From the course notes

"Classical Groups and Geometry, version of 7 April 2015" (that is, **CGG**), the following problems:

CGG PROBLEMS (10.36), (10.37), (10.38), (10.39)

5. Let t be an indeterminate. Let $L = \{\sum_{i=h}^{\infty} p_i t^i | h \in \mathbb{Z}, p_i \in \mathbb{C}\}$. (Notice that negative integers h are allowed.) We make the standard identifications $\mathbb{R} \leq \mathbb{C} = \mathbb{C}t^0$.

For $p = \sum_{i=h}^{\infty} p_i t^i \in L$, define the *minimal degree*, $\operatorname{md}(p)$, to be the smallest *i* with $p_i \neq 0$. (Note: $\operatorname{md}(0) = \infty$.)

Observe that $\{p \in L \mid \operatorname{md}(p) \geq 0\} = \mathbb{C}[[t]]$, the ring of formal power series in t. L is then the field of Laurent series, the quotient field of $\mathbb{C}[[t]]$ (because, for p with $\operatorname{md}(p) > 0$, $(1 - p)^{-1} = \sum_{0}^{\infty} p^{i}$ is well-defined and in L).

The usual complex conjugation in \mathbb{C} (denoted by $c \mapsto \bar{c}$) extends to an involutory automorphism σ on all L:

$$(\sum_i p_i t^i)^{\sigma} = \sum_i \bar{p}_i t^i.$$

Let $\vec{e}_1, \ldots, \vec{e}_n$ be a basis for the *L*-space $V = L^n$ (for $n \ge 2$), and let *f* be the σ -hermitian form on *V* given by

$$f(\sum_{i=1}^n x_i \vec{e_i}, \sum_{i=1}^n y_i \vec{e_i}) = \sum_{i=1}^n x_i y_i^{\sigma},$$

so that the associated Gram matrix is the $n \times n$ identity matrix.

We then have the unitary group

$$\operatorname{GU}(V, f) = \{ G \in \operatorname{GL}_n(L) \mid f(x, y) = f(xG, yG), \text{ all } x, y \in V \}$$

= $\{ G \in \operatorname{GL}_n(L) \mid G(G^{\sigma})^{\top} = I \}.$

For $G = (g_{i,j})_{i,j} \in \operatorname{Mat}_n(L)$, let $\operatorname{md}(G) = \min_{i,j}(\operatorname{md}(g_{i,j}))$. For integral $k \ge 0$, let $U_k = \{G \in \operatorname{GU}(V, f) \mid \operatorname{md}(I - G) \ge k\}$.

(a) Prove that $f(\vec{x}, \vec{x}) = 0$ if and only if $\vec{x} = \vec{0}$.

- (b) For $G \in \mathrm{GU}(V, f)$, prove that $\mathrm{md}(G) \ge 0$, hence $\mathrm{GU}(V, f) = U_0$.
- (c) Prove that U_k is normal in $\mathrm{GU}(V, f)$, for all $k \ge 0$.
- (d) Prove that, for $k \neq m$, $U_k \neq U_m$, and that $\bigcap_k U_k = 1$.
- (e) Prove that, for all $k \ge 1$, U_k/U_{k+1} is abelian.