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Abstract

A group is called p-linear if it is isomorphic to a subgroup of GL(n,K) for some
field K of characteristic p and some integer n. Let H be a normal subgroup of
G and assume that both H and G/H are periodic and p-linear. In addition,
assume that bothH andG/H have finite unipotent radicals and that the Hirsch-
Plotkin radical of H is C̆ernikov. The main result of this article is a proof that
under these assumptions G is p-linear. An example is provided showing the
result is false if the assumption regarding the Hirsch-Plotkin radical is removed.
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1. Results

For finite n, the group G is said to be K-linear of degree n if it is isomorphic
to a subgroup of GL(n,K) and is p-linear if it is K-linear for some field K of
characteristic p.
The following theorem was proven as [1, Theorem A].

(1.1) Theorem. Let G be a periodic subgroup of GL(n,K) with trivial unipo-
tent radical. Then for every normal subgroup H of G, the image G/H is K-
linear of degree bounded by a function of n.

Here the statement on bounded degree indicates that there is a positive, non-
decreasing function f such that the degree of G/H is always less than or equal
to f(n).
Wehrfritz [2] gave a second proof of the theorem and was able to weaken the

hypotheses by assuming only that H has trivial unipotent radical. A slightly
different proof of the theorem is given below (one that in fact includes groups
G with finite unipotent radical, as remarked below).
The main concern here is proving a converse result to this theorem. It is

not in general the case that an extension of a linear group by a linear group is
linear. It is also not clear what shape the best converse to the theorem would
take.
Consider the following:

Hypothesis (∗)
G is a locally finite group andM a normal subgroup of G satisfying:

(i) M is a central product A Y L1 Y · · · Y Li Y · · · Y Ls, for some
s;

(ii) each Li is a quasisimple group of Lie type in characteristic p;

(iii) A is a periodic abelian pI-group of finite rank r;

(iv) G/M is finite.

The rank of a periodic abelian group B is the largest m for which there is a
prime q and an elementary abelian q-subgroup C of B having order qm. If p = 0,
then s = 0 in (i) and A is periodic abelian of finite rank in (iii).
Each of the groups Li in (i) has, naturally defined, a Lie rank ri and a

field of definition Ki ≤ Fp. (See [1, Lemma 9(iv)] or Theorem 2.5 below.) (In
characteristic p = 0 we set Fp = Q hence Fp = Q.) We define the M -rank of G
with (∗) to be r+ s

i=1 ri. We define the field K
M to be the smallest subfield of

Fp that contains each Ki and all qkth roots of unity, for every k and all primes
q for which A contains a subgroup Zq∞ . Thus M is KM -linear.

(1.2) Theorem. If G is a periodic K-linear group of degree n with finite
unipotent radical U(G), then G has a characteristic subgroup M for which
(G,M) satisfies (∗), where p = Char(K). In this case, M can be chosen so
that the M-rank of G is bounded by a function of n and the index |G/M | is
bounded by functions of n and |U(G)|.
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(1.3) Theorem. A group G with (∗) is KM -linear of degree bounded by a
function of its M-rank and the index |G/M |.

As a corollary, we get Winter’s theorem [3]. The usual proofs are more
elementary than this; see [4, Theorem 1.L.2] and [5, Theorem 9.5].

(1.4) Corollary. If G is a periodic K-linear group with trivial unipotent
radical, then G is Fp-linear, where p is the characteristic of K. In particular,
G is countable.

Since uncountable unipotent linear groups of exponent p exist, Winter’s
theorem is false without some restriction on the radical. Nevertheless, because
of it we can restrict (most) discussion to the question of whether or not a given
group is p-linear (that is, linear over some field of characteristic p).
We have a partial converse to Theorem 1.1.

(1.5) Theorem. Let H be a normal subgroup of G and assume that
(a) G/H is a periodic p-linear group with finite unipotent radical;
(b) H is a periodic p-linear group with finite unipotent radical;
(c) the Hirsch-Plotkin radical of H is C̆ernikov.

Then G is p-linear.

A C̆ernikov group is one that satisfies the minimal condition on subgroups and
has an abelian subgroup of finite index. (See [4, pp. 28—38]. By [5, Corollary
9.8], in linear groups the second condition is a consequence of the first.) The
Hirsch-Plotkin radical of a group is its largest locally nilpotent normal subgroup.
The next section contains proofs of Theorems 1.1-1.5. The final section

contains examples. The first example shows that Theorem 1.5 is false under
(a) and (b) alone. The other two examples demonstrate the impossibility in
Theorem 1.5 of bounding the representing degree of G in terms of degG/H and
degH, indeed in terms of the isomorphism class of one of these and the degree
of the other.
The problem discussed in this article was one that Richard Phillips was

working on during the last years of his life. He wrote an initial draft of this
article in conjunction with Julianne Rainbolt. After Richard Phillips’ death,
Jonathan Hall, Ulrich Meierfrankenfeld, and Julianne Rainbolt completed the
revisions of the article. The authors thank Felix Leinen and the referees for
helpful remarks on earlier drafts of this article.

2. Proofs

Let G be a locally finite group and π be any set of primes. Then Oπ(G) denotes
the largest normal subgroup of G all of whose elements are π-elements. If G is
periodic and linear in characteristic p, then Op(G) is the unipotent radical of G.
In the following, E(G) denotes the subgroup of G generated by the components
of G, where a component of G is a subnormal quasisimple subgroup.
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(2.1) Theorem. (Schur, [4, Theorem 1.L.1]) Periodic linear groups are
locally finite.

The next two lemmas are elementary.

(2.2) Lemma. If G is K0-linear of degree n and K is a subfield of K0 such
that |K0 : K| is finite, then G is K-linear of degree n|K0:K|.

(2.3) Lemma. If M is K-linear of degree m and has finite index in G, then
G is K-linear of degree m|G:M | via the induced representation.

(2.4) Lemma. Let H be K-linear and Z a finite normal subgroup of the center
Z(H). Then H/Z is K-linear of degree bounded by a function of the degree of
H and |Z|.
In particular, if the factors Hi areK-linear, then a central product H1 Y H2 =

(H1 ×H2)/Z over a finite central subgroup Z is K-linear of degree bounded by
a function of the degrees of the Hi and |Z|.

Proof. As the direct product of two K-linear groups is K-linear with
degree equal to the sum of the two degrees, this an immediate consequence of
[1, Proposition 3(ii)].

A proof of the following theorem can be found at [6, Lemmas 15.6, 15.10,
and Theorem 15.12]. It is very similar to [1, Proposition A] and [7, 1.2].

(2.5) Theorem. Let G be a periodic linear group of degree n over a field in
characteristic p and having trivial unipotent radical.
Let {Li | 1 ≤ i ≤ t } consist of all components of G that have Lie type in

characteristic p. The central product EL,p(G) = L1 Y · · · Y Lt is characteristic
in G, and t ≤ n/2. Furthermore, G has a characteristic abelian subgroup A
such that the subgroup M(G) = A Y EL,p(G) is characteristic in G and has
finite index bounded by a function of n.

Proof of Theorem 1.2.
G is locally finite by Theorem 2.1.
As the unipotent radical U = U(G) is finite, CG(U) is a characterisitic

subgroup of G of finite index bounded by a function of |U |. Therefore we may
assume that U ≤ Z(G).
Let Ḡ = G/U . Note that Ḡ is a K-linear group of degree n with trivial

unipotent radical.
Let N̄ =M(Ḡ) be the subgroup Ā Y L̄1 Y · · · Y L̄s of Theorem 2.5. Let Li

be the derived group of the preimage of L̄i in G, A the p
I-part of the preimage

of Ā, and M = A Y L1 Y · · · Y Ls. Then M is characteristic in G, and the
pair (G,M) satisfies (∗).
The various rank(Li) are bounded by a function of n [1, Lemma 9(b)(i)].

Since A is pI and periodic, it has finite rank bounded by a function of n by
Maschke’s Theorem.
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Proof of Theorem 1.3.
By (iv) and Lemma 2.3, we may assume G =M . Each Li is K

M -linear by
assumption and has a center that is finite of order bounded by a function of the
Lie rank of Li ([1, Lemma 10(viii)] or Lemma 2.7). Thus E(G) = L1 Y · · · Y Ls
is KM -linear by Lemma 2.4 and has finite center of order bounded in terms of
the Lie ranks of the Li. By definition, (K

M )× contains a copy of Zq∞ whenever
A has infinite q-part, so A is KM -linear of degree equal to its rank r. A second
application of Lemma 2.4 then proves that G = M = A Y E(G) is KM -linear,
as desired. Furthermore, its degree is controlled as described.

Proof of Corollary 1.4.
As G is periodic and K-linear, it has (∗) by Theorem 1.2 and so is Fp-linear

by Theorem 1.3.

Proof of Theorem 1.1.
By Theorem 1.2, G has (∗) for a normal subgroup M , and the M -rank of

G and |G/M | are both bounded by functions of n. In Ḡ = G/H, set M̄ =
MH/H. Then the pair (Ḡ, M̄) inherits (∗), so by Theorem 1.3 Ḡ is linear of
degree bounded in terms of the M̄ -rank of Ḡ (at most the M -rank of G) and
|Ḡ: M̄ | (≤ |G:M |). Thus the degree of G/H is bounded by a function of n, as
desired.

Remark. The same proof actually gives something slightly stronger than The-
orem 1.1. We need only require that the unipotent radical of G be finite, in
which case the representation degree of G/H is bounded by a function of n and
of the order of the radical.

(2.6) Lemma. Let B be a class 2 nilpotent periodic group with BI ≤ H ≤
Z(B). Assume that B/H has finite rank and that H is C̆ernikov. Then B has
an abelian subgroup of finite index and finite rank.

Proof. The central subgroup H is C̆ernikov and so has only finitely many
prime divisors; let the set of these be π. The set of πI-elements of B then
forms a characteristic abelian subgroup OπI(B) l OπI(B/H) of finite rank. Let
B = OπI(B)×B0, where B0 = Oπ(B) consists of all π-elements of B. B0/H is
of finite rank and is, in fact, C̆ernikov since π is finite. But then B0 is C̆ernikov
by [4, Lemma 1.E.7]. In particular it contains an abelian subgroup A0 of finite
rank and of finite index in B0. The subgroup OπI(B) × A0 is then abelian of
finite rank and has finite index in B, as desired.

(2.7) Lemma. Let periodic N have a central subgroup H such that N̄ = N/H
is a central product M̄1 Y · · · Y M̄t of finitely many infinite quasisimple groups
M̄i of Lie type. Then N = H Y E(N), where E(N) = N1 Y · · · Y Nt has
finite center and is a central product of quasisimple groups Ni of Lie type with
N̄i = M̄i.
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Proof. By the Three Subgroups Lemma, Z2(N) = Z(N). Also N I =
[N IH,N IH] ≤ N II; so N I is perfect, and N = H Y N I. Indeed N/H =
N IH/H l N I/N I ∩H has image N I/Z(N I). Therefore N I = E(N), the central
product of the components Ni = (Mi)

I, the derived subgroups of the preimages
Mi of the various M̄i.
Each simple periodic infinite Lie type group L is a direct limit of finite sim-

ple groups of the same Lie type, and so any element of its multiplier occurs
already within the multiplier of some finite subgroup of Lie type. Exceptional
multipliers for finite Lie type groups occur only over small fields, and the canon-
icial multipliers come from the natural or spin representations of fixed degree
bounded in terms of the Lie rank [8]. Thus the multiplier of L is finite of or-
der bounded by the rank of L and comes from a representation of degree also
bounded by the rank. (See also [1, Lemma 10].)

We next prove a special case of Theorem 1.5.

(2.8) Theorem. Let H be a normal subgroup of G and assume that
(a) G/H is a periodic p-linear group with finite unipotent radical;
(b) H is finite.

Then G is p-linear with finite unipotent radical.

Proof. By Theorem 2.1 G/H is locally finite, so G itself is locally finite
(by [4, Lemma 1.A.2]).
Since the quotient of any linear group by its unipotent radical is also linear,

we may replace H by the preimage in G of the unipotent radical of G/H. Thus
we may assume that G/H has trivial unipotent radical.
As H is finite, CG(H) has finite index in G. Replacing H by H ∩ CG(H)

and G by CG(H), we may by Lemma 2.3 assume that H ≤ Z(G).
By Theorem 1.2, M(Q) has finite index in Q, and so its preimage in G has

finite index. Thus by Lemma 2.3 in proving G to be p-linear we can assume
Q = M(Q) = A Y E(Q) = A Y L1 Y · · · Y Ls. Indeed again by Lemma 2.3
we just need to show that the preimage G0 of A Y E∞(Q) is p-linear, where
E∞(Q) = L1 Y · · · Y Lt only includes those components Li of Q that are
infinite.
By Lemma 2.7, G0 = B Y E(G0), where E(G0) is a central product of Lie

type groups and B(≥ H) has class at most 2 with B/H = A. By Lemma 2.6,
B has an abelian subgroup B0 of finite index and finite rank. As Op(G) ≤ H
is finite, B0 in turn has a finite index abelian p

I-subgroup A0 of finite rank.
Therefore G0 ≥ A0 Y E(G0) is p-linear by Theorem 1.3, as desired.

Proof of Theorem 1.5.
By Theorem 2.1 both H and G/H are locally finite, so G itself is locally

finite (by [4, Lemma 1.A.2]). By Theorem 2.8 we may assume that Op(H), the
unipotent radical of H, is trivial.
By Theorem 2.5 M(H) is characteristic of finite index in H, so by Theorem

2.8 we may assume H =M(H) = C Y E(H), where C(≥ Z(E(H))) is abelian,
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characteristic in H, and C̆ernikov. By [1, Lemma 9] CG(E(H))E(H) has finite
index in G, so we may take G = CG(E(H))E(H) (by Lemma 2.3 again). By [4,
Theorem 1.F.3], any periodic subgroup of Aut(C) is finite, so we may further
assume G = M(H)CG(M(H)). Thus G = CG(M(H)) Y C Y E(H), a central
product (indeed C ≤ CG(M(H))). E(H) has finite center by [1, Lemma 10] (or
Lemma 2.7). As E(H) (≤H) is p-linear by hypothesis, when we have proven
that CG(M(H)) Y C = CG(M(H)) is p-linear we will be done by Lemma
2.4. Linear G/H = M(H).CG(M(H))/H l CG(M(H))/H ∩ CG(M(H)) =
CG(M(H))/C, so we are reduced to the case C = H ≤ Z(G).
As Op(H) = 1, Op(G) is isomorphic to the unipotent radical of Q = G/H

and is, in particular, finite. Thus by Theorem 2.8 we may assume that Op(G)
and Op(Q) are trivial. We now complete the proof as in the last two paragraphs
of the proof of Theorem 2.8.

3. Examples

(3.1) Lemma. There is an infinite sequence of primes

q1 < p1 < · · · < qi < pi < · · ·
for i ∈ Z+, with qi| pi − 1.
Proof. The proof is by induction on i. Let q1 be any prime number.

A theorem of Dirichlet [9, p. 250] asserts that the sequence {1 + kq1 | k =
1, 2, . . .} contains an infinite number of primes. Let p1 be any such prime. Then
q1|(p1 − 1). Now let q2 be a prime greater than p1.
Suppose that we have chosen q1, . . . , qs+1 and p1, . . . , ps such that

q1 < p1 < · · · < qs < ps < qs+1
Now choose the prime ps+1 in the sequence {1 + kqs+1 | k = 1, 2, . . .} and the
prime qs+2 with qs+2 > ps+1.

(3.2) Example.

We first show that Theorem 1.5 is false when only (a) and (b) are assumed
(even when (a) and (b) are strengthened to require that the unipotent radicals
be trivial).
For pi, qi (i ∈ Z+) as in Lemma 3.1, let Si be cyclic of order pi and Ri

cyclic of order qi. Let Fi = Si.Ri be the Frobenius group of order piqi. Then
F k = ⊕ k

i=1 Fi has representation degree at least 2k in each characteristic,

even though it is the extension Sk.Rk of cyclic Sk = ⊕ k
i=1 Si of degree 1

over any prime not in the sequence (and degree at most 2 in general) by cyclic

Rk = ⊕ k
i=1Ri also of degree 1 over any prime not in the sequence (and degree

at most 2 in general).
Thus F∞ = ⊕ i Fi = limk F

k is not linear in any characteristic even
though it is the extension of rank 1 linear S∞ = ⊕ i Si = limk S

k by rank 1
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linear R∞ = ⊕ iRi = limkR
k. The Hirsch-Plotkin radical of F∞ is S∞ and

is not C̆ernikov.

(3.3) Example.

The groups F k of the first example show that the degree of linear G can not be
bounded in terms of the degree, degH, of the normal subgroup H and degG/H.
We can refine the example to show that knowledge of degH and the isomorphism
type of G/H is still not enough in general to bound the degree of linear G.
Indeed, let linear F (k) = F k ⊕ i>k Ri be the split extension of S

k (as

before) by R∞ (with the Ri, for i > k, acting trivially). As F k ≤ F (k), the
representation degree still goes to infinity, but now F (k)/Sk l R∞, for all k.
(3.4) Example.

Finally, as a complement to the previous example, we show that the degree of
linearG can not in general be bounded in terms of degG/H and the isomorphism
type of H.
Fix a characteristic p and a prime q W= p. Let, for n ∈ Z+,
E(n) = �x, y, z |xqn = yqn = zqn = 1, [x, y] = z, [x, z] = [y, z] = 1 X .

Let E∗(n) be the central product of E(n) and Zq∞ with z identified with
an element of order qn of Zq∞ . Then H = Zq∞ is p-linear of degree 1 and
E∗(n)/H l Zqn × Zqn is p-linear of degree 2.
We claim that the degree of E(n) (and hence of E∗(n)) in characteristic p is

qn. Abelian W = �x, zX has index qn, so this is an upper bound on the degree.
Consider the restriction of a faithful representation to W . There is some degree
1 constituent ζ with W = �w, zX = CE(n)(w), where �wX = ker(ζ). Then by

Clifford’s Theorem the ζy
i

, for i = 0, . . . , qn− 1, are distinct constituents of the
restriction.
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