(Ω) itself,
while every subgroup of Sym(Ω) is k-homogeneous. In particular, an arbitrary
G that is k-homogeneous may not be (k − 1)-homogeneous.

3.1.3 Primitivity

In the last section we discussedG-invariant relations—graphs. Now we specialize
to the case of G-invariant equivalence relations, where the corresponding graphs
are disjoint unions of complete graphs.

There are three obvious invariant equivalence relations ∼ on Ω:

(i) α ∼ ω for all α, ω ∈ Ω, with the single equivalence class Ω;

(ii) α ∼ ω if and only if α = ω, with |Ω| equivalence classes, all of size 1;

(iii) α ∼ ω if and only if there is a g ∈ G with αg = ω, with equivalence classes
the orbits of Ω.

The first two are the trivial equivalence relations.
We say that G is primitive in its action on Ω if the only invariant equivalence

relations are the trivial ones. If G is primitive on Ω, then either G is transitive
on Ω or G is trivial on Ω of size 2. Therefore one usually requires of primitive
groups that they be transitive.

If G is transitive on Ω but not primitive, then it is imprimitive. A block
of imprimitivity for G acting on Ω is an equivalence class for some nontrivial
invariant equivalence relations.

(3.11). Theorem. If G is 2-transitive on Ω, then G is primitive on Ω.

Proof. Suppose Σ is a block with α, β ∈ Σ with α 6= β. For every γ 6= α
there is a g ∈ Gα with βg = γ. Then

γ ∈ {α, γ} = {α, β}g ⊆ Σg = Σ ,

as α ∈ Σ ∩ Σg. Therefore Σ = Ω and G is primitive. 2

(3.12). Proposition. Let G be transitive on Ω with ω ∈ Ω.

(a) G is primitive on Ω if and only if Gω is maximal in G.

(b) The map N −→ ωN gives an isomorphism of the lattice of subgroups N of
G with Gω ≤ N ≤ G with the lattice of blocks of imprimitivity from ω upto
Ω.

Proof. (b) The bijection is given by

N −→ ωN and its inverse ∆ −→ StabG(∆) .
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Let Gω ≤ N ≤ G, and set ∆ = ωN . If β ∈ ∆ ∩∆g then there are n1, n2 ∈ N
with ωn1 = β = (ωn2)g. Therefore ωn2gn

−1
1 = ω and n2gn

−1
1 ∈ Gω ≤ N . Thus

g ∈ N and ∆g = (ωN )g = αN = ∆. That is, ∆ is a block of imprimitivity.
Furthermore, as N is transitive on ∆ we have StabN (G) = GωN = N by the
Frattini argument of Lemma (3.8).

Let ω ∈ ∆, a block of imprimitivity for G on Ω. For each β ∈ ∆ there is
a g ∈ G with ωg = β as G is transitive. Then β ∈ ∆ ∩ ∆g, so ∆ = ∆g and
g ∈ N = StabG(∆) with ∆ = ωN .

(a) The subgroup Gα is maximal in G if and only if there are no subgroups
in between Gα and G if and only if there are no blocks in between α and Ω if
and only if G is primitive on Ω. 2

(3.13). Proposition. Let G be transitive on Ω and N a normal subgroup of
G. The N -orbits in Ω are blocks of imprimitivity for G, and G/N is transitive
on the set of these blocks.

Proof. We have Gα ≤ GαN ≤ G and αGαN = αN , so this follows from the
previous proposition.

2

In a sense, every block of imprimitivity arises in this manner. The block set
for an imprimitive group is an equipartition of Ω, a partition into parts of equal
size. The global stabilizer in Sym(Ω) of this equipartition then contains G and
has these blocks as its orbits under a normal subgroup.

(3.14). Corollary. If G is primitive on Ω and N is normal in G then N is
either trivial or transitive on Ω. 2

(3.15). Lemma. (Brey-Iwasawa-Wilson Lemma) Let G be primitive on
Ω and A�Gω with 〈AG〉 = G. For N �G, either N is trivial on Ω or G/N '
A/A ∩N .

Proof. Assume that N is not trival on Ω. Thus normal N is not in the
core of the maximal subgroup Gω, and G = GωN = NG(A)N . In particular
AG = AN and G = 〈AG〉 = 〈AN 〉 = AN . But then G/N = AN/N ' A/A ∩N ,
as claimed. 2

(3.16). Lemma. (Iwasawa’s Lemma) Let the perfect group G be primitive
on Ω and abelian A�Gω with 〈AG〉 = G. For N �G, either N is trivial on Ω
or G = N .

Proof. As A is abelian, its quotient A/A ∩ N is also abelian. But G is
perfect; so by the previous lemma if N is not in the kernel, then G/N ' A/A∩N
is trivial. 2

3.1.4 Sylow’s Theorems

Assume that the finite groupG has order |G| = pam with p prime and gcd(p,m) =
1. Then, as discussed in Section 2.8, a subgroup of order pa is a Sylow p-
subgroup. Two of Sylow’s three theorems are really results about permutation
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groups. We emphasize that by proving them first here without reference to
Sylow’s First Theorem.

(3.17). Theorem.

(a) (Sylow’s Second Theorem) Any two Sylow p-subgroups of the finite
group G are conjugate.

(b) (Sylow’s Third Theorem) Assume that the finite group G contains a
nontrivial Sylow p-subgroup. Then for any p-subgroup Q of G the number
of Sylow p-subgroups containing Q is congruent to 1 modulo p. In particular,
the number of Sylow p-subgroups is congruent to 1 modulo p, and every p-
subgroup is in at least one Sylow p-subgroup.

Proof. Of course, if there are no Sylow p-subgroups, then the Second
Sylow Theorem is true trivially. Now assume that P is a Sylow p-subgroup.
Let Ω = {P g | g ∈ G }, the set of conjugates of P in G and clearly a transitive
G-space under conjugation.

For any p-subgroup Q of G

GP ∩Q = NQ(P ) ≤ P ,

as the Sylow p-subgroup P is contained in hence equal to the p-group PNQ(P ).
In particular, P is the only Sylow p-subgroup normalized by P . Therefore in
its action on Ω, the P -orbits all have length a multiple of p except for the single
orbit {P}. In particular |Ω| is congruent to 1 modulo p. This in turn implies
that for any p-subgroup Q, its number of orbits of length 1 in |Ω| is congruent
to 1 modulo p.

If we apply the last argument to any Sylow p-subgroup Q, we learn that
there is a conjugate P g that contains Q. That is, Q = P g for some g ∈ G. This
is the Second Sylow Theorem. Thus Ω consists of all Sylow p-subgroups, and
the previous arguments give the Third Sylow Theorem. 2

(3.18). Corollary. (The Frattini argument) Let p be a prime. If N is
normal in the finite group G, then G = NG(P )N , where P is a Sylow p-subgroup
of N .

Proof. Set Ω = {Sylow p-subgroups of N}, on which G acts by conjuga-
tion. Then N is transitive on Ω by Sylow’s Second Theorem and the point
stabilizer is GP = NG(P ). Therefore this follows from our general Frattini
Argument, Lemma (3.8). 2.

We proved Sylow’s First Theorem as Theorem (2.31). We now give a more
permutation theoretic proof2 due to Wielandt.

(3.19). Theorem. (Sylow’s First Theorem) If the finite group G has
order |G| = pam with p prime, a ∈ N, and gcd(p,m) = 1, then G contains
subgroups of order pa and index m.

2Of course, the Class Equation used in the earlier proof is really a permutation argument.
In the action of G on itself by conjugation, the conjugacy classes are the orbits and the length
of each orbit is given by Theorem (3.4).
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Proof. Consider Ω =
(
G
pa

)
, the set of all subsets of G having cardinality

pa. This is a G-space via right translation.
Let ∆ be a G-orbit in Ω and D ∈ ∆, a pa-subset of G. For every g ∈ G,

there is at least one h ∈ G with g ∈ Dh ∈ ∆. Therefore the length |∆| of the
orbit must be at least |G|/pa = m (and with equality, every g is in exactly one
Dh).

Assume for the moment that ∆ is one of these short orbits. Then |StabG(D)| =
|G|/|∆| = pa; the stabilizer is a Sylow p-subgroup P . We can further assume
that D was chosen to contain 1G, so P ⊆ DP = D as P stabilizes D. This
forces P = D, and ∆ = {Ph | h ∈ G } is the coset space P\G. We conclude
that each Sylow p-subgroup Pi contributes to Ω exactly one orbit of length m,
namely Pi\G.

Every orbit not of length m has greater length, so its stabilizer cannot have
order a multiple of pa. In particular, the orbit length is a multiple of p. We
conclude that

|Ω| = km+ pn ,

where k is the number of distinct Sylow p-subgroups in G and n is some integer.
If we can prove that |Ω| is not a multiple of p, then k cannot be zero. In that
case, there is at least one Sylow p-subgroup and our proof of the First Sylow
Theorem will be done.

The trick here is that the needed calculation regarding |Ω| does not really
depend on the group G but only on its order. If we replace G by any other
group G0 of the same order, then we have

|Ω| = |Ω0| = k0m+ pn0

where k0 is the number of distinct Sylow p-subgroups in G0. With a careful
choice of G0, this calculation may be easier to make than the earlier one. And
that is indeed the case: let G0 be the cyclic group Z|G|. Then G0 has a unique
Sylow p-subgroup. Thus k0 = 1, and

|Ω| = |Ω0| = m+ pn0 .

This is not a multiple of p as m is not, and we are done! 2

3.1.5 Problems

(3.20). Problem. Prove that a group of order 2334 is solvable.

(3.21). Problem. For the permutation group (G,Ω), prove that the following are
equivalent:

(1) (G,Ω) is transitive and Gγ = 1, for some γ ∈ Ω.

(2) (G,Ω) is permutation isomorphic to the right regular representation.

(3) For all α, β ∈ Ω there is a unique g ∈ G with αg = β.

(3.22). Problem. Prove that a transitive, faithful permutation representation of an
abelian group is regular.
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(3.23). Problem. Prove:
(a) A subgroup of a semiregular group is itself semiregular.
(b) Each orbit of a semiregular permutation representation of G is isomorphic to the

right regular representation ρ.
(c) If H is finite and semiregular on Ω1 and Ω2 with |Ω1| = |Ω2|, then Ω1 and Ω2 are

isomorphic H-spaces.

(3.24). Problem. Suppose H1, H2 ≤ G with finite H1 ' H2. Then for the right
regular representation of G, ρ : G −→ Sym(G), there is an s ∈ Sym(G) with ρ(H1)s =
ρ(H2).

(3.25). Problem. Let N be a group and let the image Nρ of N under the right
regular representation ρ : N −→ Sym(N).

(a) Let λ : N −→ Sym(N) be the left regular representation of N given by

k 7→ λ(k) with gλ(k) = k−1g ,

for all g ∈ N .

(i) Prove that λ is an isomorphism of N with its image Nλ in Sym(N).
(ii) Prove that CSym(N)(N

ρ) = Nλ.

(b) Let M = NSym(N)(N
ρ) and A = StabM (1N ), the stabilizer of 1N in M . Prove

that M = ANρ and that this is the internal semidirect product of Nρ by A.
(c) Prove that A ' Aut(N).

(3.26). Problem. Let G ≤ Sym(Ω). Prove that G is k-transitive on Ω if and only
if it is transitive on Ω and, for a ∈ Ω, Ga is (k − 1)-transitive on Ω \ {a}.

(3.27). Problem. (D.G. Higman) A graph is connected if you can get from any
vertex to any other by walking along a finite length path of edges, disregarding edge
direction. It is strongly connected if the path can always be chosen to be directed.
(a) Prove that transitive (G,Ω) is primitive if and only if all nondiagonal orbital graphs

are strongly connected
(b) Let G be transitive on finite Ω, and let Γ be a G-invariant graph on Ω. Prove that,

Γ is connected if and only if it is strongly connected. (“If you can walk from a to
b, then you can drive.”)

Remark. An infinite directed path shows that this can be false for infinite Ω.

(3.28). Problem. Let the group G contain the set R = { ri | i ∈ I }. The Cayley
graph C(G ;R) has as vertex set the elements of G and edges

x −→ y ⇐⇒ yx−1 ∈ R .

We can make it a colored graph via

x
i−→ y ⇐⇒ yx−1 = ri .

G acts by translation as a regular group of automorphisms on C(G ;R) since

xg
i−→ yg ⇐⇒ yg(xg)−1 = ri ⇐⇒ yx−1 = ri ⇐⇒ x

i−→ y .

Thus the Cayley graph is an orbital graph for the right regular permutation represen-
tation. If we wish it to be undirected, we must require R to be closed under inverses.
The full automorphism group could be much larger than G. (Imagine R = G \ 1.)
(a) Prove that C(G ;R) is connected if and only if G = 〈R〉.
(b) Assume G = 〈R〉. Prove that the elements of G are the only automorphisms of

C(G ;R) that respect the edge coloring.
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3.2 Linear groups

3.2.1 Basics

AK-linear representation of the groupG is a homomorphism ϕ : G −→ GLK(V ),
where V is a vector space over the division ring K. For g ∈ G and v ∈ V , we
usually write vϕ(g) in the more compact form vg. The K-space V is a G-module
over K.

If ϕ is faithful, then G is said to be a linear group. The degree of the
representation is dimK(V ). A related concept is a projective representation, that
being a homomorphism ϕ : G −→ PGLK(V ). As can be seen in Theorem (1.3),
most of the finite simple groups are realized best as projective linear groups.
That is a prime motivation for studying linear and projective representations.

Care must be taken with the terminology, since we are not requiring V
to have finite dimension. In the literature, the term “linear group” is usually
reserved for those groups with faithful representations of finite degree, the finite
dimensional linear groups.

If K is a field, then a KVec-representation ϕ : G −→ GLK(V ) extends by
linearity to a representation of the group algebra KG −→ EndK(V ). This
powerful observation allows the methods of associative algebras (such as the
Wedderburn-Artin theory) to be applied in group theory. This becomes more
unwieldy for division rings K; so we avoid this sharp tool, although it does leave
its mark in our “module” terminology.

If f is an invertible K-linear transformation f : V1 −→ V2 (that is, a KVec-
isomorphism) of the two K-spaces V1 and V2, then we have the induced iso-
morphism f∗ of GLK(V1) = Aut

KVec(V1) and GLK(V2) = Aut
KVec(V2), as in

Section 1.4:

V1 V1

V2 V2

f

a

f

a∗

with

a 7→ af
∗

= a∗ = f−1af .

Two K-linear representations ϕ1 : G −→ GLK(V1) and ϕ2 : G −→ GLK(V2)
are equivalent in KVec if, for some isomorphism f : V1 −→ V2 and its induced
isomorphism f∗, the diagram

G GLK(V1)

GLK(V2)

ϕ2

ϕ1

f∗

commutes. In this case we say that V1 and V2 are isomorphic G-modules.
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In the larger category Vec the two linear representations ϕ1 : G −→ GLK1(V1)
and ϕ2 : G −→ GLK2(V2) are equivalent if the diagram

G GLK1
(V1)

GLK2
(V2)

ϕ2

ϕ1

f∗

commutes, where now f∗ is induced by a Vec-isomorphism: an invertible semi-
linear map f : K1

V1 −→ K2
V2. A semilinear map (or τ -semilinear map) [τ, t]

from KV to FW is a homomorphism of additive groups t : (V,+) −→ (W,+)
that additionally, for the field embedding τ : K −→ F , satisfies

(av)t = aτvt ,

for all a ∈ K, v ∈ V .
Permutation representations give rise to linear representations. Let G act

as permutations on the set Ω. For an arbitrary division ring K, let the K-
permutation module KΩ be the K-vector space with basis B = { eω | ω ∈ Ω }.
For each g ∈ G we define the linear transformation ϕ(g) ∈ GLK(KΩ) by

egω = eωg

for all ω ∈ Ω. The map ϕ : g −→ GLK(KΩ) is then a representation of G, the
K-permutation representation.

The matrix representing ϕ(g) in the basis B has a unique nonzero entry in
each row and each column, that entry being a 1. Such a matrix M is called
a permutation matrix and is orthogonal in the sense that its transpose is its
inverse: MM> = I.

As an immediate consequence of Cayley’s Theorem (3.2), we have

(3.29). Theorem. Every group has a faithful representation as a K-linear
group. 2

This is false if we restrict ourselves to representations of finite degree.

An elementary abelian p-group can be thought of as a vector space over the
field Fp. Therefore linear representations also play an important role in the
internal representation theory discussed earlier in Lemma (2.9).

(3.30). Proposition. Let V be an elementary abelian p-group. Then Aut(V ) =
GLFp(V ). 2

3.2.2 Irreducibility

With permutation groups we progressed from intransitive to transitive to prim-
itive groups. We attempt similar reductions for linear groups. For permutation
groups, we initially factored intransitive groups into transitive groups. For linear
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groups, the corresponding move is from reducible groups to irreducible groups,
but it turns out that there is more than one flavor of each.

The representation ϕ : G −→ GLK(V ) is reducible if there is a G-invariant
(actually, ϕ(G)-invariant)K-subspaceW with 0 < W < V . If ϕ is not reducible,
then it is irreducible. We then also say that G is irreducible on the V and that
the G-module V is irreducible.

(3.31). Lemma. Let W be a submodule of the G-module V over K with
0 < W < V . Further, let V + = W ⊕ V/W , the K-space direct sum of W and
V/W .

(a) The quotient K-space V/W has a natural structure as G-module given by
(v +W )g = vg +W .

(b) V + has a natural structure as G-module W ⊕V/W given by (u, (v+W ))g =
(ug, vg +W ). 2

If in the lemma there is in V a G-submodule X with V = W ⊕ X, then
V/W and X are isomorphic G-modules. We say that the extension is split and
that V is G-decomposable (or just decomposable) with G-decomposition given
by V = W ⊕X. If V has no proper decompositions, then it is indecomposable.
We can think of decomposability as a strong form of reduciblity. Decomposabil-
ity implies reduciblity, and irreduciblity implies indecomposablity. If Ω is an
intransitive permutation space for G, then the associated permutation module
is decomposable, being the direct sum of smaller permutation modules.

In Proposition (3.3) we used the Chinese Remainder Theorem to reduce the
study of intransitive permutation groups to that of transitive groups. We can use
the present lemma to attempt a similar reduction from reducible to irreducible
representations of linear groups. There are two problems with the approach.
In the permutation case, we always knew that an orbit provides a transitive
“subrepresentation,” but here there is no guarantee that a given module has an
irreducible submodule. More fundamentally, and again unlike the permutation
case, even when the map from G into GLK(V ) is faithful, there is no guarantee
that the related representation in GLK(V ′) is also faithful. The kernel will
be trivial if the extension is split (in which case V and V ′ are isomorphic G-
modules), but not in general. We will return to the case of nontrivial kernels in
Section 3.2.4.

It is possible that a G-module over K is irreducible only because we are
considering it over the wrong division ring. If K is a subdivision ring of L, then
the L-space W has a natural structure as K-space of dimension dimK(W ) =
[L : K] dimL(W ). For example, the correspondence between a + bi ∈ C and
(a, b) ∈ R2 allows us to think of a complex representation of degree n as a real
representation of degree 2n. As a partial converse, one can think of any G-
module X of dimension m over K as a G-module LX of dimension m over L by
extending coefficients to the tensor product module LX = L⊗KX. In this case
the new module LX may be G-reducible even though the original module KX
was G-irreducible. In the example, the real module RW of dimension m = 2n
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when extended to CW is a direct sum of two complex modules of dimension n,
one isomorphic to the original W and the second isomorphic to W twisted by
complex conjugation. An irreducible G-module over K that remains irreducible
over all extensions L of K is absolutely irreducible. In most places, the discussion
of absolute irreducibility is restricted to the situation in which K and L are both
fields.

3.2.3 Primitivity

The G-module V is completely reducible if it is a sum of irreducible G-modules.
In this case, for each irreducible G-submodule W of V we set HG(W ) to be
the sum in V of all irreducible submodules of V that are isomorphic to W as
G-modules. The module HG(W ) is the homogeneous component corresponding
to W .

(3.32). Proposition. Let the completely reducible G-module V over K be
the sum

∑
e∈EWe of irreducible G-modules We.

(a) There is a subset J of E with V =
⊕

j∈JWj.

(b) Let I be a subset of J such that {Wi | i ∈ I } is a maximal set of pairwise
nonisomorphic irreducible G-modules. Then every irreducible G-submodule
of V is isomorphic to one of the Wi and V =

⊕
i∈I HG(Wi).

Proof. (a) Consider the partially ordered set I of subsets S of E with∑
s∈SWs =

⊕
s∈SWs, ordered by containment. For every chain in I, the

union of the chain is also in I; so by Zorn’s Lemma there is a maximal subset
J . If V ′ =

⊕
j∈JWj is proper in V , then there is a We not contained in V0,

since V =
∑
e∈EWe. By irreduciblity of We we have We ∩ V ′ = 0, hence

We + V ′ = We ⊕ V ′. But then J ∪ {e} ∈ I, against maximality of J . Therefore
V = V ′ =

⊕
j∈JWj .

(b) Let U be an irreducible G-submodule of V . For the nonzero element
u ∈ U , there is a finite subset J0 of J with u ∈ V0 =

⊕
j∈J0

Wj , hence by
irreducibility U ≤ V0. Choose such a J0 of minimal cardinality. Clearly J0 is
nonempty; let k ∈ J0. Then U is not in X0 =

⊕
j∈J0\kWj , and by irreduciblity

U meets this partial sum trivially. Therefore we have U + X0 = U ⊕X0, and
by the Second Isomorphism Theorem U ' (U ⊕ X0)/X0 ≤ V0/X0 ' Wk . By
irreducibility of Wk, the modules U and Wk are isomorphic.

For each i ∈ I, let Ji be the subset of J consisting of those Wj isomorphic
to Wi. Then Vj =

⊕
j∈JiWj is certainly in HG(Wi) and V =

⊕
i∈I Vi. But the

argument of the previous paragraph shows than any irreducible G-submodule
U isomorpic to Wi is contained within a sum of irreducible modules Wj with
j ∈ Ji. Therefore U ≤ Vi and so Vi = HG(Wi). 2

Let V be a G-module over K and N a normal subgroup of G. For each
g ∈ G and X an N -submodule of V , the image Xg is a new N -submodule of V .
Indeed, for each n ∈ N and xg ∈ Xg, we have

(xg)n = (xgng
−1

)g ∈ Xg ,
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as N is normal in G and X is an N -module. We also have X = (Xg)g
−1

, so X
is irreducible if and only if Xg is irreducible.

(3.33). Theorem. (Clifford’s Theorem) Let V be an irreducible G-module
over K and N a normal subgroup of G. Assume that V contains an irreducible
N -submodule W . (This will always be the case when dimK(V ) <∞). Then we
have:

(a) V is completely reducible as an N -module, and every irreducible N -submodule
of V is isomorphic to W g, for some g ∈ G.

(b) V is the direct sum of the distinct homogeneous components H = HN (W g),
and G/N permutes these transitively under H 7→ Hg.

(c) If H = HN (W g) is an N -homogeneous component of V and A is the stabi-
lizer of N in G, then H is an irreducible A-module.

Proof. (a,b) As W is N -irreducible, each W g is N -irreducible The sum∑
g∈GW

g is then a G-submodule of V . As V is an irreducible G-module,
V =

∑
g∈GW

g, and the rest follows by the proposition.
(c) For each A-submodule L of H, the direct sum of the distinct Lg is a

G-submodule of V . As G is irreducible on G, this forces L to be either 0 or L.
That is, A is irreducible on H. 2

If there are two or more N -homogeneous components in Clifford’s Theorem,
then we have an important instance of a frequent occurence. An irreducible
G-module V is imprimitive if V = ⊕i∈IHi is the direct sum of subspaces Hi

(of fixed dimension) permuted transitively by G. If the G-module V is not
imprimitive, then it is primitive.

3.2.4 Unipotent linear groups

As promised, we return to Lemma (3.31) to study the kernel of the stabilizer of
a subspace.

(3.34). Lemma. The stabilizer of the subspace W in GLK(V ) is the semidirect
product of U = {M ∈ GLK(V ) | M |W = 1W , M |V/W = 1V/W } by L =
GLK(W )×GLK(X), where X is some complement to W in V .

If V = W ⊕X is a decomposition into G-invariant subspaces W and X of
V , then the subgroup stabilizing each subspace is L = GLK(W )×GLK(X).

Proof. In matrices:{(
A 0
∗ B

)}
=

{(
I 0
∗ I

)}
o
{(

A 0
0 B

)}
where

U =

{(
I 0
∗ I

)}
and L =

{(
A 0
0 B

)}
. 2
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More generally, if V = V0 ≥ V1 ≥ · · · ≥ Vk = 0 is an G-invariant series in
the K-space V , then the stability group of the series is the subgroup{

g ∈ G
∣∣ g|Vi−1/Vi = 1Vi−1/Vi , 1 ≤ i ≤ k

}
.

We shall see below that such a group is nilpotent of class at most k. (See
Problem (6.36).)

(3.35). Lemma. Let V = V0 ≥ V1 ≥ · · · ≥ Vk = 0 be a G-invariant series for

the faithful G-module V over K. Then V + =
⊕k

i=1 Vi−1/Vi is a G-module over
K. 2

If we restrict to the finite dimensional case, dimK(V ) = n < ∞, then, for
an appropriate choice of basis, the kernel N of the representation of G on V +

consists of all matrices of the form
I 0 0 0 0
∗ I 0 0 0

∗ ∗
. . . 0 0

∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ I


where identity matrices have degree dimK(Vi−1/Vi) for k ≥ i ≥ 1, going from
top to bottom.

The group of all n×n matrices over K with 1’s on the diagonal and 0’s above
the diagonal is the lower unitriangular group, which we will denote U(n)K. All
such kernels as N above are all block lower unitriangular (with k blocks) and
are contained in U(n)K.

The unipotent elements of GLn(K) are those that are conjugate to an ele-
ment of U(n)K. More generally, a unipotent element g of GLK(V ) (arbitrary
dimension) is one with (g − 1)m = 0 (in EndK(V )), for some integer m. A
unipotent subgroup of GLK(V ) is one all of whose elements are unipotent.

(3.36). Lemma.

(a) For charK = 0, every nonidentity unipotent element of GLK(V ) has infinite
order.

(b) For charK = p > 0, an element of GLK(V ) is unipotent if and only if it is

a p-element. In this case, if (g − 1)m = 0, then gp
m−1

= 1.

(c) A unipotent element g ∈ GLn(K) is conjugate to an element of U(n)K and,

if charK = p > 0, has gp
n−1

= 1.

Proof. In characteristic p, if gp
k

= 1, then gp
k − 1 = (g − 1)p

k

= 0.
Therefore in (b) p-elements are always unipotent.
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Let g be a unipotent element with, say, (g − 1)m = 0. Every v ∈ V is
contained in a g-invariant subspace of dimension mv at most m, namely Uv =∑m−1
i=0 Kv(g−1)i =

∑m−1
i=0 Kvg

i

.
Consider a v with vg 6= v; that is, Uv does not have dimension 1. For

an appropriate basis, g is represented on Uv by a lower unitriangular matrix.
Choose i > j with gij = a 6= 0 and, subject to that, with i − j minimal. Then
(gk)ij = ka, for all k. In characteristic 0 this is never 0; so g has infinite order
on Uv, giving (a).

In characteristic p, we have (gp)ij = 0; and this is true for all i′, j′ with

i′ − j′ ≤ i− j. Continuing in this manner, we see that gp
mv−1

is trivial on Uv.

That is, for l = maxv∈V (mv) ≤ m, the endomorphism gp
l−1

is trivial on every

Uv, and so is trivial on V . In particular gp
m−1

= 1. This gives (b).
If g ∈ GLn(K) then as above there is a basis in which g is represented by a

unitriangular matrix. And certainly l ≤ n, so (c) is complete. 2

When dimK(V ) is finite, the unitriangular subgroups of GLK(V ) are nilpo-
tent. See Problem (6.36).

3.2.5 Sylow’s First Theorem (third time)

(3.37). Theorem. (Sylow’s First Theorem) If the finite group G has
order |G| = pam with p prime, a ∈ N, and gcd(p,m) = 1, then G contains
subgroups of order pa and index m.

Proof. Consider G acting faithfully on a module Fnp (for instance, the
permutation module V = FpG ). In this action, it permutes the set Ω of all
nonzero vectors of V . Here |Ω| = pn − 1 is not a multiple of p. Therefore
some orbit of G on Ω has order prime to p. If the orbit has size greater than
1, then by induction on order a point stabilizer contains a Sylow p-subgroup of
G. If the orbit has size 1, say v, then G that acts on the nonzero vectors of the
smaller space V/Fpv. By induction on dimension the group induced by G on
this quotient space has a Sylow p-subgroup P̄ . The kernel of that action is a
normal Sylow p-group, and the preimage P of P̄ in G is then a Sylow p-subgroup
of G. 2

(3.38). Corollary. Un(pa) is a Sylow p-subgroup of GLn(pa).

Proof. This can of course be proven by a calculation of the order of
GLn(pa). Also the argument used above can be used to show first that ev-
ery p-subgroup fixes a 1-space and indeed a vector, and then induction takes
over. 2

3.2.6 Problems

(3.39). Problem. Let V be the K-permutation module for the finite group G =
Sym(Ω); that is, V =

⊕
ω∈Ω K eω, with egω = eωg , for all g ∈ Sym(Ω) and ω ∈ Ω.
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Let
U = {

∑
ω∈Ω

aωeω |
∑
ω∈Ω

aω = 0, aω ∈ K }

and
Z = {

∑
ω∈Ω

aωeω | aω = a ∈ K, for all ω } .

(a) Prove that U and Z are G-submodules of V .

(b) Prove that 0, Z, U , and V are the only G-submodules of V .

(3.40). Problem. Consider Matn(K), the space of n × n matrices from K, as
a module for the group G = GLn(K) × GLn(K), where, for M ∈ Matn(K) and
(A,B) ∈ G, we have

M (A,B) = A>MB .

Prove that Matn(K) is irreducible for G.

(3.41). Problem. Let G and H be finite groups, and let

X : G −→ GLK(V ) and Y : H −→ GLK(W )

be K-representations of G and H.

(a) Prove that X ⊕ Y : G×H −→ GLK(V ⊕W ) given by

(v, w)X⊕Y (g,h) = (vX(g), wY (h))

is a representation of G×H.

(b) Prove that X ⊗ Y : G×H −→ GLK(V ⊗K W ) (tensor product) given by

(v ⊗ w)X⊗Y (g,h) = vX(g) ⊗ wY (h)

is a representation of G×H.

(c) Prove that if X ⊗ Y is irreducible then X and Y are irreducible.

Remark. In the special case G = H the group G itself has a natural embedding
on the diagonal of G × H = G × G, namely δ : G −→ G × G given by δ(g) = (g, g).
The composition of this with the representations X ⊕ Y and X ⊗ Y (restricted to the
image of δ) gives new K-representations of G as the “sum” and “product” of the two
original representations. With this in mind, the collection of all K-representations of
G can naturally be given structure of a ring, indeed a K-algebra since the effect of
scalar multiplication is easy to see. (We do want to factor by equivalence).

The source of this nice additional structure is the innocent diagonal mapping δ.
The natural abstract setting is that of Hopf algebras. These are associative K-algebras
A that in addition to having the usual multiplication µ : A ⊗K A −→ A also have a
well-behaved comultiplication δ : A −→ A⊗K A. The previous paragraph is then about
the special (and motivating) example where A is the group algebra KG.

(3.42). Problem. Prove that an element g of EndK(V ) with (g− 1)m = 0 for some
m must belong to GLK(V ).



Chapter 4
Finiteness and Reduction

Many mathematical arguments follow the path of breaking a large problem
into a number of smaller problems. Particular examples are the three “unique
factorization” results presented in Section 1.1. The questions then are:

(i) What do we mean by “smaller”?

(ii) How do we achieve the “break”?

For us, smallness will usually be gauged by a finiteness condition—a property
that the object under study shares with finite objects. Once a suitable finite-
ness condition is imposed, then reduction via something resembling induction
becomes available.

4.1 Finiteness: Sylow’s First Theorem, one last
time

Of course, the basic finiteness condition for a group is the requirement that the
group be finite. As already discussed, the classification of finite simple groups
Theorem (1.3) proceeds by induction, studying an arbitrary finite simple group
G all of whose proper simple sections are on the theorem’s list and ultimately
proving that G then is also on the list.

As an example of how such reductions go, we have a last1 proof of Sylow’s
First Theorem.

(4.1). Proposition. The First Sylow Theorem is valid in all finite groups if
and only if it is valid in all finite simple groups.

Proof. One direction is clear. Now assume that the First Sylow Theorem
holds in all finite simple groups. Let G be an arbitrary finite group and p a

1I promise!

47
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prime. We prove that G satisfies the First Sylow Theorem for the prime p by
induction on |G|.

If G is simple then we are done by hypothesis. Therefore we may assume
that G contains a normal subgroup N , not equal to G or to 1. By induction
N and G/N both have Sylow p-subgroups. Let P be a Sylow p-subgroup of N .
By the Second Sylow Theorem, all Sylow p-subgroups of N are conjugate, and
by the Frattini argument G = NG(P )N .

By the Second Isomorphism Theorem G/N ' NG(P )/NN (P ). In particular,
[G:NG(P )] is not a multiple of p, and a Sylow p-subgroup of NG(P ) is a Sylow
p-subgroup of G. Especially a Sylow p-subgroup of G/N is isomorphic to one
of NG(P )/NN (P ).

As P is Sylow in N , the index [NN (P ) :P ] is not a multiple of p. By the
Third Isomorphism Theorem

NG(P )/P
/

NN (P )/P ' NG(P )/NN (P ) .

Therefore a preimage of a Sylow p-subgroup of NG(P )/NN (P ) in NG(P )/P is a
Sylow p-subgroup of NG(P )/P . In turn a preimage of that in NG(P ) is a Sylow
p-subgroup of NG(P ) and so of G. 2

(4.2). Proposition. For the prime p, assume:

Every finite simple group that has order a multiple of p but is not
a p-group has a permutation representation with no fixed points and
of degree not a multiple of p.

Then the First Sylow Theorem holds for the prime p holds.

Proof. The proof is by induction on the order of the arbitrary finite group
G. If G itself is a p-group, then there is nothing to prove.

By the previous proposition, we need only consider finite simple G that is
not a p-group. By the assumption, it has a faithful permutation representation
with no fixed points and of degree not a multiple of p. But then it has in this
an orbit, not of length 1 but of length not a multiple of p. As G is simple, it is
faithful on this orbit. For ω a point in this orbit, Gω is a proper subgroup of G.
By induction, it contains a Sylow p-subgroup which is then a Sylow p-subgroup
of G. 2

(4.3). Proposition. Let p be a prime. If G is a finite simple group of
order pam with a ∈ Z+ and 1 6= m coprime to p, then G has a permutation
representation with no fixed points and of degree not a multiple of p.

Proof. As m 6= 1, the group G is nonabelian simple by Proposition (2.18).
We give three constructions of an appropriate G-space Ω:

(1) (Class equation proof) Let Ω = G\{1} with conjugation action. Any orbits
of length 1 would correspond to elements of the center of nonabelian simple
G.
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(2) (Wielandt’s permutation proof) Let Ω =
(
G
pa

)
with translation action. As

m 6= 1, all orbits of G on Ω are nontrivial. The following binomial coefficient
calculation shows that |Ω| is not a multiple of p:

|Ω| =
(
pam

pa

)
=

(pam)(pam− 1) · · · (pam− p) · · · (pam− pa−1) · · · · · · (pam− pa + 1)

(pa)(pa − 1) · · · (pa − p) · · · (pam− pa−1) · · · · · · (1)
.

(3) (Unipotent subgroup proof) Let Ω = V \ {0} where V is an Fp-space that
is a faithful G-module and, subject to that, has minimal degree. (The
permutation module FpG proves that such a V exists.). If there is an orbit
of length 1, then G has abelian hence trivial action on the 1-space it spans.
But then the quotient of V by that 1-space would give a representation of
smaller degree that is faithful as G is nonabelian simple. 2

(4.4). Theorem. (Sylow’s First Theorem) If the finite group G has order
|G| = pam with p prime, a ∈ N, and gcd(p,m) = 1, then G contains subgroups
of order pa and index m.

Proof. Proposition (4.3) combines with Proposition (4.2) to give the result.
2

4.2 Finite generation and countability

In many applications the groups studied are not necessarily finite but do have a
finite description. The fundamental group of a surface is often finitely generated
or even finitely presented. Here the group G is finitely generated if there is a
finite subset X of G with G = 〈X〉, and it is additionally finitely presented if
there is some finite set of relations R such that G ' 〈X | R 〉; that is, G is
isomorphic to the free group F(X) on X modulo its normal subgroup 〈RF(X)〉.

There are many important results in this area; see [Rob82, §14.1]. Here
we are content with one that is of great importance both theoretically and
computationally.

(4.5). Theorem. Let G be a group and H a subgroup of finite index in G.

(a) (Schreier) If G is finitely generated, then H is finitely generated.

(b) (Reidermeister-Schreier) If G is finitely presented, then H is finitely
presented.

Proof. (a) Let G be generated by the finite set X, and let Y = { gi | i ∈ I }
be a finite set of coset representatives for H in G =

⊎
i∈I Hgi. For ease, we

assume 1G = g0 ∈ Y .
For each g ∈ G let the coset representative ḡ ∈ Y be given by g ∈ Hḡ. We

claim that H is generated by the finite set of Schreier generators

W = { (yx)yx−1 | x ∈ X ∪X−1, y ∈ Y } .
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Indeed every element g of G can be written, for some n ∈ Z+, as y1

∏n
i=1 xi

with xi ∈ X ∪X−1 and y1 ∈ Y . (Recall that 1G = g0 ∈ Y .) Then

g = y1

n∏
i=1

xi = (y1x1)(y1x1
−1y1x1)

n∏
i=2

xi

= ((y1x1)y1x1
−1)(y1x1)

n∏
i=2

xi

= w1

(
y2

n∏
i=2

xi

)

with w1 = (y1x1)y1x1
−1 ∈ W ⊆ H and y2 = y1x1 ∈ Y . Therefore by induction

on n, every element g of G can be rewritten as a product
∏n
i=1 wi yn+1 of

elements wi in W and a final member yn+1 of Y . If g happens to belong to H,
then

∏n
i=1 wi ∈ H forces yn+1 = g0 = 1G, hence g ∈ 〈W 〉. Therefore H = 〈W 〉.

(b) (Sketch). If R is a set of relations defining G with respect to the gener-
ating set X, then

S = { yry−1 | y ∈ Y, r ∈ R }

is a set of relations defining H with respect to the generating set W , where, as
above, the Reidermeister rewriting process allows us to rewrite the relations of
S as words in the generating set W of H. The set S is finite if R is finite.

The difficulty that must be resolved before we have a complete proof is that,
while by (a) the subset W (actually a bijective preimage) within F(X) certainly
generates the full preimage of H, it might not do so freely. Schreier solved this
by proving that, given a careful initial choice of the set Y of representatives, a
free generating set results from deleting all elements of W that are the identity
in F(X). 2

Every finitely generated group is countable. Indeed every countably gen-
erated group is countable. Countability is thus a weaker finiteness property
than finite generation. It still can be useful. In particular, a countable group
can be expressed as the union of an ascending chain of its subgroups. Suppose
G = { gi | i ∈ Z+ } is a countable group. For each i set Gi = 〈g1, . . . , gi〉. Then
G =

⋃
i≥1Gi with

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gi ≤ · · ·

This may allow us to check certain properties of G more easily in one of the
finitely generated subgroups Gi.

(4.6). Lemma. The nontrivial group G is simple if and only if for every
pair of elements g, h ∈ G with g 6= 1, there is a finite subset X(h, g) of G with
h ∈ 〈 gx, (g−1)x | x ∈ X(h, g) 〉.
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Proof. If G is simple, then G = 〈gG〉 and h is a product of a finite number
of conjugates of g or its inverse.

Conversely, assume that for each h and g 6= 1 the set X(h, g) exists. Let N
be a nontrivial normal subgroup of G and choose 1 6= n ∈ N . Then for every h
in G every element of {nx, (n−1)x | x ∈ X(h, n) } is in N , hence h ∈ N . That
is, N = G and G is simple. 2

Of course for a given g, h there can be many appropriate finite subsets
X(h, g).

(4.7). Theorem. (P. Hall) Let G be a simple group. Then every countable
subset of G is contained in a countable simple subgroup of G.

Proof. Let S be a countable subset of G. Then define

S(S) = 〈S,X(h, g) | 1 6= g, h ∈ S 〉 ,

where X(h, g) is a set as in the lemma. As S is countable and each X(h, g) is
finite, S(S) is also countable. Set S0(S) = 〈S〉 and recursively define Si(S) =
S(Si−1(S)) for integral i ≥ 2. Then

S ⊆ S0(S) ≤ S1(S) · · · ≤ Si(S) ≤ · · ·

with S and each subgroup in the sequence countable.
Then S∞ = ∪i≥1Si(S) is a countable subgroup of G containing S, and by

the lemma it is simple. 2

4.3 Limits and finite approximation

Above we used the fact that every countable set is an ascending union of finite
subsets hence every countable group is an ascending union of finitely generated
subgroups. But every set is the union of its finite subsets, and so every group
is the union of its finitely generated subgroups. Can we make these trivial
observations useful?

The set of subgroups Γ = {Gi | i ∈ I } is a local system in G if

(i) Gi ≤ G for each i ∈ I, and G =
⋃
i∈I Gi

(ii) for each i, j ∈ I, there is a k ∈ I with 〈Gi, Gj〉 ≤ Gk.

In this case we say that G is the directed limit of its local system Γ.2

We may also call this the finitely directed limit, since an easy induction
shows that for any finite subset J of I there is a k with 〈Gj | j ∈ J 〉 ≤ Gk.
Correspondingly, G is the countably directed limit of the local system Γ provided
for every countable subset J of I there is always a k ∈ I with 〈Gj | j ∈ J 〉 ≤ Gk.

(4.8). Proposition.

2This is actually the internal directed limit. There is a corresponding more general external
directed limit, which we do not define.
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(a) Every group is the directed limit of its finitely generated subgroups.

(b) Every group is the countably directed limit of its countable subgroups.

Proof. If Gi is generated by Xi, then 〈Gi | i ∈ I 〉 is generated by {Xi |
i ∈ I }. 2

Phillip Hall’s Theorem (4.7) can now be refined to say

(4.9). Theorem. (P. Hall) Every simple group is the countably directed
limit of its countable simple subgroups.

Proof. Let {Gi | i ∈ I } be the set of all countable simple subgroups of
simple G. By Theorem (4.7) we have G =

⋃
i∈I Gi. Let J be a countable subset

of I. Then
⋃
j∈J Gj remains countable, so by Theorem (4.7) again there is a

k ∈ I with 〈Gj | j ∈ J 〉 ≤ Gk. 2

Usually groups have many local systems of finitely generated subgroups. For
any group property X , the group G is locally-X provided it has a local system,
all of whose members enjoy the property X . Especially a group that has a local
system of finite subgroups is called a locally finite group.

Every finite group is locally finite, of course, but there are others. In par-
ticular, every torsion abelian group is locally finite, and we will soon encounter
additional interesting infinite examples in Theorem (4.15).

(4.10). Theorem. Let G be a group. Then the following are equivalent:

(1) G is locally finite.

(2) Every finite subset of G generates a finite subgroup.

(3) Every finite subset of G is contained in a finite subgroup. 2

(4.11). Theorem. (Schmidt’s Theorem) Let N be normal in the group G.
Then G is locally finite if and only if G/N and N are locally finite.

Proof. If G is locally finite then so are its subgroup N and its image G/N .
Now assume that normal N and Ḡ = G/N are locally finite. Let X be a finite
subset of G, and set H = 〈X〉.

As X̄ is a finite subset of locally finite Ḡ, we have 〈X̄〉 = H̄ finite. That is,
HN/N is finite. By the Second Isomorphism Theorem, H/H ∩N is finite, and
especially H∩N has finite index in finitely generated H. By Schreier’s Theorem
(4.5)(a), the subgroup H ∩N is also finitely generated. Within locally finite N
this tells us that H ∩ N is finite. As both H/H ∩ N and H ∩ N are finite, H
itself is finite, as required. 2

Locally finite group theory admits many of the techniques of finite group
theory, since the presence of the local system says that the group can be well
approximated by its finite subgroups.

Dually, at times we may be able to approximate a group by its finite quo-
tients. For any group property X , the group G is residually-X provided that for
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every nonidentity element g of G there is a normal subgroup Ng with g /∈ Ng
for which the quotient G/Ng has property X . Of special interest here is the
class of groups that are residually finite. This does not imply that 〈g〉 is finite
or intersects G/Ng trivially. Indeed Z is residually finite but has no subgroups
of finite order. More generally:

(4.12). Theorem. (Schreier) Every free group is residually finite.

Proof. In the free group F(X) let

g = x1x2 · · ·xn

be a nonidentity element, written as a word in the various x and x−1 for x ∈ X,
the only restriction being that we never have {xi, xi+1} = {x, x−1}. (That is,
x1x2 · · ·xn is a reduced word in F(X).)

We define a map xi 7→ πi from F(X) to Sym(n+ 1) choosing each πi to
extend the mapping i 7→ i+1. Notice that for different i, j we may have πi = πj ,
but our restriction on the xi implies that nevertheless the choices can be made
consistently. Having done this, we have a map π : F(X) −→ Sym(n+ 1) in
which π(g) 6= 1F(X) since 1π(g) = n + 1. Thus kerπ = Ng is the desired finite
index normal subgroup of F(X) with g /∈ Ng. 2

For residually finite groups, again a simple induction shows that for every
finite subset S of G with 1G /∈ S, there is a normal subgroup NS of G with
S ∩NS = ∅.

(4.13). Theorem. Let G be a group. Then the following are equivalent:

(1) G is residually finite.

(2) G is a subdirect product of finite groups.

Proof. If G is residually finite, then the Chinese Remainder Theorem tells
us that G is a subdirect product of the various finite groups G/Ng.

If G is a subdirect product of finite groups, then every element g of G
projects nontrivially onto at least one of the finite quotients. Projection onto
that coordinate then gives a homomorphism of G onto a finite group for which
g is not in the kernel. 2

Especially free groups are subdirect products of finite groups.

For an arbitrary group G, its profinite topology declares all subgroups of
finite index index in G to be a base of open neighborhoods of the identity
(with additional open sets being provided by the cosets of these subgroups).
This topology is then Hausdorff precisely when G is residually finite. Many
interesting results about finite p-groups as a class arise from study of the larger
class of pro-p groups: those groups that are residually finite p-groups. Again
free groups are examples, for all p, although this is harder to prove.
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4.4 Representational finiteness

For a linear representation ϕ : G −→ GLK(V ), finiteness conditions may impose
restrictions on the division ring K or on the K-space V .

The most common finiteness restriction made on a division ring K is that it
have finite dimension over its center. Indeed later on we shall only consider divi-
sion rings equal to their centers—fields. Even there additional restrictions may
be of help. For instance, by Jordan canonical form a faithful C-representation
of a finite group can be realized over a finite Galois extension of the rationals.
We will not spend much time on such matters, although later we will see that
mileage can be gained by requiring K itself to be finite.

We have already noted that every group can be faithfully represented as
a linear group. On the other hand many but not all infinite groups can be
faithfully represented on finite dimensional vectors spaces. We have seen in
Clifford’s Theorem (3.33) and in Problem (6.36) that finite dimensionality of a
representation is a useful finiteness condition. Indeed finite dimensionality of V
is such an important hypothesis that, unlike us (see page 39), many (for instance,
Robinson [Rob82]) reserve the term linear group for those groups that can be
faithfully represented on a finite dimensional space. A weaker, but still useful,
condition is that of local linearity, where G has a local system of subgroups,
each of which has a faithful representation of finite dimension. This includes all
locally finite groups and many other groups as well.

We now introduce groups that might be termed “internally locally linear”
as they have faithful possibly infinite dimensional representations within which
every finitely generated subgroup acts faithfully on some finite dimensional sub-
space.

If g ∈ Sym(Ω), then the support of g on Ω, written SuppΩ(g), is the set
{ω ∈ Ω | ωg 6= ω }. The identity certainly has finite support. The inverse of
an element of finite support also has finite support, as does the product of two
elements of finite support. Therefore the elements of finite support,

FSym(Ω) = { g ∈ Sym(Ω) | |SuppΩ(g)| <∞} ,

form a subgroup of Sym(Ω) called the finitary symmetric group. Of course, if
Ω itself is finite, then FSym(Ω) = Sym(Ω). If Ω is infinite then this is not the
case, and FSym(Ω) consists of the “nearly trivial” permutations.

(4.14). Theorem. FSym(Ω) � Sym(Ω).

Proof. By Lemma (3.5), conjugacy preserves the cardinality of the support
of a permutation. 2

If N is any nontrivial normal subgroup of Sym(Ω) with 1 6= n ∈ N and
1 6= g ∈ FSym(Ω), then Lemma (3.5) also proves [n, g] ∈ N ∩ FSym(Ω). This
observation is the beginning of the classification of all normal subgroups of
Sym(Ω). These include the normal subgroup FSymα(Ω) consisting of all per-
mutations with support of cardinality less than α, for each infinite cardinal α
less than or equal to |Ω|.
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A fundamental result is

(4.15). Theorem. For every Ω, the group FSym(Ω) is locally finite.

Proof. For the finite subset {g1, . . . , gn} of FSym(Ω), let H = 〈g1, . . . , gn〉
and ∆ =

⋃n
i=1 SuppΩ(gi), a finite subset of Ω which is H-invariant. We may

identify the finite group Sym(∆) with the pointwise stabilizer of Ω \ ∆ in
FSym(Ω), and then the map H −→ Sym(∆) ≤ FSym(Ω) is injective.

Thus every finite subset of G is contained in a finite subgroup, and G is
locally finite by Theorem (4.10). 2

The linear transformation g ∈ GLD(V ) is finitary provided the dimension
of its commutator subspace [V, g] = V (g − 1) is finite.

Let FGLD(V ) be the set of all finitary elements of GLD(V ).

(4.16). Lemma.

(a) g ∈ GLD(V ) is finitary if and only if its fixed point space CV (g) has finite
codimension in V .

(b) For finitary g, the codimension of CV (g) is equal to the dimension of [V, g].

(c) FGLD(V ) is a normal subgroup of GLD(V ).

Proof. The subspace [V, g] is the image of the endomorphism g−1 while its
kernel ker(g − 1) is equal to CV (g). This gives the first two parts immediately.

If CV (g) and CV (h) both have finite codimension, then so does CV (〈g, h〉) =
CV (g)∩CV (h). Thus FGLD(V ) is a subgroup. It is normal as [V, g]h = [V, gh].

2

The corresponding group of “nearly trivial” linear transformations is

FGLK(V ) = { g ∈ GLK(V ) | dimK(V g−1) <∞} .

The group (as it is) FGLK(V ) is the finitary linear group and is normal in
GLK(V ). In matrix terms, this group can be thought of as those invertible
linear transformations g for which, with a suitable choice of basis, the matrix
g − 1 only has a finite number of nonzero rows. A group and representation
are stably linear if they satisfy the stronger condition of having a fixed basis
for which each g − 1 has only a finite number of nonzero rows and nonzero
columns—that is, a finite number of nonzero entries.

Finitary linear groups need not be locally finite, but groups that are both
locally finite and finitary linear have a beautiful and well-understood structure.
These include FSym(Ω).

(4.17). Theorem. FSym(Ω) is finitary linear over every K.

Proof. Consider g ∈ FSym(Ω) acting on the permutation module KΩ.
For ω ∈ Ω, we have eg−1

ω = 0 if and only if ω is fixed by g. That is, the only
elements of the K-basis { eω | ω ∈ Ω } that have nontrivial image under g − 1
are those with ω in the support of g. For elements g of FSym(Ω) this support
is finite, therefore V g−1 has a finite spanning set and g ∈ FGL(K)KΩ. 2
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4.5 Chain conditions

Chain conditions illustrate both “finiteness” and “reduction” in that the groups
considered exhibit finiteness properties precisely because they admit some type
of reduction.

In any partially ordered set (I �), the descending chain condition states
that any chain

a1 � a2 � a3 � · · ·

stabilizes at some point: there is an N ∈ Z+ with ai = aj , for all i, j ≥
N . Equivalently we have the minimal condition: every nonempty subset of I
contains at least one minimal element. In the opposite partially ordered set
(I,�) where a1 � a2 if and only if a1 � a2 in (I �), these become the ascending
chain condition and maximal condition.

For us, there are group theoretic and representation theoretic versions of
each. Clifford’s Theorem (3.33) is valid for all G-modules with the minimal
condition on submodules.

For a given group G, there are several posets that may be considered: those
of all subgroups of G, all normal subgroups of G, and all subnormal subgroups
of G.

The Jordan-Hölder Theorem (1.2) addresses composition series for the group
G—those chains of subnormal subgroups

G = G0 �G1 � · · ·�Gk = 1

with each quotient Gi−1/Gi simple—stating that the multiset of simple factors
is uniquely determined up to isomorphism. If instead we consider the poset of
normal subgroups of a group, a chain that cannot be refined is a chief series. In
this context there is also the appropriate Jordan-Hölder Theorem. (See [Rob82,
Theorem 3.1.4].) The corresponding factors are chief factors, and the next
result gives their structure in many situations of interest (for instance when G
is finite).

A minimal normal subgroup of G is a subgroup N with 1 6= N �G and such
that, whenever W �G with W ≤ N , either 1 = W or W = N . For finite groups
these must exist by order arguments, but in general they might not. The group
(Z,+) has no minimal normal subgroups.

(4.18). Theorem. Let G be a group that satisfies the minimal condition on
subnormal subgroups and N minimal normal in G. Then there is an index set
I and a set of subgroups {Si | i ∈ I } such that

(a) each Si is simple and minimal normal in N ;

(b) for each i, j ∈ I, there is a gij ∈ G with S
gij
i = Sj;

(c) N = 〈Si | i ∈ I 〉 =
⊕

i∈I Si.
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Proof. This theorem and its proof should be compared with Clifford’s
Theorem (3.33), the proposition on completely reducible modules that precedes
it, and their proofs.

Let S be a minimal normal subgroup of N . Then 〈Sg | g ∈ G 〉 is clearly
nontrivial, normal in G, and contained in N ; so N = 〈Sg | g ∈ G 〉. Choose a
set of conjugates {Si = Sgi | i ∈ I } that generates N and is minimal subject
to this. That is, N = 〈Si | i ∈ I 〉 and N > SJ = 〈Sj | j ∈ J 〉, for all J ( I.
(Such a set exists by Zorn’s Lemma.)

As the Sj are conjugates of S, they too are minimal normal in N ; and each
SJ is normal in N . Set gij = g−1

i gj . We now have (b) and half of (a).
For each i, the subgroup Si ∩ SI\i is normal in N but is not equal to Si by

minimality of I. Since Si is minimal normal in N , we find Si ∩ SI\i = 1, giving
(c) by Theorem (2.34).

Finally, if T�� Si, then

NN (T ) ≥ 〈Si, SI\i〉 = N ,

by (c). As Si is minimal normal in N , this forces T = 1. Therefore Si is simple,
completing (a) and the theorem. 2

A characteristically simple group G is minimal normal in the split extension
ofG by Aut(G). In particular in appropriate situations (for instance for finite G)
the theorem describes all characteristically simple groups. (Compare Problem
(2.46).)

4.6 Problems

(4.19). Problem. Prove that a group with a local system of simple subgroups is
simple.

(4.20). Problem. Recall that a group G is quasisimple if it is perfect G = G′ and
G/Z(G) is simple.

(a) Prove that the nontrivial group G is quasisimple if and only if for every pair of
elements g and h in G with g /∈ Z(G) it is possible to write h as the product of a
finite number of conjugates of g and g−1.

(b) Prove that a group with a local system of quasisimple subgroups is quasisimple.

(4.21). Problem. Let G be a simple and locally finite group. Prove that for every
finite subgroup H of G, there are finite subgroups F and N of G with

(i) F �N ;

(ii) F/N simple;

(iii) H ≤ F and H ∩N = 1.

Remark. This important observation, due to Kegel, says that every finite subgroup
H of the locally finite simple group G can be “covered” by a finite simple section F/N
of G. This is a “finite” version of P. Hall’s “countable” result Theorem (4.7).

Hint: Consider S2(H).
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(4.22). Problem. Let F be a division ring. Prove that F is a locally finite division
ring if and only if F is an algebraic extension of the ground field Fp, for some prime
p. In particular, a locally finite division ring is a countable field. (Here, by a locally
finite division ring, we mean a division ring in which every finite subset is contained
in some finite sub-division ring.)

Hint: You may use Wedderburn’s theorem that all finite division rings are fields.

(4.23). Problem.

(a) Prove that if G is a permutation group on Ω with all orbits finite, then G/ kerΩ(G)
is residually finite.

(b) An FC-group is a group in which all conjugacy classes are finite. Abelian groups
are examples; for instance Z is an FC-group that is residually finite, but (Q,+)
is an FC-group that is not residually finite. (Indeed (Q,+) has no subgroups of
finite index.) Prove that if G is a FC-group, then G/Z(G) is residually finite.

(4.24). Problem.

(a) Let g ∈ Sym(Ω) have the orbit ∆ on Ω and set W = ⊕δ∈∆Keδ, a 〈g〉-invariant
subspace in the action on the permutation module KΩ. Prove that W g−1 has
K-dimension |∆| − 1.

(b) Prove FSym(Ω) = Sym(Ω) ∩ FGLK(KΩ).



Chapter 5
Symmetric and alternating groups

5.1 Transpositions

In Sym(Ω) and its subgroup FSym(Ω) a transposition is a 2-cycle (a, b) for
distinct a, b ∈ Ω.

(5.1). Lemma.

(a) The transpositions form a conjugacy class of elements of order 2 in Sym(Ω)
and FSym(Ω).

(b) If g = (a, b) and h = (c, d), then, respectively,

|gh| = 1, 2, 3 as |{a, b} ∩ {c, d}| = 2, 0, 1 .

In the last case 〈(a, b), (b, c)〉 = Sym({a, b, c}) ≤ FSym(Ω).

(c) We have

CSym(Ω)( (a, b) ) = 〈(a, b)〉 × Sym(Ω \ {a, b})

and

CFSym(Ω)( (a, b) ) = 〈(a, b)〉 × FSym(Ω \ {a, b}) . 2

Here for each subset ∆ of Ω, we have identified Sym(∆) with the subgroup
of Sym(Ω) that fixes Ω \ ∆ pointwise (and so for the corresponding finitary
subgroups as well). This is standard, and we will continue to make this identi-
fication without comment.

The elements (1, 2)(1, 3) = (1, 2, 3) of Lemma (5.1)(b) are the 3-cycles of
Sym(Ω) while the products (1, 2) · (3, 4) = (1, 2)(3, 4) are the 22-elements.

(5.2). Theorem.

(a) The subgroup of Sym(Ω) generated by the class of transpositions is FSym(Ω).

59
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(b) If G is a subgroup of FSym(Ω) that is generated by transpositions, then,
for the partition Ω =

⊎
i∈I Ωi of Ω into distinct G-orbits Ωi, we have G =⊕

i∈I FSym(Ωi).

Proof. Each transposition is finitary, so the group they all generate is
contained in the finitary symmetric group. For (a) it remains to observe that

(1, 2, 3, . . . ,m) = (1, 2)(1, 3) · · · (1,m) .

Now let G = 〈X〉 ≤ FSym(Ω) with X a set of transpositions, and let Y be
the set of all transpositions that are in G.

Define a graph with vertex set Ω and a ∼ b if and only if (a, b) is one of the
transpositions in Y . Let the connected components of Ω in this graph be Ωi for
i ∈ I. We claim that G =

⊕
i∈I FSym(Ωi). The Ωi are the orbits of G on Ω,

so G is contained in this direct sum. It remains to prove that G contains each
FSym(Ωi).

Let distinct a, b be in the connected component Ωi, and select

a = a0 ∼ a1 ∼ · · · ∼ am = b ,

an Ωi-path from a to b, chosen to be as short as possible.
If m > 1, then we have

a = a0 ∼ a1 ∼ a2 ∼ · · · ∼ am = b .

But then, with f = (a0, a1) and g = (a1, a2), both transpositions of G and Y ,
we have fg = (a0, a2) in G and hence in Y . But then the path

a = a0 ∼ a2 ∼ · · · ∼ am = b ,

is shorter than the original one. This is a contradiction, and so m = 1. That is,
(a0, am) = (a, b) is a transposition of Y and G, and this holds for arbitrary a, b
from Ωi. Therefore all transpositions with support from Ωi belong to Y and G,
hence by (a) the subgroup FSym(Ωi) is in G. 2

5.2 The Weyl group W(Ak)

For k ∈ Z+ consider the group

W(Ak) = 〈 a1 , . . . , ak | a2
i = 1 , (aiai+1)3 = 1 , (aiaj)

2 = 1 for |i− j| > 1 〉 ,

the Coxeter group of type Ak. The W stands for Weyl. This groups is also the
Weyl group of type Ak, but that involves different definitions.

We first discuss some elementary consequences of these relations. Under
the map sending every ai to −1 ∈ {±1} all relations are satisfied, so there is
a homomorphism onto a group of order 2. In particular all of the elements ai
have order exactly two in W(Ak) rather than one.



5.2. THE WEYL GROUP W(AK) 61

The relation (aiaj)
2 = 1 states aiajaiaj = 1. As all ai have order 2, this

becomes

aiaj = ajai ;

that is, if |i− j| > 1 then the elements ai and aj commute in W(Ak). Similarly
(aiai+1)3 = 1 reads as aiai+1aiai+1aiai+1 = 1 or

aiai+1ai = ai+1aiai+1 ,

the so-called braid relation; see Problem (5.23).

(5.3). Theorem. The map f : ai 7→ (i, i + 1), for 1 ≤ i ≤ k, extends to an
isomorphism ϕ of W(Ak) and Sym(k + 1).

Proof. By Lemma (5.1) the given transpositions in Sym(k + 1) satisfy the
corresponding relations of W(Ak), and by Theorem (5.2) these transpositions
generate all of Sym(k + 1). Therefore the map f extends at least to a surjective
homomorphism ϕ from W(Ak) onto Sym(k + 1).

Set Wk = W(Ak). We claim:

(i) For B = 〈a1, . . . , ak−1〉 ≤Wk and n = ak, we have Wk = B ∪BnB.

(ii) |Wk| ≤ (k + 1)! .

Once we have claim (ii) we will be done, since by the previous paragraph we
already have |Wk| ≥ (k + 1)! = |Sym(k + 1)|.

Our proof of the claims will be by induction on k. For k = 1 we have B = 1
and

W1 = {1} ∪ {1n1} = {1, a1} ' Z2 ' Sym(1 + 1) .

We now assume k ≥ 2.

The image of B under ϕ is Sym(k). Therefore by induction B ' Sym(k) and
also its subgroup C = 〈a1, . . . , ak−2〉 is isomorphic to Sym(k − 1). Furthermore,
by induction (or direct calculation) B = C ∪ CmC for m = ak−1.

By the relations for Wk = W(Ak),

nmn = akak−1ak = ak−1akak−1 = mnm

and

[C, n] = [〈a1, . . . , ak−2〉, ak] = 1 .

Under part (i) of the claim, as B = 〈a1, . . . , ak−1〉 and 1n1 = ak, the subset
B ∪ BnB contains the generating set for Wk; so it is enough to prove that
B ∪BnB is a subgroup. Clearly 1 ∈ B; B−1 = B; (BnB)−1 = Bn−1B = BnB;
B.B = B; B.BnB = BnB; and BnB.B = B; so the only thing that must be
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verified at length is BnB.BnB ⊆ B ∪BnB. Indeed

BnB.BnB = BnBnB

= Bn(C ∪ CmC)nB

= B(nCn ∪ nCmCn)B

= B(C ∪ CnmnC)B

= B(C ∪ CmnmC)B

= B ∪BmnmB
= B ∪BnB ,

as desired.
For (ii) we have |B| = k!, and so the list of all triples (b1, n, b2) with b1, b2 ∈ B

has length (k!)2. For c ∈ C, the two list members (b1, n, b2) and (b1c
−1, n, cb2)

satisfy b1nb2 = b1c
−1ncb2 as c commutes with n. Thus

|BnB| ≤ (k!)2/|C| = (k!)2/(k − 1)! = k · k! .

Therefore by (i)

|Wk| = |B ∪BnB| ≤ k! + k · k! = (k + 1)k! = (k + 1)! ,

completing our proof of claim (ii) and so of the theorem. 2

5.3 The alternating group and simplicity

The alternating group Alt(Ω) is the subgroup of FSym(Ω) consisting of all fini-
tary permutations that can be written as a product of an even number of trans-
positions.

(5.4). Theorem. For |Ω| ≥ 2, the alternating group Alt(Ω) is a normal
subgroup of index 2 in FSym(Ω). Indeed Alt(Ω) = FSym(Ω)′ is the unique
subgroup of index 2 in FSym(Ω).

Proof. First consider the case |Ω| = n, finite. Then by Theorem (5.3) we
have

FSym(Ω) = Sym(Ω) ' Sym(n) 'W(An−1) .

Thus, as noted before, there is a surjective homomorphism from W(An−1) to
{±1} given by ai 7→ −1, and this provides a surjective homomorphism

sgn: Sym(n) −→ Z2 .

Each ai of W(An−1) maps to a transposition of Sym(n), so the kernel of
sgn has index 2 in Sym(n) and consists of all products of an even number of
transpositions. That is, ker sgn = Alt(n) is normal of index 2.

Now consider arbitrary Ω. As Ω is the directed limit of its finite subsets ∆,
FSym(Ω) is the directed limit of its finite subgroups FSym(∆), as in Theorem
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(4.15). Each embedding of FSym(∆) into FSym(Ω) takes the transpositions of
FSym(∆) to transpositions of FSym(Ω). Therefore the various sign homomor-
phisms sgn∆ combine to give a uniform sign homomorphism sgnΩ on FSym(Ω)
with kernel Alt(Ω).

The group FSym(Ω) is generated by its transposition class by Theorem
(5.2)(a), so its derived quotient has order at most 2 by Proposition (2.17). The
subgroup Alt(Ω) has index 2 in FSym(Ω). If N 6= Alt(Ω) also had index 2,
then N ∩ Alt(Ω) would be normal with an abelian quotient of order 4. The
contradiction proves that Alt(Ω) = FSym(Ω)′ is the unique subgroup of index
2 in FSym(Ω). 2

(5.5). Corollary. For n ≥ 2, the group Alt(n) = Alt({1, 2, . . . , n}) has
order n!/2 . 2

The homomorphism

sgn: FSym(Ω) −→ Z2 .

of the theorem, which takes each transposition to −1 ∈ {±1} ' Z2, is called
the sign homomorphism. The elements of its kernel Alt(Ω) are the even per-
mutations of Ω while those of FSym(Ω) that are not in Alt(Ω) are the odd
permutations.

(5.6). Proposition.

(a) Alt(Ω) is generated by its 3-cycles and its 22-elements.

(b) If |Ω| > 4, then Alt(Ω) is generated by its conjugacy class of 3-cycles.

(c) If |Ω| > 4, then Alt(Ω) is generated by its conjugacy class of 22-elements.

Proof. (a) If g =
∏2m
i=1 ti then g =

∏m
j=1(t2j−1t2j), so this follows from

Lemma (5.1).
(b) By Lemma (3.5) the 3-cycles form a single conjugacy class in FSym(Ω).

As the odd permutation (4, 5) centralizes (1, 2, 3), this is also a single class in
Alt(Ω) provided |Ω| > 4. Then (1, 3, 2)(3, 2, 4) = (1, 2)(3, 4), so (a) gives the
result.

(c) By Lemma (3.5), in Sym(Ω) the 22-elements form a single conjugacy
class. As the odd permutation (1, 2) centralizes (1, 2)(3, 4), the collection of 22-
elements remains a single class in Alt(Ω). Furthermore (1, 2)(4, 5) · (1, 3)(4, 5) =
(1, 2, 3), so again (a) gives the result. 2

Of course, for n = 3, 4, the group Alt(n) is still generated by its 3-cycles,
but a 3-cycle is not conjugate to its inverse in these two groups.

(5.7). Proposition. For n ≤ 4, the group Sym(n) is solvable.1 2

(5.8). Theorem. If |Ω| > 4, then Alt(Ω) is nonabelian and simple.

1As Galois knew!
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Proof. Let 1 6= n ∈ N �Alt(Ω) and a, b, c ∈ Ω with an = b 6= a and bn = c.
Choose d /∈ {a, b, c} so that for h = (a, b, d) ∈ Aut(Ω) we have hn = (b, c, e)
where e = dn. Then

g = [h, n] = h−1hn = (a, d, b)(b, c, e) ∈ N ∩Alt({a, b, c, d, e}) .

As dg = c 6= d, we have g 6= 1. In particular Alt(Ω) is not abelian. The
element g must have cycle type one of 3, 22, or 5. In the first two cases we find
N = Alt(Ω) by Proposition (5.6), therefore we may assume that a, b, c, d, e are
distinct and so g = (a, d, c, e, b).

Now let k = (a, d, c). Then

[g, k] = g−1gk = (b, e, c, d, a)(d, c, a, e, b) = (a, d, e) ∈ N ,

and again N = Alt(Ω) by Proposition (5.6). 2

(5.9). Corollary. If |Ω| > 4, then Alt(Ω) is the unique minimal normal
subgroup in Sym(Ω).

Proof. A permutation of Ω that maps every 3-subset to itself must then
map every point to itself (as the intersection of 3-subsets, using |Ω| > 3). There-
fore by Lemma (3.5) and Proposition (5.6)(b) we have CSym(Ω)(Alt(Ω)) = 1.

For 1 6= n ∈ N � Sym(Ω) choose a g ∈ Alt(Ω) that does not commute with
n. Then

1 6= [g, n] = g−1(n−1gn) = (g−1n−1g)n ∈ Alt(Ω) ∩N .

Therefore Alt(Ω) ∩ N is a nontrivial normal subgroup of simple Alt(Ω), hence
Alt(Ω) ≤ N . 2

5.4 Geometry and automorphisms

This section is focused on proof of:

(5.10). Theorem. For |Ω| 6= 2, 6 we have

Aut(Sym(Ω)) = Aut(FSym(Ω)) = Sym(Ω) .

Additionally Aut(Sym(2)) = 1 and Sym(6) has index at most 2 in Aut(Sym(6)).

The proof of the theorem follows a standard and important model: we define a
geometric object upon which the group acts; we then reconstruct the geometry
within the group; we finally identify the group’s automorphisms within the
geometry’s automorphisms. The process is not always precise (as in the present
case for |Ω| = 6),2 but in practice this allows us to locate a large portion of the

2Indeed, one of the most compelling aspects of finite group theory and geometry is the way
in which a small number of anomalous or sporadic examples force themselves upon us in the
midst of a general result.
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automorphism group of the group within the more manageable automorphism
group of the geometry. For instance, here the geometry is that of the underlying
set for the symmetric group as structured by its set of unordered pairs.

The general model is our motivation for a somewhat grandiose name:

(5.11). Theorem. (Fundamental Theorem of Set Geometry) Let
|Ω| ≥ 5. Consider the graph K(Ω, 2) whose vertex set is the set

(
Ω
2

)
with {i, j}

adjacent to {k, l} precisely when |{i, j} ∩ {k, l}| = 1. Then Aut(K(Ω, 2)) =
Sym(Ω) with the natural action.

Proof. As |Ω| ≥ 3 the group Sym(Ω) acts naturally and faithfully on
K(Ω, 2).

The maximal cliques (maximal complete subgraphs) of K(Ω, 2) are of two
distinct types:

Ta,b,c = {{a, b}, {b, c}, {a, c}} for {a, b, c} ∈
(

Ω

3

)
of cardinality 3 and

Ca = { {a,w} | w ∈ Ω \ {a} } for a ∈ Ω .

of cardinality |Ω| − 1 
 3. Automorphisms of the graph must take maximal
cliques to maximal cliques. Therefore for any g ∈ Aut(K(Ω, 2)) and each a ∈ Ω,
there is a unique ag ∈ Ω with Cga = Cag . This gives a natural action of the
automorphism group on Ω and a surjective homomorphism Aut(K(Ω, 2)) −→
Sym(Ω).

The kernel of this homomorphism fixes globally each clique Ca. But then,
for each pair a, b ∈ Ω, the kernel must fix {a, b} = Ca∩Cb. Therefore every pair
{a, b} ∈

(
Ω
2

)
is fixed, and the kernel is trivial. We conclude that Aut(K(Ω, 2))

and Sym(Ω) are isomorphic. 2

(5.12). Proposition. Let T be the conjugacy class of transpositions in
Sym(Ω) with |Ω| ≥ 3. The noncommuting graph Γ of T is the graph whose
vertices are the members of T with a and b adjacent when a and b do not com-
mute.

(a) Γ ' K(Ω, 2).

(b) The subgroup of Aut(Sym(Ω)) that stabilizes the class T of transpositions
is equal to Sym(Ω).

(c) The subgroup of Aut(FSym(Ω)) that stabilizes the class T of transpositions
is equal to Sym(Ω).

Proof. We have T = { (a, b) | {a, b} ∈
(

Ω
2

)
}. By Lemma (5.1) the two

transpositions (i, j) and (k, l) do not commute if and only if |{i, j}∩{k, l}| = 1.
Therefore Γ is isomorphic to K(Ω, 2), as in (a).

In (b) and (c) let G be, respectively, the stabilizer in Aut(FSym(Ω)) and
Aut(Sym(Ω)) of the class T . By Lemma (3.5) we have CSym(Ω)(FSym(Ω)) = 1,
and we may identify Sym(Ω) with its image in G.
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By (a) and Theorem (5.11), if Ω ≥ 5 then G induces automorphisms of Γ
and K(Ω, 2); and we have a surjective homomorphism ϕ : G −→ Sym(Ω) with
natural action. The kernel of this action fixes all vertices of Γ, the class of
transpositions. This remains true for |Ω| = 3, as in Sym(3) the point stabilizers
are the transpositions plus the identity, and also for Ω = 4, as in Sym(4) the
point stabilizers are the Sylow 3-normalizers, isomorphic to Sym(3).

Thus the kernel of ϕ acts trivially on FSym(Ω), the group generated by
all transpositions (a, b) (by Theorem (5.2)). In particular, we are done in (b),
where G ≤ Aut(FSym(Ω)).

Now suppose g is an element of G ≤ Aut(Sym(Ω)) that is in the kernel
of ϕ and so acts trivially on FSym(Ω). For arbitrary s ∈ Sym(Ω) ≤ G, the
commutator [s, g] = s−1sg is in Sym(Ω) but remains in the kernel of ϕ. As
already noted CSym(Ω)(FSym(Ω)) = 1, so we conclude [s, g] = 1. Therefore g
fixes all elements s of Sym(Ω), and again kerϕ is trivial. This completes (c). 2

(5.13). Proposition. If d ∈ Sym(Ω) is an element of order 2 having at least
k orbits of length 2 on Ω, then there is a normal elementary abelian 2-subgroup
of order at least 2k that is normal in the centralizer of d in both FSym(Ω) and
Sym(Ω).

Proof. The centralizer of the element (a1, a2) · · · (a2k−1, a2k) · · · has the
normal subgroup 〈(a1, a2), . . . , (a2k−1, a2k), . . . 〉 both in FSym(Ω) and in Sym(Ω).

2

(5.14). Lemma. For |Ω| ≥ 2 with |Ω| 6= 6, the conjugacy class of transpositions
is stabilized by Aut(FSym(Ω)) and by Aut(Sym(Ω)).

Proof. By Lemma (5.1) the centralizers of (a, b) in FSym(Ω) and Sym(Ω)
are, respectively, 〈(a, b)〉×Sym(Ω \ {a, b}) and 〈(a, b)〉×FSym(Ω\{a, b}) . Thus,
by Theorem (5.8) and Corollary (5.9), for |Ω| ≥ 7 the largest normal 2-subgroup
of the centralizer of a transposition in FSym(Ω) has order 2. On the other hand,
for any other element of order 2 in FSym(Ω), the corresponding centralizer has
a normal 2-subgroup of larger order by the previous proposition. Therefore all
automorphisms of these groups cannot take a transposition to an element of
order 2 with support of size greater than 2 and must take transpositions to
transpositions.

For |Ω| ∈ {2, 3, 4, 5} the transpositions are the only elements of order 2
in Sym(Ω) but not in Alt(Ω) = Sym(Ω)

′
, so again automorphisms must take

transpositions to transpositions. 2

Proof of Theorem (5.10).
Certainly Aut(Sym(2)) = 1. Also an automorphism of Sym(6) must fix

Alt(6) (say, by Corollary (5.9)). But Sym(6) \Alt(6) has two conjugacy classes
of involutions—the transpositions and those of cycle type 23. Therefore the
index of Sym(6) in Aut(Sym(6)) is at most 2 by Proposition (5.12).

We may now assume |Ω| 6= 2, 6. Thus by Lemma (5.14) both Aut(Sym(Ω))
and Aut(FSym(Ω)) stabilize the class of transpositions. By Proposition (5.12)
again, Sym(Ω) is the full automorphism group of Sym(Ω) and FSym(Ω). 2
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5.5 Problems

(5.15). Problem. Let n ∈ Z+. A subgroup of Sym(n) is (n − 2)-transitive if and
only if it contains Alt(n).

Remark. Sym(6) contains a 3-transitive subgroup that does not contain Alt(6);
see Problem (5.20) below.

(5.16). Problem. (Thompson Transfer) Assume that the finite group G has a
Sylow 2-subgroup S containing subgroup T of index 2 in S and an element s of order
2 in S with sG ∩ T = ∅. Prove that G has a normal subgroup of index 2 that does not
contain s.

Hint: Consider s in the permutation action of G on the cosets of T .

(5.17). Problem. Prove that the finite group G with a cyclic Sylow 2-subgroup S
has a normal subgroup N of odd order with G = N o S.

Hint: Consider the action of S in the right regular representation of G.

(5.18). Problem. Prove that if G is a subgroup of Alt(Ω) that is generated by
3-cycles, then, for the partition Ω =

⊎
i∈I Ωi of Ω into distinct G-orbits Ωi, we have

G =
⊕

i∈I Alt(Ωi).

(5.19). Problem. Prove that for |Ω| ≥ 4 but |Ω| 6= 6 we have

Aut(Alt(Ω)) = Sym(Ω) .

Also Sym(6) has index at most 2 in Aut(Alt(6)).

(5.20). Problem.

(a) Let G be Sym(5) or Alt(5). Prove that the normalizer of a Sylow 5-subgroup has
index 6 in G.

(b) Prove that Sym(6) contains a 3-transitive subgroup that does not contain Alt(6).

(c) Prove that [Aut(Sym(6)):Sym(6)] ≥ 2 and [Aut(Alt(6)):Sym(6)] ≥ 2. (Hence we
have equality by Theorem (5.10) and the previous problem.)

(5.21). Problem. Let G = 〈D〉 be generated by the conjugacy class D = dG of
elements of order 2 with the property that:

for all d, e ∈ D we have |de| ∈ {1, 2, 3} .

Such a conjugacy class is called a class of 3-transpositions in the 3-transposition group
G. This concept and terminology, due to B. Fischer, arise because a basic example is
the class of transpositions in FSym(Ω); see Lemma (5.1).

Consider the special case in which we additionally have:

(Sym(5)) For a, b, c, d ∈ D with connected diagram, the subgroup 〈a, b, c, d〉
is isomorphic to Sym(k) for k ≤ 5 with a, b, c, d all being mapped to trans-
positions.

Assume also that there is a subgroup H of G with H = 〈H∩D〉 ' Sym(5) (the elements
of D ∩ H acting as the transpositions of Sym(5)). Prove that there is a set Ω with
G ' FSym(Ω), the elements of D being mapped to the transpositions of FSym(Ω).

Hint: Consider the maximal subsets C of D with the property that e, f ∈ C implies
(ef)3 = 1.
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(5.22). Problem. Let G0 be the symmetric group Sym(5), and let G1 be the sym-
metric group Sym(G0) ' Sym(120). Identify G0 with the subgroup of Sym(G0) that
is the right regular representation of G0. Continue in this fashion: identify each Gi
with its regular representation as a subgroup of Gi+1 = Sym(Gi). Set G =

⋃
i∈NGi, a

group that is the ascending union of the Gi.
3

(a) Prove that G is locally finite and simple. Hint: Consider Problem (4.19).

(b) Prove that if H1 and H2 are isomorphic finite subgroups of G, then there is an
element s ∈ G with Hs

1 = H2. Hint: Consider Problem (3.24).

Remark. The group G is Phillip Hall’s universal locally finite group.

(5.23). Problem. Consider the braid group

Bk = 〈α1 , . . . , αk | αiαi+1αi = αi+1αiαi+1 , αiαj = αjαi for |i− j| > 1 〉 .

(a) Prove that the map αi 7→ ai extends to a homomorphism of the braid group onto
W(Ak) ' Sym(k + 1).

(b) Prove that in Bk, every generator αi has infinite order and Bk/B
′
k ' Z.

3This should be formalized using directed limits, but we hope it is clear what is intended.



Chapter 6
Matrices

6.1 Elementary matrices and operations

We start by considering the group GLn(R) of all invertible matrices with entries
from the ring R with identity.

Within GLn(R) there are three types of elementary matrices:

(i) Elementary permutations π(i,j). These are just the permutation matrices
corresponding to the transpositions (i, j) of the symmetric group;

(ii) Elementary diagonal matrices hj(u). These are the diagonal matrices in
which all diagonal entries are 1 except for the (j, j)-entry which is u, a
unit in R;

(iii) Elementary transvections ti,j(a). These are the matrices I + aei,j with
a ∈ R and i 6= j, where ei,j is a matrix unit—all its entries are 0 except
for a 1 in the (i, j)-position.

The matrix group generated by the elementary permutation matrices π(i,j)

is the group of all n × n permutation matrices—the image of Sym(n) under
π—and we often identify this subgroup with Sym(n) (so we may write (i, j) in
place of π(i,j) and in general w for πw.)

The group generated by all the elementary diagonal matrices hj(U) is the
group Hn(R) of all invertible diagonal matrices, and the elementary permutation
and diagonal matrices together generate the group of monomial matrices.

The group En(R) is 〈 ti,j(a) | i 6= j , a ∈ R 〉, generated by all elementary
transvections, while the group generated by all three types of elementary ma-
trices is GEn(D).

As ei,jek,l = δj,kei,l we immediately have

(6.1). Lemma.

(a) ti,j(a) ti,j(b) = ti,j(a+ b) and especially ti,j(a)−1 = ti,j(−a).

69
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(b) [ti,j(a), tk,l(b)] = ti,l(ab)
δj,k , for i 6= l. 2

Let U+
n (R) be the subgroup of upper unitriangular matrices and U−n (R) be

the corresponding subgroup of lower unitriangular matrices. We will usually
write Un(R) in place of U+

n (R).

(6.2). Proposition.

(a) Un(R) = U+
n (R) = 〈 ti,j(a) | a ∈ R, i < j 〉.

(b) U−n (R) = 〈 ti,j(a) | a ∈ R, i > j 〉.

Proof. (a) The proof is algorithmic (which is to say, by induction on n).
Let A be upper unitriangular, so that aj,j = 1 for all j and ai,j = 0 for all
i > j. Set A = A(1). Then let t1 =

∏n
j=2 t1,j(−a1,j) and A(2) = A(1)t1. The

matrix A(2) is upper unitriangular and additionally a
(1)
1,1 = 1 is the only nonzero

entry in its first row. We proceed to construct from each A(i) an new matrix

A(i+1) = A(i)ti where ti =
∏n
j=i+1 ti,j(−a(i)

i,j), the matrix A(i+1) being upper
unitriangular and having all nondiagonal entries 0 in its first i rows.

In particular A(n) is the identity matrix. Therefore A
∏n−1
i=1 ti = I and

A = (
∏n−1
i=1 ti)

−1 ∈ 〈 ti,j(a) | a ∈ R, i < j 〉, as desired.
A similar argument gives (b). 2

(6.3). Proposition. Un(R) is nilpotent of class n− 1.

Proof. For each 1 ≤ i ≤ n, let Uk = 〈 ti,j(a) | j − i ≥ k 〉. In particular
Un = 1 and U1 = U by the previous proposition. By Lemma (6.1)(b) we always
have [Uk, Ul] ≤ Uk+l. Therefore

1 = Un ≤ Un−1 ≤ · · · ≤ Uk ≤ · · · ≤ U1 = U

is an ascending central series for U . Indeed the same lemma tells us that Un−1 =
Z(U); and, continuing in this fashion (by induction), we actually have the upper
central series for U . Its length is n− 1, so U has class n− 1. (See also Problem
(6.36).) 2

There are many proofs for Proposition (6.2), some perhaps more elegant
than the one given here. But we have chosen a proof that shows its relation to
elementary matrix operations. We have shown that by a succession of elemen-
tary column operations (corresponding to right multiplication by ti,j(bi,j) for
i < j) an upper unitriangular can be reduced to the identity. This means that
the original matrix is the inverse of the product of the corresponding elementary
transvections ti,j(a).

Let us discuss elementary operations on rows and columns in terms of mul-
tiplication by elementary matrices. There are three types of elementary row
operations that can be made on the matrix A:

(i) Left multiplication by π(i,j) switches rows i and j of A;

(ii) Left multiplication by hj(u) modifies row j of A by multiplying all its
entries on the left by u;



6.1. ELEMENTARY MATRICES AND OPERATIONS 71

(iii) Left multiplication by ti,j(a) adds a times row j of to row i of A.

Similarly for elementary column operations:

(i) Right multiplication by π(i,j) switches columns i and j of A;

(ii) Right multiplication by hj(u) modifies column j of A by multiplying all
its entries on the right by u;

(iii) Right multiplication by ti,j(a) adds column i times a to column j of A.

(6.4). Lemma. (Whitehead Lemma)
Let R be a ring with identity. For u, v units in R and a ∈ R:

(a)

(
0 −u−1

u 0

)
=

(
1 0
u 1

)(
1 −u−1

0 1

)(
1 0
u 1

)
;

(b)

(
u 0
0 u−1

)
=

(
0 1
−1 0

)(
0 −u−1

u 0

)
;

(c)

(
[u, v] 0

0 1

)
=

(
(vu)−1 0

0 vu

)(
u 0
0 u−1

)(
v 0
0 v−1

)
;

(d)

(
u 0
a v

)
=

(
0 1
−1 0

)(
v a
0 u

)(
0 −1
1 0

)
;

(e)

(
1 v−1au
0 1

)
=

(
v−1 0
0 u−1

)(
1 a
0 1

)(
v 0
0 u

)
;

(f)

(
1 −a+ v−1au
0 1

)
=

[(
1 a
0 1

)
,

(
v 0
0 u

)]
. 2

A primary lesson the Whitehead Lemma (6.4) teaches is that almost all
elementary operations can be accomplished using elementary transvections: the
monomial operation π(i,j)hi(−1) and the diagonal operations hi(u)hj(u

−1) and
hi([u, v]) can all be realized by a succession of elementary transvections (using
Lemma (6.4)(a,b,c)); as matrices they belong to En(R). More specifically

(6.5). Proposition. Let U be the group of units of the ring R and GL1(R) =
{h1(u) | u ∈ U } ≤ GLn(R). Then En(R) � GEn(R) = En(R)GL1(R) with
GEn(R)/En(R) a quotient of U/U ′.

Proof. By the Whitehead Lemma (6.4)(d,e) the group GL1(R) normalizes
En(R).

We have

π(i,j) = π(i,j) (hi(−1)hi(−1)) (h1(−1)h1(−1))

=
(
π(i,j)hi(−1)

)
(hi(−1)h1(−1)) h1(−1) ∈ En(R)GL1(R)

and

hi(u) = hi(u)
(
h1(u−1)h1(u)

)
=
(
hi(u)h1(u−1)

)
h1(u) ∈ En(R)GL1(R) .
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Therefore En(R) � En(R)GL1(R) = GEn(R). Furthermore

GEn(R)/En(R) = En(R)GL1(R)/En(R) ' GL1(R)/En(R) ∩GL1(R)

with GL1(R) ' U and

GL1(R)
′

= {h1([u, v]) | u, v ∈ U } ≤ En(R) ∩GL1(R) . 2

6.2 Bruhat decomposition

Gaussian elimination over the field F is designed to move, via a sequence of
elementary row operations, from an arbitrary matrix A to one P that is in row
echelon form:

the nonzero rows of P are at its bottom, and, for each nonzero row
i and minimal j with pi,j 6= 0, all other entries pk,l with i ≤ k and
l ≤ j are equal to zero.

This is a canonical form result in the sense that Gaussian elimination seeks a
relatively simple representative for the orbits of GLn(F ) in its left action on the
set of matrices with n rows and entries from F .

In this section we address a similar problem. We consider square matrices
Matn(D) with entries from the division ring D and three different equivalence
relations on this set:

(i) Row equivalence, only allowing as elementary row operations the addition
of a multiple of a row to a row higher in the matrix.

(ii) Column equivalence, only allowing as elementary column operations the
addition of a multiple of a column to a column to its right in the matrix.

(iii) Row and column equivalence, only allowing as elementary operations the
addition of a multiple of a row to a row higher in the matrix and the
addition of a multiple of a column to a column to its right in the matrix.

That is, in view of Proposition (6.2), we look at the orbits of Matn(D) under,
respectively, left multiplication by elements of Un(D), right multiplication by
elements of Un(D), and left and right multiplication by elements of Un(D).

The special nonzero pij of echelon form are sometimes called the pivots.
With that in mind we say that a row pivot of the nonzero row vector ~v is its
first nonzero element. More precisely, the row pivot location is the smallest j
with ~vj 6= 0, the corresponding row pivot value then being ~vj . We say that a
matrix is in row pivot form if every column contains at most one row pivot.

We define a column pivot similarly. The column pivot location of a nonzero
column vector is the largest row index for which that column has a nonzero
entry, the corresponding column pivot value. A matrix is then in column pivot
form if every row contains at most one column pivot.

A partial monomial matrix is a square matrix that has at most one nonzero
entry in each row and each column. It is additionally a monomial matrix if
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it has exactly one nonzero entry in each row and each column.1 Every partial
monomial matrix can be written as the product of a permutation matrix and
a diagonal matrix, with this factorization unique if the matrix is monomial.
Equally well, every partial monomial matrix can be written as the product of a
diagonal matrix and a permutation matrix, again uniquely when the matrix is
monomial.

(6.6). Lemma. For the partial monomial matrix P ∈ Matn(D), the following
are equivalent:

(1) P is invertible.

(2) P has no zero row.

(3) P has no zero column.

(4) P is monomial. 2

If a matrix is in row or column pivot form, then the corresponding pivot
locations and values form a partial monomial matrix which we call the pivot
matrix.

(6.7). Proposition. Let P ∈ Matn(D) be a partial monomial matrix.

(a) P Un(D) = {M |M is in row pivot form with pivot matrix P }.

(b) Un(D)P = {M |M is in column pivot form with pivot matrix P }.

Proof. The first part actually includes Proposition (6.2)(a) for division
rings, and the proof by elementary column operations is essentially the same.
The second part is similar, using elementary row operations. 2

(6.8). Lemma. If the matrix M ∈ Matn(D) is simultaneously in row pivot
form and in column pivot form, then the row pivot locations are the same as the
column pivot locations.

Proof. The proof is by induction on n with nothing to prove when n = 1
or M is a 0-matrix.

The leftmost nonzero column of M has exactly one nonzero entry, as other-
wise it would contain two row pivots and M would not be in row pivot form.
Delete from M that column and the row containing that pivot.

Certainly the remaining matrix is still in row pivot form. Furthermore, the
only column pivot in the deleted row must have been that of the deleted column,
since M was in column pivot form. Therefore the row and column pivots of the
new matrix are those it inherits from M , and we are done by induction. 2

(6.9). Theorem. For A ∈ Matn(D) there are U1, U2 ∈ Un(D) and a partial
monomial matrix P with A = U1PU2. Furthermore this determines P uniquely.

Proof. We first prove existence of such a factorization. The proof makes
use of a “Gaussian elimination” style algorithm:

1If this were over a ring R, we would require further that these entries be units of R.
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Initialize. j = 1; A(1) = A; label all locations in A(1) open.

Step j. If j = n+ 1, halt.

If there is no i with (i, j) open and a
(j)
i,j 6= 0,

then
ρ(j) = 0 ; tj = 1 ; A(j+1) = A(j) ;
the closed locations of A(j+1) are the closed locations of A(j) ;
j −→ j + 1 and continue to the next step;

else
ρ(j) = the largest i with (i, j) open and a

(j)
i,j 6= 0 ;

tj =
∏ρ(j)−1
i=1 ti,ρ(j)(−a

(j)
i,j (a

(j)
ρ(j),j)

−1) ;

A(j+1) = tjA
(j) ;

the closed locations of A(j+1) are the closed locations of A(j)

and the locations (ρ(j), k) for k ≥ j ;
j −→ j + 1 and continue to the next step.

In words, we scan the columns of A from left to right. At each new column, we
choose the lowest nonzero entry that is not in a row from which we have already
chosen an entry. We then use elementary rows operations to zero out all entries
in the column above the chosen one.

Claim: All nonzero entries in columns 1, . . . , j − 1 of A(j) are in
closed locations.

Proof. The proof is by induction on j with nothing to prove for
j = 1. Assume the claim is true for j.

By its construction at Step j, the only nonzero entries in column j of

A(j+1) are in closed locations. Additionally, since a
(j)
ρ(j),j was open,

all a
(j)
ρ(j),k for k < j were open as well, hence 0 by induction. But

then the various multiplications ti,ρ(j)(∗) and their product tj leave

columns 1, . . . , j−1 unchanged from A(j) to A(j+1). In particular all
locations in these columns that were nonzero, hence closed, in A(j)

remain nonzero and closed in A(j+1).

This completes the proof of the claim.

In particular, all nonzero entries in B = A(n+1) are in closed locations.
Therefore in a given row i, the only possible nonzero entries are bi,ρ−1(i) and
those to its right.

We conclude that B is in row pivot form with pivots bρ(j),j for those j with
ρ(j) 6= 0. Set V =

∏n
j=1 tj ∈ Un(D) so that V A = B. By Proposition (6.7)

there is a U ∈ Un(D) with V A = B = PU for a partial monomial matrix P .
That is, A = U1PU2 with U1 = V −1 and U2 = U both in Un(D), as desired.

Suppose U1PU2 = A = W1QW2 with Q partial monomial and W1,W2 ∈
Un(D). Then for X1 = W−1

1 U1 and X2 = W2U
−1
2 , both in Un(D), we have

X1P = C = QX2 . By Proposition (6.7) again, the matrix C is in both row pivot
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and column pivot form with respective pivot matrices P and Q. By Lemma (6.8)
we have P = Q. That is, factorizations A = U1PU2, with U1, U2 ∈ Un(D) and
P partial monomial, determine P uniquely. 2

The matrices U1 and U2 of the theorem are not in general unique (think of
the case A = I), but see Problem (6.39) below.

The P of the theorem is then the partial monomial form pmon(A) of the
matrix A. When A and P are invertible (as in Lemma (6.6)) we also write
mon(A) for P , the monomial form of A. The matrix pmon(A) can always be
written as H1J and JH2 with H1 and H2 uniquely determined diagonal matrices
(the same, up to a permutation of the diagonal entries) and a permutation
matrix J . When A is invertible, J is uniquely determined as the permutation
matrix πσ for σ = ρ−1, where ρ is the permutation constructed during the proof
of the theorem.

(6.10). Theorem. Let A ∈ Matn(D). The following are equivalent:

(1) A ∈ GLn(D).

(2) pmon(A) ∈ GLn(D).

(3) A is left invertible.

(4) RS(A) = DD
1,n.

(5) A is right invertible.

(6) CS(A) = Dn,1
D .

Proof. Clearly (1) implies (3) and (5). Also (3) and (4) are equivalent as
RS(A) = DD

1,n if and only if there exists an X with XA = I, since the rows of
X give the coefficients needed to write the canonical basis elements for DD

1,n

as linear combinations of the rows of A. Similarly (5) and (6) are equivalent.
Let P = pmon(A) with A = U1PU2 for U1, U2 ∈ Un(D). If A is invertible,

then P−1 = U2A
−1U1. If P is invertible, then A−1 = U−1

2 P−1U−1
1 . Therefore

(1) and (2) are equivalent.
It remains to prove that (3) and (5) imply (2). Suppose

X1QX2 · Y1RY2 = I ,

withX1, X2, Y1, Y2 ∈ Un(D) andQ,R partial monomial matrices. ThenQWR =
Z , with W = X2Y1 and Z = X−1

1 Y −1
2 both invertible. Therefore partial mono-

mial Q has no zero row and so by Lemma (6.6) is invertible, and similarly partial
monomial R has no zero column and so is invertible. 2

(6.11). Corollary. Let A,B ∈ GLn(D). Then AB is invertible if and only
if A and B are invertible.

Proof. If A and B are invertible then (AB)−1 = B−1A−1. If X is the
inverse of AB, then XA is a left inverse for B and BX is a right inverse for A.

2

The following technical lemma is the basis for our verification of the Bruhat
Decomposition in the next theorem and of the Dieudonné determinant in the
next section.
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(6.12). Lemma. Let W ∈ Sym(n), U ∈ Un(D), and J = (j, j + 1) ∈ Sym(n)
(where we identify Sym(n) with the permutation matrices of GLn(D) ). Then

mon(WUJ) =

{
WJ or

Whj(b)hj+1(−b−1) for some nonzero b ∈ D .

Proof. Let kW = j and lW = j + 1.
The matrix A = WU is in row pivot form with mon(A) = W . Then in

AJ = WUJ we have switched columns j and j + 1 and left all else unchanged.
In particular ai,iW remains a row pivot as long as (i, iW ) is not (k, j) or (l, j+1).
Therefore we expect pivots for rows {k, l} ultimately to be in columns {j, j+1}.
That is, appropriate elementary operations should reveal mon(AJ) as WH or
WJH for some H = hj(b)hj+1(c). The precise verification remains.

First suppose that k < l so that in rows k and l of A we have

A{k,l},∗ =

(
0 · · · 0 1 a ∗ · · · ∗
0 · · · 0 0 1 ∗ · · · ∗

)
with

W{k,l},∗ =

(
0 · · · 0 1 0 0 · · · 0
0 · · · 0 0 1 0 · · · 0

)
.

Here we have separated the columns j and j + 1 from the others.
Therefore

(AJ){k,l},∗ =

(
0 · · · 0 a 1 ∗ · · · ∗
0 · · · 0 1 0 ∗ · · · ∗

)
,

and for U1 = tk,l(−a)

(U1AJ){k,l},∗ =

(
0 · · · 0 0 1 ∗ · · · ∗
0 · · · 0 1 0 ∗ · · · ∗

)
.

Thus U1(WUJ) = U1AJ = WJU2, for some U2 ∈ Un(D). That is,

mon(WUJ) = mon(U1WUJ) = mon(WJU2) = WJ ,

one of the stated conclusions.
Next we suppose l < k so that

W{l,k},∗ =

(
0 · · · 0 0 1 0 · · · 0
0 · · · 0 1 0 0 · · · 0

)
with

A{l,k},∗ =

(
0 · · · 0 0 1 ∗ · · · ∗
0 · · · 0 1 b ∗ · · · ∗

)
and

(AJ){l,k},∗ =

(
0 · · · 0 1 0 ∗ · · · ∗
0 · · · 0 b 1 ∗ · · · ∗

)
.
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If b happens to be equal to 0, then AJ = WJU2 for some U2 ∈ Un(D), so
that mon(WUJ) = mon(AJ) = WJ again. Therefore it remains to consider
the case b 6= 0. Let U1 = tl,k(−b−1) so that

(U1AJ){l,k},∗ =

(
0 · · · 0 0 −b−1 ∗ · · · ∗
0 · · · 0 b 1 ∗ · · · ∗

)
=

(
0 · · · 0 0 1 ∗ · · · ∗
0 · · · 0 1 −b ∗ · · · ∗

)
hj(b)hj+1(−b−1) .

As the group of diagonal matrices normalizes Un(D), this gives

U1AJ = (WU2)hj(b)hj+1(−b−1) = Whj(b)hj+1(−b−1)U3 ,

for U2, U3 ∈ Un(D). Therefore

mon(WUJ) = mon(AJ) = mon(U1AJ) = Whj(b)hj+1(−b−1) ,

the second of our two possibilities. 2

(6.13). Theorem. (Bruhat decomposition)
Let D be a division ring. Set G = GLn(D), U = Un(D), and H = Hn(D).

Next let B = HU = UH. Finally let N be the subgroup of all monomial
matrices in G so that its subset S = { sj = (j, j + i) | 1 ≤ j ≤ n− 1 } generates
W = Sym(n), which we identify with the subgroup of all permutation matrices
in G.

(a) (BN1) G = BNB and H = B ∩N �N .

(b) (BN2) N/H 'W = 〈S〉 and s2 = 1 6= s for each s ∈ S.

(c) (BN3) For w ∈W and s ∈ S we have BwB.BsB ⊆ BwB ∪BwsB.

(d) (BN4) For each s ∈ S we have sBs 6= B.

Proof.

(a) Certainly H = B ∩ N � N . As B = HU = UH, also G = UNU = BNB
by Theorem (6.9).

(b) We have seen this before. For instance, it is a consequence of Theorem
(5.2)(b).

(c) By Lemma (6.12)
wUs ⊆ UwHU ∪ UwsU .

As B = HU = UH,

BwUsB ⊆ BwB ∪BwsB .

Also H �N , so Bw ≥ Hw = wH and BwU = BwB. Therefore

BwB.BsB = BwBsB ⊆ BwB ∪BwsB .
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(d) We have sHs = H but sUs 6= U . For instance tj,j+1(a)(j,j+1) = tj+1,j(a).
That is, (

0 1
1 0

)(
1 a
0 1

)(
0 1
1 0

)
=

(
1 0
a 1

)
. 2

6.3 The Dieudonné determinant

For the division ring D, let D′ = [D,D] be the derived subgroup of the multi-
plicative subgroup of D and let D̄ be the commutative monoid whose elements
are the orbits d̄ = dD′ for d ∈ D with multiplication given by

d̄ē = (dD′)(eD′) = (de)D′ = de

That is, D̄ is the abelian group D/D′ extended to a monoid by adjoining the
element 0̄ and declaring 0̄d̄ = 0̄ = 0̄d̄ for all d̄. As D is a division ring, D̄ has
no nonzero zero divisors.

Following Dieudonné, we shall define a map

Ddet : Matn(D) −→ D̄ ,

the Dieudonné determinant. In this section we will prove:

(6.14). Theorem. The map Ddet is a surjective multiplicative homomor-
phism from Matn(D) to D̄ with Ddet(A) 6= 0̄ if and only if A ∈ GLn(D). If D
is a field, then Ddet = det, the usual determinant.

We define Ddet in three stages:

(i) For the diagonal matrix H with diagonal entries hi, for 1 ≤ i ≤ n, we set
Ddet(H) = (

∏n
i=1 hi)D

′ =
∏n
i=1 h̄i.

(ii) For the partial monomial matrix N = PH with P a permutation matrix
and H a diagonal matrix, we set Ddet(N) = sgn(P ) Ddet(H).

(iii) For arbitrary A ∈ Matn(D), we set Ddet(A) = Ddet(pmon(A)).

This is well-defined by Theorem (6.9) with justification only needed for Ddet(N).
In that case, the factorization N = PH is unique as long as N is invertible.
For noninvertible N there can be more than one factorization P1H1 = N =
P2H2; however H1 = H2 contains at least one diagonal entry 0, so Ddet(N) =
sgn(P1) Ddet(H1) = sgn(P2) Ddet(H2) = 0̄, independent of the signs of P1 and
P2.

We instead could have used any factorization N = KP of partial monomial
N , since in that case K = PHP−1 = HP−1

is a diagonal matrix with the same
diagonal entries as H, only permuted using P . In particular

Ddet(K) =

n∏
j=1

kjD
′ =

n∏
j=1

hjPD
′ =

n∏
i=1

hiD
′ = Ddet(H) .
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Several parts of Theorem (6.14) are immediate. Purely as a map Ddet is
surjective since the diagonal matrix H with h1,1 = d and hi,i = 1 for i ≥ 2 has
Ddet(H) = d̄. Over fields D the determinant of a unitriangular matrix is 1; so

det(A) = det(pmon(A)) = Ddet(pmon(A)) = Ddet(A)

always, and Ddet recovers the usual determinant.
Invertibility is easy to verify.

(6.15). Lemma. The matrix A ∈ Matn(D) is noninvertible if and only if
Ddet(A) = 0̄. In particular, Ddet(AB) = 0̄ if and only if Ddet(A) = 0̄ or
Ddet(B) = 0̄.

Proof. By Theorem (6.10) the noninvertible matrices A are precisely those
with pmon(A) = PH for P a permutation and H a diagonal matrix having at
least one 0 on its diagonal. That is, A is noninvertible if and only if Ddet(A) = 0̄.
The rest follows from Corollary (6.11). 2

To complete our proof of the theorem, we are reduced to showing that Ddet is
a multiplicative homomorphism. By the lemma we need only consider GLn(D).
As a starting point, we handle some easy cases.

(6.16). Lemma.

(a) If U ∈ Un(D), then Ddet(AU) = Ddet(UA) = Ddet(A).

(b) If H ∈ Hn(D), then Ddet(AH) = Ddet(HA) = Ddet(A) Ddet(H).

Proof.

(a) This is immediate as pmon(AU) = pmon(UA) = pmon(A).

(b) Let A = U1PKU2 with U1, U2 ∈ Un(D), P a permutation matrix, and
K diagonal. As Hn(D) normalizes Un(D), we have AH = U1PKU2H =
U1PKHU3 for some U3 ∈ Un(D); so pmon(AH) = PKH and

Ddet(AH) = Ddet(PKH) = sgn(P )

n∏
i=1

kihiD
′

= sgn(P )

n∏
i=1

kiD
′
n∏
i=1

hiD
′ = Ddet(A) Ddet(H) .

Similarly HA = HU1PKU2 = U4HPKU2 so that pmon(HA) = HPK =
PHPK and

Ddet(HA) = Ddet(PHPK) = Ddet(P ) Ddet(HP ) Ddet(K)

= Ddet(P ) Ddet(H) Ddet(K) = Ddet(A) Ddet(H)

by the previous calculation (used several times). 2
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(6.17). Theorem. We have Ddet(A) Ddet(B) = Ddet(AB) for all A,B ∈
GLn(D). In particular the map Ddet: GLn(D) −→ D/D′ is a surjective homo-
morphism from GLn(D) onto the abelian group D/D′.

Proof. By Theorem (6.9) we may write A = U1HWU2 and B = V1TKV2

for U1, U2, V1, V2 ∈ Un(D), H,K ∈ Hn(D), and W,T ∈ Sym(n) (identified with
permutation matrices).

Write T =
∏m
i=1 Ji, where each Ji is one of the transpositions (j, j+ 1) with

1 ≤ j ≤ n − 1. In particular Ddet(T ) = sgn(T ) = (−1)m. Our proof is by
induction on m, the case m = 0 being contained in the previous lemma. By
that lemma, we also have:

Ddet(A) = Ddet(U1HWU2) = Ddet(H)sgn(W )

Ddet(B) = Ddet(V1TKV2) = sgn(T ) Ddet(K)

Ddet(AB) = Ddet(U1HWU2V1TKV2) = Ddet(H) Ddet(WUT ) Ddet(K)

for U = U2V1 ∈ Un(D). Therefore to prove Ddet(A) Ddet(B) = Ddet(AB) we
must verify

Ddet(WUT ) = sgn(W )sgn(T ) .

Assume m ≥ 1 and write WUT = WUJ
∏m
i=2 Ji for J = J1 = (j, j + 1).

Then by Lemma (6.12) we have

WUJ = U3WJU4 or WUJ = U3Whj(b)hj+1(−b−1)U4

for some U3, U4 ∈ Un(D) and some 0 6= b ∈ D.
In these two cases the previous lemma gives, respectively,

Ddet(WUJ) = Ddet(U3WJU4) = Ddet(WJ) = −sgn(W )

and

Ddet(WUJ) = Ddet(U3Whj(b)hj+1(−b−1)U4)

= Ddet(W )b̄(−b−1) = −sgn(W ) .

That is, in both cases WUJ is a matrix C with Ddet(C) = −sgn(W ).
Now by induction

Ddet(WUT ) = Ddet(WU

m∏
i=1

Ji) = Ddet(WU(J

m∏
i=2

Ji))

= Ddet(C

m∏
i=2

Ji) = Ddet(C) Ddet(

m∏
i=2

Ji)

= −sgn(W )(−1)m−1 = sgn(W )sgn(T ) ,

as desired. 2

We let SLn(D) denote the kernel of the Dieudonné determinant, the special
linear group.2

2This notation and terminology are not used uniformly in the literature; see Hahn and
O’Meara [HaO89, p. 84].
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6.4 (B,N)-pairs

The pair of subgroups B and N of the group G is a (B,N)-pair provided:

(BN1) 〈B,N〉 = G and H = B ∩N �N .

(BN2) N/H = W = 〈S〉 and s2 = 1 6= s for each s ∈ S.

(BN3) For w ∈W and s ∈ S we have BwB.BsB ⊆ BwB ∪BwsB.

(BN4) For each s ∈ S we have sBs 6= B.

This is an important unifying concept (due to Tits), since many of the classical
and Lie type groups possess a (B,N)-pair. We already saw in Theorem (6.13)
that G = GLn(D) is a group with a (B,N)-pair consisting of B, the upper
triangular subgroup, and N , the monomial subgroup. We shall find below in
Theorem (6.30) that its normal subgroup SLn(D) does as well.

The subgroup B of G is a Borel subgroup of G. The subgroup H is a Cartan
subgroup, and the quotient W = N/H is the Weyl group of G. These terms
are usually extended to include any G-conjugates of B and H. The subgroup
N does not seem to have a common name. Note that the generating subset S
of W is part of the data required to define a (B,N)-pair. When we need to
emphasize the specific generating set S being considered, we may write PS in
place of G; see Lemma (6.19) and the remarks that follow it.

The (BN) axioms, as presented above, vary somewhat from the properties
seen under Theorem (6.13). The most significant variance is that the group W
is not required to be a subgroup of G but is instead defined to be the section
N/H, where by (BN1) the subgroup H, now defined as B ∩ N , is normal in
N . This also means that we have abused notation under (BN3) and (BN4) by
writing elements w, s of W as though they belong to G. In both places this is
unambiguous since the elements of W are actually cosets of the normal subgroup
H in N whereas the subgroup B contains H. The distinction is important. In
particular in Theorem (6.30), where we see that the Dieudonné kernel SLn(D)
inherits a (B,N)-pair B0, N0 from GLn(D), it is not always the case that the
extension of H0 by W splits within N0; see Problem (6.40).

As we shall see, the axiom (BN3) is very powerful. The double coset product
BxB.ByB = BxByB is always a union of double cosets, one of them clearly
being BxyB. We saw in Problem (2.39) that the product is always this one
coset if and only if the subgroup B is normal. Axiom (BN3) then says that a
significant portion of the time, the double coset product includes at most one
further coset.

Axiom (BN3) appears to say more about right multiplication by members
of S than left. However when we invert (BN3) and set u = w−1 we find an
equivalent and lefthanded version:

(BN3−1) For u ∈W and s ∈ S we have BsB.BuB ⊆ BuB ∪BsuB.

Although (BN4) is usually presented in the form given here, there are at
least two alternative and equivalent formulations (given (BN2) and (BN3))
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that are of interest:

(BN4′) For each s ∈ S we have s−1Bs 6= B.

(BN4′′) For each s ∈ S we have BsB.BsB = B ∪BsB.

Both of these state emphatically that B is not normal in G. Were B to be
normal, then we would always have sBs = s−1Bs = B and BsB.BsB = B with
G/N = BN/B ' N/B ∩N = W .

(6.18). Lemma. Let B and N form a (B,N)-pair in G.

(a) If K = kerG(B), the core of B in G, then B/K and NK/K form a (B,N)-
pair in G/K.

(b) For arbitrary K, the subgroups K × B and K × N form a (B,N)-pair in
K ×G. 2

The last change from Theorem (6.13) to here is in (BN1) where G = BNB
has been weakened to G = 〈B,N〉; however:

(6.19). Lemma. Let B and N form a (B,N)-pair in G.

(a) G = BNB.

(b) For the subset T of S set WT = 〈T 〉 ≤W and then let NT be the preimage
of WT in N and PT = BNTB. Then PT is a subgroup of G within which
B and NT form a (B,N)-pair.

Proof. The first part follows from the second, since PS = BNSB = BNB
is then a subgroup of G that contains the generating set {B,N}.

The double coset union BNTB is nonempty as it contains B; it is closed
under multiplication by (BN3) and induction; and it is closed under inverses as
BtB = (BtB)−1 for all t ∈ T . Therefore PT is a subgroup, and all PT contain
B = P∅. The (B,N)-pair axioms for PT follow directly from those for G. 2

The subgroups PT of the lemma are the parabolic subgroups containing B,
with the conjugates P gT being the parabolic subgroups containing the Borel
subgroup Bg. In Theorem (6.26) below we shall find various properties of the
parabolic subgroups including their characterization as the only subgroups of G
containing a Borel subgroup. Observe that B = P∅ and G = PS (as promised
above).

Throughout the rest of this section we will consider a specific nontrivial
group G with (B,N)-pair as given above.

In the Weyl group W generated by the elements of S, we define the length
`S(w) (sometimes just `(w)) of the element w to be the minimal m with w =∏m
i=1 si for si ∈ S. For instance `S(1) = 0 and `S(si) = 1. The length function

has already made a cameo appearance in our proof of Theorem (6.17).

(6.20). Lemma. If w, u ∈W with BwB = BuB then w = u.
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Proof. Assume `(w) ≤ `(u). We induct on `(w). If this is 0, then w = 1W
and B = BwB = BuB. A coset representative nu then belongs to B ∩N = H,
so also u = 1W .

Now assume `(w) ≥ 1 and write w = vs with `(v) = `(w) − 1 and s ∈ S.
Then

BvB ⊆ BwBsB = BuBsB ⊆ BuB ∪BusB

by (BN3). That is, the double coset BvB is either BuB or BusB. By induction
either v = u or v = us. We cannot have v = u as

`(v) = `(w)− 1 < `(u) .

Therefore v = us, which is to say w = vs = (us)s = u, as desired. 2

(6.21). Proposition. Let w ∈W and s ∈ S.

(a) If `(ws) ≥ `(w) then BwB.BsB = BwsB.

(b) If `(ws) ≤ `(w) then BwB.BsB = BwB ∪BwsB.

Proof. Let w =
∏m
i=1 si with m = `(w) and all si in S.

(a) We use induction on m, the case m = 0 being clear. Assume m ≥ 1,
then set r = s1 and u =

∏m
i=2 si so that w = ru with `(u) = m− 1.

We cannot have `(us) < `(u) = m− 1 as then we would also have

`(ws) = `(rus) ≤ m− 1 < m = `(w) ,

which is not the case by hypothesis. Therefore `(us) ≥ `(u) = m − 1, so by
induction BuBsB = BusB hence uBs ⊆ BusB. Thus by (BN3−1)

BwBsB = Br(uBs)B ⊆ BrBusB ⊆ BrusB ∪BusB = BwsB ∪BusB .

On the other hand, by (BN3)

BwBsB ⊆ BwB ∪BwsB .

Suppose BwBsB ∩ BwB 6= ∅ (that is, BwBsB ⊇ BwB). Then we must have
BwB = BwsB or BwB = BusB. Lemma (6.20) tells us that w = ws or
w = us, the first clearly false as s 6= 1 by (BN2). On the other hand, if w = us,
then ws = u, and

`(ws) = `(u) = m− 1 < m = `(w) ,

against hypothesis. We conclude that BwBsB ∩ BwB = ∅ and so BwBsB =
BwsB.

(b) Here m = 0 is not possible. We now set s = sm and v =
∏m−1
i=1 si so

that w = vs with `(v) = m− 1.
By (BN4′′) BsBsB∩BsB 6= ∅, hence sBs∩BsB 6= ∅ and vsBs∩vBsB 6= ∅;

so indeed
BvsBsB ∩BvBsB = BwBsB ∩BvBsB 6= ∅ .
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As w = vs,
`(vs) = `(w) = m > m− 1 = `(v) ;

so by (a), BvBsB = BvsB = BwB meets BwBsB nontrivially, hence is con-
tained in BwBsB. 2

(6.22). Corollary. For w ∈W and s ∈ S, we have `(ws) = `(w)± 1.

Proof. As (ws)s = w, also `(w)−1 ≤ `(ws) ≤ `(w)+1. By the Proposition
we cannot have `(w) = `(ws). 2

Recall that s is a coset of H in G.

(6.23). Corollary. If `(ws) < `(w) then s ⊆ Bw−1BwB.

Proof. We have wBs ∩ BwB 6= ∅, so Bs ∩ w−1BwB 6= ∅ hence s ⊆
Bw−1BwB. 2

(6.24). Proposition.
Let w =

∏m
i=1 si with m = `S(w), and set T = { si | 1 ≤ i ≤ m }. (Note that

we may have |T | < m.) Then 〈B,Bw〉 = 〈B,w〉 = PT .

Proof. Set s = sm and v =
∏m−1
i=1 si so that w = vs and ws = v with

`(v) = m− 1.
By induction s1, . . . , sm−1 ⊆ 〈B,Bv〉, so

PT = 〈B, s1, . . . , sm−1, sm〉 ≤ 〈B,Bv, s〉 .

As `(ws) = `(v) = m− 1 < m = `(w), by Corollary (6.23)

s ⊆ Bw−1BwB ⊆ 〈B,Bw〉 .

Therefore as v = ws

PT ≤ 〈B,Bv, s〉 ≤ 〈B,Bw〉 ≤ 〈B,w〉 ≤ PT ,

and we have equality throughout. 2

(6.25). Corollary. If w ∈ W with w =
∏`S(w)
i=1 si and w ⊆ PT then si ∈ T

for all i. In particular `T (w) = `S(w), and for s ∈ S we have s ⊆ PT if and
only if s ∈ T .

Proof. As T ⊆ S we must have `T (w) ≤ `S(w). Write w =
∏`S(w)
i=1 si with

S0 = { si | 1 ≤ i ≤ `S(w) } ⊆ S and w =
∏`T (w)
j=1 tj for T0 = { tj | 1 ≤ j ≤

`T (w) } ⊆ T . Then by the proposition applied within G = PS , we have

〈B,w〉 = PS0 =
⋃

h∈WS0

BhB .

On the other hand, the parabolic subgroup PT also has a (B,N)-pair by Lemma
(6.19)(b), and applied within PT the proposition gives

〈B,w〉 = PT0 =
⋃

k∈(WT )T0

BkB =
⋃

k∈WT0

BkB .
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In particular, for every si ∈ S0, we have

BsiB ⊆
⋃

k∈WT0

BkB .

By Lemma (6.20) we must have si ∈WT0
for all i.

Now write si =
∏`T (si)
l=1 rl with rl ∈ T . Then by the proposition again (in

PT and in G)
BrlB ⊆ 〈B, r1, . . . 〉 = 〈B, si〉 = B ∪BsiB .

Lemma (6.20) also applies again, now telling us that `T (si) = 1 and si = r1 ∈ T .
We conclude that any minimal S-factorization of w ∈ PT is in fact a minimal

T -factorization. Especially `T (w) = `S(w). 2

(6.26). Theorem.

(a) If B ≤ P ≤ G, then there is a T ⊆ S with P = PT .

(b) The maps T 7→WT and T 7→ PT give isomorphisms of the lattice of subsets
of S with, respectively, the lattice of subgroups of W generated by subsets of
S and the lattice of subgroups P of G with B ≤ P ≤ G.

Proof. (a) Let B ≤ P ≤ G so that P =
⋃
u∈U BuB for some subset U of

W . As P is a subgroup of G, we have U−1 = U and 1 ∈ U . Furthermore, for
all u, v ∈ U with have BuvB ⊆ BuB.BvB ⊆ P ; so U is a subgroup of W .

For each u ∈ U write u =
∏`(u)
i=1 su,i. Then set Su = { su,i | 1 ≤ i ≤ `(u) }

and T =
⋃
u∈U Su. From Proposition (6.24) we learn

PT ≥ P =
⋃
u∈U

BuB = 〈B, u | u ∈ U 〉 = 〈PSu | u ∈ U 〉 = PT .

That is, P = PT and U = WT .
(b) By Lemma (6.19) and Corollary (6.25) the map WT 7→ PT = BWTB is

a lattice isomorphism. By definition PR∪T = 〈PR, PT 〉, and certainly PR∩T ≤
PR ∩ PT . But if w ∈ PR ∩ PT , then w ∈ PR and w ∈ PT , again by Corollary
(6.25). Thus we have in turn a lattice isomorphism T 7→ PT of the set of subsets
of S with the set of parabolic subgroups containing B. 2

(6.27). Theorem. Assume that S is indecomposable; that is, it is not possible
to write S as the disjoint union of two nonempty subsets S1 and S2 for which
(s1s2)2 = 1 for all s1 ∈ S1 and s2 ∈ S2. If X �G then either X ≤ kerG(B) or
G = BX.

Proof. By Theorem (6.26) the subgroup BX is PT for some T ⊆ S. Here
T ⊇ { t ∈ S | BtB ∩ X 6= ∅ } by Corollary (6.25). Indeed we have equality
since PT = BX = BXB implies that every t ∈ T is represented in NT by some
nt ∈ X. We have T = ∅ if and only if X ≤ kerG(B). Assume this is not the
case.
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Let t ∈ T and s ∈ S with (st)2 6= 1. By Corollary (6.25) `{s,t}(w) = `S(w)
for all w in the nonabelian dihedral group P{s,t} = 〈s, t〉. Especially

3 = `S(sts) > `S(st) > `S(s) = 1 .

Let ns be a representative for s in N = NS . As X is normal in G we have
n−1
s ntns ∈ X hence Bn−1

s ntnsB = BstsB ≤ PT . Thus sts ⊆ PT and `(sts) =
3, so Corollary (6.25) give s ∈ T . Indecomposability of S now forces T = S,
hence BX = PT = PS = G, as claimed. 2

A frequent application of this is the following:

(6.28). Corollary. Assume that S is indecomposable. If G is perfect and
B is solvable, then G/ kerG(B) is simple.

Proof. By the theorem, any normal X not contained in kerG(B) has G =
BX. Then G/X = BX/X ' B/B ∩X, which is solvable. As G is perfect, we
conclude B/B ∩X = 1 hence G = X. Therefore G/ kerG(B) is simple. 2

6.5 Simplicity

Let Rn(D) be the subgroup of nonzero scalar matrices in GLn(D). Next Zn(D)
consists of those nonzero scalar matrices whose diagonal entries are from the
center of D. The projective special linear group PSLn(D) over the division ring
D is then SLn(D)/Zn(D) ∩ SLn(D).

In this section we prove

(6.29). Theorem. Let D be a division ring and n ≥ 2 such that (n, |D|) 6=
(2, 2), (2, 3). Then all proper normal subgroups of SLn(D) are contained in
Zn(D). Especially PSLn(D) is simple provided (n, |D|) 6= (2, 2), (2, 3).

The two excluded cases are genuine exceptions with PSL2(F2) ' Sym(3) and
PSL2(F3) ' Alt(4); see Corollary (7.10).

(6.30). Theorem. Let D be a division ring and n ≥ 2. Set G0 = SLn(D),
U = Un(D), and H0 = Hn(D) ∩G0. Next let B0 = H0U = UH0 and N0 be the
subgroup of all monomial matrices having Dieudonné determinant 1̄. Finally
set S = { sj = (j, j + i) | 1 ≤ j ≤ n − 1 } ⊆ Sym(n) = W , which we identify
with the quotient N0/H0. Then B0 and N0 form a (B,N)-pair in the group G0

with the same Weyl group W = 〈S〉 ' Sym(n).

Proof. This should be compared with the proof of Theorem (6.13).
Certainly H0 = B0 ∩ N0 � N0. By Theorem (6.9) GLn(D) = UNU . Since

each element u of U has Ddet(u) = 1̄, those matrices with Dieudonné determi-
nant 1̄ are precisely those of UN0U = B0N0B0, so we have (BN1).

Again (BN2) is a known property from Theorem (5.2)(b) for the symmetric
group. Within GLn(D) we have N = N0H, so that coset representatives for ele-
ments of W can always be chosen from N0. To prove (BN4) of Theorem (6.13)
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we noted that sjUsj 6= U , and with a suitable choice of coset representative for
sj in N0 (say (j, j + 1)hj(−1)) this remains true in G0.

It remains to check (BN3). By Lemma (6.12)

wUs ⊆ UwHU ∪ UwsU

in GLn(D). Multiplying by H0 we get

wB0s ⊆ B0wHU ∪B0wsB0 ,

at which point we can choose our coset representatives for w, s, and ws all
within N0. As everything else then has Dieudonné determinant 1̄, this becomes

wB0s ⊆ B0wH0U ∪B0wsB0 ,

hence
B0wB0.B0sB0 = B0wB0sB0 ⊆ B0wB0 ∪B0wsB0 ,

as desired. 2

It must be emphasized that the Weyl group Sym(n) is given as a section of
SLn(D), not a subgroup. The transpositions (j, j + 1) are not in SLn(D). The
coset representatives (j, j + 1)hj(−1) generate a supplement to H0 = Hn(D) ∩
SLn(D) in N0, but the extension does not always split (see Problem (6.40)).

(6.31). Lemma. For n ≥ 2 and B0 as in Theorem (6.30) the core kerSLn(D)(B0)
is equal to Zn(D) ∩ SLn(D).

Proof. The Whitehead Lemma (6.4)(d) shows that any subgroup of B0

(indeed of B) that is normalized by SLn(D) must consist of scalar matrices. If
the scalar u is not central, then Lemma (6.4)(f) with u = v and a an element
of D not commuting with u tells us that the matrix uI does not belong to a
normal subgroup of diagonal matrices. On the other hand, the subgroup Zn(D)
is indeed normal in GLn(D). 2

(6.32). Proposition. For n ≥ 2, SLn(D) is the normal closure of Un(D) in
SLn(D).

Proof. By the Whitehead Lemma (6.4)(d) the subgroup U−n (D) of lower
unitriangular matrices is in the normal closure of U = U+

n (D) = Un(D) in
SLn(D). Therefore by Lemma (6.4)(a,b,c) the normal closure also contains
generators for N0, the subgroup of monomial matrices with Dieudonné determi-
nant 1̄. Theorem (6.30) and (BN1) then tell us that the normal closure contains
〈U,N0〉 = 〈B0, N0〉 = SLn(D), as desired. 2

(6.33). Proposition. For n ≥ 2, SLn(D) = SLn(D)
′

= GLn(D)
′

provided
(n, |D|) 6= (2, 2), (2, 3).

Proof. For n ≥ 3, this is immediate by the previous proposition, Lemma
(6.1)(b), and Proposition (6.5). For n = 2, let b be arbitrary in D and choose
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u ∈ D that commutes with b but u 6∈ {0, 1,−1}. If b is not in Z(D), the center of
the division ring, then we can choose u = b. If b is in the center then everything
commutes with b, and we only need an element u of D that is not 0, 1, or −1.
As long as |D| > 3, such u exist.

Then, for a = b(u2 − 1)−1, by the Whitehead Lemma (6.4)(f)(
1 b
0 1

)
=

(
1 −a+ uau
0 1

)
=

[(
1 a
0 1

)
,

(
u−1 0

0 u

)]
Therefore U2(D) ≤ SL2(D)

′
provided |D| > 3. The previous proposition then

shows that SL2(D) = SL2(D)
′
. 2

Proof of Theorem (6.29).
Let G0 = SLn(D), and let X be a normal subgroup of G0 not contained in

kerG0
(B0) ≤ Zn(D) (using Lemma (6.31)).

By Theorem (6.30) the subgroups B0 and N0 form a (B,N)-pair in G0, so
by Theorem (6.27) we have G0 = B0X. As U � B0, we then find UX � G0.
But G0 is the normal closure of U within G0 by Proposition (6.32). Therefore
G0 = UX, and G0/X = UX/X ' U/U∩X, a nilpotent hence solvable group by
Proposition (6.3). By Proposition (6.33) the group G0 = G′0 is perfect provided
(n, |D|) 6= (2, 2), (2, 3). In those cases we must have G0/X trivial hence G0 = X.
That is, any normal subgroup of G0 not contained in kerG0

(B0) is all of G0. In
particular G0/ kerG0

(B0) is simple. 2

6.6 Problems

(6.34). Problem. Let a and b be noncommuting elements of the division ring D.

(a) Prove that

(
1 a
b ab

)
is invertible in Mat2(D).

(b) Prove that the transpose

(
1 b
a ab

)
is not invertible in Mat2(D) but is invertible

in Mat2(Dop). Where do we define Dop?

(6.35). Problem. Let G = GL2(R), the group of 2 × 2 invertible matrices with

entries from the ring with identity R. Set B =

{(
a b
0 d

) ∣∣∣ a, d ∈ U(R)

}
and n =(

0 −1
1 0

)
. We have seen that for division rings R we have G = B ∪̇BnB. Prove

that G 6= B ∪̇BnB when R is not a division ring.

(6.36). Problem. Let R be a ring with identity. Let G ≤ Un(R) be block upper
unitriangular with k blocks. This problem outlines a proof that G is nilpotent of class
at most k − 1. In particular Un(R) itself has class n− 1.

Suppose the blocks have dimensions, respectively, d1, d2, . . . , dk, so that
∑k
i=1 dk =

n. Set d0 = 0. The “corners” of G are then the positions

C =
{

(d1, d1 + 1), (d1 + d2, d1 + d2 + 1), . . . ,

(d1 + · · ·+ di, d1 + · · ·+ di + 1), . . . ,

(d1 + · · ·+ dk−1, d1 + · · ·+ dk−1 + 1)
}
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Let U be the full block diagonal group with these corners. In a sequence of steps we
show that U is nilpotent of class k − 1. Verify the following.

(a) By Gaussian elimination U is generated by the elementary subgroups

Eij = { I + α eij | α ∈ R }

it contains. (Here eij is the standard matrix unit.) That is

U = 〈Eij | i ≤ a and b ≤ j , for some (a, b) ∈ C 〉 .

(b) For each corner (a, b) ∈ C,

Uab = 〈Eij | a ≤ i and j ≤ b 〉

is abelian and normal in U .

(c) By the previous two parts, U = 〈Uab | (a, b) ∈ C 〉 is nilpotent of class at most |C|;
and so U ≥ G, nilpotent of class at most k−1, as claimed. Hint: Problem (2.45).

(d) Set
Ii = [d0 + · · ·+ di−1, d0 + · · ·+ di + 1]

and
Eab = 〈Ei,j | i ∈ Ia, j ∈ Ib 〉 ≤ U ,

for 1 ≤ a < b ≤ k. Then [Eab, Ebc] = Eac, and so

[E1,2, E2,3, E3,4, · · · , Ek−2,k−1, Ek−1,k] = E1,k .

In particular, U is not nilpotent of class less than k− 1; so it is nilpotent of class
exactly k − 1.

(6.37). Problem. Let R be a ring with identity. For n ≤ m, we consider the group
GLn(R) as embedded in the upper lefthand corner of GLm(R):

GLn(R) '
(

GLn(R) 0
0 Im−n

)
≤ GLm(R) .

We then let the stable linear group GL(R) be the directed limit of the various GLn(R)
for n = 1, 2, 3, . . . . (so GL(R) can be thought of as N× N invertible matrices, each of
which differs from the identity matrix only in some finite dimensional upper lefthand
corner.)

Always En(R) ≤ GLn(R), and we let E(R) be the corresponding directed limit
subgroup of GL(R). Prove:

(a) En(R) = En(R)′ for n ≥ 3;

(b) GLn(R)′ ≤ E2n(R) for all n;

(c) (The Whitehead Lemma) GL(R)′ = E(R) = E(R)′.

Remark. Along the spectrum of things referred to as the Whitehead Lemma this is
probably at the top while our Lemma (6.4) is probably at the bottom. But Whitehead’s
insight here was that the simple calculations of that earlier lemma readily lead to this
important result.

The abelian group quotient GL(R)/E(R) is the Whitehead group of R and is
denoted K1(R). It is of central interest in the field of algebraic K-theory.
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(6.38). Problem. In the group E(R) of Problem (6.37) let U+(R) be the subgroup
that is the directed limit of the upper unitriangular subgroups U+

n (R). Prove that U+(R)
is a locally nilpotent group with trivial center.

(6.39). Problem. Let D be a division ring and A ∈ GLn(D) with mon(A) = HP
for diagonal H ∈ Hn(D) and permutation matrix P . Set

Un(D)P = 〈 ti,j(a) | a ∈ D , i < j , iP
−1

> jP
−1

〉 .

Prove that A = U1HPU2 with U1 ∈ Un(D), H ∈ Hn(D), P ∈ Sym(n), and U2 ∈
Un(D)P all uniquely determined.

Hint: The permutation matrix P is πρ−1 , where ρ is the permutation found while
carrying through the algorithm of our proof for Theorem (6.9). That is, P−1 = πρ; so

the condition iP
−1

> jP
−1

is equivalent to ρ(i) > ρ(j).

(6.40). Problem. Consider the group N0 of monomial matrices of (Dieudonné)
determinant 1 in GL2m(F3), and let its normal subgroup of diagonal matrices of de-
terminant 1 be H0 ' Z2m−1

2 . The quotient is then N0/H0 ' Sym(2m). Prove that
this extension is nonsplit.
Hint: In each of N0 and the split extension H0 o Sym(2m) (with the same action),
let A be the preimage of the subgroup 〈(1, 2)〉 ×Alt(3, . . . , 2m) of Sym(2m), and let S
be the preimage of the subgroup 〈(1, 2)〉. Thus the normal subgroup H0 has index 2 in
S which is itself normal in A. Consider the action of A on the elements of order 2 in
the coset S \H0.

(6.41). Problem. Let A =

(
a b
c d

)
∈ Mat2(D). Calculate the Dieudonné

determinant of A.

(6.42). Problem. It B and N form a (B,N)-pair in the group G, prove that Z(G)
is contained in the core of B.



Chapter 7
Linear transformations

We often consider a matrix ring or group in terms of action on its natural
module. Rings and groups of linear transformations provide the appropriate
level of generality.

Many of the arguments are reminiscent of earlier arguments about the sym-
metric and alternating groups but are usually somewhat more difficult.

7.1 The dual space

For V a D-vector space, the dual space V ∗ is HomD(V,D). Under pointwise
action it is an abelian group. Indeed, assuming V is a left D-space, the dual V ∗

is a right D-vector space with operations given by

v(λ+ µ) = vλ+ vµ and v(λ.k) = (vλ)k ,

for all λ, µ ∈ V ∗, v ∈ V , and k ∈ D. The dual of a right D-space is in turn a
left D-space.

(7.1). Lemma. Let V be a D-space with basis { vi | i ∈ I }. For λ ∈ V ∗, set
λi = vλ. Then, for each v =

∑
i∈I aivi ∈ V , we have vλ =

∑
i∈I aiλi. Indeed,

the map λ 7→ (λi)i∈I is an isomorphism of V ∗ and
∏
i∈I D as right D-spaces.

Proof. We have

vλ =

(∑
i∈I

aivi

)
λ =

∑
i∈I

ai(viλ) =
∑
i∈I

aiλi .

The map is directly checked to be a right D-space injection. Conversely, for any
(λi)i∈I ∈

∏
i∈I D, (∑

i∈I
aivi

)
λ =

∑
i∈I

aiλi

defines a member λ of V ∗, since all but a finite number of the ai equal 0. 2

91
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(7.2). Corollary. If V is finite dimensional, then

dim(V ∗D) = dimD(V ∗D) = dimD(DV ) = dim(DV ) .

In any event |V ∗| = |D|dimD(V ). 2

While V is a direct product of |I| copies of D, the dual V ∗ is a cartesian
product of |I| copies of D. For infinite I, we therefore expect the dual to bigger
than the original space; and this is indeed the case. Especially, if V is finite
dimensional as left D-space, then V ∗ has the same dimension as right D-space.

(7.3). Proposition. Let V be infinite dimensional over the division ring D.

(a) |V | = max(dimD(V ), |D|).

(b) If D is a field, then dimD(V ∗) = |D|dimD(V ) > dimD(V ).

(c) dimD(V ∗) > dimD(V ).

(d) dimD(V ∗) = |D|dimD(V ) > dimD(V ).

Proof.
2

On the other hand, for finite |I| the dimensions of V and V ∗ are equal.
Nevertheless there is no canonical isomorphism of V and V ∗, a fact most easily
appreciated by remembering that V is a left D-space while V ∗ is a right D-space.

With each basis B = { vi | i ∈ I } of V , we can associate a nice subset
B∗ = { v∗i | i ∈ I } of V ∗, given by

vi.v
∗
i = 1 and vj .v

∗
i = 0 for i 6= j .

The dual set B∗ is always linearly independent. In particular, for finite I, it is
a basis of V ∗, the dual basis to B.

In the proof of Proposition (7.3), we have used the fact that there is lit-
tle difference in properties between right D-spaces and left D-spaces. In par-
ticular, if W is a right D-space, then we may equally well consider its dual
HomD(W,D) = W ∗ (which perhaps should be ∗W ). Similar properties hold
but with right and left reversed, so W ∗ is now naturally a left D-space. It is
then natural to consider the double dual of V , the left D-space V ∗∗ = (V ∗)∗.
Here there is a canonical embedding.

(7.4). Lemma. V is isomorphic to its image in V ∗∗ under the map

v −→ v∗∗ where v∗∗(λ) = vλ ,

for all v ∈ V and λ ∈ V ∗. 2
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7.2 Matrix representation

(7.5). Proposition. Matn(R) ' Matn(Rop)
op

via transpose.

Proof.
2

(7.6). Corollary. GLn(R) ' GLn(Rop) via transpose-inverse.

The automorphism group of the division ring D acts as a group of automor-
phisms on GLn(D) via

A 7→ Aα with (Aα)i,j = (Ai,j)
α ,

for each α ∈ Aut(D). This gives the semidirect product

ΓLn(D) = Aut(D)nGLn(D) .

(7.7). Theorem. Let V be a D-space of dimension n.

(a) EndD(V ) ' Matn(D).

(b) ΓLD(V ) ' ΓLn(D).

(c) GLD(V ) ' GLn(D).

Proof. As GLn(D) is the group of units in Matn(D) and a normal subgroup
of ΓLn(D), the last part is a consequence of either one of the preceding parts.

2

(7.8). Proposition. For 0 6= r ∈ D

(a) r 7→ Rr = (1, rI) ∈ GLn(D) is an isomorphic embedding of D× as the
normal subgroup Rn(D) of GLn(D).

(b) r 7→ L(r) = (r−1, rI) ∈ ΓLn(D) is an isomorphic embedding of D× as a
normal subgroup Ln(D) of ΓLn(D).

(c) Ln(D) ∩ Rn(D) = Zn(D) consists of the nonzero central scalars. It is the
center of ΓLn(D) and the centralizer of SLn(D) in ΓLn(D).

Proof. (a) By the Whitehead Lemma (6.4)(f), the Cartan subgroup of
diagonal matrices Hn(D) = B ∩N is normalized by the upper triangular Borel
subgroup B, an observation central to much of the previous chapter. By Lemma
(6.4)(d), the scalar diagonal matrices are then normalized by the Symmetric
subgroup S = Sym(n) and so by all of GLn(D) = 〈B,N〉 = 〈B,S〉.

(b) This could be verified directly as in the previous part, but it is more
enlightening to realize that in the action of ΓLn(D) on the left D-space of row
vectors (as described in the previous result), the element (r−1, rI) acts as scalar
multiplication by r. Thus the group { (r−1, rI) | 0 6= r ∈ D } is the kernel of the
action of ΓLn(D) on the set of 1-spaces of Dn. (That is, the projective space of
Dn; see the next chapter.)
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(c) Again in terms of action on the set of row vectors Dn, R(r) is right scalar
multiplication by r while L(r) is left scalar multiplication. A left scalar can be
equal to a right scalar on all row vectors if and only if the scalars are identical
and central in D 2

Just as PSLn(D) was defined to be SLn(D) modulo its normal scalar sub-
groups, so PΓLn(D) is ΓLn(D) modulo the group of scalars Ln(D) and PGLn(D)
is the image of its subgroup GLn(D).

7.3 The finite linear groups

(7.9). Theorem. Let q = pa for p a prime and a a positive integer.

(a) |GLn(q)| = Nn,q =
∏n−1
i=0 (qn − qi) = q(

n
2)
∏n
i=1(qi − 1).

(b) |SLn(q)| = |PGLn(q)| = Nn,q/q − 1.

(c) |PSLn(q)| = |SLn(q)|/ gcd(n, q − 1).

(d) |ΓLn(q)| = a|GLn(q)|.

Proof. The group GLn(q) is regular on the set of (ordered) bases of Fnq ,
essentially by definition. But the number of such ordered bases is Nn,q. The
rest of the theorem follows directly. 2

(7.10). Corollary.

(a) PSL2(2) = GL2(2) ' Sym(3).

(b) PGL2(3) ' Sym(4).

(c) PSL2(3) ' Alt(4).

(d) PSL2(4) ' Alt(5).

(e) PSL2(5) ' Alt(5).

Proof. PGL2(q) acts faithfully on the projective line, which consists of q+1
points. Its subgroup PSL2(q) is generated by its Sylow p-subgroups (elementary
transvections), where q = pa. In the last two parts PSL2(q) is simple (by
Theorem (6.29)) of order 60. For the last part, see also Problem (5.20). 2

7.4 Transvections and elements of small degree

The finitary symmetric group is generated by its 2-cycles; and, in a sense, the
alternating group is defined as the group generated by all 3-cycles. The classical
groups also have special generating elements of small degree.

The element t ∈ GLD(V ) is a `-root element if it satisfies:

(i) dimD([V, t]) ≤ `;

(ii) t is unipotent.
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The second condition says that the endomorphism t−1 is nilpotent: (t−1)k = 0,
for some k ∈ Z+. Indeed, as the series V > V (t−1) > V (t−1)2 · · · must strictly
descend until 0 is reached, we must have k ≤ ` + 1. Of course, every nilpotent
t is an `-root element for sufficiently large `. We focus on the cases ` = 1 and
` = 2.

A transvection is a 1-root element on V . That is, it is invertible with V (t−1)
of dimension 1 and V (t− 1)2 = 0.

(7.11). Lemma. Every transvection has the form

t(λ, x) : v −→ v + (vλ)x

for nonzero λ ∈ V ∗ and x ∈ V with xλ = 0.

Proof.
2

The center of t(λ, x) is the 1-space 〈x〉, and its axis is the hyperplane
kerλ = ker〈λ〉. (We allow the abuse of notation t(0, x) = 1 = t(λ, 0), but we do
not consider the identity to be a transvection.)

(7.12). Proposition. For λ, λ1, λ2 ∈ V ∗, x, x1, x2 ∈ V , and d ∈ D:

(a) t(λd, x) = t(λ, dx). Indeed if the transvection t(λ1, x1) is equal to t(λ2, x2),
then there is an e ∈ D with λ1e = λ2 and e−1x1 = x2.

(b) t(λ1, x)t(λ2, x) = t(λ1 + λ2, x) .

(c) t(λ, x1)t(λ, x2) = t(λ, x1 + x2) .

(d) For g = [γ, g] ∈ ΓLD(V ), we have g−1t(λ, x)g = t(g−1λ, xg) .

Proof. (a) comes from the previous lemma.
For (b) and (c) consider t1 = t(λ1, x1), t2 = t(λ2, x2) and s = t1t2. We have

(∗) v.s = v.t1t2 = v + (vλ1)x1 + (vλ2)x2 + (vλ1)(x1λ2)x2 .

In (b) and (c) we always have x1λ2 = 0, giving the results.
For (d), let [τ, h] ∈ ΓL(V ) with associated automorphism τ of D. Then [τ, h]

acts (semilinear on the left) on µ ∈ V ∗ via v(hµ) = ((vh)µ)τ
−1

by Lemma (9.10)
below. Thus, for a [γ, g] associated with, we have1

v(g−1t(λ, x)g) = ((vg−1)t(λ, x))g

= (vg−1 + (((vg−1)λ)x))g

= vg−1g + ((v(g−1λ))γ
−1

x)g

= v + (v(g−1λ))xg

= v(t(g−1λ, xg)) . 2

Let V be a D-spaces with subspaces U of V and W of V ∗. We let T(W,U)
be the subgroup of GLD(V ) generated by all the t(λ, v) with λ ∈ W , v ∈ V ,

1“It can be easily checked . . . ”
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and uλ = 0. In particular if W is a 1-space of V ∗ and U a 1-space of V
with UW = 0, then T(W,U) is a transvection subgroup of GLD(V ). We will
abuse this notation somewhat by writing T(λ, u) for the transvection subgroup
T(W,U) when λ spans the 1-space W and u spans the 1-space U .

(7.13). Proposition.

(a) If W is a 1-space of V ∗ and U a 1-space of V , then T(W,U) = { t(λ, u) |
λ ∈ W, u ∈ U } is a subgroup of GLD(V ) that is isomorphic to (D,+). if
xλ = 0. In this second case, T (W,p) is called a transvection subgroup.

(b) T (W ) = {1} ∪ { t(µ,U) | 〈µ〉 = W , 〈U〉 ∈ kerW } is a subgroup of SL(V )
isomorphic to (D,+)r.

(c) T (p) = {1} ∪ { t(µ,U) | p ∈ ker〈µ〉 , 〈U〉 = p } is a subgroup of SL(V ) iso-
morphic to (D,+)r.

(d) T (W ) ∩ T (p) = T (W,p) .

(e) If n ≥ 3, then T (W ) 6= T (p) .

(f) The transvection subgroups T(W,U) for UW = 0 are all conjugate in the
group T(V ∗, V ). SL(V ); the subgroups T (W ) are all conjugate in SL(V );
the subgroups T (p) are all conjugate in SL(V ) .

Proof. The first part follows immediately from the previous proposition.
We wish to prove T(λ, x) and T(γ, y) are conjugate. First assume that 〈x〉 6=

〈y〉, and choose a basis {x, y, z1, z2, . . .} for V . The hyperplane 〈x−y, z1, z2, . . .〉
is ker η, for some η ∈ V ∗ with α = yη 6= 0. Then, for t = t(η, α−1(x − y)), we
have

y.t = y + (yη)α−1(x− y) = y + α(α−1(x− y)) = x

Especially T(λ, x)t = T(δ, y), for some δ ∈ V ∗.
So it is enough to prove T(λ, y) and T(γ, y) conjugate in T(V ∗, V ). We may

assume λ and γ span different 1-spaces of V ∗. Let {y = y0, y1, . . .} be a basis of
K = kerλ ∩ ker γ, and choose u and v with kerλ = 〈u,K〉 and ker γ = 〈v,K〉.
For µ ∈ V ∗ with kerµ = 〈v − u,K〉 and β = vµ 6= 0, set s = t(µ, β−1(v − u)).
Then

u.s = u+ (uµ)β−1(v − u) = u+ ββ−1(v − u) = v .

Therefore T(λ, y) = T(γ, y)s, as desired. 2

(7.14). Lemma.

(a) If t1 = t(λ1, x1) and t2 = t(λ2, x2) with 〈λ1〉 6= 〈λ2〉 and 〈x1〉 6= 〈x2〉,
then for s = t1t2, we have V (s − 1) = 〈x1, x2〉. In particular, s is not a
transvection.

(b) Let T be a subgroup of GLD(V ) with T# = T\{1} completely composed of
transvections. Then either there is a 1-space W in V ∗ with T ≤ T(W,V )
or there is a 1-space U in V with T ≤ T(V ∗, U).
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Proof. In equation (∗) from the proof of Proposition (7.12), if we first
choose v ∈ kerλ1 \ kerλ2 then we find x2 ∈ V (s− 1). Next with v /∈ kerλ1 we
also have x1 ∈ V (s− 1).

The second part follows directly from the first. 2

The element s ∈ GLD(V ) is a 2-root element if and only if there are u, v ∈ V
with V (s − 1) ≤ 〈u, v〉 and s unipotent (that is, (s − 1)k = 0, for some k).
Equivalently, there is a series of D-spaces 0 6= 〈x〉 ≤ U < V with dimV/U = 1
and such that [V, s] ≤ U , [U, s] ≤ 〈x〉, and [x, s] = 0.

(7.15). Proposition. Let 0 6= 〈x〉 ≤ U < V be a series of D-spaces with
dimV/U = 1. Suppose s ∈ GLD(V ) stabilizes this series. (That is, [V, s] ≤ U ,
[U, s] ≤ 〈x〉, and [x, s] = 0.)

(a) Then
s = r(λ, x, µ, y) : v 7→ v + vλ.y + vµ.x

for y ∈ V and µ, λ ∈ V ? with x ∈ kerλ = U , yλ = 0, and xµ = 0.
Conversely, any such s stabilizes the given series.

(b) r(λ, x, µ, y) r(λ, x, η, z) = r(λ, x, µ+η, y+z+yη.x) = r(λ, x, µ+η+λ.yη, y+
z).

(c) r(λ, x, µ, y)−1 = r(λ, x,−µ,−y + yµ.x).

(d) [r(λ, x, µ, y), r(λ, x, η, z)] = r(λ, x, 0, (yη − zµ).x).

(e) For g ∈ GLD(V ), g−1 r(λ, x, µ, y)g = r(g−1λ, xg, g−1µ, yg).

(f) For a, b ∈ D×, r(λa, bx, µ, y) = r(λ, x, µb, ay).

(g) For a ∈ D, r(λ, x, µ, y + ax) = r(λ, x, µ + λa, y). Indeed r(λ, x, µ, y) =
r(λ, x, µ′, y′) if and only if there is an a ∈ D with and µ′ − µ = λa and
y′ − y = −ax.

(h) The set R(λ, x) = {r(λ, x, µ, y) | yλ = 0, xµ = 0} is a subgroup of GLD(V ),
normal in the stabilizer of 〈x〉 and U . R(λ, x) has class 2 with R(λ, x)′ ≤
Z(R(λ, x)) = T(λ, x), the transvection subgroup with axis kerλ and center
〈x〉. If dimD(V ) = 2, then R(λ, x) = Z(R(λ, x)) = T(λ, x) is abelian. If
dimD(V ) ≥ 3, then R(λ, x)′ = Z(R(λ, x)) = T(λ, x).

(i) R(λ, x) = T(λ, ·) T(·, x), where T(λ, ·) = {r(λ, x, 0, y) | yλ = 0} is the sub-
group of all transvections with axis U = kerλ and T(·, x) = {r(λ, x, µ, 0) |xµ =
0} is the subgroup of all transvections with center 〈x〉. Both are abelian and
normal in R(λ, x), and their intersection is T(λ, x).

(j) Let W = U/〈x〉 with the image of u being denoted ū. For η ∈ V ∗ with xη =
0, let η̄ be the member of W ? induced by η. The map r(λ, x, µ, y) 7→ (µ̄, ȳ)
is a well-defined surjective homomorphism from R(λ, x) onto W ∗⊕W with
kernel T(λ, x).

(k) If |D| = q and dimD(V ) = n, then |R(λ, x)| = q2n−3 with center T(λ, x) of
order q.
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Proof.
2

7.5 Problems

(7.16). Problem. This problem will (among other things) show again that the sign
homomorphism on finite Sym(Ω) (and hence on arbitrary FSym(Ω)) is well-defined.
Let F be a field and V the Sym(Ω) permutation module FΩ with basis { eω | ω ∈ Ω }
and action given by egω = eωg . Let n ≥ 2 and set Ω = {1, 2, . . . , n} so that Sym(Ω) =
Sym(n).

(a) Recall that for g ∈ GLF (V ), we have defined [V, g] = V (g − 1). Prove:
(i) The subspace W of V is g-invariant with g trivial on V/W if and only
if W ≥ [V, g].

(ii) [V, gh] ≤ [V, g] + [V, h].

(b) For g ∈ Sym(n), let `(g) be the smallest number of transpositions with product g.
Prove that dimD[V, g] ≤ `(g).

(c) Prove that dimD[V, g] = `(g) = n−nk = |Supp(g)| − ck where nk is the number of
cycles in g (including cycles of length 1) and ck is the number of cycles in g of length
greater than 1. (Hint: First prove that if g is a k-cycle, then dimD[V, g] = `(g) =
k − 1.)

(d) For t a transposition, prove that `(gt) = `(g)± 1.

(e) Prove that sgn: g 7→ (−1)`(g) = (−1)dimk[V,g] is a homomorphism from Sym(n)
onto the multiplicative group ±1. (This is the sign homomorphism.)

(7.17). Problem. Let (I,≤) a totally ordered set. For the field E, let { ei | i ∈ I }
be the canonical basis of the I-tuple space E(I,≤), defined to be ⊕i∈IEei. The up-
per triangular group FUE(E(I,≤)) ≤ FGLE(E(I,≤)) then consists of all linear trans-
formations g given by egi = ei +

∑
i<j αijej for all i, where only a finite number

of the αij are nonzero. For instance, in Problems (6.36) and (6.38), we discussed
U+
n (E) = FUE(E([1,n],≤)). and U+(E) = FUE(E(Z,≤)).

(a) For infinite I, prove that FUE(E(I,≤)) is locally nilpotent with trivial center.

(b) Prove that FUE(E(Q,≤)) is a perfect locally nilpotent group with trivial center.

(c) If E is a locally finite field, prove that FUE(E(I,≤)) is locally finite.

Remark. The group FUE(E(Q,≤)) is in fact characteristically simple and is called a
McLain group.

(7.18). Problem. Prove PSL2(9) ' Alt(6). Hint: ???



Chapter 8
Projective Spaces

8.1 Several versions of projective spaces

8.1.1 Lattices

For a vector space V over the division ring D, the projective space PV is the
lattice of subspaces of V (excluding {0} and V ). The rank of PV is one less
than the D-dimension of V .

For any vector subspace W of V , the projective space PW is naturally con-
tained in PV . Somewhat abusing terminology, we refer to both W and PW
as subspaces (members, elements) of PV of rank d − 1, where d = dimD(W ).
Lemma (8.1) below allows this abuse. (The other deleted subspace {0} is the
unique element of rank −1.) The subspaces of PV of rank 0 are projective points;
those of rank 1 are projective lines, and those of rank 2 are projective planes,
usually abbreviated to points, lines, and planes.1 If W has codimension 1 in V ,
then PW is a hyperplane of PV (just as W is a hyperplane of V ).

8.1.2 Incidence geometry

Two members u,w of PV are incident, written u ∼ w, if one contains the
other. (That is, subspaces U and W are incident if either U ≤ W or U ≥ W .)
In particular, two members of the same rank are incident if and only if they are
equal.

There is a great deal of redundant information in the incidence relations of
the projective space. For w ∈ PV and 0 ≤ i ≤ rank(V ), let

PiVw = { p ∈ PiV | p ∼ w }

1We avoid a common vector space terminology that identifies vectors as points, 1-spaces
or 1-flats as lines, and 2-spaces or 2-flats as planes.

99



100 CHAPTER 8. PROJECTIVE SPACES

the shadow of w in PiV . Once we realize that (b) follows directly from (a), we
have

(8.1). Lemma.

(a) For w, v ∈ PV , PiVw = PiVv if and only if w = v.

(b) For 0 ≤ i ≤ rank(V ) and w, v ∈ PiV , PiVw = PiVv if and only if w = v.

(c) A subset P of P0V is equal to P0Vw, for some subspace w, if and only if, for
every projective line ` ∈ P1V , we have either |P0V` ∩ P | ≤ 1 or P0V` ⊆ P .
2

Part (a) of the lemma allows us, without much confusion, to abuse notation
by identifying a subspace with the set of projective points contained within it.
Then (b) says that P is a subspace if and only if, for all lines `, either |`∩P | ≤ 1
or ` ⊆ P ; the subspaces are exactly the line-closed subsets of P0V .

For any subset P of PV , the subspace generated by P , denoted 〈P 〉, is the
intersection of all subspaces containing P . So 〈P 〉 is the smallest subspace that
contains P . As mentioned above, we typically identity 〈P 〉 with its shadow in
P0V .

It is an easy consequence of Lemma (8.1) that every automorphism of the
incidence system Π(V ) = (P0V,P1V ) extends uniquely to a lattice automor-
phism of the projective space PV and, conversely, any lattice automorphism of
PV restricts to an automorphism of Π(V ). For this reason, the automorphisms
of PV are usually called collineations and the full lattice automorphism group
of PV is called the collineation group of PV , denoted Coll(PV ).

Veblen-Young
Moufang-Hall
projectivities, collineations

8.1.3 Buildings and Chamber systems

dualities, polarities
Tits

8.2 The Fundamental Theorem of Projective Ge-
ometry

Recall that the morphisms in Vec are semilinear maps. Thus Σ = [σ, s] is a
semilinear map from DV to EW provided:

(i) σ is a homomorphism of D into E;

(ii) s is an additive homomorphism from (V,+) to (W,+);

(iii) for all a ∈ D and v ∈ V we have (av)Σ = aσvs.
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Especially a semilinear map [1, s] is a linear transformation from DV to DW .
Since D is a division ring, σ always realizes an isomorphism of D with a subdi-
vision ring of E.

(8.2). Theorem. (Fundamental Theorem of Projective Geometry)
Let D and E be division rings with V a D-space of dimension at least 3 and W
an E-space. Let S : P0V −→ P0W be a map on projective points with the “small
rank” property that:

(SmRk) if p, q, r ∈ P0V , then rank〈p, q, r〉 = rank〈pS , qS , rS〉.

Then there is a semilinear transformation Σ = [σ, s] : V −→ W with Dσ a
subfield of E isomorphic to D (via σ) and 〈v〉S = 〈vs〉, for all vectors v ∈ V .

(8.3). Lemma. Let p, q ∈ P0V .

(a) S : P0V −→ P0W is injective.

(b) For t ∈ P0W we have t ∈
[
pS , qS

]
∩ im(S) if and only if there is an r ∈ 〈p, q〉

with rS = t.

Proof.
2

(8.4). Corollary.

(a) S : P1V −→ P1W given by 〈p, q〉S =
[
pS , qS

]
is injective.

(b) If 〈p, q〉, and 〈r, s〉 are lines of P1V with t = 〈p, q〉 ∩ 〈r, s〉, then tS =

〈p, q〉S ∩ 〈r, s〉S .

Proof.
2

We further extend our definition of the map S by defining 〈u, v〉S to be

〈〈u〉 , 〈v〉〉S for u, v ∈ V .

Proof of the Fundamental Theorem of Projective Geometry (8.2).

The proof is accomplished in a series of steps. We will use Property (SmRk),
the lemma, and the corollary often and usually without reference.

Let {x0}∪{xi | i ∈ I } be a D-basis for V . Choose x′0 ∈W with 〈x0〉S = [x′0]
and then for each i ∈ I choose x′i ∈W such that:

(1) 〈xi〉S = [x′i] and

(2) 〈x0 + xi〉S = [x′0 + x′i] .

By Property (SmRk), any subset of {x′0} ∪ {x′i | i ∈ I } of size up to three is
linearly independent in W since its preimage in V is. This is not necessarily the
case for subsets of size greater than three.
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Step (i). For each i ∈ I and d ∈ D, define d(i) by 〈x0 + dxi〉S =[
x′0 + d(i)x′1

]
. Then for all i, j ∈ I and all d ∈ D we have d(i) =

d(j).

Proof. We first note that d 7→ d(i) is well-defined. As 〈x0 + dxi〉S ∈
[x′0, x

′
1], this only fails if 〈x0 + dxi〉S = [x′i]; but in that case 〈x0, xi〉S =

〈x0 + dxi, xi〉S = [x′i], which is not the case (by Property (SmRk)).

The claim of the step is obvious for i = j and true by choice (see
above, in particular (2) ) for d = 0, 1. Now assume i 6= j and 0 6=
d 6= 1.

Consider the three distinct lines

〈xi, xj〉 , 〈x0 + xi, x0 + xj〉 , 〈x0 + dxi, x0 + dxj〉 ,

all intersecting in the common point 〈xi − xj〉 = 〈dxi − dxj〉.

Step (ii). Consider the map σ : D −→ E given by dσ = d(i),
for any i ∈ I. Then σ is a well-defined injection σ : D −→ E with
0σ = 0 and 1σ = 1.

Proof.
2

By (i) the map σ is well-defined.

Step (iii). For all finite I ⊆ I and all di ∈ D for i ∈ I, we have〈
x0 +

∑
i∈I dixi

〉S
=
[
x′0 +

∑
i∈I d

σ
i x
′
i

]
.

Proof.
2

Step (iv). For all finite I ⊆ I and all di ∈ D for i ∈ I, we have〈∑
i∈I dixi

〉S
=
[∑

i∈I d
σ
i x
′
i

]
.

Proof.
2

Step (v). For all d, e ∈ D we have (de)σ = dσeσ.

Proof.
2

Step (vi). For all d, e ∈ D we have (d+ e)σ = dσ + eσ.

Proof.
2

Step (vii). For all finite H ⊆ {0} ∪ I and all di ∈ D for i ∈ H,

we have
〈∑

i∈H dixi
〉S

=
[∑

i∈H d
σ
i x
′
i

]
.

Proof.
2
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Define the map s : (V,+) −→ (W,+) by
(∑

i∈I dixi
)s

=
∑
i∈I d

σ
i x
′
i.

repn of semilinear map

Step (viii). S is induced by the semilinear map Σ = [σ, s]: for all

〈v〉 ∈ P0V we have 〈v〉S = [vs].

Proof.
2

This completes our proof of the Fundamental Theorem of Projective Geom-
etry (8.2). 2
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Chapter 9
Pairings, Isometries, and
Automorphisms

The classical groups are linear groups that are isomorphism (isometry) groups
of forms defined on the underlying space. The underlying concept is that of
pairings of spaces.

9.1 Pairings

As before, D is a division ring. We let V = DV , a left D-space, and W = WD,
a right D-space. A pairing of V and W is a bilinear map m : V ×W −→ D.
That is, for all u, v ∈ V , w, y ∈W , and a, b ∈ D:

(i) m(u+ v, w) = m(u,w) +m(v, w);

(ii) m(u,w + y) = m(u,w) +m(u, y);

(iii) m(av, wb) = am(v, w)b.

The motivating example is the canonical pairing mcan of V with its dual W =
V ∗, where

mcan(v, λ) = vλ ,

for all v ∈ V and λ ∈ V ∗. If instead we start with a right D-space W , then the
canonical pairing is mcan : W ∗ ×W −→ D given by mcan(µ,w) = µw.

Let U be a subspace of V and Y a subspace of W . Then

U⊥ = {w ∈W | m(u,w) = 0, for all u ∈ U } and

⊥Y = { v ∈ V | m(v, y) = 0, for all y ∈ Y } .

The right radical of the pairing m is V ⊥ and its left radical is ⊥W . The pairing
m is nondegenerate if both its radicals are 0: V ⊥ = 0 and ⊥W = 0. If U ≤ V
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and Y ≤ W with m|U×Y identically 0, then we call the pair (U, Y ) totally
isotropic.

(9.1). Lemma.

(a) For a pairing m : V × W −→ D, the map ρm : w 7→ m(·, w) is a D-
homomorphism of W into V ∗ and the map λm : v 7→ m(v, ·) is a D-homomorphism
of V into W ∗. Here ker ρm = V ⊥ and kerλm = ⊥W .

(b) The pairing m : V × W −→ D is nondegenerate if and only if the map
ρm : w 7→ m(·, w) is an injection of W into V ∗ and the map λm : v 7→ m(v, ·)
is an injection of V into W ∗.

Proof. For all a, b ∈ D and u, v ∈ V

(au+ bv)ρmw = m(au+ bv, w) = m(au,w) +m(bv, w)

= am(u,w) + bm(v, w) = a(uρmw ) + b(wρmw ) ,

so ρmw ∈ V ∗. Furthermore for x ∈W

vρmwa+xb = m(v, wa+ xb) = m(v, w)a+m(v, x)b = v(ρmw a+ vρmx b) ,

and ρ is D-linear. It kernel is

{w ∈W | vρmw = m(v, w) = 0 , for all v ∈ V } = V ⊥ .

This gives the first part of (a), and the rest of that part follows similarly (or by
applying the first part to the opposite pairing; see page 113 below).

Part (b) then follows directly. 2

(9.2). Corollary. For the pairing m : V ×W −→ D, set V 0 = V/⊥W and
W 0 = W/V ⊥. Then m0 : V 0 ×W 0 −→ D given by m0(v + ⊥W,w + V ⊥) =
m(v, w) is a well-defined nondegenerate pairing. 2

(9.3). Lemma. Let m : V ×W −→ D be a nondegenerate pairing. Let finite
dimensional U ≤ V and finite dimensional Y ≤W .

(a) The codimension of U⊥ in W equals the dimension of U , and ⊥(U⊥) = U .

(b) The codimension of ⊥Y in V equals the dimension of Y , and (⊥Y )⊥ = Y .

(c) m|U×Y is nondegenerate if and only if dimD(U) = dimD(Y ), V = U ⊕⊥Y ,
and W = Y ⊕ U⊥.

Proof. (a) Let dimD(U) = d.
When we apply Lemma (9.1) to the restriction of m to U ×W we learn that

U⊥ is the kernel of the map ρ : W 7→ U∗. Thus the codimension e of U⊥ in W

is at most dimD(V ∗) = dimD(V ) = d. Write W =
(⊕e

i=1 wiD
)
⊕ U⊥. Then

by nondegeneracy

0 = ⊥W =
( e⋂
i=1

⊥wi

)
∩ ⊥(U⊥) .
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In particular

dimD(⊥(U⊥)) ≤ codimD

( e⋂
i=1

⊥wi

)
≤ e ≤ d .

But always ⊥(U⊥) ≥ U of dimension d. Therefore

dimD(U) = d = e = codimD(U⊥)

and ⊥(U⊥) = U .
(b) is similar.
(c) Again by Lemma (9.1) there are injections U −→ Y ∗ and Y −→ U∗

so dimD(U) ≤ dimD(Y ∗) = dimD(Y ) and dimD(Y ) ≤ dimD(U∗) = dimD(U),
hence dimD(U) = dimD(Y ). We have just seen that the codimension of U⊥

is equal to the dimension of U and so also to the dimension of Y . As m|U×Y
is nondegenerate, Y ∩ U⊥ = {0}. Therefore W = Y ⊕ U⊥ and similarly V =
U ⊕ ⊥Y . 2

(9.4). Lemma. Let m : V ×W −→ D be a nondegenerate pairing. Let finite
dimensional U0 ≤ V and finite dimensional Y0 ≤ W . Then there are U and
Y with U0 ≤ U ≤ V , Y0 ≤ Y ≤ W , m|U×Y nondegenerate, and dimD(U) =
dimD(Y ) ≤ dimD(U0) + dimD(Y0).

Proof. Let dimD(U0) = k and dimD(Y0) = l.
Let Y1 be a complement to (U0 ∩ ⊥Y0)⊥ in W , so Y1 has dimension d =

dim(U0 ∩ ⊥Y0) ≤ k by Lemma (9.3). Similarly let U1 be a complement to
⊥(Y0 ∪ U⊥0 ) in V of dimension e = dim(Y0 ∩ U⊥0 ) ≤ l. We then set

U = U0 ⊕ U1 and Y = Y0 ⊕ Y1 ,

both of dimension at most k + l. We claim that m|U×Y is nondegenerate.
Let u = u0 + u1 ∈ U be a nonzero element with u0 ∈ U0 and u1 ∈ U1. We

will find a y ∈ Y with m(u, y) 6= 0, and so demonstrate U⊥ ∩ Y = 0. If u1 6= 0
then there is a y ∈ U⊥0 ∩ Y0 with

0 6= m(u1, y) = m(u0, y) +m(u1, y) = m(u, y) ,

so we may assume u = u0 ∈ U0.
If u0 /∈ U0∩⊥Y0, then there is a y ∈ Y0 with m(u, y) = m(u0, y) 6= 0. Finally

if 0 6= u0 ∈ U0 ∩ ⊥Y0, then by nondegeneracy of m there is a y ∈ Y1 with
m(u, y) 6= 0.

We conclude that U⊥ ∩ Y = 0 and similarly U ∩ ⊥Y = 0, thus m|U×Y is
nondegenerate. In particular dimU = dimY ≤ k + l = dimU0 + dimY0. 2

A particular consequence of Lemma (9.3) is that for the finite dimensional
space V = U there is an essentially unique nondegenerate pairing, the canonical
one mcan with W = Y = V ∗ (see Lemma (9.7) for a precise statement). This is
not the case for infinite dimensional V . As in Section 7.1, to each basis B of V ,
we associate the dual subset B∗ = {λy | y ∈ B } of V ∗ given by xλy = δx,y for
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x, y ∈ B. Then B∗ is linearly independent, and we let V B be the subspace of V ∗

with basis B∗. The restriction of the canonical pairing, mB = mcan|V×V B , is a
nondegenerate pairing of V and V B. For finite dimensional V , the space V B is
all of V ∗ (by Corollary (7.2)) and so mB = mcan. For dimD(V ) infinite,

dimD(V ∗) > dimD(V ) = dimD(V B)

by Proposition (7.3)(c); so the two nondegenerate pairings mcan and mB of V
are different in an essential way.

In general, we say that a pairing m : V ×W −→ D is hyperbolic provided
it admits dual bases: there are a basis V = { vi | i ∈ I } for V and basis
W = {wi | i ∈ I } for W such that

m(vi, wj) = δi,j , for all i, j ∈ I .

Thus each mB is hyperbolic, essentially by definition. Clearly a necessary
condition for the pairing to be hyperbolic is that it be nondegenerate with
dimV = |I| = dimW . This is not, in general, sufficient, although it is in in
certain cases. We have remarked above that all nondegenerate pairings in finite
dimension are hyperbolic. More surprising is that this remains true in countable
dimension. The proof is a nice example of a “back-and-forth” argument, here
combined with a Gram-Schmidt style calculation.

(9.5). Theorem. If DV and WD both have countable dimension, then every
nondegenerate pairing m : V ×W −→ D is hyperbolic.

Proof. Choose the bases U = U0 = {u1, u2, . . . } for V and X = X0 =
{x1, x2, . . . } for W . We construct bases V = {v1, v2, . . . } for V and W =
{w1, w2, . . . } for W . At Step n we replace some ui ∈ U by the vector vn ∈ V
and some xj ∈ X by wn ∈ W. We do this in such a way that:

(i) Un = {vn}∪Un−1 \{ui} is still a basis for V and Xn = {wn}∪Xn−1 \{xj}
is still a basis for W ;

(ii) m(va, wb) = δa,b for a, b ≤ n;

(iii) all ui of U and xj of X are eventually replaced.

The result of this process is then a pair of dual bases V = U∞ for V andW = X∞
for W that reveal m as hyperbolic.

We describe Step n precisely. If n is odd, let i be the smallest index i with
ui not yet replaced. Set

vn = ui −
n−1∑
k=1

m(ui, wk)vk ,

and let Vn = 〈v1, . . . , vn〉 of dimension n. By Lemma (9.4) every element of
V ∗n can be induced by some element of W . Let j be minimal subject to the
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condition that the linear functional ρj : Vn −→ D, given by ρj(v) = m(v, xj), is
not induced by any element of Wn−1 = 〈w1, . . . , wn−1〉. Set

wn = xj −
n−1∑
k=1

wkm(vk, xj) .

If instead n is even, we first replace xj and only then replace ui. That is,
we first choose j to be the smallest index for which xj has not already been
replaced. We then define wn according to the formula given above. Next we set
Wn = 〈w1, . . . , wn〉 and choose ui with i minimal subject to the linear functional
λi : Wn −→ D, given by λi(w) = m(ui, w), not being induced by any element
of Vn−1. (Again Lemma (9.4) guarantees that such an i exists.) The element
vn is then defined as above.

Whether n is even or odd, these choices of vn and wn certainly give (i). Also
Step n− 1 provides us with (ii) for a, b < n.

For b < n

m(vn, wb) =m(ui −
n−1∑
k=1

m(ui, wk)vk, wb)

=m(ui, wb)−
n−1∑
k=1

m(ui, wk)m(vk, wb) = 0 .

Similarly, for a < n

m(va, wn) =m(va, xj −
n−1∑
k=1

wkm(vk, xj))

=m(va, xj)−
n−1∑
k=1

m(va, wk)m(vk, xj) = 0 .

Depending upon whether n is odd or even, our choice of j or i guarantees that
m(vn, wn) = d is nonzero, so to complete (ii) at Step n we only need to replace
one of vn or wn with its multiple by the scalar d−1.

Finally, the element ui will be replaced by the ith odd step if not earlier,
while xj will have been replaced by the jth even step. Thus both uk and xk are
replaced by the time we have completed Step 2k, giving (iii) and the theorem.
2

(9.6). Proposition. For spaces DV and WD there exists a nondegenerate
pairing m : V ×W −→ D if and only if dimW ≤ dimV ∗ and dimV ≤ dimW ∗.

Proof. Necessity follows from Lemma (9.1)(b).
For the other direction, we may assume dimV ≤ dimW . Choose a basis

B of V , and let V B be the subspace of the same dimension in V ∗ that was
constructed above. By hypothesis there is a vector space injection θ : W −→ V ∗

with V B ≤ W θ. Define m : V ×W −→ D by m(v, w) = v(wθ). Then V ⊥ = 0
as θ is injective and ⊥W = 0 as mB : V × V B −→ D is nondegenerate. 2
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9.2 Isometry groups of pairings

Given two pairings m : DV ×WD −→ D and n : EU ×XE −→ E, we wish again
to formalize the feeling that there is no essential difference between the two.
Here this should mean that there are semilinear isomorphisms s = [σ, s] from V
to U and t = [t, σ] from W to X with n(vs, tw) = m(v, w)σ always:

DV ×WD D

EU ×XE E

m

s t σ

n

Conversely, given (semi)isomorphisms [σ, s] from V to U and [t, σ] from W
to X we can construct from the pairing m : DV × WD −→ D a new pairing
n : EU ×XE −→ E given by

n(u, x) = m(us−1, t−1w)σ .

The triple (s, t, σ) is then an equivalence of the pairings (V,W,m) and (U,X, n).
Equivalent pairs of spaces and forms are said to be isometric, although it might
be better to say they are semi-isometric, since equivalences are induced by
semilinear maps. We reserve the term isometry for situations where D = E and
σ = 1.

As a direct consequence of Lemmas (9.1) and (9.3) we have:

(9.7). Lemma. Let m : V ×W −→ D be a nondegenerate pairing. Then there
are subspaces W ρ of V ∗ and V λ of W ∗ with (V,W,m) isometric to (V,W ρ,mρ)
and (V λ,W,mλ), where mρ and mλ are the restrictions to W ρ and V λ of the
canonical pairings (V, V ∗,mcan) and (W ∗,W,mcan).

In particular, if either V or W has finite dimension, then m is isometric to
the canonical pairings (V, V ∗,mcan) and (W ∗,W,mcan) and is hyperbolic. 2

The group GL(DV )×GL(WD) acts on V ×W on the right. For g ∈ GLD(V )
and h ∈ GLD(W ) the element f = (g, h) ∈ GL(DV )×GL(WD) acts according
to

(v, w).f = (v, w).(g, h) = (vg, hw) ,

for all (v, w) ∈ V ×W . We may also write v.f for v.g and f.w for h.w. The
notation GL(WD) for GLD(W ) reminds us that GLD(W ) normally acts on W
on the left since W is a right D-space. We have

(v, w)(g1, h1)(g2, h2) = (v.g1, h1.w)(g2, h2) = (v.g1g2, h2h1.w) .

Thus (g1, h1)(g2, h2) = (g1g2, h2h1) in GL(DV )×GL(WD).
An isometry (rather than self-isometry) of the pairing m : V ×W −→ D is

then a self-equivalence—an element

(g, h) ∈ GL(DV )×GL(WD)
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with
m(v, w) = m(v.g, h.w) ,

for all (v, w) ∈ V ×W . This can be viewed as the stabilizer of m in the (right)
action of GL(DV )×GL(WD) on the abelian group of pairings PairD(V,W ) ('
HomD(V,W ∗)) given by m 7→ n = m(g,h). The subgroup of GL(DV )×GL(WD)
consisting of all isometries of m (with the above product) will be denoted
GLD(V,W,m).

More generally, a (self-)semi-isometry (s, t, σ) of (V,W,m) is a pair of semi-
linear maps [σ, s] ∈ ΓLD(V ) and [t, σ] ∈ ΓLD(W ) satisfying

m(v, w) = m(v.s, t.w)σ
−1

.

The group of all semi-isometries ofm is then ΓLD(V,W,m) and has GLD(V,W,m)
as its normal subgroup of all semi-isometries with σ = 1.

(9.8). Lemma. Let m : V ×W −→ D be a nondegenerate pairing, and (g, h) ∈
GLD(V,W,m). Then g = 1 if and only if h = 1.

Proof. Suppose (1, h) ∈ GLD(V,W,m). Then, for all v ∈ V and w ∈ W ,
we have

0 = m(v, w)−m(v, hw) = m(v, (1− h)w) .

That is, (1− h)W ∈ V ⊥. As m is nondegenerate, this gives (1− h)w = 0 for all
w ∈W . Therefore hw = w and h = 1.

Similarly, if (g, 1) ∈ GLD(V,W,m), then all (1− g)v ∈ ⊥W = 0 and g = 1.
2

(9.9). Corollary. Let m : V ×W −→ D be a nondegenerate pairing, and
G = GLD(V,W,m) its isometry group.

(a) The restriction map (g, h) 7→ g is an injection of G into GLD(V ).

(b) The restriction map (g, h) 7→ h−1 is an injection of G into GLD(W ).

Proof. Given that (g1, h1)(g2, h2) = (g1g2, h2h1) in G, this is immediate
from Lemma (9.8) . 2

(9.10). Lemma.

(a) Each element g ∈ GLD(V ) has a natural linear action on V ∗ given by

v(gµ) = (vg)µ ,

for all v ∈ V and µ ∈ V ∗. In particular, for all g ∈ GLD(V ) we have
(g, g−1) ∈ GLD(V, V ∗,mcan).

(b) Each element [σ, s] ∈ ΓLD(V ) has a natural σ−1-semilinear action on V ∗

given by

v(sµ) = ((vs)µ)σ
−1

:

DV DV

D D

sµ

[σ,s]

µ

σ
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for all v ∈ V and µ ∈ V ∗. In particular, for all [τ, t] ∈ ΓLD(V ) we have
(t, t−1, τ) ∈ ΓLD(V, V ∗,mcan).

Proof. 1 We need only prove (b). We first check that we have an action—
that sµ ∈ V ∗. Let u, v ∈ V , µ ∈ V ∗, and a ∈ D:

(u+ v)sµ = (((u+ v)s)µ)σ
−1

= ((us+ vs)µ)σ
−1

= ((us)µ+ (vs)µ)σ
−1

= ((us)µ)σ
−1

+ ((vs)µ)σ
−1

= u(sµ) + v(sµ)

and

(av)(sµ) = (((av)s)µ)σ
−1

= ((aσ(vs))µ)σ
−1

= (aσ((vs)µ))σ
−1

= a((vs)µ)σ
−1

= a(v(sµ)) .

Then we check that the action is σ−1-semilinear. Let v ∈ V , µ, λ ∈ V ∗, and
a ∈ D:

v(s(µ+ λ)) = ((vs)(µ+ λ))σ
−1

= ((vs)µ+ (vs)λ)σ
−1

= ((vs)µ)σ
−1

+ ((vs)λ)σ
−1

= v(sµ) + v(sλ)

= v(sµ+ sλ)

and

v(s(µa)) = ((vs)(µa))σ
−1

= (((vs)µ)a)σ
−1

= ((vs)µ)σ
−1

aσ
−1

= (v(sµ))aσ
−1

= v((sµ)aσ
−1

) . 2

The previous two results immediately give

(9.11). Corollary.

(a) GLD(V ) = GLD(V, V ∗,mcan)|V .

(b) ΓLD(V ) = ΓLD(V, V ∗,mcan)|V . 2

However (semi)linear transformations of V need not extend to (semi)iso-
metries of nondegenerate pairings. Using Lemmas (9.7) and (9.10), we can say
exactly when extension is possible.

(9.12). Proposition. Let W ≤ V ∗ with mcan : V × W −→ D nonde-
generate. For [σ, s] ∈ ΓLD(V ) there is a [t, σ] ∈ ΓLD(W ) with (s, t, σ) ∈
ΓLD(V,W,mcan|V×W ) if and only if s(W ) = W in the action described un-
der Lemma (9.10). In this case t = s−1|W gives the unique element (s, t, σ) of
ΓLD(V,W,mcan|V×W ) extending [σ, s].

1“It can be easily checked . . . ”
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Proof. If s(W ) = W then (s, s−1|W , σ) ∈ ΓLD(V,W,mcan|V×W ) by Lemma
(9.10)(b).

Now write m for mcan|V×W and assume (s, t, σ) ∈ ΓLD(V,W,m). For fixed
w ∈W

m(v, w) = 0 ⇐⇒ m(vs, tw) = 0 .

Therefore the hyperplane ⊥(tw) of V is equal to (⊥w)s. On the other hand,
since (s, s−1, σ) ∈ ΓLD(V, V ∗,mcan) we similarly have ⊥(s−1w) = (⊥w)s. Both
mcan and its restriction to V ×W are nondegenerate, so we find an equality of
1-spaces in V ∗:

s−1(wD) = (s−1w)D = ((⊥w)s)⊥ = (tw)D ∈W .

That is, s−1 takes 1-spaces of W to 1-spaces of W . This then is also true for s,
and we get s(W ) = W , as desired.

If (s, s−1|W , σ) and (s, t, σ) are in ΓLD(V,W,mcan|V×W ), then

(s, s−1|W , σ)(s, t, σ)−1 = (1, (s−1|W )t−1, 1) ∈ GLD(V,W,mcan|V×W ) .

By Lemma (9.8) we have (s−1|W )t−1 = 1 and s−1|W = t. 2

9.3 Opposites

If m : V ×W −→ D is a pairing, then there is a natural associated opposite
pairing mop : DopW × VDop −→ Dop given by

mop(w, v) = m(v, w) ,

for all v ∈ V and w ∈W . Although the underlying sets are unchanged, it might
be clearer to write this as

mop(wop, vop) = m(v, w) .

Each s that is σ-semilinear on V gives rise to the σ−1-semilinear sop on V op

given by
sopvop = (vs−1)op ,

and actions on W and W op are related similarly. (Compare with Corollary
(7.6).)

We then easily have:

(9.13). Theorem. The map (s, t, σ) 7→ ((top)−1, (sop)−1, σ) is an isomor-
phism of the groups ΓLD(V,W,m) and ΓLDop(W op, V op,mop) which restricts,
for σ = 1, to an isomorphism of GLD(V,W,m) and GLDop(W op, V op,mop). 2

If m is nondegenerate, then by Lemma (9.7) and Proposition (9.12), the
elements of ΓL(V,W,m) all have the form (s, s−1). With this and our naming
convention in mind, the isomorphisms of the theorem take a more striking form:

(9.14). Corollary. Let the pairing m : V ×W −→ D be nondegenerate.

(a) ΓLD(V,W,m) = ΓLDop(W op, V op,mop).

(b) GLD(V,W,m) = GLDop(W op, V op,mop). 2
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9.4 Finitary isometry groups

We start with an important general result.

(9.15). Lemma. Let m : V ×W −→ D be a nondegenerate pairing, and let
(g, h) ∈ GLD(V,W,m).

(a) CW (h) = V (g − 1)⊥ and CV (g) = ⊥(h− 1)W .

(b) g ∈ FGLD(V ) if and only if h ∈ FGLD(W ). In this case degV (g) =
degW (h).

Proof. For all v ∈ V and fixed w,

m(v(g − 1), w) = m(vg, w)−m(v, w)

= m(vg, w)−m(vg, hw)

= m(vg, (1− h)w) .

Therefore w ∈ V (g − 1)⊥ if and only if w ∈ CW (h). This gives (a).
For (b) assume that degV (g) is finite. Then

degV (g) = dimD(V (g − 1)) = codimD(V (g − 1)⊥)

= codimD(CW (h)) = dimD((h− 1)W )

= degW (h) ,

as desired. 2

The finitary general linear group FGLD(V,W,m) consists of those elements
(g, h) ∈ GLD(V,W,m) with g ∈ FGLD(V ) and h ∈ FGLD(W ). By Lemma
(9.15)(c) it is enough to require one of these and the degree of the element
(g, h) in this action is well-defined. As in Corollary (9.11) we have FGLD(V ) =
FGLD(V, V ∗,mcan)|V .

(9.16). Proposition. If m : U × Y −→ D is a nondegenerate pairing with U
and Y finite dimensional, then

GLD(U, Y,m) ' GLD(U, Y,m)|U = GL(DU) = GLD(U)

and
GLD(U, Y,m) ' GLD(U, Y,m)|Y = GL(YD) = GLD(Y ) .

Proof. We have

GLD(U, Y,m) ' GLD(U, Y,m)|U by Corollary (9.9)

' GLD(U, Y ρ,mcan|U×Y ′)|U by Lemma (9.7)

= GLD(U,U∗,mcan)|U by Corollary (7.2)

= GLD(U) by Corollary (9.11).
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Similarly GLD(U, Y,m) ' GLD(Y ). 2

By Theorem (7.7) there is an isomorphism of GLn(D) and GLD(U) for
n = dimD(U). Different isomorphisms are related by a change of basis. In par-
ticular, via any such isomorphism the Dieudonné determinant is well-defined on
GLD(U) and so also on GLD(U, Y,m) (using the proposition). Let SLD(U)
and SLD(U, Y,m) be the images in GLD(U) and GLD(U, Y,m) of SLn(D),
the kernel of the Dieudonné determinant. Especially by Theorem (6.29) we
have SLD(U, Y,m) quasisimple and equal to GLD(U, Y,m)′ provided (n, |D|) 6=
(2, 2), (2, 3).

(9.17). Proposition. For the nondegenerate pairing m : V ×W −→ D, the
group FGLD(V,W,m) is the directed limit of its subgroups

GU,Y ' GLD(U, Y,m|U×Y ) ' GLD(U)

for U finite dimensional in V , Y finite dimensional in W , and m|U×Y non-
degenerate. Here the element of (g, h) ∈ GU,Y corresponding to (g0, h0) ∈
GLD(U, Y,m|U×Y ) is defined to act on V = U ⊕ ⊥Y according to

g|U = g0 and ⊥Y (g − 1) = 0

and on W = Y ⊕ U⊥ via

h|Y = h0 and (h− 1)U⊥ = 0 .

Proof. By Lemma (9.3)(c), the groups GU,Y with g and h acting as de-
scribed are subgroups of FGLD(V,W,m) and are isomorphic to GLD(U) by the
previous proposition.

Each (g, h) ∈ FGLD(V,W,m) is in some GU,Y by Lemma (9.4) with U0 =
V (g − 1) and Y0 = (h− 1)W .

Furthermore, if U1, U2, Y1, Y2 are finite dimensional with both m|U1×Y1
and

m|U2×Y2
nondegenerate, then a second application of Lemma (9.4), now with

U0 = U1 +U2 and Y0 = Y1 +Y2, provides a finite dimensional and nondegenerate
pairing m|U×Y with 〈GU1,Y1 , GU2,Y2〉 ≤ GU,Y . Therefore the set of all GU,Y is
indeed directed with FGLD(V,W,m) as its directed limit. 2

(9.18). Theorem. Let m : V ×W −→ D be a nondegenerate pairing. For
(dimD(U), |D|) 6= (2, 2), (2, 3) let SU,Y be the derived group of the group GU,Y
defined in Proposition (9.17).

The group SLD(V,W,m) = FGLD(V,W,m)′ is the directed limit of its sub-
groups

SU,Y ' SLD(U, Y,m|U×Y ) ' SLD(U)

for U finite dimensional in V , Y finite dimensional in W , and m|U×Y nonde-
generate.

This group SLD(V,W,m) is quasisimple if V and W have finite dimension
(with (dimD(V ), |D|) 6= (2, 2), (2, 3)) and simple if V and W have infinite di-
mension.
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Proof. By Proposition (6.33) we have G′U,Y = SU,Y ' SLD(U).
By the proposition, for each g, h ∈ FGL(V,W,m) there is a a GU,Y contain-

ing both g and h hence [g, h] ∈ SU,Y .
Furthermore, for finite dimensional nondegenerate m : U1× Y1 and m : U2×

Y2, by Lemma (9.4) there is a finite dimensional and nondegenerate m : U × Y
with

〈GU1,Y1
, GU2,Y2

〉 ≤ GU,Y

hence

〈SU1,Y1 , SU2,Y2〉 = 〈G′U1,Y1
, G′U2,Y2

〉 ≤ G′U,Y = SU,Y .

Therefore the subgroup of FGLD(V,W,m) generated by all commutators is the
directed limit of the various quasisimple subgroups SU,Y . By Problem (4.20)
the groups itself must then be quasisimple.

If V has finite dimension, then SLD(V,W,m) = SV,W is quasisimple. Assume
V has infinite dimension, and let z ∈ Z(SLD(V,W,m)). Then there is some
SU,Y with z ∈ SU,Y , hence z scalar is on U (and Y ). Thus either z = 1 of
degV (z) = degU (z) = dimD(U). Since V has infinite dimension, we may find
finite dimensional U ′ and Y ′ with U < U ′, Y < Y and m|U ′×Y ′ nondegenerate.
But then z is in the center SU ′,Y ′ , having degree strictly less than dimD(U ′).
We conclude that z = 1, and so SLD(V,W,m) is simple. 2

Here we have defined the finitary special linear group SLD(V,W,m) to be
the derived group of the finitary general linear group FGLD(V,W,m). Instead
we could have observed, using Proposition (9.17), that the Dieudonné determi-
nant has a well-defined and unique extension from the finite dimensional to the
finitary groups FGLD(V,W,m) (with m nondegenerate) and that SLD(V,W,m)
is the corresponding kernel. Thus the finitary special linear groups SL relate
to the finitary general linear groups FGL in the same way that the alternating
groups Alt relate to the finitary symmetric groups FSym.

(9.19). Theorem. Let B be the canonical basis of the D-vector space
V = DN. Then the finitary linear group FGLD(V, V B,mB) is isomorphic to the
stable linear group GL(D) of Problem (6.37), and that isomorphism restricts to
an isomorphism of SLD(V, V B,mB) = FGLD(V, V B,mB)′ with the elementary
stable linear group E(D) = GL(D)

′
, which is simple.

Proof. The dual bases B of V and B∗ of V B can be used to represent
the group FGLD(V, V B,mB) by infinite matrices that differ from the iden-
tity only in a finite dimensional upper-lefthand corner, as in Problem (6.37).
That is, if Vn is the span in V of the first n vectors of the basis B and V Bn
the subspace of V ∗ spanned by the corresponding initial segment of B∗, then
FGLD(V, V B,mB) is the ascending directed limit of the groups GLD(Vn) ('
GLD(Vn, V

B
n ,m

B|Vn×V Bn )) with respect to the natural embedding.
Simplicity then comes from the theorem. 2

(9.20). Corollary. For m : V ×W −→ D nondegenerate and infinite dimen-
sional, the unique minimal normal subgroup of GLD(V,W,m) is SLD(V,W,m).
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Proof. Compare Corollary (5.9).
For 1 6= n ∈ N � GLD(V,W,m) choose a g ∈ SLD(V,W,m) that does not

commute with n. Then

1 6= [g, n] = g−1(n−1gn) = (g−1n−1g)n ∈ SLD(V,W,m) ∩N .

Therefore SLD(V,W,m)∩N is a nontrivial normal subgroup of the simple group
SLD(V,W,m), hence SLD(V,W,m) ≤ N . 2

9.5 Transvections and elations

In a classical group GLD(V,W,m), the element t = (g, h) is an `-root element
(for ` = 1 or 2) provided:

(a) ` = dimD(V (t− 1)) (= dimD(V (g − 1)) = dimD((h− 1)W ));

(b) (t− 1)2 = 0 (that is, V (g − 1)2 = 0 and (h− 1)2W = 0);

(c) the restriction of f to V (g − 1)× (h− 1)W is trivial.

Given an `-root element t, the associated `-root subgroup is the subgroup
consisting of the identity and all `-root elements t0 with V (t − 1) = V (t0 − 1)
and (t− 1)W = (t0 − 1)W .

A GLD(V,W,m) conjugate of an `-root element is an `-root element, and a
GLD(V,W,m) conjugate of an `-root subgroup is an `-root subgroup.

An element t ∈ GLD(V, V ∗,mcan) with deg V t = 1 and (t − 1)2 = 0 is a
transvection. Every transvection t is has the form t(λ, v), with action on x ∈ V
given by

x. t(λ, v) = x+ xλ.v ,

for some v ∈ V and λ ∈ V ∗ with v.λ = 0. The 1-space 〈v〉 = Dv ≤ V is
called the center of t(λ, v) while the 1-space 〈λ〉 ≤ V ∗ is its axis. (Although the
identity is not a transvection, the notation t(0, v) = 1 = t(λ, 0) is convenient.)
By Lemma (9.15) a transvection on V also acts as a transvection on V ∗. The
action on V ∗ is given by

t(λ, v).µ = µ+ λ.vµ .

By Lemma (9.15) a transvection on V also acts as a transvection on V ∗.
The action on V ∗ is given by

t(λ, v).µ = µ+ λ.vµ .

(9.21). Theorem.

(a) For m : V ×W −→ D a nondegenerate pairing, we have

SLD(V,W,m) ' TD(W ρ, V ) ' TD(W,V λ),

the isomorphisms given by restriction.
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(b) Let V have infinite dimension and W be a subspace of V ∗ with ⊥W = 0.
Then m = mcan|V×W is nondegenerate. Furthermore

SLD(V,W,m) ' T(W,V )

is simple. Especially

SLD(V, V ∗,mcan) ' SLD(V ) = T(V ∗, V )

is simple.

Proof. (a) For (dimD(V ), |D|) = (2, 2) this is clear, and in finite dimensions
the result is immediate from Proposition (9.16).

In general, there are many ways of seeing the isomorphisms, but perhaps the
most elegant is to observe that all three groups are (isomorphic to) the directed
limit of the subgroups SU,Y of Theorem (9.18). Simplicity then follows from
that theorem as well.

(b) As W ≤ V ∗ we have V ⊥ = 0, so m is nondegenerate. Then (a) and
Theorem (9.18) apply. 2

An elation e is the image in PSLD(V ) of a transvection of SLD(V ). The
image T̄(ϕ, x) of the transvection subgroup T(ϕ, x) is an elation subgroup.

(9.22). Lemma.

(a) Every elation has a unique transvection preimage.

(b) Set T̄(ϕ) = T̄(ϕ, V ) and T̄(v) = T̄(V ∗, v) for each nonzero ϕ ∈ V ∗ and
v ∈ V . If T̄(a) ∩ T̄(b) 6= 1 for nonzero a, b ∈ V ∗ ∪ V with 〈a〉 6= 〈b〉,
then there are ϕ ∈ V ∗ and v ∈ V with {a, b} = {ϕ, v}, v ∈ kerϕ, and
T̄(ϕ, x) = T̄(ϕ)∩ T̄(v) isomorphic to (D,+). For dimV ≥ 3, T̄(ϕ) 6= T̄(v).

(c) Every abelian subgroup that is maximal subject to containing only the iden-
tity and elations is either T̄(ϕ), for some ϕ ∈ V ∗, or is T̄(v), for some
v ∈ V .

Proof.
2

9.6 Rigidity and automorphisms

Aut0(PSLD(V )) will denote that subgroup of Aut(PSLD(V )) composed of au-
tomorphisms that take elation subgroups to elation subgroups.

(9.23). Theorem. Let n ≥ 3.

(a) Aut0(PSLn(D)) has PΓLD(V ) as a normal subgroup of index at most 2.

(b) Aut0(PSLn(D)) 6= PΓLn(D) if and only if D is isomorphic to Dop.
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Proof.
2

(9.24). Corollary. For n ≥ 3,

Aut(PSLn(q)) = PΓLn(q)〈τ〉 .

Proof. Let q be a power of the prime p. An automorphism of finite PSLn(q)
must take Sylow p-subgroups to Sylow p-subgroups. But the center of a Sylow
p-subgroup of PSLn(q) is an elation subgroup. 2

9.7 Problems

(9.25). Problem. The matrix “inverse-transpose” map g 7→ (g−1)> induces an
automorphism of PSLn(F ), for any field F . For n ≥ 3 this automorphism is not
induced by any semilinear map.

Find a semilinear Σ = (σ, S) ∈ ΓL2(F ) with gΣ = (g−1)> on PSL2(F ).
Remark. The next problem implies that this automorphism must be semilinear

when n = 2, but the direct calculation is more elementary.

(9.26). Problem. Let F be a field. This problem approaches

Theorem (9.26)(a). Aut(PSL2(F )) = PΓL2(F ) .

We actually prove the slightly easier

Theorem (9.26)(b). Aut0(PSL2(F )) = PΓL2(F ) .

As in Corollary (9.24) we get the important:

Corollary (9.26)(c). For finite fields F , we have Aut(PSL2(F )) = PΓL2(F ) .

The proofs are presented through a sequence of parts.
Let V = F 2, the two dimensional F -space of row vectors, admitting the group

ΓL2(F ) = Aut(F )nGL2(F ) acting via

(a, b)(σ,S) = (aσ, bσ)S .

Thus PΓL2(F ) (and its various subgroups) acts on the associated projective line PV =
PF 2.

For the vectors (a, b) ∈ V and 1-spaces 〈(a, b)〉, define the transvections

t〈 ~(0,1)〉(d) =

(
1 d
0 1

)
and

t〈 ~(1,a)〉(d) =

(
1− ad −a2d
d 1 + ad

)
for each d ∈ F ; so in particular

t〈 ~(1,0)〉(d) =

(
1 0
d 1

)
.

Also define the transvection subgroup

T〈~v〉 = { t〈~v〉(d) | d ∈ F } ,
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for each 1-space 〈~v〉 in V .

(a) (i) For fixed 〈~v〉, prove that T〈~v〉 is a subgroup of SL2(F ) and that d 7→ t〈~v〉(d) is
an isomorphism of the additive group (F,+) with T〈~v〉.

(ii) For each t ∈ T〈~v〉 with t 6= 1, prove that V (t − 1) = 〈~v〉 and V (t − 1)2 = ~0.
Conversely, show that any t ∈ GL2(F ) that has these two properties is t〈~v〉(d), for
some non-zero d ∈ F .

(Remark. Once you have proved this characterization of transvections and transvec-
tion subgroups, in the rest of the problem you should not need to do much calculation
with the complicated matrices above.)

(iii) For each g ∈ ΓL2(F ), prove that g−1T〈~v〉g = T〈~vg〉. (Make sure you get the
correct inverse for g. You may want to use the characterization of (ii) for this.)

(iv) Prove that g ∈ ΓL2(F ) normalizes T〈~v〉 if and only if 〈~v〉g = 〈~v〉.
(v) If finite |F | = pk, for some prime p, prove that the set of the various T〈~v〉 is

precisely the set of Sylow p-subgroups of GL2(F ).

Each transvection subgroup T〈~v〉 meets the group Z2(F ) of scalars trivially and
contains all transvections of the subgroup T〈~v〉 × Z2(F ) (as(

r − 1 0
d r − 1

)
has rank 2 for central r 6= 1). Thus the image T̄〈~v〉 of T〈~v〉 in the quotient group
PSL2(F ) inherits the properties of part (a). The subgroups T̄〈~v〉 are the elation sub-
groups of PSL2(F ).

Aut0(PSL2(F )) is defined to be the subgroup of Aut(PSL2(F )) that takes elation
subgroups to elation subgroups. That is, for each r in Aut0(PSL2(F )) and each nonzero
~v ∈ V , we have T̄ r〈~v〉 = T̄〈~w〉, for some ~w. By part (a)(iii), PΓL2(F ) is at least contained
in Aut0(PSL2(F )).

(b) Show that if |F | is finite, then Aut0(PSL2(F )) = Aut(PSL2(F )).

We now commence with the proof of Theorem (9.26)(b). Set G = PSL2(F ), and
choose an arbitrary S ∈ Aut0(G).

We want to show that there is a semilinear map Σ such that gS = gΣ, for each g ∈
PSL2(F ), for then Σ 7→ S describes a homomorphism of ΓL2(F ) onto Aut0(PSL2(F ))
with kernel the group of scalar maps Z2(F ), proving Theorem 2.

There are vectors ~x, ~y, ~z ∈ V with T̄S〈(1,0)〉 = T̄〈~x〉, T̄
S
〈(0,1)〉 = T̄〈~y〉, and T̄S〈(1,1)〉 =

T̄〈~z〉. Set ~x0 = ~x. Then we can find a scalar e ∈ F with so that ~z = ~x0 + ~x1 upon
setting ~x1 = e~y. Hence

T̄S〈(1,0)〉 = T̄〈~x0〉, T̄S〈(0,1)〉 = T̄〈~x1〉, and T̄S〈(1,1)〉 = T̄〈~x0+~x1〉.

Next, for every a ∈ F , there is a uniquely determined aσ ∈ F with

T̄S〈(1,a)〉 = T̄〈~x0+aσ~x1〉 .

Notice that 0σ = 0 since T̄S〈(1,0)〉 = T̄〈~x0〉, and 1σ = 1 since T̄S〈(1,1)〉 = T̄〈~x0+~x1〉.

(c) Prove that for all a, b ∈ F :
(i) (a+ b)σ = aσ + bσ ;
(ii) (ab2)σ = aσ(b2)σ ;
(iii) (aσ)−1 = (a−1)σ ;
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(Hint: For (i) let g ∈ T̄〈(0,1)〉 be represented by

(
1 b
0 1

)
. Therefore gS ∈

T̄S〈(0,1)〉 = T̄〈~x1〉. Thus there is a b′ ∈ F for which gS is represented by the transvection
t with

t : ~x0 7→ ~x0 + b′~x1 t : ~x1 7→ ~x1 .

Now calculate both sides of

(g−1T̄〈(1,a)〉g)S = (g−1)S T̄S〈(1,a)〉 g
S

to conclude that, for all a ∈ F , (a+ b)σ = aσ + b′. Using this, complete (i).

For (ii) and (iii) consider the action of elements represented by

(
b−1 0
0 b

)
and(

0 −1
1 0

)
as well as their images under S.)

(d) Prove that σ is in fact an automorphism of F .
(Remark. More generally, any bijection σ : F −→ F with (i), (ii), and (iii) of (c)

is an automorphism of F .)

(e) Prove that Σ: (a, b) 7→ aσ~x0 + bσ~x1 is a semilinear map on V with T̄Σ
〈~v〉 = T̄S〈~v〉, for

all 1-spaces 〈~v〉 of V .

(f) Prove that gΣ = gS, for all g ∈ G.
(Hint: Let I ∈ Aut0(G) be the automorphism Σ̄S−1, where Σ̄ is the image of Σ in

PΓL2(F ). Then I fixes each transvection subgroup of G. For arbitrary g ∈ G, calculate

(g−1T̄〈v〉g)I = (g−1)I T̄ I〈v〉g
I to prove that T̄ g〈v〉 = T̄ g

I

〈v〉, for all 1-spaces 〈~v〉. Therefore

gIg−1 fixes all 1-spaces 〈~v〉 and so is the identity element of G = PSL2(F ).)

Part (f) completes the proof of Theorem (9.26)(b) and together with part (b) com-
pletes the proof of Corollary (9.26)(c).



122 CHAPTER 9. PAIRINGS, ISOMETRIES, AND AUTOMORPHISMS



Chapter 10
Sesquilinear and Pseudoquadratic
Forms

10.1 Sesquilinear forms

Of special interest in the previous chapter were those pairings m : DV ×WD −→
D that gave rise to isomorphisms of the two projective spaces PDV and PWD.
This happens if and only if PDV and PDopW op are isomorphic. In this situa-
tion the Fundamental Theorem of Projective Geometry (8.2) tells us that the
isomorphism is induced by a semilinear isomorphism [τ, t] from DV to DopW op.
This consists of an abelian group isomorphism t : V −→ W op (= W ) and a di-
vision ring isomorphism τ : D −→ Dop (associated with the anti-isomorphism
σ = τop: D −→ D), such that

(ax+ by)t = (ax)t + (by)t = aτxt + bτyt ,

for all a, b ∈ D and x, y ∈ V .
Beginning with the pairing m we can now define a map f : V × V −→ D by

f(x, y) = m(x, ytop) .

We have

f(x1 + x2, y) = m(x1 + x2, y
top)

= m(x1, y
top) +m(x2, y

top)

= f(x1, y) + f(x2, y)

and

f(x, y1 + y2) = m(x, (y1 + y2)top)

= m(x, ytop
1 + ytop

2 )

= m(x, ytop
1 ) +m(x, ytop

2 )

= f(x, y1) + f(x, y2) ;

123
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so f is biadditive. Additionally

f(ax, by) = m(ax, (by)top)

= m(ax, (bτyt)op)

= m(ax, ytopbτop)

= am(x, ytop)bτop

= a f(x, y)bσ .

In general, a biadditive map f : V × V −→ D that satisfies

f(ax, by) = af(x, y)bσ ,

for a fixed anti-automorphism σ of D, all a, b ∈ D, and x, y ∈ V , is called a
σ-sesquilinear form. In the special case where the anti-automorphism σ is the
identity map, the division ring D must be a field and f is a bilinear form.

Above we have seen that every pairing of V with a space isomorphic to its
opposite yields such a form. We will next see that every σ-sesquilinear form
comes from a pairing of V and an appropriate opposite.

Given an anti-isomorphism σ : D −→ D and a left D-space V , we provide
the additive group (V,+) with the structure of a right D-space by defining, for
all a, b ∈ D and v ∈ V ,

v.a = aσ
−1

.v or, equivalently, b.v = v.bσ .

That is, we recast the right Dop-space V op as a right D-space using the iso-
morphism τ = σop of D with Dop. We use the notation V σ to denote V when
viewed as a right D-space via the anti-isomorphism σ. The subset U of V is a
subspace of the left D-space V if and only if it is a subspace of the right D-space
V σ.

Given a σ-sesquilinear form f : V ×V −→ D consider the mapm : V ×V σ −→
D, given by

m(x, y) = f(x, y) ,

for all x, y ∈ V .1 Since the addition in V σ is identical to that in DV , the
function m is biadditive. We also have, for all a, b ∈ D and x, y ∈ V ,

m(ax, yb) = f(ax, yb)

= f(ax, bσ
−1

y)

= a f(x, y) (bσ
−1

)σ

= am(x, y) b .

1Strictly speaking, this definition is unnecessary. The underlying sets V and V σ are iden-
tical, and the maps m and f on the cartesian square of this set are also identical. That is,
m = f . But it is best to hold the distinction; see, for instance, page 141.
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Therefore, as promised above, the sesquilinear form f can be viewed as arising
from the pairing m of V with V σ. The sesquilinear form f is nondegenerate
provided that the associated pairing m is nondegenerate.

There are division rings D that are not isomorphic to their opposites, but as
long as we have this necessary condition, every D-space admits nondegenerate
σ-sesquilinear forms. The following comes from easy calculation.

(10.1). Lemma. Let σ be an anti-automorphism of the division ring D.

(a) Let X = {xi | i ∈ I } be a basis of V and gi,j ∈ D for i, j ∈ I. Then

g
(∑
i∈I

aixi,
∑
j∈I

bjxj

)
=
∑
i,j∈I

aigi,jb
σ
j

defines a σ-sesquilinear form on V .

(b) The set Sesqσ(V ) of σ-sesquilinear forms on the D-space V is an abelian
group under pointwise addition: (f + g)(x, y) = f(x, y) + g(x, y). 2

The matrix of coefficients, G = (gi,j)i,j , is the Gram matrix of the form g,
and the process of passing from the values on the basis elements to the values
on arbitrary elements, as in Lemma (10.1)(a), is called sesquilinearization (or
just linearization if σ = 1).

The first part of the lemma actually demonstrates the second part concretely
by showing Sesqσ(V ) to be isomorphic as abelian group to MatI(D); if F is the
Gram matrix for f and G is the Gram matrix for g, then F + G is the Gram
matrix for f + g.

When we write the vectors
∑
i∈I aixi and

∑
j∈I bjxj in the basis X as I-

tuples a = (. . . , ai, . . . ) and b = (. . . , bj , . . . ), then we have the matrix represen-
tation of the form:

g(a, b) = aG bσ> .

Of course the Gram matrix G of g is actually GX , since it depends upon the
choice of basis X . If Y is a second basis and A is the I × I base change matrix
that takes vectors written in the basis Y to their corresponding representation
in the basis X , then GY = AGXA

σ>.

(10.2). Lemma. If f : V × V −→ D is a σ-sesquilinear form, then λf : v 7→
f(v, ·) is a D-homomorphisms from V to (V σ)∗ and ρf : w 7→ f(·, w) is D-

homomorphism from V to (V ∗)σ
−1

. 2

Proof. We apply Lemma (9.1) to the pairing m : V ×V σ given by m(v, w) =
f(v, w) and find that D-linear λf goes from V to (V σ)∗ while ρ goes from V σ

to V ∗. But then ρf can also be thought of as going from V to (V ∗)σ
−1

. 2

The σ-sesquilinear form f is nondegenerate if both ρf and λf are injective.

(10.3). Corollary. If f is a σ-sesquilinear form on finite dimensional D-
space V , then the following are equivalent:

(1) f is nondegenerate;
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(2) λf is injective;

(3) λf is surjective;

(4) ρf is injective;

(5) ρf is surjective;

(6) λf is an isomorphism;

(7) ρf is an isomorphism.

Proof. V and V σ have the same dimension. When finite, this is also equal
to the dimensions of V ∗ and (V σ)∗ by Corollary (7.2). The result then follows
from Lemma (9.7). 2

(10.4). Corollary. The σ-sesquilinear form f on the finite dimensional
D-space V is nondegenerate if and only if its Gram matrix is invertible if and
only if its Gram matrix has nonzero Dieudonné determinant.

Proof. If F is the Gram matrix for f , then the vector v is in ⊥V if and only
if vF = 0 (in matrix representation). Similarly v ∈ V ⊥ if and only if Fvσ> = 0.
Therefore the corollary follows from the previous corollary, Theorem (6.10), and
Lemma (6.15). 2

(10.5). Lemma.

(a) If g : V × V −→ D is a σ-sesquilinear form and 0 6= c ∈ D, then f(x, y) =
g(x, y)c is a σc-sesquilinear form.

(b) Let f and g be nondegenerate sesquilinear forms on V with dimD(V ) ≥ 2.
The following are equivalent:

(i) for all x, y ∈ V we have

f(x, y) = 0 ⇐⇒ g(x, y) = 0 ;

(ii) there is a constant 0 6= c ∈ D with f(x, y) = g(x, y)c for all x, y ∈ V .

Proof. (a) Clearly f is biadditive. Also

f(ax, by) = g(ax, by)c = ag(x, y)bσc = a(g(x, y)c)c−1bσc = af(x, y)bσc .

(b) Certainly (ii) implies (i). Now assume that f(x, y) = 0 if and only if
g(x, y) = 0.

Let fy be the linear functional from V to D given by x.fy = f(x, y) and
similarly let gy be the linear functional given by x.gy = g(x, y). Hypothesis (i)
then says that, for all y ∈ V , the functionals fy and gy have the same kernel.
That is, there is a nonzero constant cy ∈ D with fy = gycy. It remains to show
that cy is independent of y.
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We have

fx+y − fx − fy = 0 ,

so gx+ycx+y − gxcx − gycy = 0 ,

and gx+y − gx − gy = 0 ,

so gx+ycx+y − gxcx+y − gycx+y = 0 ,

hence
gx(cx+y − cx)− gy(cx+y − cy) = 0 .

For linearly independent x and y, the functionals gx and gy are linearly inde-
pendent by nondegeneracy, so cx = cx+y = cy. If x and y are dependent, then
by hypothesis there is a z independent of both, hence cx = cz = cy. 2

If g is a σ-sesquilinear form, then the σc-sesquilinear form f = gc is said to
be proportional to the form g.

10.2 Hermitian forms

The σ-sesquilinear form f : V ×V −→ D of the first section comes from a duality
automorphism of the pairing graph for m, whose bipartition PDV ∪ PWD, we
now view as PV ∪ PV σ. Although such automorphisms switch the two parts of
the graph, they may not actually have order 2.

When the duality automorphism does have order 2, then we say it is a
polarity automorphism and the geometric map exchanging the 1-spaces of PV
and those of PV σ ≤ PV ∗ is called a polarity. Once we have identified PV and
PV σ via a polarity automorphism we have the nice property

m(u, v) = 0 if and only if m(v, u) = 0 .

That is, for every subset of S of V we have ⊥S = S⊥, so we may dispense with
this particular right-left distinction.

In the language of sesquilinear forms, the form f : V × V −→ D is reflexive
if

f(u, v) = 0 if and only if f(v, u) = 0 ,

for all u, v ∈ V . We write S⊥ for the subspace { v ∈ V | f(v, s) = 0 , for all s ∈
S } and say that V and f are nondegenerate provided its radical Rad(V, f) =
Rad(V ) = V ⊥ is equal to {0}. The reflexive form f restricts to a reflexive form
on each subspace U of V , and U is a nondegenerate subspace provided its radical
under this restriction is 0; that is, U ∩ U⊥ = 0.

These definitions are entirely consistent with their previous use for pairings.
When we specialize the earlier Lemma (9.3) to the present situation we find:

(10.6). Lemma. Let h be a nondegenerate reflexive σ-sesquilinear form on V ,
and let U be a finite dimensional subspace of V .

(a) The codimension of U⊥ in V is equal to the dimension of U , and U⊥⊥ = U .
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(b) The restriction of h to U is nondegenerate if and only if V = U ⊕ U⊥. 2

There is also a current version of Lemma (9.4).

(10.7). Lemma. Let h be a nondegenerate reflexive σ-sesquilinear form on V .
If S is a finite dimensional subspace of V , there is a subspace T of dimension at
most 2 dimD(S) that contains S and has the restriction of h to T nondegenerate.

Proof. We follow the proof of Lemma (9.4). For S (= U0 = Y0) let X (=
U1 = Y1) be a complement in V to (S ∩ S⊥)⊥. Then T = S ⊕X (= U0 ⊕ U1 =
Y0 ⊕ Y1) has the desired properties. 2

(10.8). Lemma. Let h be a nondegenerate reflexive σ-sesquilinear form on V
with dimD(V ) ≥ 2. Then there is a 0 6= k ∈ D with

h(x, y) = kh(y, x)σ

and
kσ = k−1 and aσ

2

= k−1ak for all a ∈ D .

Proof. Let g : V × V −→ D be given by g(x, y) = h(y, x)σ
−1

. Then g is
biadditive and

g(ax, by) = h(by, ax)σ
−1

= (bh(y, x)aσ)σ
−1

= ah(y, x)σ
−1

bσ
−1

= ag(x, y)bσ
−1

,

so g is σ−1-sesquilinear.
As h is reflexive, h(x, y) = 0 if and only if g(x, y) = 0. Therefore by Lemma

(10.5) there is a nonzero c ∈ D with h(x, y) = g(x, y)c = f(y, x)σ
−1

c hence
kh(x, y)σ = h(y, x) for k = (c−1)σ. Next

h(x, y) = kh(y, x)σ = k(kh(x, y)σ)σ = kh(x, y)σ
2

kσ .

As h is nondegenerate, there are x, y with h(x, y) = 1, which leads to 1 = kkσ

and kσ = k−1. This in turn yields h(ax, y) = kh(ax, y)σ
2

k−1 or k−1ak = aσ
2

,
so the automorphism σ2 of D is conjugation by k. 2

Sesquilinear forms in dimension 1 are always reflexive. A σ-sesquilinear form
h with

h(x, y) = kh(y, x)σ ,

as in the lemma, is clearly reflexive. Such a form is called (σ, k)-hermitian (and
even a (σ, k)-form at times). We call the pair (V, h) a hermitian space.2

When k = 1 the form h is said to be σ-hermitian and when k = −1 it
is σ-skew-hermitian. As σ2 is conjugation by k, in the σ-hermitian and σ-
skew-hermitian cases we must have σ2 = 1. The hermitian and skew-hermitian

2Of course, this is imprecise. The data that goes into such a space is (D,σ, k, V, h), but we
rarely record this so specifically. Instead we rely on the context for clarity.
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terminology is usually reserved for the case σ 6= 1, the cases (σ, k) = (1, 1)
and (σ, k) = (1,−1) then giving, respectively, symmetric bilinear forms and
alternating bilinear forms. This is problematic in characteristic 2 where 1 = −1,
so we shall avoid the alternating terminology. Instead we call any bilinear form
h with h(x, x) = 0, for all x, a symplectic form or null form. If the characteristic
is not 2, this is equivalent to h being alternating.

(10.9). Proposition. Let σ be an anti-automorphism of D such that the
automorphism σ2 is conjugation by the element k of D with kσ = k−1. For each
form f ∈ Sesqσ(V ), consider fπ : V × V −→ D given by

fπ(x, y) = kf(y, x)σ .

(a) The map π : f 7→ fπ is an automorphism of the abelian group Sesqσ(V ) with
π2 = 1.

(b) In EndAbGrp(Sesqσ(V )) we have im(1 + επ) ≤ ker(1− επ) for ε = ±1.

Proof. We have already seen in Lemma (10.1) that Sesqσ(V ) is an abelian
group. If f is one of the forms belonging to it, then fπ is biadditive and

fπ(ax, by) = kf(by, ax)σ = k(bf(y, x)aσ)σ

= kaσ
2

f(y, x)σbσ = kk−1akf(y, x)σbσ

= afπ(x, y)bσ .

Thus π is a map from Sesqσ(V ) to itself and is certainly additive. Furthermore

fπ
2

(x, y) = k(kf(x, y)σ)σ = kf(x, y)σ
2

kσ

= kk−1f(x, y)kkσ = f(x, y) ,

so π is an automorphism of order 2, completing (a). As an endomorphism
0 = 1− π2 = (1− π)(1 + π), so (b) follows directly. 2

With the notation of the proposition, we set

Herm(σ,εk)(V ) = ker(1− επ) = { f ∈ Sesqσ(V ) | f(x, y) = εkf(y, x)σ } ,

the group of (σ, εk)-hermitian forms on V , and

THerm(σ,εk)(V ) = im(1 + επ)

= {h ∈ Sesqσ(V ) | h(x, y) = f(x, y) + εkf(y, x)σ , some f ∈ Sesqσ(V ) } ,

the group of (σ, εk)-trace-hermitian forms on V .
Consider the special case V = D. Here Sesqσ(D) is naturally isomorphic to

(D,+), since the Gram matrix for each form has degree 1. We define subgroups
of (D,+):

D(σ,εk) = THerm(σ,εk)(D) = { a+ εkaσ | a ∈ D } ,
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the (σ, εk)-traces in D, and

D(σ,εk) = Herm(σ,εk)(D) = { a ∈ D | a = εkaσ } ,

the (σ, εk)-symmetric elements in D.

(10.10). Lemma. If F is a field of characteristic 2 and σ is an automorphism
of F of order 2, then there is an element t of F with t+ tσ = 1.

Proof. For s 6= sσ, set t = s(s+ sσ)−1. 2

(10.11). Proposition. Let σ be an anti-automorphism of D such that the
automorphism σ2 is conjugation by the element k of D with kσ = k−1.

(a) THerm(σ,εk)(V ) ≤ Herm(σ,εk)(V ) and especially D(σ,εk) ≤ D(σ,εk).

(b) If char(D) 6= 2 then

Sesqσ(D) = THerm(σ,k)(V )⊕ THerm(σ,−k)(V )

= Herm(σ,k)(V )⊕Herm(σ,−k)(V ) .

(c) If char(D) 6= 2 or σ|Z(D) 6= 1 then THerm(σ,εk)(V ) = Herm(σ,εk)(V ) and

especially D(σ,εk) = D(σ,εk).

Proof. (a) This is just the second part of the previous result, rewritten in
the appropriate notation.

(b) For f ∈ Sesqσ(V ) we have

2f = f(1 + π) + f(1− π) ∈ THerm(σ,k)(V ) + THerm(σ,−k)(V ) ,

and also for h ∈ Herm(σ,k)(V ) ∩Herm(σ,−k)(V ) we have

2h = h+ h = khσ + (−k)hσ = 0 .

(c) In characteristic other than 2 this follows from the previous part, but

we can handle both cases at once. We have already noted THerm(σ,εk)(V ) ≤
Herm(σ,εk)(V ), so for arbitrary h ∈ Herm(σ,εk)(V ) we must find a g ∈ Sesqσ(V )
with h(x, y) = g(x, y) + kg(y, x)σ.

Choose a t in the subfield Z(D) with t+ tσ = 1. If D has characteristic other
than 2, then t = 2−1 has this property. If D has characteristic 2, such a t is
guaranteed by the previous lemma. Let g = ht. Then

g(x, y) + εkg(y, x)σ = h(x, y)t+ εk(h(y, x)t)σ

= h(x, y)t+ εktσh(y, x)σ

= h(x, y)t+ εkh(y, x)σtσ

= h(x, y)t+ h(x, y)tσ

= h(x, y)
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as desired. 2

A (σ, εk)-hermitian form h is trace-valued if, for all x ∈ V , we have h(x, x) ∈
D(σ,εk). Certainly all trace-hermitian forms are trace-valued. If the character-
istic is not 2, then the converse is true for the trivial reason that all (σ, k)-
hermitian forms are trace-hermitian forms, as we saw in Proposition (10.11)(c).
But the converse is valid without restriction.

(10.12). Theorem. Every trace-valued (σ, εk)-hermitian form h on V is a
(σ, εk)-trace-hermitian form.

Indeed, for {xi | i ∈ I } a D-basis of V indexed by the well-ordered set (I,<),
let f be the σ-sesquilinear form with Gram matrix given by:

f(xi, xj) = h(xi, xj) for i < j ;

f(xi, xi) = qi for i = j ;

f(xi, xj) = 0 for j < i ,

where each element h(xi, xi) is the (σ, εk)-trace qi + εkqσi . Then the set of all
σ-sesquilinear forms mapped to h by the endomorphism 1 + επ of Proposition
(10.9) is f + Herm(σ,−εk)(V ).

Proof. If F is the given Gram matrix for f , then by construction F +
εk(Fσ)> is the Gram matrix for h; so h is trace-hermitian, being f(1 + επ). By

definition the kernel of 1 + επ is the subspace Herm(σ,−εk)(V ). 2

From the next section on, we shall primarily be concerned with trace-valued,
hence trace-hermitian, forms. This is because all forms that are not trace-valued
give rise rigidly to trace-valued forms.

(10.13). Proposition. Let h be a (σ, k)-hermitian form on the vector space
V over the division ring D of characteristic 2. Let V0 be the set of all vectors
x ∈ V with h(x, x) ∈ D(σ,k). Then V0 is the unique maximal trace-valued
subspace of V , and the value map v −→ h(v, v) induces an additive injection of
the elementary abelian 2-group V/V0 into D(σ,k)/D(σ,k).

Proof. Always h(x, x) ∈ D(σ,k). If x ∈ V0 so that h(x, x) = c ∈ D(σ,k),
then c = a+ kaσ, for some a. For all b ∈ D

h(bx, bx) = bh(x, x)bσ = bcbσ = b(a+ kaσ)bσ

= babσ + bkaσbσ = babσ + kk−1bkaσbσ

= babσ + kbσ
2

aσbσ = babσ + k(babσ)σ ∈ D(σ,k) .

Also

h(x+ y, x+ y) =h(x, x) + h(y, y) + h(x, y) + h(y, x)

=h(x, x) + h(y, y) + (h(x, y) + kh(x, y)σ)

∈ h(x, x) + h(y, y) +D(σ,k) . 2
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The form f = gc is said to be proportional to g. Clearly g is reflexive if and
only if the proportional form gc is. The algebraic version of this is recorded in
the next lemma.

(10.14). Lemma. Let σ be an anti-automorphism of D such that the auto-
morphism σ2 is conjugation by the element k of D with kσ = k−1. Further let
0 6= c ∈ D.

(a) Set k′ = k(cσ)−1c. Then kaσc = k′(ac)σc for all a ∈ D.

(b) Herm(σ,k)(V )c = Herm(σc,k′)(V ), and especially D(σ,k)c = D(σc,k′).

(c) THerm(σ,k)(V )c = THerm(σc,k′)(V ), and especially D(σ,k)c = D(σc,k′).

Proof. (a) Indeed

kaσc = k((cσ)−1cc−1(cσ))aσc

= (k(cσ)−1c)(c−1(ac)σc)

= (k(cσ)−1c)(ac)σc

= k′(ac)σc .

(b) For h ∈ Herm(σ,k)(V ) the form hc is σc-sesquilinear by Lemma (10.5). As
h is (σ, k)-hermitian,

h(x, y)c = kh(y, x)σc = k′(h(y, x)c)σc

by (a). Thus multiplication by c gives a map from Herm(σ,k)(V ) to Herm(σc,k′)(V ),
and its inverse is multiplication by c−1.

(c) Similarly, if f(x, y) + kf(y, x)σ ∈ THerm(σ,k)(V ), for σ-sesquilinear f ,
then fc is σc-sesquilinear (again by Lemma (10.5)) and

(f(x, y) + kf(y, x)σ)c = f(x, y)c+ kf(y, x)σc

= f(x, y)c+ k′(f(y, x)c)σc ∈ THerm(σc,k′)(V ) . 2

(10.15). Theorem. (Bestiary of Hermitian Forms) Let h be a (σ, k)-
hermitian form on the D-space V with h not identically 0. Set Dh = {h(x, x) |
x ∈ V }. Then, up to proportionality, we have one of:

(1) Symplectic Case: σ = 1; k = −1; D is a field; Dh = {0} = D(σ,k); and
h is a symplectic bilinear form.

(2) Orthogonal Case: σ = 1; k = 1; D is a field; Dh 6= {0}; D(σ,k) = 2D;
and h is a symmetric bilinear form.

(3) Unitary Case: σ2 = 1 6= σ; Dh 6= {0} 6= D(σ,k); k can be taken to be
either 1 or −1; and h is a hermitian or skew-hermitian form (both possible,
subject to proportionality).
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Proof.

(a) Case D(σ,k) = {0}.

We have 1+k 1σ = 0, so k = −1. Thus a+(−1)aσ = 0 for all a, and a = aσ.
That is, σ = 1 and, as it is an anti-automorphism of D, D must be a field.
Furthermore D(σ,k) = { a | a = kaσ = −a }, which is 0 unless char(D) = 2
where it is all of D.

(b) Case Dh = {0}.

As h is not identically 0 there are x, y ∈ V with h(x, y) = b 6= 0. For all
a ∈ D,

a+ kaσ = h(ab−1x, y) + kh(ab−1x, y)σ

= h(ab−1x, y) + h(y, ab−1x)

= h(ab−1x+ y, ab−1x+ y)− h(ab−1x, ab−1x)− h(y, y)

= 0− 0− 0 = 0 .

That is, D(σ,k) = 0. By (i) we are in the Symplectic Case (1).

(c) Case Dh 6= {0} but D(σ,k) = {0}

As D(σ,k) ⊇ Dh 6= {0} we have D(σ,k) = {0} 6= D(σ,k). As we saw under (i),
this can only happen in characteristic 2. Thus, again by (i), σ = 1, D must
be a field, and k = −1 = 1. We are in the Orthogonal Case (2).

(d) Case Dh 6= {0} 6= D(σ,k).

The arguments to this point imply that a nonzero (σ, k)-hermitian form
with σ 6= 1 can only occur under this case.

Choose a ∈ D with 0 6= a + kaσ ∈ D(σ,k). Set s = (a + kaσ)−1. Then by
Lemma (10.14) the form g = hs is (σs, k′)-hermitian for k′ = k(sσ)−1s. But

k(sσ)−1s = k((a+ kaσ)−1)σ)−1(a+ kaσ)−1

= k((a+ kaσ))σ)(a+ kaσ)−1

= k(aσ + kaσ
2

kσ)(a+ kaσ)−1

= (kaσ + kk−1akkσ)(a+ kaσ)−1 = 1 .

Therefore g is (σs, 1)-hermitian. As (σs)2 is conjugation by 1, we have
(σs)2 = 1. Also Dg = (Dh)s 6= {0}.

(i) σs = 1.

As the anti-automorphism σs is 1, again D is a field. Also D(σs,1) =
{ a + 1aσs | a ∈ D } = 2D. After replacing h with g and σ with σs,
we are again in the Orthogonal Case (2).
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(ii) σs 6= 1.

The remark at the beginning of Case (iv) tells us that the (σs, 1)-
hermitian form g also comes under this case. Replacing h with g and
σ with σs, we are in the Unitary Case (3) for k = 1.

As σs 6= 1 there is an a ∈ D with a 6= aσs, hence t = a−aσs 6= 0. Then
the form gt = hst is (by Lemma (10.14) again) (σst, k′′)-hermitian with

k′′ = k′(tσs)−1t

= 1((a− aσs)σs)−1t

= (aσs − a(σs)2

)−1t = −t−1t = −1 .

The only inner anti-automorphism of D is 1. As σs 6= 1, it must be
a noninner anti-automorphism. In particular σs 6= t−1 and σst 6= 1.
Thus after replacing h with gt and σ with σst, we remain under Case
(iv) and so are again in the Unitary Case (3) for k = −1. 2

10.3 Pseudoquadratic forms

Throughout this section σ will be an anti-automorphism of the division ring
D for which the automorphism σ2 is conjugation by the element k of D with
kσ = k−1. It is also true that σ2 is conjugation by −k and that (−k)σ = (−k)−1;
so, unlike the previous section, we will write k rather than εk with ε = ±1. It
is, however, worth remembering that everything to follow would remain valid
and consistent with the roles of k and −k reversed.

Proposition (10.11) tells us that much of the time we have

Sesqσ(V )/Herm(σ,−k)(V ) ' Herm(σ,k)(V ) .

Pseudoquadratic forms, as introduced by Tits, provide a more general version
of this. A second motivation comes from a direct calculation:

(10.16). Lemma. Let f : V × V −→ D be a (σ, k)-hermitian form. Define
the value map v : V −→ D by v(x) = f(x, x). Then we have, for all x, y ∈ V ,
a ∈ D:

(a) v(x+ y)− v(x)− v(y) = f(x, y) + kf(x, y)σ ;

(b) v(ax) = av(x)aσ ;

(c) v(x) = kv(x)σ . 2

Let Λ be an additive subgroup of (D,+) satisfying:

(i) D(σ,−k) ≤ Λ ≤ D(σ,−k);

(ii) aΛaσ = Λ for all 0 6= a ∈ D.

Such a Λ is called a (σ, k)-form parameter or form parameter in D. We already
have several examples.
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(10.17). Lemma.

(a) D(σ,−k) is a (σ, k)-form parameter.

(b) D(σ,−k) is a (σ, k)-form parameter.

Proof. Both
D(σ,−k) = { a− kaσ | a ∈ D }

and
D(σ,−k) = { a ∈ D | a = −kaσ }

are subgroups of (D,+). By Proposition (10.13) bD(σ,−k)b
σ = D(σ,−k) for all

b ∈ D. Also when a = −kaσ,

babσ = b(−kaσ)bσ = −k(k−1bk)aσbσ = −kbσ
2

aσbσ = −k(babσ)σ . 2

(10.18). Lemma. Let Λ be a (σ, k)-form parameter. Then under the scalar
action

a · (x+D(σ,−k)) = axaσ +D(σ,−k) , for a ∈ D ,

the quotient group Λ/D(σ,−k) is a D-space.

Proof. The quotient is an abelian group, but we must show that it is a
unital D-module under the given action. Certainly

1 · (x+D(σ,−k)) = x+D(σ,−k)

and

(ab) · (x+D(σ,−k)) = (ab)x(ab)σ +D(σ,−k)

= a(bxbσ)aσ +D(σ,−k)

= a · (b · (x+D(σ,−k))) .

Finally

(a+ b) · (x+D(σ,−k)) = (a+ b)x(a+ b)σ +D(σ,−k)

= axaσ + bxbσ + axbσ + bxaσ +D(σ,−k)

= a · (x+D(σ,−k))) + b · (x+D(σ,−k))) ,

since, as x ∈ Λ ≤ D(σ,−k),

bxaσ = −bkxσaσ = −kk−1bkxσaσ = −kbσ
2

xσaσ = −k(axbσ)σ . 2

Let Λ be a (σ, k)-form parameter in D. The pair (q, h) is a Λ-pseudoquadratic
form on V , provided q is a map from V to the abelian group D/Λ and h : V ×
V −→ D is a (σ, k)-hermitian form on V that together satisfy:

(i) q(x+ y)− q(x)− q(y) = h(x, y) + Λ;

(ii) q(ax) = aq(x)aσ + Λ;
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(iii) h(x, x) = q(x) + kq(x)σ;

for all x, y ∈ V and a ∈ D. The triple (V, q, h) is then a pseudoquadratic space.3

The map q is the associated quadratic part, just as the hermitian form h is
the associated hermitian part. The set of all Λ-pseudoquadratic forms on V is

PQuad
(σ,k)
Λ (V ), again an abelian group under pointwise addition.

As we have seen in Proposition (10.11)(b), we often have D = D(σ,k) ⊕
D(σ,−k). Therefore the quotients D/D(σ,−k) and D/Λ provide generalizations
of the group of (σ, k)-traces D(σ,k).

The condition (iii) contains an abuse of notation, since h(x, x) ∈ D while
q(x) ∈ D/Λ. Let q0 be a coset representative for q(x). Then, for all λ ∈ Λ,

(q0 + λ) + k(q0 + λ)σ = (q0 + kqσ0 ) + (λ+ kλσ) = (q0 + kqσ0 ) + 0 = q0 + kqσ0 ,

as Λ ≤ D(σ,−k). Thus the righthand side of (iii) gives a well-defined element of
D, and the abuse is small.

We write Herm
(σ,k)
Λ (V ) for the subgroup of all (σ, k)-hermitian forms with

h(x, x) ∈ Λ, for all x ∈ V , so that

Herm
(σ,k)
D(σ,k)

(V ) ≤ Herm
(σ,k)
Λ (V ) ≤ Herm

(σ,k)

D(σ,k)(V ) = Herm(σ,k)(V ) ,

the final equality being a consequence of Lemma (10.16)(c).

(10.19). Theorem. Let Λ be a (σ, k)-form parameter on D. The map f 7→
(q, h) given by

q(x) = f(x, x) + Λ and h(x, y) = f(x, y) + kf(y, x)σ

gives an isomorphism

Sesqσ(V )/Herm
(σ,−k)
Λ (V ) ' PQuad

(σ,k)
Λ (V ) .

Proof. The map as described is additive, and h ∈ Herm(σ,k)(V ) by Propo-
sition (10.11)(a). The things that must be verified are:
(a) The image is in PQuad

(σ,k)
Λ (V ).

(b) The kernel is Herm
(σ,−k)
Λ (V ).

(c) The map is surjective.

(a) Image. We must verify that the given q and h satisfy the requirements (i),
(ii), and (iii) for a pseudoquadratic form.

(i) For x, y ∈ V

q(x+ y)− q(x)− q(y) = f(x+ y, x+ y)− f(x, x)− f(y, y) + Λ

= f(x, y) + f(y, x) + Λ

= f(x, y) + f(y, x) + (kf(y, x)σ − kf(y, x)σ) + Λ

= f(x, y) + kf(y, x)σ + (f(y, x)− kf(y, x)σ) + Λ

= f(x, y) + kf(y, x)σ + Λ

as f(y, x)− kf(y, x)σ ∈ D(σ,−k) ≤ Λ.
3Again, this should really be the tuple (D,σ, k, V, h,Λ, q).
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(ii) q(ax) = f(ax, ax) + Λ = af(x, x)aσ + Λ = aq(x)aσ + Λ.

(iii) For arbitrary a ∈ D we calculate q((a + 1)x) = q(ax + 1) in two
ways—using (i) and using (ii).

q((a+ 1)x) = q(ax+ x)

(a+ 1)q(x)(a+ 1)σ = q(ax) + q(x) + h(ax, x) + Λ

aq(x)aσ + q(x) + aq(x) + q(x)aσ = aq(x)aσ + q(x) + ah(x, x) + Λ

aq(x) + q(x)aσ = ah(x, x) + Λ .

Again as D(σ,−k) ≤ Λ

aq(x) + q(x)aσ − (q(x)aσ − k(q(x)aσ)σ) = ah(x, x) + Λ

aq(x) + kaσ
2

q(x)σ = aq(x) + kk−1akq(x)σ = ah(x, x) + Λ

aq(x) + akq(x)σ = ah(x, x) + Λ .

That is, for all a ∈ D,

a (q(x) + kq(x)σ − h(x, x)) ∈ Λ .

If Λ 6= D and q(x) + kq(x)σ − h(x, x) is not identically 0, this gives a
contradiction.

Therefore we have (iii) except possibly when Λ = D. In that case
as Λ ≤ D(σ,−k) we also have D(σ,−k) = { a ∈ D | a = −kaσ } = D.
With a = 1 we find 1 = −k1σ, so k = −1. Then always a = −kaσ =
−(−1)aσ = aσ, so σ = 1. Thus h(x, x) = f(x, x) + kf(x, x)σ =
f(x, x)− f(x, x) = 0, and so we again have (iii):

h(x, x) = 0 = q(x)− q(x) = q(x) + kq(x)σ .

(b) Kernel. The kernel consists of those f for which q(x) = Λ and h(x, y) = 0
for all x, y ∈ V . Therefore

0 = h(x, y) = f(x, y) + kf(y, x)σ ,

which is to say f(x, y) = −kf(y, x)σ and so f ∈ Herm(σ,−k)(V ). Further-

more f(x, x) + Λ = q(x) + Λ = Λ. Thus f ∈ Herm
(σ,−k)
Λ (V ).

(c) Surjective. Let (q, h) be a Λ-pseudoquadratic form. For {xi | i ∈ I } a
D-basis of V indexed by the totally ordered set (I,<), let the Gram matrix
for a form f be:

f(xi, xj) = h(xi, xj) for i < j ;

f(xi, xj) = qi for i = j ;

f(xi, xj) = 0 for j < i ,

where each qi is a representative in D for the coset q(xi). As in Theorem
(10.12) we have h(x, y) = f(x, y) + kf(y, x)σ for all x, y ∈ V .
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We must check q(x) = f(x, x) + Λ for all x, y ∈ V . Let x =
∑
i∈I aixi ∈ V .

By (i) (and induction) and (ii) for the pseudoquadratic form (q, h):

q(x) = q
(∑
i∈I

aixi

)
+ Λ

=
∑
i∈I

q(aixi) +
∑
i<j

h(aixi, ajxj) + Λ

=
∑
i∈I

aiq(xi)a
σ
i +

∑
i<j∈I

aih(xi, xj)a
σ
j + Λ .

On the other hand

f(x, x) = f
(∑
i∈I

aixi,
∑
j∈I

ajxj

)
=
∑
i,j∈I

f(aixi, ajxj) =
∑
i,j∈I

aif(xi, xj)a
σ
j

=
∑
i∈I

aiqia
σ
i +

∑
i<j∈I

aih(xi, xj)a
σ
j .

As qi ∈ q(xi) for all i, we get q(x) = f(x, x) + Λ for all x ∈ V , as desired.

With (a), (b), and (c) all complete, we have the theorem. 2

Two observations embedded in the proof of the theorem are of more general
interest.

(10.20). Lemma.

(a) If (q, h) is a Λ-pseudoquadratic form on V with Λ 6= D, then the hermitian
form h is uniquely determined by q.

(b) If (q, h) is a Λ-pseudoquadratic form on V , then h is a (σ, k)-trace-hermitian
form. Conversely, if h is a trace-valued (σ, k)-hermitian form on V , then,
for every (σ, k)-form parameter Λ in D, there is a quadratic part q : V −→
D/Λ such that (q, h) is a Λ-pseudoquadratic form.

Proof. (a) Suppose (q, h1) and (q, h2) are both Λ-pseudoquadratic forms.
In particular always

h1(x, y) + Λ = q(x+ y)− q(x)− q(y) = h2(x, y) + Λ .

Thus h0 = h1 − h2 is a (σ, k)-hermitian form, for which h0(x, y) always belongs
to Λ. If some h0(x0, y0) 6= 0, then h0(ax0, y0) = ah(x0, y0) runs through D,
hence D ≤ Λ ≤ D.

Therefore whenever Λ 6= D the form h0 must be identically 0, and h1 = h2.
(b) The condition h(x, x) = q(x) + kq(x)σ shows that the hermitian part of

a pseudoquadratic form must be trace-valued and so, by Theorem (10.12), is
trace-hermitian. On the other hand, the previous theorem tells us that for any
trace-hermitian form h(x, y) = f(x, y) + kf(y, x)σ and any form parameter Λ,
the map q(x) = h(x, x) + Λ extends h to a pseudoquadratic form (q, h). 2
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(10.21). Lemma. Let 0 6= c ∈ D. If Λ is a (σ, k)-form parameter and
(q, h) is a Λ-pseudoquadratic form, then Λc is a (σc, k′)-form parameter for
k′ = k(cσ)−1c and (qc, hc) is a Λc-pseudoquadratic form.

Proof. From Lemma (10.14)

D(σc,−k′) = D(σ,−k)c ≤ Λc ≤ D(σ,−k)c = D(σc,−k′)

for the additive subgroup Λc of (D,+). Furthermore

a(Λc)aσc = a(Λc)c−1aσc = a(Λcc−1)aσc = (aΛaσ)c = Λc ,

for all 0 6= a ∈ D. Therefore Λc is a (σc, k′)-form parameter.
Following Theorem (10.19), let f be a σ-sesquilinear form, from which the

Λ-pseudoquadratic form (q, h) is given by

q(x) = f(x, x) + Λ and h(x, y) = f(x, y) + kf(y, x)σ .

Clearly q(x)c = f(x, x)c+Λc. By Lemma (10.14) again, hc is a (σc, k′)-hermitian
form completing the Λc-pseudoquadratic form (qc, hc). 2

As before, the pseudoquadratic form (qc, hc) is said to be proportional to
(q, h).

(10.22). Theorem. (Bestiary of Pseudoquadratic Forms) Let Λ be a
(σ, k)-form parameter on the division ring D, and let (q, h) be a Λ-pseudoquad-
ratic form on V . Then, up to proportionality, we have one of:

(1) Symplectic Case: Λ = D; k = −1; σ = 1; D is a field; q is identically 0;
and the symplectic bilinear form h has h(x, x) = 0 for all x ∈ V .

(2) Generic Orthogonal Case: Λ = 0; k = 1; σ = 1; D is a field; and there
are q : V −→ D and symmetric bilinear form h : V × V −→ D satisfying:

(i) q(x+ y)− q(x)− q(y) = h(x, y),

(ii) q(ax) = a2q(x),

for all x, y ∈ V and a ∈ D.

(3) Generic Unitary Case: 1 ∈ Λ = D(σ,1) < D; k = −1; σ2 = 1 6= σ; and
h is a σ-skew-hermitian form.

(4) Exceptional Orthogonal Case: 1 ∈ Λ < D(σ,1) = D; k = ±1; σ = 1;
D is a field; char(D) = 2; and the symplectic bilinear form h has h(x, x) = 0
for all x ∈ V .

(5) Exceptional Unitary Case: 1 ∈ Λ < D(σ,1) < D; k = ±1; σ2 = 1 6= σ;
char(D) = 2; D is not a field; and h is a σ-hermitian form.

Proof.
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(a) Case Λ = D.

Certainly q : V −→ D/Λ = 0 is identically 0. Thus, for all x ∈ V , we have
h(x, x) = q(x) + kq(x)σ = 0.

As D = Λ ≤ D(σ,−k), we have a = −kaσ for all a ∈ D. In particular
1 = −k1σ, so k = −1. Then a = −(−1)aσ = aσ gives σ = 1. Especially D
is a field. Thus we are in the Symplectic Case (1).

(b) Case Λ = {0}.
Here D(σ,−k) ≤ Λ = {0}; so a − kaσ = 0 and a = kaσ, for all a ∈ D.
Especially 1 = k1σ, and k = 1. Then a = kaσ = aσ, and σ = 1. Again D is
a field.

As Λ = {0}, the conditions for a pseudoquadratic form with q : V −→
D/Λ = D give us a symmetric bilinear form h defined by

(i) q(x+ y)− q(x)− q(y) = h(x, y)

with the quadratic form q satisfying additionally

(ii) q(ax) = aq(x)aσ = a2q(x) .

The condition

(iii) h(x, x) = q(x) + kq(x)σ = 2q(x)

is actually a direct consequence of (i) (for x = y) and (ii) and need not be
repeated. We are in the Generic Orthogonal Case (2).

(c) Case 0 � Λ � D.

By passing to a proportional form (see Lemma (10.21)), we may assume
that 1 ∈ Λ. As Λ ≤ D(σ,−k), this gives 1 = −k1σ hence k = −1. But σ2 is
conjugation by k, so we also have σ2 = 1. Furthermore D(σ,−k) = { a ∈ D |
a = −kaσ = aσ } is the additive subgroup of elements fixed by σ.

(i) σ = 1. Again D is a field. Here

D(σ,−k) = D 
 Λ ≥ D(σ,−k) = { a− (−1)a1 = 2a | a ∈ D } = 2D ,

which can only happen in characteristic 2. In particular always h(x, x) =
q(x) + kq(x)σ = 2q(x) = 0, so the bilinear form h is symplectic. We
are in the Exceptional Orthogonal Case (4).

(ii) σ 6= 1 = σ2. We divide this into two subcases, depending upon
whether or not Λ is proper in the fixed point additive subgroup D(σ,1),
itself proper in D. When Λ = D(σ,1) we are in the Generic Unitary
Case (3). When Λ � D(σ,1) we find D(σ,−k) ≤ Λ � D(σ,−k), but by
Proposition (10.11)(c) this can only happen when the characteristic
is 2 and σ|Z(D) is trivial. As σ 6= 1, this second restriction forces
D 6= Z(D) so that D is not a field. We finish with the Exceptional
Unitary Case (5). 2

The Generic Orthogonal Case (10.22)(2) gives the standard definition for a
function q : V −→ D to be a quadratic form of the space V over the field D.



10.4. ISOMETRIES AND ADJOINTS 141

10.4 Isometries and adjoints

As we have seen above, for instance in Lemma (10.20), often the pseudo-
quadratic form (q, h) is uniquely determined by its quadratic part q : V −→ D.
In that case the isometries of the form are naturally those g ∈ GLD(V ) with
q(xg) = q(x), for all x ∈ V . Then we have

h(xg, yg) + Λ = q((x+ y)g)− q(xg)− q(yg)

= q(x+ y)− q(x)− q(y) = h(x, y) + Λ ,

so in this setting the isometry condition inherited by the associated hermitian
part h is h(xg, yg) = h(x, y) for all x, y ∈ V .

Accordingly, an isometry of the σ-sesquilinear form f : V × V −→ D is
defined to be an element g ∈ GLD(V ) with

f(xg, yg) = f(x, y) , for all x, y ∈ V .

The full isometry group of the sesquilinear form f on the D-space V is then
ID(V, f) or I(V, f).

Then, an isometry of an arbitrary pseudoquadratic form (q, h) is a g ∈
GLD(V ) with

q(xg) = q(x) and h(xg, yg) = h(x, y) , for all x, y ∈ V .

The corresponding full isometry group of the pseudoquadratic form (q, h) on
the D-space V is then ID(V, q, h) or I(V, q, h).

Tits introduced pseudoquadratic forms in part to inject some uniformity into
the treatment of the classical groups. The next result suggests the background
for that desire. The generic classical groups (including the symplectic groups)
can all be viewed as the isometry groups of a single form. But sometimes its a
bilinear form, sometimes a quadratic form, and sometimes a hermitian form:

Given an anti-automorphism σ, to each g ∈ GLD(V ) we can associate gσ ∈
GLD(V σ), acting on the left:

gσ.v = v.g or, equivalently, v.gσ
−1

= g.v .

For a basis { ei | i ∈ I } of V , if we have ei.g =
∑
j∈I gijej , then gσ.ei =∑

j∈I ej .g
σ
ij ; so the matrix representing gσ in this basis is the transpose-σ-

conjugate of that representing g. Therefore g is an isometry of the σ-sesquilinear
form f precisely when (g, gσ) ∈ GLD(V, V σ,m), where m : V ×V σ is the pairing
given by m(x, y) = f(x, y).

Here it is important to remember the distinction between the seemingly
identical m and f . Not every isometry (g, h) of the pairing m gives an isometry
g of the sesquilinear form f ; we must additionally require h = gσ. In view of
Proposition (9.12) this provides us with the familiar requirement ggσ = 1.

The fact that (in at least the finite dimensional case) every g ∈ GLD(V ) ex-
tends to a (g, h) ∈ GLD(V, V σ,m) still plays a role in the study of σ-sesquilinear
forms.
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(10.23). Lemma. Let f be a nondegenerate σ-sesquilinear form on the finite
dimensional D-space V . Then for every g ∈ GLD(V ) there is a unique g◦ ∈
GLD(V ) with

f(xg, y) = f(x, yg◦) , for all x, y ∈ V .

Proof. As V is finite dimensional, every g ∈ GLD(V ) extends to an isom-
etry (g, h) of the associated pairing m : V × V σ −→ D by Proposition (9.16).
For all x, y ∈ V ,

f(xg, y) = m(xg, h(h−1y))

= m(x, h−1y)

= f(x, y((h−1)σ
−1

)) .

Thus g◦ = (h−1)σ
−1

has the desired property. Uniqueness follows from Lemma
(9.8). 2

The linear transformation g◦ is the adjoint of g (with respect to f).

10.5 Extension and reduction

10.5.1 Perpendicular direct sums

(10.24). Proposition. Let h be a σ-hermitian form of the space V = A⊕B
with h(a, b) = 0 for all a ∈ A and b ∈ B. Then for u, v ∈ V with u = a+ b and
v = c+ d where a, c ∈ A and b, d ∈ B, we have h(u, v) = h(a, c) + h(b, d).

Additionally if (q, h) is a pseudoquadratic form on V , then q(a+ b) = q(a) +
q(b).

Proof. h(u, v) = h(a + b, c + d) = h(a, c) + h(a, d) + h(b, c) + h(b, d) =
h(a, c) + h(b, d) and q(a+ b) = q(a) + q(b) + h(a, b) = q(a) + q(b). 2

(10.25). Proposition. Let hA be a σ-hermitian form on the D-space A and
hA be a σ-hermitian form on the D-space B. Then on V = A⊕B we have the
σ-hermitian form h = hA + hB given by

h((a, b), (c, d)) = hA(a, c) + hB(b, d) .

Additionally if (qA, hA) is a pseudoquadratic form on A and (qB , hB) is a
pseudoquadratic form on B, both for the (σ, k)-form parameter Λ in D, then
(q, h) is a pseudoquadratic form on V for Λ with h as above and q = qA + qB
given by

q((a, b)) = qA(a) + qB(b) . 2

In the situation described by these two propositions, the space V is the
perpendicular direct sum of the spaces A and B, written A ⊥ B. The first
proposition presents the internal version of the perpendicular direct sum and
the second the external version.
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(10.26). Corollary. If gA ∈ ID(A, hA), respectively ID(A, qA, hA), and
gB ∈ ID(B, hB), respectively ID(B, qB , hB), then g = (gA, gB) ∈ ID(A ⊥ B, h),
respectively ID(A ⊥ B, q, h), with the action of g given by

(a, b)g = (a, b)(gA, gB) = (agA, bgB) . 2

10.5.2 Radicals

As already discussed, the radical of the hermitian space (V, h) is

Rad(V, h) = V ⊥ = { v ∈ V | h(v, x) = 0 , for all x ∈ V } .

The form and space are nondegenerate if this radical is {0}.
As in Corollary (9.2) the form h induces a well defined form h0 on V 0 =

V/Rad(V, h) given by

h0(x+ V ⊥, y + V ⊥) = h(x, y) .

Indeed we could take V 0 to be any complement to Rad(V, h) in V . We then
would have V = Rad(V, h) ⊥ V 0. As h restricted to Rad(V, h) is trivial, we can
combine this with Corollary (10.26) to find an injection

GLD(Rad(V, h))× ID(V 0, h0) −→ ID(V, h) .

More can be said:

(10.27). Theorem. In the situation described above there is a split short
exact sequence

1 −→ HomD(V 0, V ⊥) −→ ID(V, h) −→ GLD(Rad(V, h))× ID(V 0, h0) −→ 1 .

Proof. We have already described the surjection and splitting, so we now
need to find the kernel—trivial both on the quotient V/V ⊥ and on V ⊥ These
are precisely the elements which, for each v = v0 + r of V , with v0 ∈ V 0 and
r ∈ V ⊥ have v −→ v0 + r + v0ϕ for some ϕ ∈ HomD(V 0, V ⊥). 2

A consequence is that in discussing the isometry groups of hermitian forms
we are largely reduced to questions about the isometry groups of nondegenerate
forms.

A similar reduction for isometry groups of pseudoquadratic forms is not
quite so elementary. For the pseudoquadratic form (q, h) on V the singular
radical SRad(V, q, h) = { v ∈ Rad(V, h) | q(v) ∈ Λ } may be a proper subspace
of Rad(V, h). The form (q, h) is nonsingular4 provided SRad(V, q, h) = {0}.

(10.28). Proposition. For the Λ-pseudoquadratic space (V, q, h), set V 1 =
V/SRad(V, q, h). The maps q1 : V 1 −→ D/Λ and h1 : V 1 × V 1 −→ D given by

q1(x+ SRad(V, q, h)) = q(x)

4This is unhappy terminology. Other terms are used for this elsewhere, and this term is
used to mean other things elsewhere. We avoid it for the most part.
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and
h1(x+ SRad(V, q, h), y + SRad(V, q, h)) = h(x, y)

provide a Λ-pseudoquadratic form (q1, h1) on V 1 with SRad(V 1, q1, h1) = {0}.
2

The space (V 1, q1, h1), while nonsingular, may be degenerate. The dimension
of the space

Rad(V 1, h1) = Rad(V, h)/SRad(V, q, h)

is the defect of the form (q, h), and the form is defective if it has positive defect.
In the defect 0 case the quadratic part q naturally induces, as before, a Λ-
pseudoquadratic form q0 on V 0, yielding the nondegenerate Λ-pseudoquadratic
space (V 0, q0, h0) = (V 1, q1, h1). In positive defect, the appropriate induced
form q0 may not exist. The previous proposition provides one partial remedy
for this, and the next another.

(10.29). Proposition. Let (V, q, h) be Λ-pseudoquadratic space over D,
and let Λ0 be the additive subgroup of (D,+) generated by Λ and { q(x) | x ∈
Rad(V, h) }. Then Λ0 is a form parameter in D, and the map q0 : V −→ D/Λ0

given by
q0(x+ Rad(V, h)) = q(x) + Λ0

provides a nondegenerate Λ0-pseudoquadratic form (q0, h0) on V 0.

Proof.
2

We can at least be happy in that our two partial remedies lead to the same
group.

(10.30). Theorem. With the same notation as above we have

ID(V 0, q0, h0) ' ID(V 1, q1, h1) .

Proof.
2

10.6 Singular and hyperbolic spaces

Let Λ be a (σ, k)-form parameter in D and (q, h) be a Λ-pseudoquadratic form
on the D-space V . The nonzero vector v is a singular vector if q(v) = Λ (which
might more suggestively be written q(v) = 0). If v is singular, then so is the
1-space it spans.

The space and form are singular if there is a singular vector not in the radical.
Of course, there might be no such vectors, in which case the space and form
are asingular. What we are calling singular and asingular are elsewhere called
isotropic and anisotropic. For us, an isotropic vector is a nonzero vector with
h(x, x) = 0; so a singular vector is a special type of isotropic vector. A space is
isotropic when it contains a nonradical isotropic vector. Thus a singular space
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is isotropic, but the converse need not be the case. Similarly an anisotropic
space is asingular, but the converse may not hold.

A subspace U of V is totally isotropic provided h is identically 0 on U .
Similarly, U is totally singular if both q and h are identically 0 on U ; it is
totally isotropic and all of its nonzero vectors are (Λ-)singular.

From now on, almost all our work on the classical groups and geometries
will be concerned with the singular case. That is all because of the following
important lemma.

(10.31). Lemma. Let (V, q, h) be a pseudoquadratic space of dimension 2, and
let x a singular vector of V that is not in the radical Rad(V, h).

(a) V is nondegenerate, and there is a singular vector y with V = 〈x, y〉 and
h(x, y) = 1.

(b) For a ∈ D, we have q(ax+ y) = a. In particular, there are 1 + |Λ| singular
1-spaces in V , being those spanned by x and by ax+ y for a ∈ Λ.

Proof.
2

In this case V is a hyperbolic 2-space and the ordered pair of vectors (x, y)
is a hyperbolic pair.

(10.32). Corollary. Let (V, q, h) be a singular pseudoquadratic space. The
map q : V −→ D/Λ is surjective, and the value map v : V −→ D(σ,k) given by
v(x) = h(x, x) is surjective.

Proof. By the lemma every singular space contains a hyperbolic 2-space
H, and the conclusions already hold within H. 2

If the pseudoquadratic space (V, q, h) is isometric to a direct sum of hyper-
bolic 2-spaces, then it is called a hyperbolic space. The hyperbolic spaces are of
fundamental importance. The union of hyperbolic pairs for these summands is
then a hyperbolic basis for V .

(10.33). Proposition. Let the hyperbolic space (V, q, h) be the perpendicular
direct sum of the hyperbolic 2-spaces Vi, for i ∈ I, with corresponding hyperbolic
pairs (xi, yi). Let X be the span of the xi and Y the span of the yi. Then X
and Y are both maximal totally singular and V = X ⊕ Y .

Conversely, if finite or countable dimensional V is nondegenerate and equal
to X ⊕ Y where X and Y are maximal totally singular subspaces, then V is
hyperbolic.

Proof.
2

In finite dimension, this property has often been used as the definition of a
hyperbolic space.

(10.34). Theorem.
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(a) Let the hyperbolic space (V, q, h) be equal to the sum V = X⊕Y , with X and
Y maximal totally singular, and let m : X ×Y σ −→ D be the corresponding
hyperbolic pairing given by h(x, y) = m(x, y). Then the global stabilizer of
the two subspaces X and Y in ID(V, q, h) is GLD(X,Y σ,m) ' GLD(X).

(b) The hyperbolic 2-space (V, q, h) is unique up to isometry. Its isometry group
is transitive on hyperbolic pairs and, especially, is 3-transitive on its singular
1-spaces.

Proof.
2

10.7 Problems

(10.35). Problem. Let Λ be a (σ, k)-form parameter that is proper in the division
ring D; that is, Λ � D. Let q be a map from V to the abelian group D/Λ and
h : V × V −→ D a (σ, k)-hermitian form on V that together satisfy, for all x, y ∈ V
and a ∈ D,

(i) q(x+ y)− q(x)− q(y) = h(x, y) + Λ;

(ii) q(ax) = aq(x)aσ + Λ.

Prove that, for all x ∈ V , we have h(x, x) = q(x) + kq(x)σ (well-defined). Thus (q, h)
is a pseudoquadratic form on V . That is, show that in the case Λ � D, the third
defining condition for a pseudoquadratic form (from page 136) is a consequence of the
first two conditions.

(10.36). Problem. Let (p, j) = (p+, j+) be a nondegenerate Λ-pseudoquadratic
form on the space U = U+. Let U− be a second copy of U , now equipped with the
Λ-pseudoquadratic form (−p,−j) = (p−, j−) Prove that the Λ-pseudoquadratic form
(q, h) = (p+ + p−, j+ + j−) is hyperbolic on V = U+ ⊥ U−.

(10.37). Problem. Let Λ be a (σ, k)-form parameter in the division ring D, and

suppose m : DX×YD −→ D is a nondegenerate pairing. Set V = X⊕Y σ
−1

and define
on the D-space V the pair of maps

q((x, y)) = m(x, y) + Λ and h((x1, y1), (x2, y2)) = m(x1, y2) + km(x2, y1)σ .

(a) Prove that (V, q, h) is a Λ-pseudoquadratic space and X and Y are maximal totally
singular subspaces of V .

(b) Prove that if m is a hyperbolic pairing, then (V, q, h) is a hyperbolic space.

(10.38). Problem. This problem indicates how, if we extend definitions to include
modules over rings, the general linear group GLD(V ), for a division ring D, can be
realized as the full isometry group of a hermitian form defined on a suitable module.

Let D+ be the ring D ⊕ Dop and set V + = V ⊕ V ∗, where we view V ∗ as a left
Dop-space. The group V + is then a unital left D+-module with scalar multiplication
given by

(a, b) ? (x, λ) = (ax, b · λ) = (ax, λb) .

Define a map h : V + × V + −→ D+ by

h((x, λ), (y, µ)) = (xµ, yλ) .
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(a) Prove that h is a σ-hermitian form on V + with respect to the anti-automorphism
σ : D+ −→ D+ given by (a, b)σ = (b, a).

(b) Prove that

GLD(V ) ' ID+(V +, h)

= { g ∈ GLD+(V +) | h(x, y) = h(xg, yg) for all x, y ∈ V + }.

Hint: What are the idempotents of D+?
Remarks. There are more general versions of this that involve form parameters

on rings; see [HaO89]. In that context this problem is related to the previous problem:
if σ is an order 2 anti-automorphism of D—an isomorphism of D and Dop—then D+

is D ⊕Dσ and D sits on the diagonal of D+ as { (d, dσ) | d ∈ D }.
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Chapter 11
Isometry Groups

11.1 The Wall form of an isometry

Let (V, q, h) be a nondegenerate Λ-pseudoquadratic form on the D-space V for
the (σ, k)-form parameter Λ. For each subspace U of V , the space (U, q|U , h|U )
is also a Λ-pseudoquadratic space, but it may be degenerate. G.E. Wall [Wal63]
observed that in certain important cases a second nondegenerate form on U can
be of great help.

(11.1). Proposition. Let (V, q, h) be a Λ-pseudoquadratic form on the D-
space V for the (σ, k)-form parameter Λ, and let g ∈ ID(V, q, h). Set γ = g − 1
and U = [V, g] = V (g−1) = V γ, and assume that U meets the radical of (V, q, h)
trivially. Then the map hg : U × U −→ D given by

hg(xγ, yγ) = h(x, yγ) = −h(xγ, yg)

is a well-defined nondegenerate σ-sesquilinear form on U .

Proof. We first observe that, for all x, y ∈ V ,

h(x, yγ) = h(x, y(g − 1)) = h(x, yg)− h(x, y)

= h(x, yg)− h(xg, yg) = h(x− xg, yg)

= h(−xγ, yg) = −h(xγ, yg) .

As hg(xγ, yγ) = h(x, yγ) it is well-defined in its second coordinate, and as
hg(xγ, yγ) = h(−xγ, yg) it is well-defined in its first coordiante; it is well-
defined. As γ is a D-linear transformation, hg is σ-sesquilinear, although
unlikely to be reflexive/hermitian. If hg(xγ, yγ) = 0 for all xγ ∈ U , then
h(x, yγ) = 0 for all x ∈ V . That is, yγ ∈ U ∩ V ⊥ = {0} by hypothesis. Simi-
larly if hg(xγ, yγ) = h(−xγ, yg) = 0 for all yγ ∈ U then xγ ∈ U ∩ V ⊥ = {0}.
We conclude that hg is nondegenerate on U . 2

The form hg is the Wall form for the isometry g.

149
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(11.2). Proposition. Continue the notation of Proposition (11.1). Also, for
x, y ∈ V set u = xγ and v = yγ.

(a) hg(u, v) + khg(v, u)σ = −h(u, v);

(b) hg(u, u) + Λ = −q(u);

(c) hg(ug, v) = −khg(v, u)σ;

(d) hg(u, v) = hg(ug, vg).

Proof. (a)

hg(u, v) + khg(v, u)σ = h(x, v)− kh(v, xg)σ = h(x, v)− k(kh(xg, v)σ)σ

= h(x, v)− kh(xg, v)σ
2

kσ = h(x, v)− kk−1h(xg, v)kkσ

= h(x, v)− h(xg, v) = −h(u, v) .

(b) As q(x)− kq(x)σ ∈ D(σ,−k) ≤ Λ,

hg(u, u) + Λ = h(x, x(g − 1)) + Λ = h(x, xg)− h(x, x) + Λ

= h(x, xg)− (q(x) + kq(x)σ) + Λ

= −h(−x, xg)− q(−x) + (−q(xg) + q(xg))− kq(x)σ + Λ

= (−h(−x, xg)− q(−x)− q(xg)) + (q(xg)− kq(x)σ) + Λ

= −q(xg − x) + (q(x)− kq(x)σ) + Λ = −q(u) .

(c) By (a)

hg(ug, v) = hg(u(g − 1) + u, v) = hg(u(g − 1), v) + hg(u, v)

= h(u, v) + hg(u, v) = −khg(v, u)σ .

(d) We use (c) twice:

hg(ug, vg) = −khg(vg, u)σ = k(k(hg(u, v))σ)σ

= k(hg(u, v))σ
2

kσ = kk−1hg(u, v)kkσ = hg(u, v) . 2

The astonishing thing is that the propositions have a strong converse.

(11.3). Theorem. Let (V, q, h) be a Λ-pseudoquadratic form on the D-space
V for the (σ, k)-form parameter Λ. Let U be a finite dimensional subspace of V
that intersects the radical trivially. Assume that nondegenerate f ∈ Sesqσ(U)
satisfies, for all u, v ∈ U ,

f(u, v) + kf(v, u)σ = −h(u, v) and f(u, u) + Λ = −q(u) .

Then, for each x ∈ V , there is a unique xγ ∈ U with f(xγ, v) = h(x, v) for all
v ∈ U . Additionally g = w(U, f) = IdV +γ is the unique isometry g of (V, q, h)
with U = V (g − 1) and f = hg.
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Proof. By Lemma (10.2) for each v ∈ U

λfv = f(v, ·) ∈ (Uσ)∗

and for each x ∈ V
λhx = h(x, ·)|U ∈ (Uσ)∗ .

By Corollary (10.3), as U is finite dimensional and f is nondegenerate, for every
x ∈ V there is a unique xγ ∈ U with

λfxγ = λhx .

Conversely (again by Corollary (10.3)) as U is finite dimensional and meets the
radical of h trivially, for every v ∈ U the linear functional λfv is induced by some
λhx.

Therefore the map γ : V −→ U is well-defined and surjective. By Lemma
(10.2) the maps λh and λf are D-linear, so γ is as well:

λf(ax+by)γ = λhax+by = aλhx + bλhy = aλfxγ + bλfyγ = λfa(xγ)+b(yγ) .

Set g = IdV +γ = 1 + γ ∈ EndD(V ).
The above equality gives

f(xγ, yγ) = λfxγ(yγ) = λhx(yγ) = h(x, yγ) ,

for all x, y ∈ V . In particular, if g is an isometry then f = hg.
For all x, y ∈ V

h(xg, yg) = h(x(1 + γ), y(1 + γ))

= h(x, y) + h(xγ, yγ) + h(x, yγ) + h(xγ, y)

= h(x, y) + h(xγ, yγ) + h(x, yγ) + kh(y, xγ)σ

= h(x, y) + h(xγ, yγ) + f(xγ, yγ) + kf(yγ, xγ)σ

= h(x, y) + h(xγ, yγ)− h(xγ, yγ) = h(x, y)

and

q(xg) = q(x(1 + γ)) = q(x+ xγ)

= q(x) + q(xγ) + h(x, xγ) + Λ

= q(x) + q(xγ) + f(xγ, xγ) + Λ

= q(x) + q(xγ)− q(xγ) + Λ = q(x) .

The first calculation implies that ker g ≤ V ⊥. For v ∈ ker g we then have

−v = −v + vg = vγ ≤ U ∩ V ⊥ = {0} .

Thus g is an isometry with U = V (g − 1) and, as anticipated, f = hg.
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If a = 1 + α is a second such isometry, then for x, z ∈ V with xγ = zα we
have, for all v ∈ U ,

h(x, v) = hg(xγ, v) = f(xγ, v) = f(zα, v) = ha(zα, v) = h(z, v) .

Therefore x− z ∈ U⊥. Thus, for all v ∈ U

0 = h(x− z, v) = hg((x− z)γ, v) .

Since hg is nondegenerate, 0 = (x− z)γ = xγ − zγ; so zα = xγ = zγ. That is,
α = γ and a = 1 + α = 1 + γ = g. 2

The isometry g constructed in the Theorem is a Wall isometry and will be
denoted w(U, f).

While the two propositions are valid for arbitrary isometries, the construc-
tion of the theorem is only given for finitary isometries. That is because in two
places in the proof we have appealed to Corollary (10.3), valid only in finite
dimensions. We have effectively used the fact that a nondegenerate pairing of
finite dimensional spaces is isometric to the canonical hyperbolic pairing. For
infinite dimensional spaces this is not in general true.

(11.4). Proposition. Let g ∈ ID(V, q, h) with U = [V, g] of finite dimension
and meeting Rad(V, h) trivially. Set f = hg so that g = w(U, f), as in the
previous theorem.

Suppose U = A ⊕ B with f(A,B) = 0. (That is, f(a, b) = 0, for all a ∈ A
and b ∈ B.) Then A and B are nondegenerate under the appropriate restrictions
of f , and with a = w(A, f |A) and b = w(B, f |B) we have g = ba.

Proof.
2

(11.5). Proposition. Let a, b ∈ ID(q, h) such that a = w(A, fA) and b =
w(B, fB) with A ∩B = {0}. Set U = A⊕B and ba = g ∈ ID(q, h). Then there
is a nondegenerate f ∈ Sesqσ(U) with f(A,B) = 0, fA = f |A, fB = f |B, and
g = w(U, f).

Proof.

Gram(f) =

(
Gram(fB) −h(b, a)

0 Gram(fA)

)
. 2

(11.6). Corollary. a = w(A, fA) and b = w(B, fB) with A ∩ B = {0}
commute if and only if in U = [V, ba] we have U = A ⊥ B. 2

11.2 Isometries of small degree and root isome-
tries

If (V, q, h) is a singular Λ-pseudoquadratic space for the (σ, k)-form parameter
Λ in D, then it contains hyperbolic 2-spaces by Lemma (10.31) and so, by
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Theorem (10.34), it possesses nontrivial isometries g of degree dimD([V, g]) at
most 2.

The identity is the only isometry of degree 0. It is possible to describe all
isometries g of relatively small degree by adopting an ad hoc approach. For
instance for g of degree 1 with [V, g] = 〈v〉, we must have CV (g) = kerλ for
some λ ∈ V ∗; so g has the general form x 7→ x + (xλ)av for some a ∈ D. The
possibilities for λ and a can then be analyzed.

We take a different approach. For a given finite dimensional U , Wall’s The-
orem (11.3) allows us to construct all isometries g of (V, q, h) with [V, g] = U as
Wall isometries w(U, f) by considering all σ-sesquilinear forms on U . In practice
there are many forms, but if the dimension of U , which is to say the degree of
g, is small and the restriction of (q, h) to U reasonably simple, it can become
manageable.

According to Theorem (10.19) the candidates for f consist of the coset f0 +

Herm
(σ,−k)
Λ (U), where f0 has upper triangular Gram matrix

f0(xi, xj) = −h(xi, xj) for i < j ,

f0(xi, xi) = −qi for i = j ,

f0(xi, xj) = 0 for j < i ,

with {xi | 1 ≤ i ≤ d } a basis of U and the qi representatives of q(xi). The only
issue is which elements of the coset are nondegenerate. For instance, if any of
the xi are singular then for qi = 0 the form f0 itself is degenerate.

(11.7). Theorem. Let g ∈ ID(V, q, h) with [V, g] = 〈v〉. Then there is a
0 6= b ∈ q(v) with g = w(v, b) given by

w(v, b) : x 7→ x− h(x, v)b−1v .

Correspondingly, for any nonzero b ∈ q(v), the linear transformation w(v, b) is
an isometry.

Proof.
2

Here we have abused terminology by writing w(v, b) for the degree 1 Wall
isometry w(Dv, f(v, v) = −b).

If h(v, v) = 0 then w(v, b)− 1 has rank 1 and (w(v, b)− 1)2 = 0. Therefore
w(v, b) is a transvection. If h(v, v) 6= 0, then w(v, b) is a generalized reflection,
as standard reflections arise a special case.

If q(v) = Λ (so that h(v, v) = 0) the transvection w(v, b) is a root transvec-
tion. If q(v) 6= Λ, then w(v, b) is a symmetry. (Note that in characteristic 2 it
is possible for a symmetry to be a transvection.)

(11.8). Theorem. (Cartan’s Generation Theorem) Let (V, q, h) be a
nondegenerate Λ-pseudoquadratic form for the (σ, k)-form parameter and the
finite dimensional D-space V . Assume additionally that (V, q, h) is asingular.
Then ID(V, q, h) is generated by its symmetries. Indeed the isometry g of degree
d is the product of exactly d symmetries.
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Proof.
2

Recall from Proposition (7.15) that, for 0 6= x ∈ V and 0 6= λ ∈ V ∗, the
group R(λ, u) consists of the 2-root elements determined by λ and x: those
elements s that stabilize the series 0 6= 〈x〉 ≤ kerλ < V . (That is, [V, s] ≤ kerλ,
[U, s] ≤ 〈x〉, and [x, s] = 0.)

(11.9). Theorem.

(a) We have r ∈ Rx = R(h(·, x), x) ∩ ID(V, q, h) if and only if

r = r(u, v, b) : z 7→ z + h(z, ku)v − h(z, v)u− h(z, ku)bu ,

for u singular, v ∈ u⊥, and b ∈ q(v).

(b) We have a singular transvection t ∈ Tx = Rx ∩T(h(·, x), x) if and only if

t = r(u, 0, b) : z 7→ z − h(z, ku)bu ,

b ∈ Λ.

(c) For g ∈ ID(V, q, h) we have r(u, v, b)g = r(ug, vg, b).

(d) r(u, v, b) r(u,w, c) = r(u, v + w, b+ c+ h(v, w)).

(e) r(u, v, b)−1 = r(u,−v,−b+ h(v, v)).

(f) [r(u, yv, b), r(u,w, c)] = r(u, 0, h(v, w)− kh(v, w)σ).

(g) For a ∈ D×, r(aσu, v, b) = r(u, av, aσba).

(h) For a ∈ D, r(u, au+ v, b) = r(u, v, b− a+ kaσ).

Proof.
2

Note that 〈u1〉 = 〈u2〉 implies Ru1
= Ru2

.

11.3 Witt’s Theorem

(11.10). Theorem. (Witt’s Theorem) Let (V, q, h) be a nondegenerate Λ-
pseudoquadratic form for the (σ, k)-form parameter Λ in D. Let W be a finite
dimensional subspace of V and s : W −→ V be a partial isometry of (V, q, h), in
that s is injective and, for all u, v ∈W , we have

h(u, v) = h(us, vs) and q(v) = q(vs) .

Then there is an isometry g ∈ ID(V, q, h) with s = g|W .

Proof. The proof is by induction on d = dimD(W ), the result being true
trivially for d = 0.

Let W = 〈w〉 ⊕W1. By induction there is a g1 ∈ ID(V, q, h) with s|W1
=

g1|W1
. Set t = sg−1

1 . Then for all v ∈ W1 we have vt = vsg−1
1 = v. If t can be
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extended to an isometry g2 of V , then s can be extended to the isometry g2g1.
Therefore we may replace s with t. That is, without loss of generality we may
assume s|W1

is the identity.
Set v = −[w, s] = w(1− s) = w − ws hence ws = w − v. For every x ∈ W1

we have

h(x, v) = h(x,w)− h(x,ws) = h(x,w)− h(xs,ws) = h(x,w)− h(x,w) = 0 .

That is, v ∈W⊥1 and v⊥ ≥W1. We also have

q(v) = q(w − ws) = q(w) + q(−ws) + h(w,−ws) + Λ

= q(w) + q(w) + (kq(w)σ − kq(w)σ)− h(w,ws) + Λ

= (q(w) + kq(w)σ) + (q(w)− kq(w)σ)− h(w,ws) + Λ

= h(w,w)− h(w,ws) + Λ = h(w, v) + Λ .

Especially h(w, v) ∈ q(v). We consider in turn the two cases 0 6= h(w, v) and
0 = h(w, v).

First assume 0 6= h(w, v) = r ∈ q(v). Then g = w(v, r) ∈ ID(V, q, h) and

wg = ww(v, r) = w − h(w, v)r−1v

= w − h(w, v)h(w, v)−1v = w − v = ws .

Also for all w1 ∈ W1 ≤ v⊥ we find w1g = w1 w(v, r) = w1, so that g|W = s, as
desired.

We may now assume 0 = h(w, v) ∈ q(v). In particular, v is singular and
h(v, v) = 0. As w /∈ W1 = (W⊥1 )⊥ also v − w = ws /∈ W1s = W1 = (W⊥1 )⊥.
Thus W⊥1 is spanned by its hyperplane complement W⊥1 \W⊥1 ∩ (v − w)⊥ and
this complement is not contained in w⊥. Therefore we may choose a z ∈ W⊥1
with h(v, z) 6= h(w, z) 6= 0. Additionally choose a representative r ∈ q(z).

Let U be the 2-space 〈v, z〉, and on U let f be the the σ-sesquilinear form
with Gram matrix

G =

(
f(v, v) f(v, z)
f(z, v) f(z, z)

)
=

(
0 −h(v, z)
0 −r

)
+

(
0 h(w, z)

−kh(w, z)σ 0

)
.

Since v is singular, the first summand has the correct upper triangular shape,
as in Theorem (10.12). The second summand is the Gram matrix of a form in

Herm
(σ,−k)
Λ (U). As h(v, z) 6= h(w, z) 6= 0, the two off-diagonal entries of G are

nonzero; hence the form f is nondegenerate.
Therefore

G+ k(G>)σ =

(
−h(v, v) −h(v, z)
−h(z, v) −h(z, z)

)
;

and the nondegenerate f ∈ Sesqσ(U) satisfies, for all u, y ∈ U ,

f(u, y) + kf(y, u)σ = −h(u, y) and f(u, u) + Λ = −q(u) .

Theorem (11.3) then provides an isometry a = w(U, f).
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Consider the action of a = 1 + α, as given in that theorem: for every x ∈ V
the vector xα is characterized by

h(x, y) = f(xα, y) for all y ∈ U .

Equivalently

h(x, v) = f(xα, v) and h(x, z) = f(xα, z) .

In particular, as v, z ∈W⊥1 , for every x ∈W1 we must have xα = 0. For x = ws
we claim xα = v. Indeed

h(ws, v) = h(w − v, v) = h(w, v)− h(v, v) = 0− 0 = 0 = f(v, v) ,

as we are in the case h(w, v) = 0 and v is singular, and

h(ws, z) = h(w − v, z) = h(w, z)− h(v, z) = f(v, z) ,

as we find in the Gram matrix G.
Therfore, for all w1 ∈W1, we have w1a = w1(1 + α) = w1; and

(ws)a = ws(1 + α) = ws+ v = (w − v) + v = w .

That is, with g = a−1 ∈ ID(V, q, h), we have g|W = s, as desired. 2

(11.11). Corollary. (Witt Cancellation) Let (V, q, h) be a nondegen-
erate Λ-pseudoquadratic form for the (σ, k)-form parameter Λ in D. Suppose
that the finite dimensional subspaces W and U are isometric. Then W⊥ and
U⊥ are also isometric.

Proof. The assumption is that there is a partial isometry s : W −→ U . By
Witt’s Theorem, there is an isometry of (V, q, h) extending s to all of V . But
then (W⊥)g = U⊥, and W⊥ and U⊥ are isometric. 2

The name of the corollary comes from its frequent application in the special
case where W and U are nondegenerate themselves. The corollary then has the
form of a cancellation result:

(11.12). Corollary. (Witt Cancellation) If W and U are isometric
and nondegenerate W ⊥ A = V = U ⊥ B then A and B are isometric. 2

11.4 Canonical forms

A subspace of a totally singular subspace is totally singular. A nondegenerate
subspace of a hyperbolic space is hyperbolic, and a subspace of an asingular
space is asingular. In an arbitrary pseudoquadratic space Zorn’s Lemma guar-
antees maximal such subspaces, and those of finite dimension are of particular
interest.
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(11.13). Theorem. (Witt Decomposition) Let (V, q, h) be a nondegener-
ate Λ-pseudoquadratic form for the (σ, k)-form parameter Λ in D. Assume that
some maximal totally singular subspace M of V has finite dimension.

(a) All maximal singular subspaces are equivalent to M under ID(V, q, h). Es-
pecially, they all have the same finite dimension.

(b) For every maximal singular subspace N there is a second maximal totally
singular subspace P with H = N⊕P maximal hyperbolic in V . All maximal
hyperbolic subspaces are equivalent to H under ID(V, q, h).

(c) H⊥ is a nondegenerate asingular subspace of V . If J is a hyperbolic subspace
of V with J⊥ asingular, then J is equivalent to H and J⊥ is equivalent to
H⊥ under ID(V, q, h).

Proof.
2

The common dimension of finite dimensional maximal totally singular spaces
is the Witt index. Finite dimensional spaces (V, q, h) of course have a well-
defined Witt index. As we have seen in Problem (10.37) this need not be
the case for infinite dimension spaces; there can be maximal totally singular
subspaces of different infinite dimension.

(11.14). Corollary. A finite dimensional nondegenerate symplectic space
is hyperbolic. In particular, it has even dimension.

Proof.
2

In particular, a nondegenerate symplectic form on a finite dimensional space
is uniquely determined up to isometry by the field and its dimension, which
must be even. In this case we write IF (V, h) = SpF (V, h) = Sp2m(F ) for the
symplectic group of the symplectic pseudoquadratic space (V, h) = (V, q, h) in
which the quadratic part q is trivial since Λ = D is a field.

As a consequence of the corollary, symplectic spaces and groups are, in a
sense, the most accessible of the classical geometries and groups. They in fact
exhibit most of the behaviour of all the classical groups, often in a form that is
simplified but nontrivial. That makes them ideal to keep in mind (or study) as
the basic models for classical groups.

11.5 Finite isometry groups

We consider nondegenerate pseudoquadratic forms on over finite fields and in
finite dimension. We shall discover that the field and dimension alone come
close to determining the form uniquely and so also the isometry group.

The cases from Theorem (10.22) to consider are:

(i) Symplectic Case: Λ = D; k = −1; σ = 1; D is a field; q is identically
0; and the symplectic bilinear form h has h(x, x) = 0 for all x ∈ V .
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(ii) Generic Orthogonal Case: Λ = 0; k = 1; σ = 1; D is a field; and there
are q : V −→ D and symmetric bilinear form h : V × V −→ D satisfying:

(i) q(x+ y)− q(x)− q(y) = h(x, y),

(ii) q(ax) = a2q(x),

for all x, y ∈ V and a ∈ D.

(iii) Generic Unitary Case: 1 ∈ Λ = D(σ,1) < D; k = −1; σ2 = 1 6= σ; and
h is a σ-skew-hermitian form.

For a finite division ring D, the two exceptional cases in Theorem (10.22)
do not occur. For the Exceptional Unitary Case, the division ring D is not a
field. But Wedderburn’s Theorem [Hll59, Theorem 20.6.1] tells us that all finite
division rings are fields, so this case does not arise here.

In the Exceptional Orthogonal Case the field D has characteristic 2, σ = 1,
and 1 ∈ Λ < D(σ,1) = D. As 1 ∈ Λ, for each a ∈ D we have a1aσ = a2 ∈ Λ.
That is, D2 ≤ Λ. But here D is a finite field of characteristic 2 hence perfect:
D2 = D. The contradiction shows that this case does not occur either.

11.5.1 Finite symplectic groups

As an immediate consequence of Corollary (11.14) we have:

(11.15). Theorem. Let F be a finite field and V a finite dimensional vector
space over F . Then up to isometry there is a unique nondegenerate symplectic
form h on V when dimF (V ) = 2m is even and no nondegenerate symplectic
form on V when dimF (V ) is odd. 2

In this case we often write Sp2m(r) in place of Sp2m(F ) where F = Fr.

(11.16). Proposition. Sp2(F ) ' SL2(F ).

11.5.2 Finite unitary groups

As already mentioned, over finite fields only the generic case arises, so we drop
that term. Also as σ is an order 2 automorphism of the finite field F , we must
have F = Fr2 for some prime power r with σ the Frobenius automorphism
α −→ αr.

(11.17). Lemma. Let (V, q, h) be a nondegenerate Λ-pseudoquadratic form in
the generic unitary case over a field D. Then, there is a nonzero t ∈ D such
that, for every x ∈ V we have q(x) = th(x, x) + Λ. In particular x is singular if
and only if it is isotropic and ID(V, q, h) = ID(V, h).

Proof.
2

(11.18). Lemma. If h is a nondegenerate (σ,±1)-hermitian form on the 1-
space V = Dv with h(v, v) = a 6= 0, then GUD(V, q, h) = {d ∈ D | dadσ = 1}.
In particular GU1(r2) ' Zr+1.
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Proof.
2

(11.19). Lemma. If h is a nondegenerate skew-hermitian form on the 2-space
V over the finite field Fr2 , then V is hyperbolic.

Proof.
2

(11.20). Corollary. Let F be a finite field and h a skew-hermitian form
on the vector space V over F of dimension n. If n is even, then h is hyperbolic
(Witt index n/2). If n is odd, then its Witt index (n− 1)/2 and h is unique up
to scaling.

Proof.
2

In particular the unitary group

IF (V, q, h) = IF (V, h) = GUF (V, h) = GUn(F ) = GUn(r2)

is uniquely determined up to isomorphism by the dimension n and the field
order r2.

11.5.3 Finite orthogonal groups

(11.21). Lemma. Let (V, q) be a non-degenerate orthogonal space of dimension
2 over F . Then either

(a) V is hyperbolic or

(b) for some nonzero constant a ∈ F and some quadratic extension K of F ,
(V, q) is isometric to K (as F -space) provided with the quadratic form
qK(α) = aαᾱ, where the bar denotes Galois conjugation in K over F .

Proof.
2

(11.22). Corollary. Let (V, q) be a nondegenerate orthogonal space of di-
mension 2 over the finite field Fr. Then for every nonzero element b of Fr there
is a v ∈ V with q(v) = b. If (V, q) is not hyperbolic, then for every 0 6= b ∈ Fr
there are exactly r + 1 vectors y in V with q(y) = b.

Proof. If V is hyperbolic, this follows from Lemma (10.31). In the asin-
gular case, we have V = Fr2 with quadratic form q(α) = aα1+r for nonzero
a ∈ Fq. The map α −→ αr+1 is a surjective homomorphism from the cyclic
multiplicative subgroup of Fr2 of order r2 − 1 to that of its subfield Fr. The
image thus has order r − 1 and the kernel order r + 1. 2

(11.23). Lemma. Let (V, q) be a nondegenerate orthogonal space of dimension
3 over the finite field Fr. Then V contains singular vectors.
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Proof. Let 0 6= u ∈ V and v ∈ V \ u⊥. Then U = 〈u, v〉 is nondegenerate
of dimension 2 with V = U ⊥W for some W = Frw, where w is nonsingular as
V is nondegenerate. By the previous corollary −q(w) = q(z) for some z ∈ U .
But then z + w 6= 0 and q(z + w) = q(z) + q(w) + h(z, w) = −q(z) + q(z) = 0,
as desired. 2

11.5.4 Orders of finite isometry groups

In this section we prove:

(11.24). Theorem.

(a) |Sp2k(r)| = rk
2 ∏k

i=1(r2i − 1).

(b) |GUn(r2)| = r(
n
2)
∏n
i=1(ri − (−1)i)

(c) |GO2k+1(r)| = 2 d−1rk
2 ∏k

i=1(r2i − 1), where d = gcd(2, r).

(d) |GOε
2k(r)| = 2 rk(k−1)(rk − ε)

∏k−1
i=1 (r2i − 1).

It is convenient to see all of these groups as specializations of a single isometry

group G = Cl[t]n (s), which acts on V = Vn = V
[t]
n = Fns with trivial singular

radical. The relevant parameters are:

t Cl[t]n (s) s m κ g
1 Sp2k(r) r k 1 1
2 GU2k(r2) r2 k r−1 1
3 GU2k+1(r2) r2 k r r + 1
4 GO2k+1(r) r k 1 2d−1

5 GO+
2k(r) r k r−1 1

6 GO−2k(r) r k − 1 r 2(r + 1)

The field of definition is Fs. The dimension n of V is 2k or 2k+1, as appropriate,
and m is the Witt index of the corresponding form. Set |Λ| = λ. The parameter
κ is then λsn−2m−1 and first appears in Lemma (11.28) below.

The Witt Decomposition Theorem (11.13) gives us, for 0 ≤ i ≤ m,

V [t]
n = H2i ⊥ V [t]

n−2i ,

where H2i is a hyperbolic subspace of Witt index i and the space V
[t]
n−2i has

the same type t as V . In particular A = V
[t]
n−2m is asingular and nonsingular

of dimension n − 2m ∈ {0, 1, 2}. The parameter g = g
[t]
n−2m of the table is

defined to be the order of the corresponding asingular isometry group | IFs(A)|.
Of course in the hyperbolic cases t ∈ {1, 2, 5} we have n − 2m = 0, A = {0},
and g = 1. The remaining values of g are verified in the next lemma.

(11.25). Lemma.

(a) g
[3]
1 = |GU1(r2)| = r + 1.
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(b) g
[4]
1 = |GO1(r)| = 2 d−1 for d = gcd(2, r),

(c) g
[6]
2 = |GO−2 (r)| = 2(r + 1).

Proof. For the first two parts, think in terms of the corresponding 1 × 1
Gram matrix G = (g) with g = kgσ ∈ Fs, where s = r2 in the first part and
s = r in the second. The isometry group then consists of all A = (a) ∈ GL1(s)
with AGA>σ = G. That is, agaσ = g. Since Fs is commutative and g is
invertible, this amounts to aσ+1 = 1. In the first case, this is ar+1 = 1, which
has r + 1 solutions in Fr2 ; and in the second case this is a2 = 1 which has one
solution a = 1 if Fr has characteristic 2 and otherwise has the two solutions
a = ±1.

Now consider g
[6]
2 = |GO−2 (r)|. For 0 6= v ∈ V , there are exactly r + 1

vectors y ∈ V with 0 6= b = q(v) = q(y) by Corollary (11.22). By Witt’s
Theorem (11.10) GO−2 (r) is transitive on these r + 1 vectors. By Theorem
(11.7) the stabilizer of v is a group of order 2, being the identity and the unique
degree 1 element w(v, b) : x 7→ x− h(x, v)b−1v . 2

Consider a fixed but arbitrary case t. As above, let G = Cl[t]n (s) and V =

Vn = V
[t]
n = Fns . Set

gn = g[t]
n = |Cl[t]n (s)| ;

in = i[t]n = |{ 〈x〉 ∈ V | 〈x〉 singular }| ;
jn = j[t]

n = (s− 1)in = |{ 0 6= x ∈ V | x singular }| ;
hn = h[t]

n = |{ (x, y) ∈ V 2 | (x, y) a hyperbolic pair }| .

(11.26). Lemma. The group G is transitive on hyperbolic pairs. Thus if V is
singular (that is, m > 0) then G has order gn = hngn−2.

Proof. If H is the hyperbolic 2-space spanned by the hyperbolic pair (x, y),
then Witt Decomposition (11.13) gives

V [t]
n = H ⊥ V [t]

n−2 .

Transitivity on hyperbolic pairs is immediate from Witt’s Theorem (11.10). The
stabilizer of the pair (x, y) in this transitive action then induces the identity on

H = 〈x, y〉 but can induce any isometry of V
[t]
n−2. Therefore

gn = g[t]
n = h[t]

n g
[t]
n−2 = hngn−2 . 2

(11.27). Lemma. Assume V = Vn is singular: m > 0.

(a) in = 1 + λsn−2 + sin−2.

(b) jn = (s− 1)in = s− 1 + (s− 1)λsn−2 + sjn−2.

(c) hn = λsn−2jn.
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Proof.
2

(11.28). Lemma. Set κ = λsn−2m−1. For m ≥ 0, jn = (sm − 1)(κsm + 1).

Proof.
2

(11.29). Theorem. gn = g κmsm
2 ∏m

j=1(sj − 1)(κsj + 1).

Proof. We have:

gn = g

m−1∏
i=0

hn−2i by Lemma (11.26) and induction

= g

m−1∏
i=0

λ sn−2−2i(sm−i − 1)(κsm−i + 1) by Lemmas (11.27)(c) and (11.28)

= g λmsm(n−2m−1+2m−1)
m−1∏
i=0

(s−2)i
m∏
j=1

(sj − 1)(κsj + 1) j = m− i

= g κmsm(2m−1)s−m(m−1)
m∏
j=1

(sj − 1)(κsj + 1) κ = λsn−2m−1

= g κmsm
2
m∏
j=1

(sj − 1)(κsj + 1) . 2

Proof of Theorem (11.24).

We break the proof into cases—three pairs of like groups.

Case 1. t ∈ {1, 4}: Sp2k(r) and GO2k+1(r); s = r, m = k, κ = 1.

gn = gκmsm
2
m∏
j=1

(sj − 1)(κsj + 1)

= g(1m)rk
2

k∏
j=1

(rj − 1)(1rj + 1)

= g rk
2

k∏
j=1

(r2j − 1) .

with g = 1 when t = 1 and g = 2d−1 when t = 4.

Case 2. t ∈ {2, 3}: GUn(r2); s = r2, 2m + δ = n for δ ∈ {0, 1}, κ = r2δ−1,
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g = (r + 1)δ.

gn = gκmsm
2
m∏
j=1

(sj − 1)(κsj + 1)

= (r + 1)δ(r2δ−1)mr2m2
m∏
j=1

(r2j − 1)(r2j−1+2δ + 1)

= r2m2+2δm−m(r + 1)δ
n∏

i=δ+1

(ri − (−1)i)

= r(
n
2)

n∏
i=1

(ri − (−1)i) .

Case 3. t ∈ {5, 6}: GOε
2k(r); s = r, m = k − δ for δ ∈ {0, 1}, κ = r2δ−1,

g = (2(r + 1))δ, ε = 1− 2δ.

gn = gκmsm
2
m∏
j=1

(sj − 1)(κsj + 1)

= (2(r + 1))δ(r2δ−1)k−δr(k−δ)2
k−δ∏
j=1

(rj − 1)(rj+2δ−1 + 1)

= 2δ(r + 1)δrk
2−k−δ2+δ

k−δ∏
j=1

(rj − 1)(rj+2δ−1 + 1)

= 2δrk(k−1)(rk − 1)1−δ

(
k−1∏
i=1

(ri − 1)(ri + 1)

)
(r0 + 1)1−δ(rk + 1)δ

= 2 rk(k−1)(rk − ε)
k−1∏
i=1

(r2i − 1) . 2
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Chapter 12
Root generation

This chapter is primarily devoted to a proof of the following theorem.

(12.1). Theorem. Let (V, q, h) be a nondegenerate Λ-pseudoquadratic space of
positive Witt index for the (σ, k)-form parameter Λ in the division ring D. Let G
be the subgroup RID(V, q, h) of ID(V, q, h) generated by its root isometries. Then
G is perfect and G/Z(G) is simple, except in the following cases of ID(V, q, h):

Sp2(2),Sp2(3),Sp4(2),GU2(22),GU2(32),GU3(22),GO3(3),GO+
2 (F ),GO+

4 (F ) .

All of these are genuine exceptions.

12.1 Problem children

12.1.1 Kids behaving badly

(12.2). Lemma.

(a) |GU3(22)| = 2334. Especially GU3(22) is solvable.

(b) Sp4(2) ' Sym(6). Especially Sp4(2) is not perfect.

Proof. By Theorem (11.24) |GU3(22)| = 2334 and |Sp4(2)| = 6! .
In particular GU3(22) is solvable by Problem (3.20).
We saw earlier that the action of Sym(2m) on its natural module gives an

embedding of Sym(2m) into Sp2m−2(2). The orders match for m = 3, so this is
an isomorphism in that case. 2

12.1.2 Hyperbolic 2-spaces

(12.3). Proposition. Let (V, q, h) be a Λ-pseudoquadratic hyperbolic 2-space
for the (σ, k)-form parameter Λ in the division ring D. Let (x, y) be a hyperbolic
pair in V .

165
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(a) For a ∈ D, we have q(ax+ y) = a. In particular, there are 1 + |Λ| singular
1-spaces in V , being those spanned by x and by ax + y for a ∈ Λ. The
hyperbolic pairs (x, z) are precisely those with z = ax+ y for a ∈ Λ.

(b) The hyperbolic 2-space (V, q, h) is unique up to isometry. Its isometry group
is regular on hyperbolic pairs and, especially, is 2-transitive on its singular
1-spaces. Indeed RI(V, q) is 2-transitive on its singular 1-spaces.

(c) When we write matrices with respect to the hyperbolic basis (x, y), the sta-
bilizer J in I(V, q, h) of the unordered pair 〈x〉, 〈y〉 of singular 1-spaces is{(

d 0
0 d−σ

)
| d ∈ D×

}
o
〈(

0 k
1 0

)〉

(d) Assume (V, q, h) is generic orthogonal; that is, Λ = 0 hence k = 1 and
σ = 1. Then GO+

2 (F ) = I(V, q) = I(V, q, h) = J (as above). Every element
of GO+

2 (F ) that is not a symmetry is a product of two symmetries, and
RGO+

2 (F ) = RI(V, q, h) = 1.

(e) Assume Λ 6= {0} so that (following Theorem (10.22)) the hyperbolic form h
can be taken to be σ-skew-hermitian. Then RI(V, q, h) = RI(V, h) contains
SL2(F0), where F0 is any subfield of D contained in Λ (an additive subgroup
of D(σ,1) = E, the additive subgroup of D fixed by σ.) In particular, if Λ = E
then RI(V, q) ' SL2(E).

Furthermore, the kernel of the action of I(V, q, h) of the set of singular 1-
spaces is the subgroup of central scalars.

Proof.
2

(12.4). Proposition. Sp2(F ) = SL2(F ).

Proof.
2

12.1.3 Orthogonal groups of small dimension

(12.5). Proposition. Assume (V, q, h) is generic orthogonal; that is, Λ = 0
hence k = 1 and σ = 1. Then GO+

2 (F ) = I(V, q) = I(V, q, h) = J , as in
Proposition (12.3). Every element of GO+

2 (F ) that is not a symmetry is a
product of two symmetries, and RGO+

2 (F ) = RI(V, q, h) = 1.

Proof.
2

(12.6). Proposition. Let (V, q) be a non-degenerate orthogonal space that is
hyperbolic of dimension 4 over the field F .
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(a) Up to proportionality, we have

q((w, x, y, z)) = wz − xy = det

(
w x
y z

)
.

(b) Identify V with Mat2(F ) provided with the determinant form, as above.
Then (GL2(F ) × GL2(F ))〈t〉 with action given by X.(A,B) = A>XB and
X.t = X> induces the full group of similarities of the form. The full or-
thogonal isometry group is induced by those (A,B) and (A,B)t with detA =
detB−1. The kernel of the action consists of the scalar pairs (rI, r−1I).

(c) RGO+
4 (F ) ' SL2(F ) ∗ SL2(F ).

Proof.
2

(12.7). Corollary. Let (V, q) be a non-degenerate orthogonal space of Witt
index 1 and dimension 3 over the field F .

(a) Up to proportionality, we have

q((w, y, z)) = wz − y2 = det

(
w y
y z

)
.

(b) RGO3(F ) ' PSL2(F ) acting via X.A = A>XA, for A ∈ SL2(F ).

(c) In GO3(F ) the kernel of the permutation action on the set of singular 1-
spaces is the central scalar subgroup 〈±I〉.

(d) GO3(3) ' 2× Sym(4). Especially GO3(3) is solvable.

Proof. After we locate GO3(F ) as a subgroup of GO+
4 (F ), the first two

parts follow from the proposition.
By Lemma (11.28) (or a direct calculation) there are four singular 1-spaces

in V = F3
3, and the kernel for this action is the isometry −I of determinant −1.

Finally by Theorem (11.24) |GO3(3)| = 2 · 4! = |2 × Sym(4)|, so we have an
isomorphism. 2

(12.8). Lemma. Let (V, q) be a non-degenerate orthogonal space of dimension
2 over the field F . Then either

(a) V is hyperbolic or

(b) for some nonzero constant a ∈ F and some quadratic extension K of
F , (V, q) is isometric to K (as F -space) provided with the quadratic form
qK(α) = aαᾱ, where the bar denotes Galois conjugation in K over F .

Proof.
2
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(12.9). Proposition. Let (V, q) be a non-degenerate orthogonal space of Witt
index 1 and dimension 4 over the field F .

(a) Up to proportionality, we have

q((w, x, y, z)) = wz − (x− γy)(x− γ̄y) = det

(
w x− γy

x− γ̄y z

)
,

where K = F (γ) is a quadratic extension of F and γ̄ is the Galois conjugate
of γ over F .

(b) RGO−4 (F ) = RI(V, q) ' PSL2(K) acting via X.A = Ā>XA for A ∈
SL2(K).

Proof.
2

12.2 Iwasawa

Following Theorem (12.1), throughout we let (V, q, h) be a nondegenerate Λ-
pseudoquadratic space of positive Witt index for the (σ, k)-form parameter Λ
in the division ring D. Let G be the subgroup RID(V, q, h) of I = ID(V, q, h)
generated by its root isometries.

For any subset U of V , denote Ω ∩ U by UΩ.

The (nonempty) set of singular 1-spaces will be denoted Ω. We will prove
Theorem (12.1) by applying the Brey-Wilson version of Iwasawa’s Lemma (3.15)
to the action of G on Ω.

(12.10). Lemma. V = 〈u〉+ 〈Ω \ u⊥〉 for each 〈u〉 ∈ Ω. Especially V = 〈Ω〉.
If V is not of type GO+

2 (F ), then V = [V,G].

Proof.
2

(12.11). Proposition. For 〈u〉 ∈ Ω, the group Ru is nilpotent of class at
most 2 and normal in G〈u〉.

Proof. This follows immediately from Propositions (7.15) and Theorem
(11.9). 2

(12.12). Proposition.

(a) Ru is regular on Ω \ u⊥.

(b) Tu is regular on ∅ 6= 〈u, x〉Ω \ 〈u〉 for each x ∈ V \ u⊥.

(c) Ru is transitive on 〈u, v〉Ω \ 〈u〉 for each v ∈ u⊥Ω .
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Proof. Parts (b) and (c) are immediate from Theorem (11.9).
(a) For any z /∈ u⊥ and any 1 6= r = r(u, v, b) ∈ Ru we have [z, r] = zr− z ∈

〈u, v〉 \ 〈u〉 when v 6= 0 and 0 6= [z, r] = −h(z, ku)bu when v = 0. Thus the
stabilizer of 〈z〉 in Ru is 1.

In view of (b), it remains to prove transitivity of Ru on the set of hyperbolic
2-spaces 〈u, x〉. Let 〈u, z〉 and 〈u,w〉 be two such spaces with z and w singular
and such that h(z, ku) = 1. As u⊥ is a hyperplane, within the 2-space 〈z, w〉
there is an α such that the vector v = −z+αw is in u⊥. Then for s = r(u, v, b) ∈
Ru

zs ∈ z + h(z, ku)v + 〈u〉 = z + v + 〈u〉 = αw + 〈u〉 ⊆ 〈u,w〉 \ 〈u〉 .

Therefore 〈u, z〉s = 〈u,w〉, as desired. 2

(12.13). Proposition. Let H = ID(V, q, h)u,v, for {u, v} a hyperbolic pair.
Then H = ID(W, q|W , h|W ) for W = 〈u, v〉⊥. If z 7→ z̄ is the projection map
from u⊥ onto W , then r(u, z, a) 7→ z̄ gives a ZH-module isomorphism between
Ru /Tu and W .

Proof. This is immediate from Theorem (11.9). 2

(12.14). Corollary. Assume V has Witt index bigger than 1 but is not of
type GO+

4 (F ). Then for each singular 0 6= u ∈ V

Ru = Tu(Ru ∩G′) .

Proof. Let (u, v) and H (6' GO+
2 (F )) be as in the previous proposition.

By Lemma (12.10) we have [W,H] = W hence by the proposition

Ru = Tu[Ru, H] ≤ Tu(Ru ∩G′) ,

as desired. 2

(12.15). Proposition. The graph (Ω, ∼ ) given by

〈u〉 ∼ 〈v〉 ⇐⇒ h(u, v) 6= 0

is connected of diameter at most 2.

Proof.
2

(12.16). Proposition. The kernel of the action of G on Ω consists of those
central scalars of I(V, q, h) that are contained in G.

Proof. Let g be in the kernel of this action, and let αv ∈ D be determined
by vg = αvv, for each singular 1-space 〈v〉 ∈ Ω. By Lemma (12.10) the module
V is spanned by Ω, it is enough to show that αv is independent of 〈v〉. Let (u, v)
be a hyperbolic pair. If we are not in the orthogonal case Λ = {0}, then we
have αu = αv central by Proposition (12.3). In the orthogonal case, as long as
we have dimension greater than 2, we still have αu = αv central by Propositions
(12.6), (12.9), and Corollary (12.7).

Now as Ω is connected under ∼, the scalars αv all equal some fixed scalar
for all singular v, as desired. 2
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(12.17). Lemma. Assume that (V, q, h) has Witt index greater than 1. For
〈u〉 ∈ Ω, the global stabilizers in ID(V, q, h) of u⊥Ω and of 〈u〉 ∪ (Ω \ u⊥) are both
equal to ID(V, q, h)〈u〉.

Proof. As the Witt index is at least 2, u⊥ is spanned by u⊥Ω \〈u〉 by Lemma
(12.10). Therefore both stabilizers globally fix u⊥ and so also 〈u〉 = (u⊥)⊥. 2

(12.18). Proposition.

(a) Except when (V, q, h) has type GO+
2 (F ), G is transitive on Ω. Especially

G = 〈RG
u 〉.

(b) Except when (V, q, h) has type GO+
2 (F ) or GO+

4 (F ), G is primitive on Ω.

Proof. By Proposition (12.12) the subgroup Ru is transitive on Ω \ u⊥. In
particular, for Witt index 1 the group G is 2-transitive on Ω, hence transitive
and primitive except when G = 1 and |Ω| = 2; that is, except for type GO+

2 (F ).
Assume the Witt index at least 2. By Witt’s Theorem (11.10) the stabilizer

of 〈u〉 in ID(V, q, h) is transitive on u⊥Ω \ 〈u〉 and Ω \ u⊥. Therefore by the
previous lemma ID(V, q, h) preserves no nontrivial block containing 〈u〉 and so
is primitive. Especially G is transitive (completing (a)).

The stabilizer in G of the hyperbolic pair (u,w) and the nondegenerate space
W = 〈u,w〉⊥ acts as G ∩ I(W, q|W , h|W ) on the set of singular 2-spaces 〈u, v〉.
By (a) this action is transitive as long as W does not have type GO+

2 (F ), which
is to say V does not have type GO+

4 (F ). By Proposition (12.12) the group Ru

is transitive on each set 〈u, v〉Ω \〈u〉 for v ∈ u⊥. Therefore as long as V is not of
type GO+

4 (F ) the group G〈u〉 is itself transitive on u⊥Ω \ 〈u〉 and Ω \ u⊥. Again,
the previous lemma gives primitivity. 2

(12.19). Corollary. Except when (V, q, h) has type GO+
2 (F ), G is transitive

on the set of hyperbolic pairs of V .

Proof. If (u1, x1) and (u2, x2) are hyperbolic pairs, then there is a g ∈ G
with (u1, x1)g = (u2, x), for some hyperbolic pair (u2, x). Then by Proposition
(12.12) there is an r ∈ Ru2

with (u2, x)r = (u2, x2), hence (u1, x1)gr = (u2, x2).
2

(12.20). Proposition. Let (v, u) be a hyperbolic pair in (V, q, h).

(a) Assume {0, 1} ⊆ Λ. Then for each 0 6= s ∈ Λ, the isometry g given by

v 7→ s−1v , u 7→ su , g|〈v,u〉⊥ = 1

belongs to G = R ID(V, q, h).

(b) Assume {0, 1,−1} ( Λ. Then for every singular 〈u〉 ∈ Ω we have Tu ≤ G′.

Proof. It is enough to prove this for the hyperbolic 2-space 〈v, u〉 with
k = −1. Recall that Λ is an additive subgroup of D(σ,−k) = D(σ,1), the fixed
elements of the antiautomorphism σ. For arbitrary nonzero t ∈ Λ

t−1 = t−1tt−1 = t−1(t)(t−1)σ ∈ t−1Λ(t−1)σ = Λ ,
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by our definition of a form parameter. That is, for 0 6= t ∈ Λ we also have
t−1 ∈ Λ.

We shall write our isometries as matrices with respect to the hyperbolic pair
basis (v, u). For b, c ∈ Λ the singular transvection

tu(b) : z −→ z − h(z, ku)bu = z + h(z, u)bu

is represented by the matrix (
1 b
0 1

)
while

tv(c) : z −→ z − h(z, kv)cv = z + h(z, v)cv

is represented by (
1 0
−c 1

)
.

(a) As in the Whitehead Lemma (6.4)(a),(
0 −s−1

s 0

)
=

(
1 0
s 1

)(
1 −s−1

0 1

)(
1 0
s 1

)
and then (

s−1 0
0 s

)
=

(
0 −s−1

s 0

)(
0 1
−1 0

)
.

Here 1, s, s−1, and −s−1 are all in the additive group Λ. Therefore all these
calculations go on inside of G ≥ 〈Tv,Tu〉.
(b) We repeat the calculation made in the proof of Proposition (6.33), which
showed that transvections of SL2(D) are in its derived group when |D| > 3.
For b /∈ {0, 1,−1} set a = (b− b−1)−1 and s = b. Then in SL2(D) we have the
Whitehead Lemma (6.4)(f) calculation(

1 b
0 1

)
=

(
1 −a+ sas
0 1

)
=

[(
1 a
0 1

)
,

(
s−1 0
0 s

)]
In our present situation the calculation will prove tu(b) ∈ G′ for all b ∈ Λ \
{0, 1,−1} provided we show that all the matrix entries on the right in this
identity are in Λ.

By hypothesis s = b ∈ Λ, so by the above s−1 = b−1 ∈ Λ as well. As Λ is
an abelian group b − b−1 belongs to Λ, and a second application of the above
remark gives a = (b− b−1)−1 ∈ Λ as desired.

We conclude that all tu(b) for all b ∈ Λ\{0, 1,−1} belong to G′. But as long
as {0, 1,−1} ( Λ, the abelian group Λ is generated by all such b. Therefore
even when b ∈ {1,−1} (and of course when b = 0) we have tu(b) ∈ G′. 2

(12.21). Lemma. {0, 1} ⊆ Λ ⊆ {0, 1,−1} if and only if we have (|D|, |σ|) ∈
{(2, 1), (3, 1), (4, 2), (9, 2)}.
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Proof.
2

(12.22). Proposition. Except when (V, q, h) has type GO+
2 (F ) or one

of Sp2(2),Sp2(3),GU2(22),GU2(32), for (V, q, h) a hyperbolic 2-space we have
Ru = Tu ≤ G′. Especially G is perfect.

Proof. This follows immediately from the previous two results. 2

(12.23). Proposition. Except when (V, q, h) has type GO+
2 (F ) or one of

Sp2(2),Sp2(3),GU2(22),GU2(32),GU3(22),GO3(3), for (V, q, h) of Witt index
1 we have Ru ≤ G′. Especially G is perfect.

Proof. If V has dimension 2, this comes from the previous result.
First suppose Λ = {0}, but the dimension is not 2. In dimension 3 Corollary

(12.7) applies with GO3(3) the only exceptional case (since in even charac-
teristic (V, q, h) has even dimension). For Λ = {0} and V of dimension 4 or
larger, for each r(u, v, b) with 0 6= b = q(v) there is a nondegenerate 4-subspace
W with u, v ∈ W . By Proposition (12.9) r(u, v, b) is in the derived group of
R I(W, q|W , h|W ), a simple group.

If {0, 1} ⊆ Λ ⊆ {0, 1,−1} then (|D|, |σ|) ∈ {(2, 1), (3, 1), (4, 2), (9, 2)}. With
Witt index 1, this leads only to the groups Sp2(2),Sp2(3),GU2(22),GU2(32)
(already handled), the new exception GU3(22), and GU3(32).

In the final case GU3(32), the group is in fact perfect. We handle this
together with the general case of {0, 1,−1} ( Λ, making use of Proposition
(12.20)(a) . . . 2

(12.24). Proposition. Except when (V, q, h) has type GO+
4 (F ) or Sp4(2),

for (V, q, h) of Witt index greater than 1 we have Ru ≤ G′. Especially G is
perfect.

Proof. Assume that (V, q, h) of Witt index greater than 1 does not have
type GO+

4 (F ). By Corollary (12.14) for each singular 0 6= u ∈ V we have
Ru = Tu(Ru ∩G′) . Thus it remains to prove Tu ≤ G′ when we are not in the
excluded cases. This is trivially true when Λ = {0}. and Tu = 1.

Assume Λ 6= 0. Within V each singular 1-space 〈u〉 is contained within a
hyperbolic 2-space to which Proposition (12.22) can be applied. The singular
transvection subgroup Tu is contained within the derived group of the corre-
sponding root-generated subgroup of G except for the possibilities/exceptions
Sp2(2), Sp2(3), GU2(22), GU3(22), and GU2(32).

As the Witt index is greater than 1, in the exceptional cases each hyperbolic
2-space is contained within a hyperbolic 4-space of respective types Sp4(2),
Sp4(3), GU4(22), GU4(22), and GU4(32). In the last four cases, Tu ≤ R′u by
Theorem (11.9).

This leaves Sp4(2) where Lemma (12.2) reveals that the transvections—the
2-cycles—are not in the derived subgroup of Sym(6) ' Sp4(2) = RSp4(2). For
symplectic groups over F2 we must go one step higher. In Sp6(2) the group
Ru is an elementary abelian 2-group of order 25, easily seen to be isomorphic
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to the even submodule [F2{1, 2, 3, 4, 5, 6},Alt(6)] of the natural F2-permutation
module for Sym(6) and Alt(6) ≤ G′〈u〉/Ru. In particular Tu of order 2 is again

in G′, completing the proposition. 2

Proof of Theorem (12.1).
Assume we are not in one of the (genuinely) exceptional cases.
By Propositions (12.11) and (12.18)(a) G = 〈RG〉 for solvable R�Gω with

ω ∈ Ω. By Proposition (12.18)(b) G is primitive on Ω. By Propositions (12.23)
and (12.24) G = G′. Therefore by the Brey-Wilson version of Iwasawa’s Lemma
(3.15) all normal subgroups of G are contained in ker Ω, which is Z(G) by
Proposition (12.16). 2

12.3 Symplectic groups

An issue not addressed in the previous section is the structure of the quotient
ID(V, q, h)/R ID(V, q, h). The next theorem shows that it always has a rela-
tively restricted structure, and the theorem that follows it solves the problem
completely in the symplectic case.

(12.25). Theorem. If (V, q, h) is not of type GO+
2 (F ), then G is edge-

transitive on Ω and ID(V, q, h) = G.J for J as in Proposition (12.3). In partic-
ular I/G ' J/J ∩G′.

Proof. This follows from Corollary (12.19) and the Frattini Argument
(3.8). 2

(12.26). Theorem. Except for the genuine exceptions Sp2(2), Sp2(3), and
Sp4(2), the symplectic group G = Sp2m(F ) is perfect with Z(G) = {±I} and
G/Z(G) simple.

Proof. By Theorem (12.25) G = Sp2(F ).RSp2m(F ). In view of Theorem
(12.1), it suffices to prove Sp2(F ) = RSp2(F ).

In the symplectic case, Λ = F and all 1-spaces are singular. So by Propo-
sitions (12.4) and (12.20) we have Sp2(F ) = SL2(F ) = RSp2(F ), and we are
done. 2
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[Die51] J. Dieudonné, Algebraic homogeneous spaces over fields of charac-
teristic two, Proc. Amer. Math. Soc., 2 (1951), 295–304.
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