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Abstract. We show that the Vassiliev invariants of a knot K, are ob-

structions to finding a regular Seifert surface, S, whose complement looks

“simple” (e.g. like the complement of a disc) to the lower central series

of its fundamental group. We also conjecture characterization of knots

whose invariants of all orders vanish in terms of their Seifert surfaces.
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1. Introduction

We show that the Vassiliev knot invariants provide obstructions to a
knot’s bounding a regular Seifert surface whose complement looks, mod-
ulo the lower central series of its fundamental group, like the complement
of a null-isotopy. Before we state the main results of this paper, let us in-
troduce some notation and terminology. We will say that a Seifert surface
S of a knot K is regular if it has a spine Σ whose embedding in S3, in-
duced by the embedding S ⊂ S3, is isotopic to the standard embedding of
a bouquet of circles. Such a spine will be called a regular spine of S. In
particular, π := π1(S

3rS) is a free group. A key idea we will introduce is
to define n-hyperbolic Seifert surfaces. Roughly speaking, these are surfaces
whose complement looks, modulo certain terms of the lower central series of
its fundamental group, like the complement of a Seifert surface of a trivial
knot. A knot bounding such a surface is called n-hyperbolic. We prove the
following:

Theorem 1.1. There exists a sequence of natural numbers {l(n)}n∈N, with

l(n) > log2(
n − 5

144
) such that the following is true: If K is n-hyperbolic, then

all the Vassiliev invariants of orders ≤ l(n) of K vanish. In particular, if K
is n-hyperbolic for all n ∈ N then all the Vassiliev invariants of K vanish.
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A question arising from this work is whether the notion of n-hyperbolicity
provides a complete geometric characterization of n-trivial knots. We con-
jecture that this is the case. More precisely we have the following conjecture;
further evidence of the conjecture is provided in [AK].

Conjecture 1.2. A knot K is n-trivial for all n ∈ N if and only if it is
n-hyperbolic for all n ∈ N.

Let us now describe in more detail the contents of the paper and some
of the ideas that are involved in the proofs of the main results. In §2 we
recall basic facts about Vassiliev invariants and the results from [Gu] that
we use in subsequent sections. In §3 we study regular Seifert surfaces of
knots. We introduce the notion of good position for bands in projections
of Seifert surfaces. Let B be a band of a regular Seifert surface S, which
is assumed to be in band-disc form, and let γ denote the core of B. Also,
let γǫ denote a push-off of γ. The main feature of a projection of S with
respect to which B is in good position is the following: We may find a word
W , in the free generators of π := π1(S

3
rS), representing γǫ and such that

every letter in W is realized by a band crossing in the projection. In §4
we introduce n-hyperbolic regular Seifert surfaces and we prove Theorem
1.1. The special projections of §3 allow us to connect Gussarov’s notion of
n-triviality to an algebraic n-triviality in π, and exhibit a correspondence
between geometry in S3rS and algebra in π. Let us explain this in some
more detail. By Gussarov ([Gu]), to prove Theorem 1.1 it will be enough
to show that an n-hyperbolic knot has to be l(n)-trivial. Showing that a
knot is k-trivial amounts to showing that it can be unknotted in 2k+1 − 1
ways by changing crossings in a fixed projection. Having the projections of
§2 at hand, the main step in the proof of Theorem 2 becomes showing the
following: If γ is the core of a band B in good position and γǫ ∈ π(m+1),
then we can trivialize B in 2l(m)+1 − 1 ways (for the precise statement see

Proposition 4.4). Here π(m+1) denotes the (m+1)-th term of the lower cen-
tral series of π. The proof of Proposition 4.4 is based on a careful analysis of
the geometric combinatorics of projections of the sub-arcs of γ representing
simple commutators. We show that eventually γ may be decomposed into
a disjoint union of “nice” arcs for which the desired conclusion follows by
Dehn’s Lemma.

The lower central series first appeared in the theory of Vassiliev invari-
ants in the work of Stanford ([S],[S1]). The paper [KL], was the first place
were commutators were brought in the theory of Vassiliev invariants from
a geometric point of view. Since the appearance of [KL] the theory of geo-
metric commutators and Vassiliev’s invariants was developed via the theory
of grope cobordisms and led to beautiful geometric characterizations of the
invariants ([Ha], [CT]). The contents of this paper are partly based on
material in [KL] but has undergone major revisions. The Seifert surfaces
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introduced here, can be fit into the framework of geometric gropes and from
this point of view the main result here has similar flavor to this of [CT].
The advantage of the point of view taken here is that the objects of study
are Seifert surfaces which are very familiar to knot theorists. On the other
hand, unlike in the case of immersed gropes, it is not known whether our
n-hyperbolic surfaces completely characterize knots with trivial Vassiliev in-
variants: As said, Conjecture 1.2 is only partially verified at this time. We
should also point out that the properties of n-hyperbolic knots have also
been studied in the articles of L. Plachta ([P], [P1]), where also some of the
questions asked in [KL] are answered.

This paper was completed and submitted in July 2006. While the paper
was under review for publication, Xiao-Song Lin passed away (on January
14, 2007), after a short period of illness. His untimely death left us with a
profound loss.

2. Gussarov’s n-triviality

A singular knot K ⊂ S3 is an immersed curve whose only singularities
are finitely many transverse double points.

Let Kn be the rational vector space generated by the set of ambient isotopy
classes of oriented, singular knots with exactly n double points. In particular
K = K0 is the space generated by the set of isotopy classes of oriented knots.

A knot invariant V can be extended to an invariant of singular knots by
defining

for every triple of singular knots which differ at one crossing as indicated. In
particular, Kn can be viewed as a subspace of K for every n, by identifying
any singular knot in Kn with the alternating sum of the 2n knots obtained
by resolving its double points. Hence, we have a subspace filtration

. . . ⊂ Kn . . . ⊂ K2 ⊂ K1 ⊂ K

Definition 2.1. Vassiliev knot invariant of order ≤ n is a linear functional
on the space K/Kn+1. The invariants of order ≤ n form a subspace Vn of
K∗, the annihilator of the subspace Kn+1 ⊂ K. We will say that an invariant
v is of order n if v lies in Vn but not in Vn−1.

Clearly, we have a filtration

V0 ⊂ V1 ⊂ V2 ⊂ . . .

To continue we need to introduce some notation. Let D = D(K) be a
diagram of a knot K, and let C = C(D) = {C1, . . . , Cm} be a collection of
disjoint non-empty sets of crossings of D. Let us denote by 2C the set of all
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subsets of C. Finally, for an element C ∈ 2C we will denote by DC the knot
diagram obtained from D by switching the crossings in all sets contained in
C. So, all together, we can get 2m different knot diagrams from the pair
(D, C). Notice that each Ci ∈ C may contain more than one crossings.

Definition 2.2. ([Gu]) Two knots K1 and K2 are called n-equivalent, if
K1 has a knot diagram D with the following property: There exists C =
{C1, . . . , Cn+1}, a collection of n + 1 disjoint non-empty sets of crossings of
D, such that DC is a diagram of K2 for every non empty C ∈ 2C. A knot
K which is n-equivalent to the trivial knot will be called n-trivial

Theorem 2.3. ([Gu], [NS]) Two knots K1 and K2 are n-equivalent if and
only if all of their Vassiliev invariants of order ≤ n are equal. In particular,
a knot K is n-trivial if and only if all its Vassiliev invariants of order ≤ n
vanish.

3. Seifert surfaces

3.1. Generalities. Let K be an oriented knot in S3. A Seifert surface of
K is an oriented, compact, connected, bi-collared surface S, embedded in
S3 such that ∂S = K.

A spine of S is a bouquet of circles Σ ⊂ S, which is a deformation retract
of S.

Definition 3.1. A Seifert surface S of a knot K is called regular if it has
a spine Σ whose embedding in S3, induced by the embedding S ⊂ S3, is
isotopic to the standard embedding of a bouquet of circles. We will say that
Σ is a regular spine of S.

Let Σn ⊂ S3, be a bouquet of n circles based at a point p. A regular
projection of Σn is a projection of Σn onto a plane with only transverse
double points as possible singularities. Starting from a regular projection
of Σn, we can construct an embedded compact oriented surface as follows:
On the projection plane, let D2 be a disc neighborhood of the base point
p, which contains no singular points of the projection. Then, D2 intersects
the projection of Σn in a bouquet of 2n arcs and there are n arcs outside
D2. We first replace each of the arcs outside D2 by a flat band with the
original arc as its core. Here a band being flat means we have an immersion
when the band is projected onto the plane. That is to say that the only
singularities the band projection has are these at the double points of the
original arc projection so that bands overlap themselves exactly when the
arcs over cross themselves.

Let S denote the surface obtained by the union of the disc D2 and these
flat bands, to which some full twists are added if necessary. We say that S
is a surface associated to the given regular plane projection of Σn. We will
also say that the surface S is in a disc-band form. A band crossing of S is
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obviously defined, and they are in one-one correspondence with crossings on
the regular plane projection of Σn. We certainly have the freedom to move
the full twists added to the bands anywhere. So we assume that all the twists
of the band are moved near the ends of the bands. We may sometimes abuse
the notation by not distinguishing a band and its core and only take care of
the twists at the end of an argument.

Now let S be a regular surface of genus g. Pick a base point p ∈ S, and
let Σn, n = 2g, be a regular spine of S such that p is the point on Σn where
all circles in Σn meet. Let γ1, β1, . . . , γg, βg be the circles in Σn oriented
so that they form a symplectic basis of H1(S). Assume further that a disc
neighborhood of p in S is chosen so that its intersection with Σn consists of
2n arcs.

Lemma 3.2. Let S be a regular Seifert surface, with Σn a regular spine.
The embedding Σn ⊂ S3 has a regular plane projection as shown in Figure
1 below, where b is a braid of index 2n, such that the regular Seifert surface
S is isotopic to a surface associated to that projection of Σn.

Proof : Let Wn be a bouquet of n circles, all based at a common point q.
Then, Σn induces an embedding of Wn in S3. Let us begin with a regular
plane projection of Wn, such that in a neighborhood D of q in the projection
plane, the 2n arcs in D ∩ Wn are ordered and oriented in the same way as
the arcs of Σn in the chosen disc neighborhood of p in S.

. . . .

......

b

Figure 1. A projection of a regular spine.

Then, after a possible adjustment by adding some small kinks, S is iso-
topic to the surface associated to this projection. Since Σn is isotopic to the
standard embedding of Wn in S3, we may switch the arcs in D, so that the
arcs of Σn outside D are isotopic to the standard embedding. We may then
record these switches by the braid b. �

3.2. Good position of bands. Let us consider R
3 ⊂ S3 and a decom-

position R
3 = R × R

2, and take the factor R
2 as a fixed projection plane

P from now on. Also, we will fix a coordinate decomposition (t, s) of P .
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Now let l denote the t-axis on P , and let H+ = {(t, s) ∈ P | s > 0} and
H− = {(t, s) ∈ P | s < 0}.

To continue assume that S is a regular Seifert surface and fix a projection,
p : S −→ P in the disc-band form. Assume that the bands (their cores) of
S are all transverse to l. Let B be a band of S, and let γ be the core of B.
By a sub-band B′ of B, we mean a band on B whose core γ′ is a sub-arc of
γ.

Definition 3.3. We will say that a band B is in good position with respect
to the projection iff the following conditions hold:
a) The band B is flat.
b) For every band A 6= B, the intersection H+ ∩ A consists of a single
sub-band with no self-crossings, and these sub-bands are all disjoint.
c) All the self-crossings of B occur in H+, and are all under crossings (resp.
over crossings). Moreover, the intersection H+∩B consists of finitely many
sub-bands B0, B1, . . . , Bk such that

i) they have no self-crossings;
ii) the Bj’s, j 6= 0, are disjoint with each other, and each crosses exactly

once under (resp. over) B0, or one of the sub-bands in b).
d) The crossings between B and any other band that occur in H− are all
over crossings (resp. under crossings).

An example of a projection as described in Definition 3.3 is shown in
Figure 6, at the end of this section.

To continue, let S be a regular Seifert surface and fix a projection as
described in Lemma 3.2. Let g be the genus and let A1, B1, . . . , Ag, Bg

denote the bands of S. Moreover, let γ1, β1, . . . , γg, βg denote the cores of
A1, B1, . . . , Ag, Bg, respectively. We orient the core curves so that they give
a symplectic basis of H1(S). Finally, let x1, y1, . . . , xg, yg be small linking
circles of the bands such that

i) lk(xi, γj) = lk(yi, βj) = δij ;
ii) lk(yi, γj) = lk(xi, βj) = 0 and
iii) their projections on the plane P are simple curves disjoint from each

other.
Clearly, x1, y1, . . . , xg, yg represent free generators of π1(S

3rS).

Lemma 3.4. For every band B of S, there exists a projection of S with
respect to which B is in good position.

Proof : Let us start with the projection fixed before the statement of the
Lemma, and let l and H+, H− be as before Definition 3.3.

Let α1, α̂1, . . . , α2g−1, α̂2g denote the hooks in Figure 1 on the top of the
braid b. They are sub-bands of A1, B1, . . . , Ag, Bg, respectively. We move
the projection of S so that l intersects each of the hooks at exactly two
points and we have that the intersection H+ ∩ p(S) is equal to α1 ∪ α̂1 ∪
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. . .∪α2g−1∪ α̂2g. Thus the entire braid b is left below l, in H−. To continue,
we choose another horizontal line l0 below l, so that b lies between l0 and
l, and only the disc part of the surface is left below l0. Finally, we draw
more horizontal lines l1, l2, . . . , lm = l such that the braid b has exactly one
crossing between li−1 and li for i = 1, 2, . . . , m.

Without loss of generality we may assume that B = A1.
Observe that since b is a braid, each band crossing of A1 under some

band A can be slided all the way up, by using the finger moves of Figure
2. That is, we can slide a short sub-band of A1, which is underneath A at
the crossing, up following A until it becomes a small hook above l under
crossing the hook of A.

To isotope the band A1 into good position, we start with the lowest under
crossing of A1 under, say some band A, between li−1 and li, for some i. We
slide it up above l and still call the resulting band A1. Now between li
and li+1, if there is an under crossing of A in the original picture, we will
have two new under crossings of the modified A1. We slide these two new
under crossings of A1 up, above l, along the same way as we slide the under
crossing of A between li and li+1 up above l.

z  = z  z  z

zzj

k i j i

i

-1

(a) (b)

Figure 2. Sliding an under crossing across a band

To isotope the band A1 into good position, we start with the lowest under
crossing of A1 under, say some band A, between li−1 and li, for some i. We
slide it up above l and still call the resulting band A1. Now between li
and li+1, if there is an under crossing of A in the original picture, we will
have two new under crossings of the modified A1. We slide these two new
under crossings of A1 up, above l, along the same way as we slide the under
crossing of A between li and li+1 up above l. Since b has only finitely many
crossings, this procedure will slide all under crossings of A1 up above l, to
make A1 in good position.

The condition a) of Definition 3.3 can also be satisfied by further isotopy
which first moves the twists on the band B to a place around the line l and
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Figure 3. Twists on a band realized as kinks and nested kinks

then changes them to a family of “nested kinks” as illustrated in Figure
3. �

Remark 3.5. Notice that a similar procedure can be carried out for B with
over crossings replacing under crossings and vice versa.

To continue let K be a knot, and let S be a genus g Seifert surface of K.
Let N ∼= S × (−1, 1) be a bi-collar of S in S3, such that S ∼= S × {0}, and
let N+ = S × (0, 1) (resp. N− = S × (−1, 0)). For a simple closed curve
γ ⊂ S, denote γ+ = γ × {1/2} ⊂ N+ and γ− = γ × {−1/2} ⊂ N−.

Now let the projection p : S −→ P , on the (t, s)-plane be as in Lemma
3.2. We denote by z1, z2, . . . , zs the generators of π1(S

3
rS) arising from

the Wirtinger presentation associated to the fixed projection of S (see for
example [Ro]). The generators zi are in one to one correspondence with the
arcs of the projection between two consecutive under crossings. Moreover,
every zi is a conjugate of one of the free generators fixed earlier.

In Figure 2 we have indicated the Wirtinger generators by small arrows
under the bands. The directions of the arrows are determined by the fixed
orientations of the free generators x1, y1, . . . , xg, yg. Notice that these free
generators can be chosen as a part of the Wirtinger generators corresponding
to the hooks α1, α̂1, . . . , α2g−1, α̂2g, respectively.

Lemma 3.6. (The geometric rewriting) Let γ ⊂ S be a simple closed curve
represented by the core of a band B of S, and let γǫ (ǫ = ±) be one of the
push off’s of γ. Moreover, let W = zi1 · · · zim be a word representing γǫ in
terms of the Wirtinger generators of the projection, and let W ′ = W ′(xi, yj)
be the word obtained from W by expressing each zir in terms of the free
generators. Then, there exists a projection

p′ : S −→ P

which is obtained from p by isotopy, and such that every letter in W ′ is
realized by an under crossing of B with one of the hooks above l.

Proof : Suppose that ǫ = +. Assume first that B is flat. Then every
zir in W can be realized by an under crossing of B with another band or
itself. We claim that the projection obtained in Lemma 3.4 has the desired
properties.
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To see that, let us begin with three Wirtinger generators zi, zj , zk, around
a crossing of the projection as show in Figure 2 (a). Then we have zk =
zizjz

−1
i . Notice that γ+, which is drawn by the dotted arrow, picks up zk at

the under crossing in (a). After performing a finger move in (b), each of zi,
zj , z−1

i is realized by an under crossing. Thus the geometric equivalent of
replacing each zij , in W = zi1 · · · zim , by its expression in terms of the free
generators is to slide an under crossing of B until it reaches the appropriate
hook. Now the desired conclusion follows easily from this observation.

If B is not flat, we first assume that the twists are all near one of the
ends of B. Let the Wirtinger generator near that end of B be z0. Then
W = zk

0zi1 · · · zim , and every zir can be realized by an under crossing of B
with another band or itself. The previous argument still works in this case
for each zij . For zk

0 , we may first move the twists up to a place around l
and then replace the twists by a family of nested kinks, like in the last part
of the proof of Lemma 3.4. �

3.3. Lower central series and curves on surfaces. For a group G let
[G, G] denote the commutator subgroup of G. The lower central series

{G(m)}m∈N, of G is defined by G(1) = G and

G(m+1) = [G(m), G]

for m ≥ 1. We begin by recalling some commutator identities that will be

useful to us later on. See [KMS].

Proposition 3.7. (Witt-Hall identities) Let G be a group and let k, m and

l be positive integers. Suppose that x ∈ G(k), y ∈ G(m) and z ∈ G(l). Then
a) [G(k), G(m)] ⊂ G(k+m) or xy ≡ yx mod G(k+m)

b) [x, zy] = [x, z] [x, y] [[y, x], z]
c) [xy, z] = [y, z] [[z, y], x] [x, z]

d) [x, [y, z]] [y, [z, x]] [z, [x, y]] ≡ 1 mod G(k+l+m+1)

e) If g ≡ g′ mod G(k) and y ∈ G(m) then [g, y] ≡ [g′, y] mod G(k+m) and

[y, g] ≡ [y, g′] mod G(k+m).

Let F be a free group of finite rank and let A = {a1, . . . , ak} be a set
of (not necessarily free) generators of F . Let a be an element in F and let
W = Wa(A) be a word in a1, . . . , ak representing a. Think of W as given
as a list of spots in which we may deposit letters a±1

1 , a±1
2 , . . . , a±1

k . Now
let C = C(W ) = {C1, . . . , Cm} be a collection of disjoint non-empty sets
of spots (or letters) in W . Let us denote by 2C the set of all subsets of C.
Finally, for an element C ∈ 2C we will denote by WC the word obtained
from W by substituting the letters in all sets contained in C by 1.

Definition 3.8. ([NS]) The element a ∈ F is called n-trivial, with respect
to A, if it has a word presentation W = Wa(A) with the following property:
There exist a collection of n + 1 disjoint non-empty sets of letters, say C =
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{C1, . . . , Cn+1}, in W such that WC represents the trivial element for every
non-empty C ∈ 2C.

We will say that a ∈ F is n-trivial if it is n-trivial with respect to a set of
generators. The following lemma shows that this definition depends neither
on the word presentation nor the set of generators used.

Lemma 3.9. If a ∈ F is n-trivial with respect to a generating set A, then
it is n-trivial with respect to every generating set of F .

Proof : Let W = Wa(A) = ai1ai2 . . . ais be a word for a satisfying the
properties in Definition 2.8 and let A′ be another set of generators for F .
By expressing each aij as a word of elements in A

′ we obtain a word W ′ =
W ′

a(A
′) which satisfies the requirements of n-triviality with respect to A

′. �

Lemma 3.10. If a lies in F (n+1), then it is n-trivial

Proof : Observe that a basic commutator [a, b] = aba−1b−1 is 1-trivial
by using C = {{a, a−1}, {b, b−1}}, and induct on n. �

Clearly, we do not change the n-triviality of a word by inserting a can-
celing pair xx−1 or x−1x, where x is a generator. We will use the following
definition to simplify the exposition.

Definition 3.11. A simple commutator of length n is a word in the form
of [A, x±1] or [x±1, A] where x is a generator and A ∈ F (n−1) is a simple
commutator of length n− 1. A simple quasi-commutator is a word obtained
from a simple commutator by finitely many insertions of canceling pairs.

By Proposition 3.7, any word representing an element in F (n) can be
changed to a product of simple quasi-commutators of length ≥ n by finitely
many insertions of canceling pairs. A simple quasi-commutator of length
> n is clearly n-trivial.

To continue, let S be a regular Seifert surface of a knot K. For a loop
α ⊂ S3rS, we will denote by [α] its homotopy class in π := π1(S

3rS).
Suppose that S, γ, B, p′ : S −→ P and [γǫ] = W ′(xi, yi) = W ′ are as in

the statement of Lemma 3.12. Suppose δ is a sub-band of γ and [δǫ] = W ′′

is a sub-word of W ′. Assume that W ′′ represents an element in π(n).

Lemma 3.12. (The geometric realization) There exists a projection p1 :
S → P with the following properties:
i) p1(S) is obtained from p′(S) by a finite sequence of band Reidermeister
moves of type II;
ii) B is in good position with respect to the new projection;
iii) the word W ∗ = W ∗(xi, yi) one reads out from δ (with respect to the new
projection p′), by picking up one letter for each crossing of δ underneath the
hooks, is a product of simple quasi-commutators of length ≥ n.
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Proof : Since W ′′ represents an element in π(n), we may change W ′′ to a
product of simple quasi-commutators by finitely many insertions of canceling
pairs. Such an insertion of a canceling pair can be realized geometrically by
a finger move (type II Reidermeister move). We will create a region in the
projection plane to perform such a finger move. This region is a horizontal
long strip below the line l and its intersection with p′(S) consists of vertical
straight flat bands. See Figure 4.

l

l l

x x

x

Figure 4. Realizing an insertion of x−1x or xx−1 by isotopy

As shown in Figure 4, there are two situations corresponding to insertions
of x−1x or xx−1. In one of the cases, we shall either let the finger go over
one of the vertical flat bands connected to the x-hook (in the case that the
x-hook does not belong to B) or push that vertical flat band along with
the finger move (in the case that the x-hook belongs to B). Furthermore,
if some vertical flat bands belonging to B block the way of the finger move,
we will make more insertions by pushing these vertical flat bands along with
the finger move. Finally, with all these done, we may easily modify the
projection further to make B still in good position and ready to do the next
insertion. �

3.4. An example. In Figure 5, we show an example of a regular Seifert
surface of genus one.

The cores of the bands A and B of the surface S have been drawn by the
dashed, oriented curves γA and γB, respectively. The fundamental group
π := π1(S

3
rS) is freely generated by x and y. We have [γ+

A ] ∈ π(3), where

γ+
A is the push-off of γA along the positive normal vector of the surface S
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x
y

z

w

γ
γB

A

Figure 5. A 2-hyperbolic surface

pointing upwards the projection plane. In fact, from the Wirtinger presenta-
tion obtained from the given projection we have [γ+

A ] = [zw−1] = [[x, y], y−1].
Such a surface will be called 2-hyperbolic in Definition 4.1.

x y

*

#

# %

%

*l

Figure 6. The band A in good position

Now we modify the projection of S, so that A is in good position. The
resulting projection is shown in Figure 6. Here we have only drawn the
cores of the bands. The solid (dashed, resp.) arc corresponds to the band
A (B, resp.) of Figure 6. The word we read out when traveling along
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the solid arc, one letter for each crossing underneath the hooks, is exactly
W = [[x, y], y−1].

Remark 3.13. There is an obvious collection C of three sets of letters of
W , so that W becomes a trivial word whenever we delete letters in a non-
empty C ∈ 2C from W . The projection of Figure 6 has the property that
every letter in the word W = [[x, y], y−1] is realized by a band crossing. So
we obtain a collection of sets of crossings, also denoted by C. However, as
the reader can verify, the image of γA on the surface SC , obtained from S
by switching the crossings in C, will not always be homotopically trivial in
S3

rSC .

4. commutators and Vassiliev invariants

In this section we undertake the study of regular Seifert surfaces, whose
complement looks, modulo the first n + 1 terms of the lower central series
of its fundamental group, like the complement of a null-isotopy. Our main
goal is to show that the existence of such a surface for a knot K forces its
Vassiliev invariants of certain orders to vanish.

4.1. Definitions. Before we are able to state our main result in this section
we need some notation and terminology. Let K be a knot in S3 and let S be
a Seifert surface of K, of genus g. Throughout this paper a basis of S will
be a collection of 2g non-separating simple closed curves {γ1, β1, . . . , γg, βg}
that represent a symplectic basis of H1(S). That is we have I(γi, γj) =
I(βi, βj) = I(βi, γj) = 0, for i 6= j, and I(γi, βi) = 1, where I denotes the
intersection form on S. Each of the collections {γ1, . . . , γg} and {β1, . . . , βg}
will be called a half basis.

To continue let π := π1(S
3rS). For a basis B = {γ1, β1, . . . , γg, βg} of

H1(S) let B∗ = {x1, y1, . . . , xg, yg} denote elements in π representing the
dual basis of H1(S

3rS).
For a subset A of B, let GA denote the normal subgroup of π generated by

the subset of B∗ corresponding to A. Moreover, we will denote by πA (resp.
φA) the quotient π/GA (resp. the quotient homomorphism π −→ π/GA).

Finally, π
(m)
A

will denote the m-th term of the lower central series of πA. For
the following definition it is convenient to allow A to be the empty set and
have πA = π.

Definition 4.1. Let n ∈ N. A regular Seifert surface S is called n-hyperbolic,
if it has a half basis A represented by circles in a regular spine Σ with
the following property: There is an ordering, γ1, . . . , γg, of the elements

in A such that either φAi−1
([γ+

i ]) or φAi−1
([γ−

i ]) lies in π
(n+1)
Ai−1

. Here Ak =

{x1, y1, . . . , xk, yk} for k = 1, . . . , g and A0 is the empty set. The boundary
of such a surface will be called an n-hyperbolic knot.
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In order to state our main result in this section we need some notation.
For m ∈ N, let q(m) be the quotient of division of m by six (that is m =
6q(m) + r1, 0 ≤ r1 ≤ 5). Let the notation be as in Definition 4.1. For
i = 1, . . . , g, let xi denote the free generator of π that is dual to [γi]. Let
li denote the number of distinct elements in {x1, y1, . . . , xg, yg}, that are
different than xi and whose images under φAi−1

appear in a (reduced) word,

say Wi, representing φAi
([γ+

i ]) or φAi
([γ−

i ]). Write Wi as a product, Wi =

W 1
i . . .W si

i , of elements in π
(n+1)
Ai−1

and partition the set {W 1
i , . . .W si

i } into

disjoint sets, say W1
i , . . . W

ti
i such that: i) k1

i + . . .+ kti
i = li, where kj

i is the

number of distinct elements in Ai involved in W
j
i and ii) for a 6= b, the sets

of elements from Ai appearing Wa
i and Wb

i are disjoint. Let

ki = min{k1
i , . . . , k

ti
i }.

and let

qγi
:= q(n + 1) if n < 6k,

and

qγi
:= ki +

[

log2

n + 1 − 6ki

6

]

, if n ≥ 6k.

Notice that

q(n + 1) >
n + 1

6
− 1 =

n − 5

6
> log2(

n − 5

6
).

Also, since ab ≥ a + b if a, b > 1, we have

ki + log2(
n + 1 − 6ki

6
) > log2ki + log2(

n + 1 − 6ki

6
) > log2(

n + 1

36
).

Thus, for n > 5, we have

qγi
> log2(

n − 5

72
).

We define l(n) by

l(n, S) = min{qγ1
− 1, . . . , qγg − 1},

and

l(n) = min{l(n, S)| S is n−hyperbolic}.

We can now state our main result in this section, which is:

Theorem 4.2. If K n-hyperbolic, for some n ∈ N, then K is at least l(n)-
trivial. Thus, all the Vassiliev invariants of K of orders ≤ l(n) vanish.

From our analysis above, we see that l(n) > log2(
n − 5

144
) and in particular

limn→∞l(n) = ∞. Thus, an immediate Corollary of Theorem 4.2 is:
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Corollary 4.3. If K n-hyperbolic, for all n ∈ N, then all its Vassiliev
invariants vanish.

Assume that S is in disc-handle form as described in Lemma 3.2 and
that the cores of the bands form a symplectic basis of H1(S). Moreover,
assume that the curves γ1, . . . , γg, of Definition 4.1 can be realized by half
of these cores. Let β1, . . . , βg denote the cores of the other half bands and
let D = D(K) denote the knot diagram of K, induced by our projection of
the surface. Also we may assume that the dual basis {x1, y1, . . . , xg, yg} is
represented by free generators of π, as before the statement of Lemma 3.4.

To continue with our notation , let C be a collection of band crossings on
the projection of S. We denote by SC (resp. DC) the Seifert surface (resp.
knot diagram) obtained from S (resp. D) by switching all crossings in C,
simultaneously. For a simple curve γ ⊂ S (or an arc δ ⊂ γ), we will denote
by γC (or δC) the image of γ (or δ) on SC .

Let γ be the core of a band B in good position and suppose that it is
decomposed into a union of sub-arcs η ∪ δ with disjoint interiors, such that
the word, say W , represented by δ+ (or δ−) in π := π1(S

3rS) lies in π(m+1).
Let x be the generator of π corresponding to B and let l denote the number
of distinct free generators, different than x, appearing in W . Write W as
a product, W = W1 . . .Ws, of commutators in π(n+1) and partition the set
{W1, . . .Ws} into disjoint sets, say W1, . . . Wt such that: i) k1 + . . .+ kt = l,
where kj is the number of distinct generators involved in Wj and ii) for
a 6= b, the sets of generators appearing Wa and Wb are disjoint. Let k =
min{k1, . . . , kt}. We define

qδ := q(n + 1) if n < 6k,

and

qδ := k +

[

log2(
n + 1 − 6k

6
)

]

if n ≥ 6k.

The proof of Theorem 4.2 will be seen to follow from the following Propo-
sition.

Proposition 4.4. Let γ be the core of a band B in good position and suppose
that it is decomposed into a union of sub-arcs η ∪ δ, such that the word
represented by δ+ (or δ−) in π := π1(S

3rS) lies in π(m+1). Suppose that
the word, in the generators x1, y2, . . . , xg, yg of π fixed earlier, represented
by η+ (or η−) is the empty one.

Let K ′ be the boundary of the surface obtained from S by replacing the
sub-band of B corresponding to δ with a straight flat ribbon segment δ∗,
connecting the endpoints of δ and above (resp. below) the remaining diagram.
Then K and K ′ are at least lδ-equivalent, where lδ := qδ − 1.

The proof of Proposition 4.4 will be divided into several steps, and oc-
cupies all of §3. Without loss of generality we will work with δ+ and γ+.
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In the course of the proof we will see that we may choose the collection of
sets of crossings C, required in the definition of lδ-equivalence, to be band
crossings in a projection of S. Moreover, for every non-empty C ∈ 2C, δC

will be shown to be isotopic to a straight arc, say δ∗, as in the statement
above. Here 2C is the set of all subsets of C.

Proof : [of Theorem 4.2 assuming Proposition 4.4]. The proof will be by
induction on the genus g of the surface S. If g = 0 then K is the trivial
knot and there is nothing to prove. For i = 1, . . . , g, let Ai denote the band
of S whose core corresponds to γi, and let Bi be the dual band.

By Definition 4.1 we have a band A1, such that the core γ satisfies the
assumption of Proposition 4.4. We may decompose γ into a union of sub-
arcs η∪ δ with disjoint interiors such that the word represented by δ+ (resp.

η+) in π := π1(S
3rS) lies in π(n+1) (resp. is the empty word). Let K ′

be a knot obtained from K by replacing the sub-band of B corresponding
to δ with a straight flat ribbon segment δ∗, connecting the endpoints of δ
and above the remaining diagram, and let S′ be the corresponding surface
obtained from S. We will also denote the core of δ∗ by δ∗.

By Proposition 4.4, K and K ′ are lδ-equivalent. One can see that K ′ is
n-hyperbolic, and it bounds an n-hyperbolic surface of genus strictly less
than g.

Obviously, there is a circle on S′ with δ∗ as a sub-arc which bounds a disk
D in S3rS′. A surgery on S′ using D changes S′ to S′′ with ∂S′′ = K ′, and
we conclude that S′′ is an n-hyperbolic regular Seifert surface with genus
g − 1. Thus, inductively, K ′, and hence K, is at least l(n)-trivial. �

4.2. Nice arcs and simple commutators. In this paragraph we begin
the study of the geometric combinatorics of arcs in good position and prove
a few auxiliary lemmas required for the proof of Proposition 4.4. At the
same time we also describe our strategy of the proof of Proposition 4.4.

Throughout the rest of section three, we will adapt the convention that
the endpoints of δ or of any subarc δ̃ ⊂ δ representing a word in π(m+1),
lie on the line l associated to our fixed projection. Let W = c1 . . . cr be a
word expressing δ+ as a product of simple (quasi-)commutators of length
m + 1, and let p1(S) be a projection of S, as in Lemma 3.12. Then, each
letter in W is represented by a band crossing in the projection. Now, let
C = {C1, . . . , Cm+1} be disjoint sets of letters obtained by applying Lemma
3.9 to the word W , so that W becomes a trivial word whenever we delete
letters in a non-empty C ∈ 2C from W (the resulting word is denoted by
WC).

Let y be a free generator appearing in W . We will say that the letters
{y, y−1} constitute a canceling pair, if there is some C ∈ 2C such that the
word WC can be reduced to the identity, in the free group π, by a series of
deletions in which y and y−1 cancel with each other.
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Ideally, we would like to be able to say that for every C ∈ 2C the arc δC

(obtained from δ by switching all crossings corresponding to C) is isotopic
in S3

rSC to a straight segment connecting the end points of δ and above
the remaining diagram. As remarked in 3.13, though, this may not always
be the case. In other words not all sets of letters C, that come from Lemma
3.9, will be suitable for geometric m-triviality. This observation leads us to
the following definition.

Definition 4.5. Let S, B and δ be as in the statement of Proposition 4.4
and let δ̃ ⊂ δ be a subarc that represents a word W in π(m+1). Furthermore
let δ∗ be an embedded segment connecting the endpoints of δ̃ and such that
∂δ∗ ⊂ l and the interior of δ∗ lies above the projection of S on the projection
plane.

1) We will say that δ̃ is quasi-nice if there exists a segment δ∗ as above and

such that either the interiors of δ∗ and δ̃ are disjoint, or δ̃ = δ∗ and δ∗ is the
hook of the band B. Furthermore, if the interiors of δ∗ and δ̃ are disjoint
then δ∗ should not separate any set of crossings corresponding to a canceling
pair in W on any of the hooks of the projection.

2) Let δ be a quasi-nice arc, and let δ∗ be as in 1). Moreover, let S′ denote
the surface S ∪ n(δ∗), where n(δ∗) is a flat ribbon neighborhood of δ∗. We
will say that δ is k-nice, for some k ≤ m+1, if there exists a collection C of
k disjoint sets of band crossings on δ̃, such that for every non-empty C ∈ 2C,
the loop (δ∗∪δ̃C)+ is homotopically trivial in S3rS′

C , where S′
C = SC∪n(δ∗).

We will say that every C ∈ 2C trivializes δ̃ geometrically.

Notice that the arc in the example on the left side of Figure 7 is both 2-
nice and quasi-nice while the one on the right side is not. In fact, one can see
that all embedded arcs in good position representing simple 2-commutators
are 2-nice.

δ

δ

δ*

δ*

Figure 7. Nice arcs representing simple 2-commutators
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Lemma 4.6. Let δ be a subarc of the core of a band B, in a projection of
a regular surface S. Let δ∗ be a straight segment, connecting the endpoints
of δ and let S′ denote the surface S ∪n(δ∗). Suppose that the loop (δ∗ ∪ δ)+

is homotopically trivial in S3
rS′. Then n(δ) can be isotoped onto n(δ∗) in

S3
rS relative to the endpoints.

Proof : Since δ∗ ∪ δ ⊂ S′ is an embedded loop, by Dehn’s Lemma (see
for example [He] or [Ro]) we conclude that it bounds an embedded disc in
S3rS′. Then the claim follows easily. �

Corollary 4.7. Let γ and δ as in the statement of Proposition 4.4. Assume
that δ is an qδ-nice arc. Then the conclusion of the Proposition is true for
δ.

For the rest of this subsection we will focus on projections of arcs, in good
position, that represent simple quasi-commutators. We will analyze the
geometric combinatorics of such projections. This analysis will be crucial,
in the next paragraphs, in showing that an arc δ as in Proposition 4.4 is
qδ-nice.

Let δ1 be a subarc of δ presenting a simple quasi-commutator of length
m, say c. Moreover, let δ2 be another subarc of δ presenting a simple quasi-
commutator equivalent to c or c−1. We may change the orientation of δ2

if necessary so that it presents a simple quasi-commutator equivalent to c.
Then we may speak of the initial (resp. terminal) point p1,2 (resp. q1,2) of
δ1,2; recall these points all lie on the line l.

Definition 4.8. Let δ̂1 (resp. δ̂2) be the segment on l going from p1 to p2

(resp. q1 to q2). We say that δ1 and δ2 are parallel if the following are true:

i) At most one hook has its end points on δ̂1 or δ̂2 and both of its end points

can be on only one of δ̂1,2; ii) If a hook has exactly one point on some δ̂j,

say on δ̂1, then δ̂1 doesn’t intersect the interior of δ1,2. iii) We have either

δ̂1 ∩ δ̂2 = ∅ or δ̂1 ⊂ δ̂2; iv) If δ̂1,2 are drawn disjoint and above the surface

S, the diagram δ1 ∪ δ̂1 ∪ δ2 ∪ δ̂2 can be changed to an embedding by type II
Reidermeister moves.

The reader may use Figure 8 to understand Definition 4.8. It should not
be hard to locate the arcs δ̂1,2 in each case in Figure 8.

In the first two pictures, the straight arcs δ̂1,2 have no crossings with δ1,2.

Crossings between δ̂1,2 and δ1,2 removable by type II Reidermeister moves
are allowed to accommodate the modification of δ1,2 in Lemma 3.12. For

example, in the last two pictures of Figure 8 one of δ̂1,2 ⊂ l intersects both
of δ1,2.
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δ1

δ

δ

1

2

δ
δ

1

1 δ
δ

1

2 2

δ2

Figure 8. Various kinds of parallel arcs

Lemma 4.9. Assume that the setting is as in the statement of Proposition
4.4. Let c1 and c2 be equivalent simple quasi-commutators presented by sub-
arcs δ1,2 of δ respectively, and let y be one of the free generators associated
to the hooks of our fixed projection. Moreover, assume that δ1,2 are parts

of a subarc ζ of δ presenting a simple quasi-commutator W = c1yc−1
2 y−1.

Then δ1 and δ2 are parallel.

Proof : By abusing the notation, we denote δ1 = τ1xµ1x
−1 and δ2 =

τ2xµ2x
−1 where τ1, τ2, µ

−1
1 , µ−1

2 represent simple quasi-commutators that are

equivalent. Furthermore, ζ = δ1yδ−1
2 y−1. For a subarc ν, up to symmetries,

there are four possible ways for both of its endpoints to reach a certain z-
hook so that zνz−1 is presented by an arc in good position. See Figure 9,
where the arc ν may run through the z-hook. We will call the pair of under
crossings {z, z−1} a canceling pair. Now let us consider the relative positions
of τ1, τ2, µ1 and µ2. Inductively, τi and µ−1

i are parallel, for i = 1, 2. If

xµ1x
−1 is of type (I) in Figure 9, since τ1 and µ−1

1 are parallel, τ1 has to go
the way indicated in Figure 10 (a).

If xµ2x
−1 is also of type (I), there are two cases to consider. One case

is to have the canceling pairs {x, x−1} in xµ1x
−1 and xµ2x

−1 both going
underneath the x-hook at the left side, and the other case is to have them
going underneath the x-hook at different sides. In the first case, in order to
read the same word from τ1 and τ2 as well as from µ1 and µ2, τ1xµ1x

−1 and
τ2xµ2x

−1 has to fit like in Figure 10 (b). This implies that δ1 and δ2 are
parallel. In the second case (see Figure 10 (c)), in order that δi be parts of
the arc ζ = δ1yδ−1

2 y−1, they have to go to reach the same y-hook.
But then we will not be able to read the same word through τ1 and τ2.

This shows that if xµ1x
−1 and xµ2x

−1 are both of type (I), δ1 and δ2 are



20 E. KALFAGIANNI AND X.-S. LIN

(I) (II)

(III) (IV)

z z

zz

ν
ν

ν
ν

Figure 9. Types of arcs presenting zνz−1

parallel. There are many other cases which can be checked one by one in
the same way as in Figure 10. The details are left to the patient reader. �

So far we have been considering the projection of our surface on a plane
P inside R3 = P ×R. To continue, let us pass to the compactifications of R3

and P . We obtain a 2-sphere S2
P inside S3, and assume that our projection

in Proposition 3.3 lies on S2
P . We may identify the image of l with the

equator of S2
P , and the images of H+ and H− with the upper and lower

hemisphere. We will interchange between P and S2
P whenever convenient.

Remark 4.10. Let δ, B be as in the statement of Proposition 4.4 and let
x0 denote the free generator of π1(S

3rS) corresponding to B. Suppose δ1

and δ2 are parallel subarcs of δ and let δ̂1,2 be as in Definition 4.8. We

further assume that the crossings between δ̂1,2 and δ1,2 have been removed
by isotopy. Let y be a free generator of π := π1(S

3rS). We assume that
both δ1 and δ2 are sub-arcs of an arc ζ ⊂ δ presenting [c±1, y±1] (recall that
δ1,2 present c±1). Then ζ is a union δ1 ∪ τ1 ∪ δ2 ∪ τ2, where τ1,2 are segments
each going once underneath the y-hook. One point of ζ is the same as one
endpoint of one of δ1,2, say δ2. Let δ̄ := δr(δ1 ∪ δ2). By the properties of
good position we see that in order for one of δ1,2, say δ1, not to be embedded
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1µ τ1
µ1

2µ

τ τ1 2

µ µ

τ τ
1 2

1 2

x

x x

(a)

(c)

(b)

Figure 10. The case when both xµ1x
−1 and xµ2x

−1 are of
type (I)

on the projection plane it must run through the hook part of B, and the
word representing δ1 must involve x0. Moreover, good position imposes a
set of restrictions on the relative positions of of δ1,2 and the various subarcs
of δ̄. Below we summarize the main features of the relative positions of δ1,2

and the various subarcs of δ̄; these features will be useful to us in the rest
of the paper. We will mainly focus on the case that δ1,2 are embedded; the
case of non-embedded arcs is briefly discussed in part b) of this Remark.

a) Suppose that δ1,2 are embedded on the projection plane P . Then the loop

δ1 ∪ δ̂2 ∪ δ2 ∪ δ̂1 separates S2
P into two discs, D1 and D2. The intersections

D1,2 ∩ δ̄ consist of finitely many arcs. With the exception of at most one
these arcs are embedded. One can see (see the two pictures on the left side
of Figure 8) that the interiors of τ1,2 are disjoint from that of exactly one of
D1,2, say D1, and they lie in the interior of the other. We will call D1 (resp.
D2 ) the finite (resp. infinite) disc corresponding to the pair δ1,2. Using the
properties of good position one can see that for each component θ of D1∩ δ̄,
which lies on a subarc of δ̄ representing a simple quasi-commutator, one of
the following is true:
(a1) Both the endpoints of θ lie on δ̂2 and θ can be pushed in the infinite
disc D2 after isotopy, or it represents a word w, such that the following is
true: None of the letters appearing in the reduced form of w appears in the
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underlying commutator of c. Moreover for each free generator x appearing
in w, C±1 contains inserted pairs x±1x∓1. To see these claims, first notice
that if one of the generators, say z, appears in the underlying commutator of
c then the intersection of D1 and the z-hook consists of two (not necessarily
disjoint) arcs, say θ1,2, such that on point of ∂(θ1,2) is on δ1 and the other on
δ2. Moreover, both the endpoints of the z-hook lie outside D1 in the infinite
disc. Now a subarc of δ̄ in D1 has the choice of either hooking with z in
exactly the same fashion as δ1,2, or “push” θ1,2 by a finger move as indicated
in Figure 4, and hook with some x 6= z±1. In order for the second possibility
to occur, at least one of the endpoints of the x-hook must lie inside D; by
our discussion above this will not happen if x has already appeared in the
underlying commutator of c. The rest of the claim follows from the fact that
the “top” of the x-hook must lie outside D1.

(a2) One endpoint of θ is on δ̂1 and the other on δ̂2. Moreover, θ either
represents c±1 or the trivial word or it represents a w, as in case (a1) above.

(a3) θ is a subarc of the hook corresponding to the band B, and it has one

endpoint on δ1 and the other on δ2 or one point on δi and the other on δ̂j

(i, j = 1, 2). Furthermore, if θ has one endpoint on δi and the other on δ̂j

then i) the underlying commutator of c does not involve x±1
0 ; and ii) both

endpoints of the x0-hook lie inside D1.

(a4) One of δ1,2, say δ1, runs through the hook part of B and θ has one

point on δ1 and the other on δ̂j (i, j = 1, 2). Moreover, we have: i)The arc

θ represents wx±1
0 where either w = c±1 or none of the letters appearing

in there reduced form of w appears in the underlying commutator of c; ii)
the underlying commutator of c does not involve x±1

0 ; iii) if e is a simple

quasi-commutator represented by a subarc δ̃ such that δ1,2 ⊂ δ̃, then the

underlying commutator of e does not involve x±1
0 (see also Lemma 3.12 (a)).

b) Recall that x0 is the free generator of π corresponding to B. Suppose
that δ1 is non-embedded. Then δ1 to run through the hook of B and the
word representing δ1 must involve x0.

(b1) It follows from the properties of good position that any subarc of θ ⊂ δ

that has its endpoints on different δ̂i has to represent c±1.

Lemma 4.11. Let the setting be again as in the statement of Proposition
4.4, and let δ1 be a subarc of δ representing a simple (quasi-)commutator.
Moreover let h0 denote the hook part of the band B. We can connect the
endpoints of δ1 by an arc δ∗1, which is embedded on the projection plane and
such that: i) δ∗1 lies on the top of the projection p1(S); ii) the boundary ∂(δ∗1)
lies on the line l; and iii) either δ∗1 = h0 or the interiors of δ∗1 and δ1 are
disjoint and δ∗1 goes over at most one hook at most once.



23

Proof : Suppose that δ1 represents W = [c, y±1] and let δ1,2
1 be the

subarcs of δ1 representing c±1 in W . By Lemma 4.9 δ1,2
1 are parallel; let

δ̂1,2
1 be the arcs of Definition 4.8 connecting the endpoints of δ1,2

1 . Recall
that there is at most one hook, say corresponding to a generator z, that can
have its endpoints on δ1,2

1 . If z = y then , using good position, we see that
there is an arc δ∗1 as claimed above such that either δ∗1 = h0 or it intersects
at most the y-hook in at most one point. If z 6= y then we can find an arc
α satisfying i) and ii) above and such that either α = h0 or α intersects the
y-hook in at most one point and the intersections of α with the other hooks
can be removed by isotopying α, relatively its endpoints. Thus the existence
of δ∗1 follows again. �

Definition 4.12. An arc δ1 representing a simple (quasi-)commutator will
be called good if the arc δ∗ of Lemma 4.11, connecting the endpoints of the
δ1, doesn’t separate any canceling pair of crossings in δ1.

The reader can see that the arc in the picture of the left side of Figure 7
is good while the one on the right is not good.

4.3. Outline of the proof of Proposition 4.4. In Definition 4.5, we
defined the notions of quasi-niceness and k-niceness. By definition, a k-nice
arc is quasi-nice. We will, in fact, show that the two notions are equivalent.
More precisely, we show in Lemma 4.22 that a quasi-nice arc δ is qδ-nice.
This, in turn, implies Proposition 4.4. To see this last claim, notice that
the arc δ in the statement of 4.4 is quasi-nice. Indeed, since the arc η in
the statement of 4.4 represents the empty word in π, good position and the
convention about the endpoints of δ made in the beginning of §4.2 assure
the following: Either the interior of η lies below l (and above the projection
of Srn(η)) and it is disjoint from that of δ or η is the hook part of B. In
both cases we choose δ∗ = η.

To continue, notice that a good arc is by definition quasi-nice. The notion
of a good arc is useful in organizing and studying the various simple quasi-
commutator pieces of the arc δ in 4.4. In Lemma 4.16 we show that if
an arc δ̃ is good then it is qδ̃-nice and in Lemma 4.20 we show that if δ̃
is a product of good arcs then it is qδ̃-nice. In both cases we exploit good

position to estimate the number of “bad” crossings along δ̃, that are suitable
for algebraic triviality but may fail for geometric triviality. All these are done
in §4.4 and §4.5.

In §4.6 we begin with the observation that if δ̃ is a product of arcs θ1, ...θs

such that θi is qθi
-nice then δ̃ is qδ̃-nice (see Lemma 4.21). Finally, Lemma

4.22 is proven by induction on the number of “bad” subarcs that δ contains.
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4.4. Bad sets and good arcs. In this subsection we continue our study of
arcs in good position that represent simple quasi-commutators. Our goal, is
to show that a good arc δ representing a simple quasi-commutator is qδ-nice
(see Lemma 4.16).

Let W = [. . . [[y1, y2], y3], . . . , ym+1] be a simple (quasi-) commutator
represented by an arc δ of the band B in good position. Suppose that
the subarc of δ representing W1 = [. . . [[y1, y2], y3], . . . , yi], for some i =
1, . . . , m+1, runs through the hook part of B, at the stage that it realizes the
crossings corresponding to yi. The canceling pair corresponding to {yi, y−1

i }
will be called the special canceling pair of W .

Lemma 4.13. Let W = [. . . [[y1, y2], y3], . . . , ym+1] be a simple (quasi-)
commutator represented by an arc δ of the band B in good position, and let
x0 be the free generator of π corresponding to the hook of B.
a) Suppose that, for some i = 1, . . . , m + 1, one of the canceling pairs
{yi, y−1

i } is the special canceling pair. Then, we have yj 6= x±1
0 for all

i < j ≤ m + 1.
b) Let z be any free generator of π corresponding to one of the hooks of our
projection. Then, at most two successive yi’s can be equal to z±1.

Proof : a) For j > i let c = [. . . [[y1, y2], y3], . . . , yj−1] and let δ1,2 be
the arcs representing c±1 in [c, yj ]. By Lemma 4.9, δ1,2 are parallel. Let

δ̂1,2 be arcs satisfying Definition 4.8. Notice that the x0-hook can not have

just one of its endpoints on δ̂1,2. For, if the x0-hook had one endpoint on,

say, δ̂1, then δ̂1 would intersect the interior of δ1,2. Now easy drawings will

convince us that we can not form W1 = [c, x±1
0 ] without allowing the arc

representing it to have self intersections below the line l associated to our
projection. But this would violate the requirements of good position.

b) By symmetry we may assume that W = [. . . , [d±1, z±1], yj , . . . , ym+1],
where d is a simple (quasi-)commutator of length < m. A moment’s thought
will convince us that it is enough to prove the following: For a quasi-
commutator [. . . , [c±1, z±1], yi, . . . , ym+1], such that z±1 has already ap-
peared in c, we have either yi 6= z±1 or yi+1 6= z±1. Furthermore, if the last
letter in c is z±1, then yi 6= z±1.

Let δ̃ be the subarc of δ representing [c±1, z±1], and let δ1,2 be the subarcs

of δ̃ representing c±1. By Lemma 4.9, δ1,2 are parallel. Let δ̂1,2 be as in
Definition 4.8.

Since we assumed that z±1 has already appeared in c, the intersection
δ1,2∩H+ contains a collection of disjoint arcs {Ai}, each passing once under
the z-hook, and with their endpoints on the line l. Let A1,2 denote the inner-
most of the Ai’s corresponding to the left and right endpoint of the z-hook,
respectively. Let α1,2 denote the segments of l connecting the endpoints of
A1,2, respectively. Our convention is that if {Ai} contains no components
that pass under the z-hook near one of its endpoints, say the right one, then
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A2 will be the outermost arc corresponding to the left endpoint. Thus, in
this case, α2 passes through infinity.

By good position and Definition 4.8, it follows that both of the endpoints
of at least one of δ̂1,2 must lie on α1 or α2. There are three possibilities:

(i) The endpoints of both δ̂1,2 lie on the same α1,2, say on α1;

(ii) The endpoints of δ̂1,2 lie on different α1,2;

(iii) The endpoints of one of δ̂1,2 lie outside the endpoints of α1,2.

Suppose we are in (i). Notice that both the endpoints of the arc δ̃ must
also lie on α1. By Definition 4.8 we see that both of the endpoints of any arc
parallel to δ̃ must also lie on α1. There are two possibilities for the relative
positions of δ̂1,2; namely δ̂1 ∩ δ̂2 = ∅ or δ̂1 ⊂ δ̂2.

(i1) Suppose that δ̂1 ∩ δ̂2 = ∅. Using Remark 4.10, we can see that we
must have yi 6= z±1. This finishes the proof of the desired conclusion in this
subcase.

(i2) Suppose that δ̂1 ⊂ δ̂2. First assume that the endpoints of at least
one of δ1,2 approach l from different sides (i.e. one from H± and the other
from H∓). Then, again by good position and Definition 4.8, we see that
we must have yi 6= z±1. If all endpoints of δ1,2 approach l from the same
side then it is possible to have yi = z±1. However, the endpoints of the
arc δ̃ will now approach l from different sides and thus we conclude that
yi+1 6= z±1. Suppose now that the last letter in c is z±1. By part a) of the
lemma, it follows that the last canceling pair in c is of type (I) or (II). Thus
the endpoints of at least one of δ1,2 approach l from different sides; thus
yi 6= z±1. This finishes the proof of the conclusion in case (i).

We now proceed with case (ii). A moment’s thought, using the properties
of good position, will convince us that the last letter in c is not z±1. We
first form [c±1, z±1]. By good position and Definition 4.8, it follows that

the endpoints of the arc δ̃ representing [c±1, z±1] are now on the same α1,2,

say on α1. Thus both of the endpoints of any arc parallel to δ̃ must also lie
on α1. Now the conclusion will follow by our arguments in case (i).

Finally, assume we are in case (iii) above. Again by good position and Def-

inition 4.8 it follows that both endpoints of the arc δ̃ representing [c±1, z±1]
lie outside α1,2 and we conclude that yi 6= z±1. �

In order to continue we need some notation and terminology. We will
write W = [y1, y2, y3, . . . , ym+1] to denote the simple (quasi-)commutator

W = [. . . [[y1, y2], y3], . . . , ym+1].

Let C1, . . . , Cm+1 be the sets of letters of Lemma 3.9, for W . Recall that
for every i = 1, . . . , m + 1 the only letter appearing in Ci is y±1

i .
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Definition 4.14. We will say that the set Ci is bad if there is some j 6= i
such that i) we have yj = yi = y, for some free generator y; and ii) the

crossings on the y-hook, corresponding to a canceling pair {yj , y−1
j } in Cj,

are separated by crossings in Ci.

The problem with a bad Ci is that changing the crossings in Ci may not
trivialize the arc δ geometrically. For i = 2, . . . , m+1, let ci = [y1, . . . , yi−1]

and let δ1,2 be the parallel arcs representing c±1
i in [ci, yi]. Let δ̄ = δr(δ1 ∪

δ2). We will say that the canceling pair {yi, y
−1
i } is admissible if it is of type

(I) or (II).

Lemma 4.15. a) Let W = [y1, y2, y3, . . . , ym+1] be a simple quasi-commutator
represented by an arc δ in good position and let z be a free generator. Also,
let C1, . . . , Cm+1 be sets of letters as above. Suppose that Ci is bad and
let {yj , y−1

j } be a canceling pair in Cj, whose crossings on the z-hook are

separated by crossings in Ci. Suppose, moreover, that the pair {yi, y−1
i } is

admissible. Then, with at most one exception, we have j = i−1 or j = i+1.

b) Let w(z) be the number of the yi’s in W that are equal to z±1. There can

be at most

[

w(z)

2

]

+ 1 bad sets involving z±1.

c)For every j = 2, . . . , m + 1, at least one of [y1, . . . , yj−1] and [y1, . . . , yj ]
is represented by a good arc.

Proof : a) Let c = [y1, . . . , yi−1], let δ1,2 be the parallel arcs representing

c±1 in [c, yi] and let δ̂1,2 be the arcs of Definition 4.8. Let Cz denote the

canceling pair corresponding to y±1
i in [c, yi]. Moreover, let δ̄ = δr(δ1 ∪ δ2)

and let δ̄c denote the union of arcs in δ̄ such that i) each has one endpoint

on δ̂1 and one on δ̂2 and ii) they do not represent copies of c±1 in W . By
Lemma 4.9 and Remark 4.10 it follows that δ̄c = ∅.

Without loss of generality we may assume that j > i. Also, we may,
and will, assume that yi+1 6= z±1. First suppose that Cz is of type (II): By

Lemma 4.13(a), it follows that if one of δ1,2 has run through the hook part
of B then δ̄ ∩ δ1,2 = ∅. Thus the possibility discussed in (a4) of Remark
4.10 doesn’t occur. Now, by Lemma 4.9, it follows that in order for the
crossings corresponding to Cz to separate crossings corresponding to a later
appearance of z±1, we must have i) yj = z±1 realized by a canceling pair
of type (II) and ii) the crossings on the z-hook corresponding to yj and

y−1
j lie below (closer to endpoints of the hook) these representing yi and

y−1
i . By Remark 4.10 and the assumptions made above, will convince us

that in order for this to happen we must have δ̄c 6= ∅; which is impossible.
Suppose Cz is of type (I): Up to symmetries, the configuration for the arc δ̃,

representing [c, yi], is indicated in Figure 10(b). The details in this case are
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similar to the previous case except that now the two crossings corresponding
to {yi, y−1

i } occur on the same side of the z-hook and we have the following
possibility: Suppose that c does not contain any type (II) canceling pairs in
z. Then, we may have a type (II) canceling pair {yj , y±1

j }, for some j > i,

such that the crossings in Cz separate crossings corresponding yj and δ̄c = ∅.
This corresponds to the exceptional case mentioned in the statement of the
lemma. In this case, the arc representing [y1, . . . , yi, . . . , yj ] can be seen to
be a good arc.

z y

Figure 11. Both the endpoints of the arc can be further
hooked with the z-hook

An example of an arc where this exceptional case is realized is shown in
Figure 11. Here we have i = 1. Notice that both endpoints of the arc shown
here can be hooked with the z-hook. Thus we can form [y1, y, y−1, . . . , yj , . . .],

where y1 = z, yj = z±1 and the crossings corresponding to {yj , y−1
j } occur

on different endpoints of the z-hook.

b) It follows immediately from part a) and Lemma 4.13(b).

c) Let d = [y1, . . . , yj−1] and suppose yj = y±1, for some free genera-
tor. Then [y1, . . . , yj ] = [d, y±1]. Let δ1 be the arc representing [d, y±1].

A moment’s thought will convince us that in order for δ1 to be bad the
following must be true: i) The arc δ∗1 of Lemma 4.11 must intersect the y-
hook precisely once; and ii) crossings on the y-hook, corresponding to some
appearance of y±1 in d, must separate the crossings corresponding to the
canceling pair {yj , y−1

j }. In particular, y±1 must have appeared in d at
least once. Moreover it follows from Lemma 4.9 that, for any commutator
c, in order to be able to form [[c, y±1], y±1], [c, y±1] must be represented
by a good arc. Thus we may assume that d satisfies the following: at least
one of the yi’s is equal to y±1; and yj−1 6= y±1.
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Case 1: Suppose that the arc δ1 representing [d, yj ] doesn’t run through
the hook of the band B; in particular δ1 is embedded. Then, any canceling
pair in d is admissible. From our assumption above, the only remaining
possibility is when {yj , y

−1
j } corresponds to the exceptional case of part a).

As already said in the proof of a), in this case δ1 is good.

Case 2: Suppose that δ1 runs through the hook of B. Then,

[d, yj ] = [e, yr, . . . , yj−1, yj ],

where i) {yr, y−1
r } is the special canceling pair, and δ1 runs through the

hook at this stage and ii) e = [y1, . . . , yr−1] is a simple (quasi-)commutator.
Notice that all the canceling pairs corresponding to yk with k 6= r are

admissible, by definition. Let x0 be the free generator corresponding to the
band containing δ. By Lemma 4.9, we see that either yr = x±1

0 or the arc
representing [d, yj ] is embedded. In the later case, it follows by Lemma

4.13(a), that δ1 is embedded and the result follows as in Case 1. If yr = x±1
0

, then all the sub-arcs of δ1 representing e or e−1 are embedded; a moment’s
thought will convince us that are good arcs. Thus if j = r, the conclusion
of the lemma follows. Suppose j > r. By 4.13(a) we have yi 6= x±1

0 , for all

i > r. In particular, y 6= x±1
0 . Now the conclusion follows as in Case 1. �

Before we are ready to state and prove the result about good arcs promised
in the beginning of §4.3, we need some more notation and terminology. Let
c = [y1, y2, . . . , yn−1, yn] and let C = {C1, C2, . . . , Cn−1, Cn} the sets of
letters of Lemma 3.10. We will denote by ||δ|| the cardinality of the maximal
subset of C that trivializes δ geometrically; that is δ is ||δ||-nice. We will
denote by s(c) the number of bad sets in C. For a quasi-commutator ĉ, we
will define s(ĉ) = s(c) where c is the commutator underlying ĉ. Finally, for
n ∈ N, let t(n) be the quotient of the division of n by four, and let q(n) be
the quotient of division by six.

Lemma 4.16. Suppose that S, B, γ and δ are as in the statement of Propo-
sition 4.4, and that δ1 is a good subarc of δ representing a simple quasi-
commutator c1, of length m + 1.
a) If δ1 is embedded then δ1 is an t(m + 1)-nice arc.
b) If δ1 is non embedded then δ1 is an q(m + 1)-nice arc.

Proof : a) Inductively we will show that

||δ1|| ≥ m + 1 − s(c1) (1)

Before we go on with the proof of (1), let us show that it implies that δ1 is
t(m)-nice.

For a fixed free generator y, let w(y) be the number of appearances of
y in c1 and let sy(c1) be the number of bad sets in y. By Lemma 4.15(a),
with one exception, a set Ci corresponding to y can become bad only by a



29

successive appearance of y. By Lemma 4.13, no letter can appear in c1 more
than two successive times. A simple counting will convince us that

w(y)

sy(c1)
≥

4

3
,

and that the maximum number of bad sets in a word is realized when each
generator involved appears exactly four times, three of which are bad. Thus
we have s(c1) ≤ m + 1 − t(m + 1) and by (1) we see that ||δ1|| ≥ t(m + 1),
as desired.

We now begin the proof of (1), by induction on m. For m = 1, we know
that all (embedded) arcs representing a simple 2-commutator are nice and
thus (1) is true. Assume that m ≥ 2 and (inductively) that for every good
arc representing a commutator of length ≤ m, (1) is satisfied. Now suppose
that

c1 = [[c, z±1], y±1]

where c is a simple commutator of length m−1, and z, y are free generators.
Let δ̄1,2 (resp. θ̄1,2,3,4) denote the subarcs of δ1 representing [c±1, z±1]±1

(resp. c±1).

Case 1. The arcs δ̄1,2 are good. By induction we have

||δ̄1,2|| ≥ m − s(c̄), (2)

where c̄ = [c, z±1]. Since δ1 is good, a set of crossings that trivializes δ̄1,2

can fail to work for δ1 only if it becomes a bad set in c1. Moreover, the set
of crossings corresponding to the last canceling pair {y±1, y∓1} of c1, also
trivializes δ1 geometrically. By 4.15(a) forming c1 from [c, z±1] can create at
most two bad sets, each involving y±1. Thus we have s(c̄) ≤ s(c1) ≤ s(c̄)+2.
Combining all these with (2), we obtain

||δ1|| ≥ ||δ̄1,2|| + 1 − 2 ≥ m + 1 − s(c̄) − 2 ≥ m + 1 − s(c1),

which completes the induction step in this case.

Case 2. Suppose that δ̄1,2 are not good arcs. Let us use θ̄ to denote any
of θ̄1,2,3,4. Suppose that c = [c2, x], and thus c1 = [[[c2, x], z±1] y±1]]. By
Lemma 4.15(c), θ̄ is a good arc and by induction

||θ̄|| ≥ m − 1 − s(c). (3)

First suppose that y 6= z±1. Because δ̄1,2 are not good we can’t claim
that the pair {z±1, z∓1} trivializes δ̄1,2 geometrically; however it will work
for δ1. Moreover, the set of crossings corresponding the last canceling pair
{y±1, y∓1} of c1, also trivializes δ1 geometrically. Notice that the only sets
of crossings that work for θ̄ but could fail for δ1 are these involving z±1 or
y±1 that correspond to bad pairs in δ1. We see that

s(c) ≤ s(c1) ≤ s(c) + 4.
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Combining all these with (3), we obtain

||δ1|| ≥ ||θ̄|| + 2 − 4 ≥ m + 1 − s(c1),

which completes the induction step in this case.
Now suppose that y = z. In this case we can see that s(c) ≤ s(c1) ≤

s(c)+2 and that at least one of the two last canceling pairs c1 will trivialize
δ1 geometrically. These together with (3) imply (1). This finishes the proof
of part a) of our lemma.

b) Let x0 denote the free generator of π corresponding to it. If c1 doesn’t
involve x0 at all, δ1 has to be an embedded good arc and the conclusion
follows from part a). So we may suppose that δ1 involves x0. Now the
crossings that correspond to appearances of x0 in c1 may fail to trivialize
the arc geometrically.

y x

y x

*

*

*

*

Figure 12. Simple commutators occupying the entire band

See, for example the arcs in Figure 12; in both cases crossings that realize
the contributions of x0 fail to trivialize the band. As a result of this, we can
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only claim that

||δ1|| ≥ m + 1 − (s∗(x0) + w(x0)), (4)

where w(x0) denotes the number of appearances of x in c1 and s∗(x0) is the
number of the bad sets in generators different than x0.

The proof of (4) is similar to that of (1) in part a). Now by Lemmas 4.13
and 4.15 it follows that the word c1 that will realize the maximum number
of bad sets has the following parity:

[x0, y1, y1, x0, x0, . . . , yk, yk, x0, x0, y1, y1, . . . , yk, yk],

where y1, . . . , yk are distinct and x0 6= yi. Moreover, three out of the four
appearances of each yi correspond to bad sets. Now the conclusion follows.

�

4.5. Conflict sets and products of good arcs. In this subsection we
study arcs that decompose into products of good arcs. The punch-line is
Lemma 4.20, in which we show that an arc δ̃ that is a product of good arcs
is qδ̃-nice.

Let S, B, γ and δ be as in the statement of Proposition 4.4, and let δ̃
be a subarc of γ representing a word W1 in π(m+1). Suppose that W1 =
ĉ1 . . . ĉs, is a product of quasi-commutators represented by arcs {δ1, . . . , δs},
respectively. Also, for k = 1, . . . s, let Ck = {Ck

1 , . . . , Ck
(m+1)} be the sets

of crossings of Lemma 3.10 for δi. Let C ∈ 2Ck ; by assumption the set of
letters in C trivialize W1 algebraically. For a proper subset D ⊂ {δ1, . . . , δs}
we will use C ∩ D (resp. C ∩ D̄) to denote the crossings in C that lie on
arcs in D (resp. in D̄ ). Here, D̄ denotes the complement of D in the set
{δ1, . . . , δs} .

For every free generator, say y, we may have crossings on the y-hook,
realizing letters in the word W1, that trivialize geometrically some of the
subarcs δi but fail to trivialize δ̃. To illustrate how this can happen, consider
the arcs δ1 and δ2. Let C1 and C2 be sets of crossings, on the y-hook, along
δ1 and δ2, respectively. Suppose that Ci trivializes δi geometrically (i.e. it
is a good set of crossings). Suppose, moreover, that there are crossings on
δ2 corresponding to a canceling pair {y±1, y∓1} that doesn’t belong in C2,
and such that they are separated by crossings in C1. Then C1∪C2 may not
trivialize δ1 ∪ δ2. With the situation described above in mind, we give the
following definition.

Definition 4.17. A set C of crossings on δ̃ is called a conflict set iff i)
the letters in C trivialize W1 algebraically; ii) switching the crossings in

C doesn’t trivialize δ̃ geometrically; and iii) there exists a proper subset
DC ⊂ {δ1, . . . , δs} such that C ∩ DC trivializes geometrically the union of
arcs in DC and C ∩ D̄C trivializes geometrically the union of arcs in D̄C .
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Lemma 4.18. For k = 1, . . . s, let ĉk be simple (quasi-)commutator repre-
sented by an arc δk, and let {Ck

1 , . . . , Ck
(m+1)} be sets of crossings as above.

Moreover let [yk
1 , yk

2 , yk
3 , . . . , yk

m+1] be the underlying commutator of ĉk.

Suppose that for some i = 1, . . . , m+1, yk
i = y±1 for some free generator y,

and that Ci = ∪s
k=1C

k
i , is a conflict set. Let DCi

be as in Definition 4.17.
Then, there exist arcs δt ∈ DCi

and δr ∈ D̄Ci
such that the crossings on

the y-hook corresponding to canceling pairs in yr
j on δr, are separating by

crossings corresponding to yt
i on δt. Here j 6= i.

With the notation as in Lemma 4.18 the set Cr
j will be called a conflict

partner of Ct
i .

Lemma 4.19. Let W1,2 = [y1,2
1 , y1,2

2 , y1,2
3 , . . . , y1,2

m+1] be the underlying com-

mutators of quasi-commutators represented by arcs δ1,2. Let C1
i and C2

j be
sets of letters in W1 and W2 respectively, corresponding to the same free
generator y. Suppose that C2

j is a conflict partner of C1
i . Then, with at

most one exception,
(1) either j = i + 1 (resp. j = i − 1) and y1

k = y2
k for k < i (resp. for

k < i − 1); or
(2) the sets of free generators appearing in {y1

1, . . . , y
1
i } (resp. {y1

1, . . . , y
1
j })

and {y2
i+1, . . . , y

2
j−1} (resp. {y2

j+1, . . . , y
2
i−1}), are disjoint.

Proof : By 4.18, there must be crossings on the y-hook corresponding to
canceling pairs in C2

j , that are separated by crossings in C1
i . Let C1 denote

the canceling pair corresponding to y1
i in [y1

1, y1
2, . . . , y

1
i ]. and let C2 denote

the canceling pair corresponding to y2
i (resp. y2

j ) in [y2
1, y2

2, . . . , y
2
i ] (resp.

[y2
1, y2

2, . . . , y
2
j ]) if j > i (resp. j < i). By Lemma 4.13(a), C1,2 are of type (I)

or (II). Let D1,2 be the finite disc corresponding to the canceling pair C1,2,
in W1,2, respectively. Up to symmetry there are three cases to consider: i)
Both C1,2 are of type (I); ii) both C1,2 are of type (II); and iii) one of them is
of type (I) and the other of type (II). In each case the result will follow using
Remark 4.10 to study the components of D1,2 ∩ δ̄1,2, where δ̄1,2 denotes the
complement in δ1,2 of the parallel arcs corresponding to C1,2, respectively.
The exceptional case will occur when the canceling pair C1 is of type (I)
and crossings in it are a separated by a type (II) canceling pair on δ2. The
details are similar to these in the proof part a) of Lemma 4.15 �

To continue, recall the quantity qδ̃ defined before the statement of Propo-
sition 4.4.

Lemma 4.20. (Products of good arcs) Let S, B, γ and δ be as in the
statement of Proposition 4.4, and let W = c1 . . . cr be a word expressing δ+

as a product of simple quasi-commutators. Suppose that δ̃ is a subarc of δ,
representing a subword of simple quasi-commutators W1 = ĉ1 . . . ĉs, each of
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which is represented by a good arc. Then δ̃ is qδ̃-nice. In particular if W is
a product of simple quasi-commutators represented by good arcs, Proposition
4.4 is true for δ.

Proof : If s = 1 the conclusion follows from Lemma 4.16. Assume that
s > 1. Let δ1, . . . , δs be arcs representing ĉ1 . . . ĉs, respectively.

In general, we may have conflict sets of crossings between the δj ’s. Since
conflict sets occur between commutators that have common letters, we must
partition the set {ĉ1, . . . , ĉs} into groups involving disjoint sets of generators
and work with each group individually. The maximum number of conflicts
will occur when all the ĉi’s belong in the same group. Since conflict sets
are in one to one correspondence with proper subsets of {δ1, . . . , δs}, the
maximum number of conflict sets, for a fixed generator y, is 2s − 2.

Let x0 be the generator corresponding to the hook of B. From the proof of
Lemma 4.16, and by Lemma 4.19 we can see that a word W , in which there
are k distinct generators besides x±1

0 , will realize the maximum number of
bad sets of crossings on the individual δi’s and the maximum number of
conflict sets, if the following are true:
i) The length m + 1 is equal to 6k + r + 2k(2s − 2), where r > 2;
ii) each of the arcs δi realizes the maximum number of bad sets and the

maximum number of appearances of x±1
0 (i.e. 5k+

r

2
) and there are k(2s−2)

conflict sets between the δi’s. Moreover, each pair of conflict partners in W
correspond either to the exceptional case or in case (1) of Lemma 4.19.

We claim, however, that there will be k +
[r

2

]

+ k(s− 2) sets of crossings

that trivialize δ̃ geometrically. From these k +
[r

2

]

come from good sets on

the δi’s. The rest ks − 2k are obtained as follows: For a fixed y 6= x±1
0 , the

crossings in the conflict sets involving y±1 and in their conflict partners can
be partitioned into s − 2 disjoint sets that satisfy the definition of (s − 3)-
triviality. To see that, create an s × (2s − 2) matrix, say A, such that the
(i, j) entry in A is the j-th appearance of y in ĉi. The columns of A are
in one to one correspondence with the conflict sets {Ci}, in y. By 4.19, and
4.13 there are at most 2s “exceptional” conflict partners shared among the
Ci’s. Other than that, the conflict partners of a column Ci will lie in exactly
one of the adjacent columns. For s ≥ 4 we have 2s − 2 ≥ 4s and thus A has
at least 2s columns that can only conflict with an adjacent column; these
will give s > s − 2 sets as claimed above. For s = 2, 3 the conclusion is
trivial.

Now from i) we see that ks − 2k > log2(
m + 1 − 4k − r

4
). Thus,

r

2
+ k(s − 2) > log2(

m + 1 − 4k

4
) > log2(

m + 1 − 6k

6
),

and the claim in the statement of the lemma follows. �
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4.6. The reduction to nice arcs. Let S, B, γ and δ be as in the statement
of Proposition 4.4. Our goal in this paragraph is to finish the proof of the
proposition. We begin with the following lemma, which relates the qµ-

niceness of a subarc µ ⊂ δ̃ ⊂ δ to the qδ̃-niceness of δ̃.

Lemma 4.21. (Products of nice arcs) Let S, B, γ and δ be as in the

statement of Proposition 4.4. Let δ̃ be a subarc of δ, representing a subword
W1 = ĉ1 . . . ĉs, where ĉi is a product of simple quasi-commutators represented
by an arc θi. Suppose that θi is qθi

-nice, for i = 1, . . . , s. Then δ̃ is qδ̃-nice.

Proof : Once again we can have sets of crossings on δ̃ that trivialize W1,
and trivialize a subset of {θ1, . . . , θs} geometrically but fail to trivialize δ̃.
For i = 1, . . . , s, let mi denote the number of simple quasi-commutators
in ĉi, and let Di denote the set of subarcs of δ̃ representing them. We
notice that the maximum number of conflict sets that we can have in W1,
is k[2(m1+...ms) − 2] where k is the number of distinct generators, different
than x0, appearing in W . Now we may proceed as in the proof of Lemma
4.20. �

To continue recall the notion of a quasi-nice arc (Definition 4.5). Our last
lemma in this section shows that the notions of quasi-nice and qδ̃-nice are
equivalent.

Lemma 4.22. A quasi-nice subarc δ̃ ⊂ δ that represents a product W =
c1 . . . cr of quasi-commutators, is qδ̃-nice.

Proof : Let δ1, . . . , δr be the arc representing c1, . . . , cr, respectively. Let
Dg (resp. Db) denote the set of all good (resp. not good) arcs in {δ1, . . . , δr}.
Also let ng (resp. nb) denote the cardinality of Dg (resp. Db). If nb = 0, the
conclusion follows from Lemma 4.20. Otherwise let µ ∈ Db, be the first of
the δi’s not represented by a good arc. Suppose it represents cµ = [c±1, y∓1],
where c±1 is a simple quasi-commutator of length m, and y a free generator.
Let µ1, 2 be the subarcs of µ representing c±1. Since µ is not good, y must
have appeared in c; thus the numbers of distinct generators in the words
representing µ and µ1, 2 are the same. We can see that qµ1 = qµ2 = qµ. By

3.14, µ1, 2 are good arcs and by Lemma 4.16 they are qµ-nice. Let µ̄ = δ̃rµ,
and let µ̄1,2 denote the two components of µ̄. By induction and 4.21, µ̄i is
qµ̄i

-nice. Since µ is not good, one of its endpoints lies inside the y-hook and
the other outside. Moreover the arc µ∗ of Lemma 4.11, separates crossings
corresponding to canceling pairs on the y-hook. Now a moment’s thought
will convince us that at least one of µ̄1,2 must have crossings on the y-hook.
A set of crossings that trivializes geometrically θ1 = µ1∪µ2 and θ2 = µ̄1∪ µ̄2

will fail to trivialize δ̃ only if there are conflict sets between θ1 and θ2. A
counting argument shows that the maximum number of conflict sets that can
be on δ̃ is k(2r − 2), where k is the number of distinct generators, different
than x0, in W . Now the conclusion follows as in the proof of 4.21. �
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Proof : [ of Proposition 4.4] It follows immediately from 4.22 and the
fact that the arc δ in the statement of 4.4 is quasi-nice; see discussion in
§4.3. �

Remark 4.23. Theorem 4.2 is not true if we don’t impose any restrictions
on the surface S of Definition 4.1. For example let K be a positive knot
set πK = π1(S

3rK) and let DK denote the untwisted Whitehead double
of K. Let S be the standard genus one Seifert surface for D(K). Since

π
(n)
K = π

(2)
K for any n ≥ 2, we see that S has a half basis realized by a curve

that if pushed in the complement of S lies in π
(n)
K , for all n ≥ 2. On the

other hand, DK doesn’t have all its Vassiliev invariants trivial since it has
non-trivial 2-variable Jones polynomial (see for example [Ru]).
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