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Abstract. We prove the nugatory crossing conjecture for fibered knots. We also
show that if a knot K is n-adjacent to a fibered knot K 0, for some n > 1, then either the
genus of K is larger than that of K 0 or K is isotopic to K 0.

1. Introduction

An open question in classical knot theory is the question of when a crossing change
on a knot changes the isotopy class of the knot. The purpose of this paper is to answer this
question for fibered knots.

A crossing disc for a knot KHS3 is an embedded disc DHS3 such that K inter-
sects intðDÞ twice with zero algebraic intersection number. A crossing change on K can be
achieved by twisting D or equivalently by performing appropriate Dehn surgery of S3

along the crossing circle qD. The crossing is called nugatory if and only if qD bounds an
embedded disc in the complement of K . This disc and D form a 2-sphere that decom-
poses K into a connected sum, where some of the summands may be trivial. Clearly, chang-
ing a nugatory crossing does not change the isotopy class of a knot. Problem 1.58 of [10]
asks whether the converse is true (see also [15] for related conjectures), that is, if a crossing
change on a knot K yields a knot isotopic to K is the crossing nugatory.

In the case that K is the trivial knot, an a‰rmative answer follows from work of
Gabai [7]. An a‰rmative answer is also known in the case of 2-bridge knots [15]. In this
paper we will show the following.

Theorem 1.1. Let K be a fibered knot. A crossing change on K yields a knot isotopic

to K if and only if the crossing is nugatory.

To give a brief outline of the proof, let K be a fibered knot such that a crossing
change on K gives a knot K 0 that is isotopic to K. The complement of K is fibered over
S1 with fiber, say S, a minimal genus Seifert surface of K . A result of Gabai implies that
the crossing change from K to K 0 can be achieved along an arc that is properly embedded
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on S. Equivalently, the crossing change can be achieved by twisting K along a meridian
disc D of a handlebody neighborhood N of the fiber. Combining geometric properties of
fibered knot complements with sutured manifold techniques, the problem reduces to the
question of whether a power of a Dehn twist on the surface qN along the curve qD can be
written as a single commutator in the mapping class group of the surface. A result of Kot-
schick implies that a product of Dehn twists of the same sign along a collection of disjoint
homotopically essential curves on an orientable surface cannot be written as a single com-
mutator in the mapping class group of the surface. Using this result, we show that the as-
sumption that K is isotopic to K 0 implies that qD bounds a disc in the complement of K.

Theorem 1.1 says that an essential crossing change always changes the isotopy class
of a fibered knot. It is natural to ask whether the crossing change produces a simpler or
more complicated knot with respect to some knot complexity. A complexity function
whose interplay with crossing changes has been studied using the theory of taut foliations
and sutured 3-manifolds is the knot genus. Simple examples show that a single crossing
change may decrease or increase the genus of a knot even if one stays within the class of
fibered knots. However, there are interesting consequences if one replaces a crossing change
by the more refined notion of knot adjacency [8], [9]: We recall that K is called 2-adjacent
to K 0 if K admits a projection that contains two crossings such that changing any of them
or both of them simultaneously transforms K to K 0.

Theorem 1.2. Suppose that K 0 is a fibered knot and that K is 2-adjacent to K 0. Then
either K is isotopic to K 0 or K has a strictly larger genus than K 0.

We organize the paper as follows: In Section 2 we summarize the mapping class
group results that we need for the proof of Theorem 1.1 and in Section 3 we summarize
known properties of fibered knot complements. In Section 4 we discuss a setting relating
fibrations of knot complements and Heegaard splittings of S3 from the point of view
needed in the rest of the paper. In Section 5 we study nugatory crossings of fibered knots
and we prove Theorem 1.1. In Section 6 we study adjacency to fibered knots and prove
Theorem 1.2.

Throughout the paper we work in the PL or the smooth category.

2. Commutator length and Dehn twists

2.1. Commutators in the mapping class group. Let Sk denote a closed oriented sur-
face of genus k and let Gk denote the mapping class group of Sk, that is, Gk is the group of
isotopy classes of orientation preserving homeomorphisms Sk ! Sk. Let G 0

k :¼ ½Gk;Gk� de-
note the commutator subgroup of Gk. An element f A G 0

k is written as a product of commu-
tators. The commutator length of f , denoted by cð f Þ, is the minimum number of factors
needed to express f as a product of commutators. In the recent years, the growth of the
commutator length of Dehn twists has been studied using methods from the theory of sym-
plectic four-manifolds [5], [3], [12], [11]. In this paper we will need a result of D. Kotschick
which we recall below.

For a simple closed curve aHSk let Ta denote the right-hand Dehn twist about a;
then the left-hand Dehn twist about a is T�1

a .
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Theorem 2.1 ([12], Theorem 7). Let Gk be the mapping class group of a closed ori-

ented surface Sk of genus kf 2. Suppose that a1; . . . ; am HSk are homotopically essential,
disjoint, simple closed curves on Sk. Let f :¼ Ta1

� Ta2
� . . . � Tam denote the product of right-

handed Dehn twists along a1; . . . ; am. Suppose that for some q > 0 we have

f q ¼ T q
a1
� T q

a2
� . . . � T q

am
A G 0

k.

Then we have

cð f qÞf 1 þ qm

18k � 6
:

We will need the following corollary of Theorem 2.1.

Corollary 2.2. Let Gk be the mapping class group of a closed oriented surface Sk of

genus kf 2. Let aHSk be a simple closed curve. Suppose that there exist g; h A Gk such that

T q
a ¼ ½g; h� ¼ ghg�1h�1;

for some q3 0. Then a is homotopically trivial on Sk.

The proof of Theorem 2.1 given in [12] relies on the theory of Lefschetz fibrations,
which, as the author points out, is sensitive to the chirality of Dehn twists. In fact, the ar-
gument of [12] breaks down if one allows f to be a product of right-handed Dehn twists
and their inverses and, as the following example shows, Theorem 2.1 is not true in this
case. In subsequent sections we will discuss how this situation is reflected when one tries
to apply Theorem 2.1 to the study of crossing changes that do not alter the isotopy class
of fibered knots (see Example 5.9).

Example 2.3 ([12], Example 9). Suppose that aHSk is an essential simple closed
loop on a closed oriented surface of genus at least two. Let g : Sk ! Sk be an orienta-
tion preserving homeomorphism such that aX gðaÞ ¼ j. We will also use g to denote the
mapping class of g. Set b :¼ gðaÞ and f :¼ TaT

�1
b . In the mapping class group Gk we

have gTag
�1 ¼ TgðaÞ or equivalently Ta ¼ g�1Tbg. Since a, b are disjoint, we also have

TaT
�1
b ¼ T�1

b Ta. Thus

f q ¼ ðTaT
�1
b Þq ¼ T q

a T
�q
b ¼ ðg�1TbgÞqT�q

b ¼ ½g�1;T q
b �;

for all q > 0. Hence we have cð f qÞ ¼ 1 showing that Theorem 2.1 is not true in this case.

2.2. When is Tq
a trivial? It is known that if a is homotopically essential on S, then

no non-trivial power T q
a (03 q A ZÞ is isotopic to the identity on Sk. This statement is well

known to researchers working on mapping class groups. It is for example asserted in [2]
when the authors state that the kernel of the reduction homomorphism corresponding
to an essential simple closed curve a is the free abelian group generated by Dehn twists
along a. Below we include a proof that uses properties of intersection numbers stemming
from Thurston’s study of surface homeomorphisms [6].

Proposition 2.4. Suppose that T q
a ¼ 1 in the mapping class group G :¼ GðSkÞ, k > 0.

Then either a is homotopically trivial on Sk or q ¼ 0.
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Proof. Suppose that the curve a is not homotopically trivial on S and that T q
a ¼ 1 in

the mapping class group GðSÞ. We will argue that q ¼ 0. First suppose that a is a non-
separating loop on S. Then, we can find an embedded loop b that intersects a exactly
once. Orient a, b so that the algebraic intersection of a, b is 1, that is, ha; bi ¼ 1. In
H1ðSÞ we have

T q
a ðbÞ ¼ bþ qha; bia ¼ bþ qa:

Thus we have hT q
a ðbÞ; bi ¼ hb; biþ qha; bi, which, since T q

a ðbÞ ¼ b, gives q ¼ 0 as de-
sired. If a is separating, we appeal to the geometric intersection number. For b, a simple
closed loop on S, let iða; bÞ denote the intersection number, i.e., the minimal number of
intersections in the isotopy classes of a and b. Since we assumed that a is homotopically
essential on S, we can find b so that iða; bÞ3 0. By [6], Exposé 4, we have the following:

i
�
T q
a ðbÞ; b

�
¼ jqj

�
iða; bÞ

�2
:

Since T q
a ¼ 1, we have 0 ¼ iðb; bÞ ¼ i

�
T q
a ðbÞ; b

�
. Thus we obtain jqj

�
iða; bÞ

�2 ¼ 0, which
implies that q ¼ 0. r

Notation. To simplify our notation, throughout the paper we will use S :¼ Sk to de-
note an oriented surface of any genus kf 0 and G :¼ Gk to denote the mapping class group
of S. Also, as we have done in this section, we will use the same symbol to denote a homeo-
morphism of S and its class in G.

3. Uniqueness properties of knot fibrations

Here we summarize some known properties of fibered knots that we need in subse-
quent sections. For details and proofs the reader is referred to [4], Section 5, and [16]. Sup-
pose that K is a fibered knot and let S be a minimum genus Seifert surface for K . Let hðKÞ
denote a tubular neighborhood of K . Then the complement S3nhðKÞ admits a fibration
over S1 with fiber S. More specifically, it is shown that the complement S3nhðKÞ cut
along S is homeomorphic to S � ½�1; 1�. Thus, there is an orientation preserving homeo-

morphism h : S ! S such that S3nhðKÞ is obtained from S � ½�1; 1� by identifying
S � f�1g with S � f1g so that ðx;�1Þ ¼

�
hðxÞ; 1

�
. The map h is called the monodromy

of the fibration. We write

S3nhðKÞ ¼ S � J=h;

where J :¼ ½�1; 1�. We need the following:

Proposition 3.1. (a) Let M :¼ S3nhðKÞ ¼ S � J=h be an oriented, fibered knot com-

plement and set S1 :¼ S � f1g ¼ S � f�1g. Given a minimum genus Seifert surface S2, with
qS2 ¼ qS1, there exists an orientation preserving homeomorphism of M that is fixed on qM

and brings S2 to the fiber S1. In fact, such a homeomorphism is isotopic to the identity on M

by an isotopy relatively to the boundary qM.

(b) Let M :¼ S � J=h and M 0 :¼ S 0 � J=h 0 be fibered, oriented knot complements.

Then there exists an orientation preserving homeomorphism F : M ! M 0 with

FðqS � f jgÞ ¼ qS 0 � f jg ð j A JÞ
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if and only if there exists an orientation preserving surface homeomorphism

f : ðS; qSÞ ! ðS 0; qS 0Þ

such that fhf �1 and h 0 are equal up to isotopy on S 0.

4. Splittings of fibered knot complements

Given a fibration of a knot complement M :¼ S3nhðKÞ ¼ S � J=h, set

N1 :¼ S � ½0; 1�; N2 :¼ S � ½�1; 0�; E :¼ qS � ð0; 1Þ and E 0 :¼ qS � ð�1; 0Þ:

We have qN1 ¼ ðS � f0gÞWEW ðS � f1gÞ. Similarly, qN2 ¼ ðS � f�1gÞWE 0W ðS � f0gÞ.

We will assume that K :¼ qS � 1

2

� �
on qN1. Define g : qN1 ! qN1 by

gðx; 0Þ ¼ ðx; 0Þ; for x A S;ð1Þ

gðx; tÞ ¼ ðx; tÞ; for x A qS and 0 < t < 1;ð2Þ

gðx; 1Þ ¼
�
hðxÞ; 1

�
; for x A S:ð3Þ

Consider the homeomorphism rg : qN1 ! qN2, where r : N1 ! N2 is defined by
ðx; tÞ ! ðx;�tÞ. We obtain a Heegaard splitting

S3 ¼ N1 Wrg N2 :¼ N1 tN2=fy@ rgðyÞ j y A qN1gð4Þ

such that K lies on the Heegaard surface. Next, we push K on S � 1

2

� �
slightly in the in-

terior of N1 and then we take AðKÞ to be an annulus neighborhood of K on S � 1

2

� �
. Then

we remove a tubular neighborhood of K, say hðKÞ :¼ AðKÞ � 1

2

� �
� e;

1

2

� �
þ e

� �
, from

intðN1Þ and we set H1 :¼ N1nhðKÞ. The decomposition

M ¼ H1 Wrg N2 :¼ H1 tN2=fy@ rgðyÞ j y A qN1gð5Þ

is called the HN-splitting corresponding to the fibration of M. The HN-surface of this de-
composition is Q :¼ qN1 t qN2=fy@ rg1ðyÞ j y A qN1g. Now set N :¼ N1 ¼ S � ½0; 1� and
identify N2 with ð�NÞ via r�1, where ð�NÞ denotes N with the opposite orientation. Also
set H :¼ NnhðKÞ and S :¼ qN1 and let i : N ! ð�NÞ denote the orientation reversing in-
volution.

Definition 4.1. The pair ðS; gÞ is called the HN-model associated to the fibration
M ¼ S � J=h. Note that, by (1)–(4), g is the identity on SnðS � f1gÞ.

Definition 4.2. Let K be a fibered knot with M :¼ S3nhðKÞ ¼ S � J=h and let H, N
and S be as above. Also let g1 : S ! S be an orientation preserving homeomorphism. The
pair ðS; gÞ is called an HN-model for M if there is an orientation-preserving homeomor-
phism F : M ! HWg1

ð�NÞ such that F j qhðKÞ ¼ id. Here,

HWg1
ð�NÞ :¼ H tN=fy@ ig1ðyÞ j y A Sg:
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The surface S t S=fy@ ig1ðyÞ j y A Sg will be called the HN-surface of the decomposition
HWg1

ð�NÞ.

The next lemma reformulates part (b) of Proposition 3.1 in terms of the models of the
two fibrations.

Lemma 4.3. Let M :¼ S � J=h and M 0 :¼ S 0 � J=h 0 be fibered, oriented knot

complements in S3 and let ðS; gÞ, ðS; g 0Þ denote the models corresponding to the fibration

of M, M 0, respectively. There exists an orientation-preserving homeomorphism F : M ! M 0

with FðqS � f jgÞ ¼ qS 0 � f jg ð j A JÞ if and only if there is an orientation-preserving homeo-

morphism f : S ! S such that in the mapping class group G ¼ GðSÞ we have

g 0 ¼ fgf �1:

Proof. By Proposition 3.1, there exists an orientation-preserving homeomor-
phism F : M ! M 0 with FðqS � f jgÞ ¼ qS 0 � f jg ( j A J) if and only if there exists an
orientation-preserving surface homeomorphism f : ðS; qSÞ ! ðS 0; qS 0Þ such that fhf �1

and h 0 are equal up to isotopy on S 0. Now g is constructed out of h as in (1)–(4); in a sim-
ilar fashion g 0 is constructed out of h 0. Set I :¼ ½0; 1�. We may extend f to a homeomor-
phism of pairs

�
S � I ; qðS � IÞ

�
!

�
S 0 � I ; qðS 0 � IÞ

�
by defining f ðx; tÞ ¼

�
f ðxÞ; t

�
. By

our construction of the HN-splittings corresponding to fibrations, this extension is consid-
ered as a map ðN;SÞ ! ðN;SÞ. Since g is the identity on SnðS � f1gÞ and g 0 is the identity
on SnðS 0 � f1gÞ, we have g 0 ¼ fgf �1 up to isotopy on S. r

Let Q denote the HN-surface of the splitting associated to a fibration

S3nhðKÞ ¼ S � J=h. By construction, we have a surface S1 HS � 1

2

� �
that is disjoint

from Q. Furthermore, S1 and S � 1

2

� �
di¤er by an annulus. We will think of this HN-

surface as sitting in the original fibration S3nhðKÞ ¼ S � J=h and S1 is a fiber surface of the
fibration.

Lemma 4.4. Let M 0 :¼ S3nhðK 0Þ ¼ S 0 � J=h 0 be an oriented fibered knot comple-

ment. Let ðS; g 0Þ denote the HN-model associated to the fibration with Q the correspond-

ing HN-surface of M 0 sitting in the fibration so that S 0
1 :¼ S 0 � 1

2

� �
is disjoint from it. Let

ðS; g 00Þ be a second HN-model of M 0 and let Q 0 denote the corresponding HN-surface.

Suppose that there exists an orientation-preserving homeomorphism F : M 0 ! M 0 with

F j qM 0 ¼ id, and such that

FðQÞ ¼ Q 0 and FðS 0 � xÞ ¼ S 0 � x; for all x A J:ð6Þ

Then there is an orientation-preserving homeomorphism f : S ! S such that in the mapping

class group G ¼ GðSÞ we have

g 00 ¼ fg 0f �1:ð7Þ

Proof. The existence of the homeomorphism in (6) implies that Q 0 is the HN-surface
corresponding to a fibration of M 0 with fiber S 0

1. We will now discuss a model of this fibra-
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tion: If we let f1 denote the restriction of F on the fiber S 0
1, then the monodromy of our

second fibration should be a conjugate of h 0 by f1 (Proposition 3.1). That is the mono-
dromy of the fibration in which Q 0 is the corresponding HN-surface is h1 :¼ f1h

0f �1
1

(where, recall, the equality is understood up to isotopy on the fiber). Following the process
described in (1)–(4), we can identify M 0 with HWg1

ð�NÞ where ðS; g1Þ is the model corre-
sponding to the fibration with monodromy h1. By Lemma 4.3, there is an orientation pre-
serving homeomorphism f : S ! S such that in the mapping class group G ¼ GðSÞ we have

g1 ¼ fg 0f �1:

Now M 0 ¼ HWg1
ð�NÞ ¼ HWg 00 ð�NÞ, with Q 0 ¼ SWg1

S ¼ SWg 00 S being the HN-surface
in both splittings. This defines a homeomorphism m : HWg1

ð�NÞ ! HWg 00 ð�NÞ with
m j qM 0 ¼ id, m jS 0

1 ¼ id and mðQ 0Þ ¼ Q 0. Let m1 denote the restriction of m on the surface
SH qH and let m2 denote the restriction of m on S ¼ qN. Clearly, we have g 00 ¼ m�1

1 g1m2.
Let R :¼ M 0nS 0

1 GS 0
1 � J. Now m gives rise to a homeomorphism m : R ! R such that: (i)

mðS 0
1 � xÞ ¼ S 0

1 � x, for all x A J; (ii) m j qR ¼ id; and (iii) mðQ 0Þ ¼ Q 0. Now m can be iso-
topied to the identity on R by an isotopy that is level preserving ([16], Lemma 3.5). Such an
isotopy will preserve Q 0. It follows that m1, m2 are isotopic to the identity on S. Since, as
discussed earlier, g 00 ¼ m�1

1 g1m2, we infer that g 00 ¼ g1 ¼ fg 0f �1 up to isotopy in S. r

5. Crossing changes and Dehn twists

In this section will prove Theorem 1.1. In fact, we will work in a more general context
as we will consider generalized crossing changes.

5.1. Nugatory crossing changes in fibered knots. Let K be a knot in S3 and let q A Z.
A generalized crossing of order q on K is a set C of jqj twist crossings on two strings that
inherit opposite orientations from any orientation of K. If K 0 is obtained from K by chang-
ing all the crossings in C simultaneously, we will say that K 0 is obtained from K by a gen-
eralized crossing change of order q (see Figure 1). Notice that if jqj ¼ 1, K and K 0 di¤er by

Figure 1. The knots K and K 0 di¤er by a generalized crossing change of order q ¼ �4.
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an ordinary crossing change, while if q ¼ 0, we have K ¼ K 0. A crossing disc for K is an
embedded disc DHS3 such that K intersects intðDÞ twice with zero algebraic intersection

number. Performing
1

�q
-surgery on L :¼ qD, for q A Z, changes K to another knot K 0 HS3.

Clearly, K 0 is obtained from K by a generalized crossing change of order q. The boundary
L :¼ qD is called a crossing circle supporting the generalized crossing change.

Definition 5.1. A generalized crossing supported on a crossing circle L of a knot K is
called nugatory if and only if L :¼ qD bounds an embedded disc in the complement of K.
This disc and D form an embedded 2-sphere that decomposes K into a connected sum
where some of the summands may be trivial.

Clearly, changing a nugatory crossing does not change the isotopy class of a knot. It
is an open question whether, in general, the converse is true ([10], Problem 1.58). The an-
swer is known to be yes in the case when K is the unknot [13] and when K is a 2-bridge
knot [15]. To these we add the following theorem.

Theorem 5.2. Let K be a fibered knot and let K 0 be a knot obtained from K by a gen-

eralized crossing change. If K 0 is isotopic to K , then a crossing circle L supporting this cross-

ing change bounds an embedded disc in the complement of K.

5.2. Preliminaries. Let C be a generalized crossing of order q3 0 of a fibered
knot K . Let K 0 denote the knot obtained from K by changing C and let D be a crossing
disc for C with L :¼ qD.

Lemma 5.3. Suppose that ML :¼ S3n
�
hðKÞW hðLÞ

�
is reducible. Then L bounds a

disc in the complement of K. Thus, in particular, the crossing change from K to K 0 is nuga-
tory.

Proof. Let D be an essential 2-sphere in ML; hðKÞ and hðLÞ must lie in di¤erent
components of MLnD. Isotope D so that its intersection with D is minimal in ML. Then
DXD is a collection of simple closed curves, each parallel to qD on D. Thus K WLHS3

is a split link. Since L is unknotted, it bounds a disc in the complement of K. r

In view of Lemma 5.3, we may assume that ML is irreducible. Since the linking num-
ber of L and K is zero, K is homologically trivial in the complement of L. It is known that
this implies that K bounds a Seifert surface in the complement of L. Let S be a Seifert sur-
face that is of minimum genus among all such Seifert surfaces. Since S is incompressible,
after an isotopy we can arrange so that the closed components of SXD are homotopically
essential in DnK . But then each such component is parallel to qD on D and by further mod-
ification we can arrange so that SXD is an arc that is properly embedded on S. The sur-
face S gives rise to Seifert surfaces S and S 0 of K and K 0, respectively.

Proposition 5.4. Suppose that K is isotopic to K 0. Then S and S 0 are Seifert surfaces
of minimal genus for K and K 0, respectively.

Proof. We can consider the surface S properly embedded in ML so that it is disjoint
from the component qhðLÞ of qM. The assumptions on irreducibility of ML and on the ge-
nus of S imply that the foliation machinery of Gabai [7] applies. In particular, S is taut
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in the Thurston norm. The manifolds M :¼ S3nhðKÞ and M 0 :¼ S3nhðK 0Þ are obtained by
Dehn filling of ML along q

�
hðLÞ

�
. By [7], Corollary 2.4, S can fail to remain taut in the

Thurston norm (i.e. genus minimizing) in at most one of M and M 0. But since K is isotopic
to K 0, M is homeomorphic to M 0. Thus S remains taut in both of M and M 0. This implies
that S and S 0 are Seifert surfaces of minimal genus for K and K 0, respectively. r

Next we restrict ourselves to fibered knots and recall the assumptions that we have
to work with from the statement of Theorem 5.2: K and K 0 are fibered knots that are iso-
topic; S and S 0 are minimum genus Seifert surfaces, for K and K 0, respectively.

5.3. An HN-model for M O from Dehn surgery. With the notation of Section 4, there
is a fibration M :¼ S3nhðKÞ ¼ S � J=h with monodromy h : S ! S. With N :¼ S � ½0; 1�
and S :¼ qN we have an HN-model ðS; gÞ corresponding to the fibration of M. We can
think of the Heegaard splitting of S3 corresponding to the fibration M ¼ S � J=h as the
quotient

NWg ð�NÞ :¼ N t ð�NÞ=fy@ igðyÞ j y A Sg:ð8Þ

We will further assume that the crossing circle L is embedded on S so that D is a meridian
disc of N. We will furthermore assume that the embedding of L on S is chosen so that,
up to isotopy in M, the geometric intersection jKXDj is minimal. Note that since we

assumed that ML :¼ S3n
�
hðKÞW hðLÞ

�
is irreducible, this minimum intersection must be

non-zero. Let t : N ! N denote the right-handed Dehn twist of N along the meridional
disc D and let TL :¼ t jS, where L ¼ qD. We have t�qðSÞ ¼ S 0 and t�qðKÞ ¼ K 0. Recall
that M :¼ S � J=h and that M 0 :¼ S3nhðK 0Þ is obtained from ML by Dehn filling along

qhðLÞ with slope
1

�q
. Next we use that information to construct an HN-model for M 0. The

proof of Lemma 5.5 follows a known process of passing between gluing maps of Heegaard
splittings and Dehn surgeries of 3-manifolds (compare [1], pp. 86–87).

Lemma 5.5. With the above notation, ðS; gT�q
L Þ is an HN-model for M 0 ¼ S3nhðK 0Þ.

Proof. By assumption, ðS; gÞ is an HN-model corresponding to the fibration
M ¼ S � J=h. Let A denote an annulus on S that supports TL and let B :¼ gðAÞ. We will
think of this HN-splitting of M as the quotient

HWg ð�NÞ :¼ H t ð�NÞ=fy@ igðyÞ j y A Sg;ð9Þ

where HHN. We consider the complement ML :¼ S3n
�
hðKÞW hðLÞ

�
as the pre-quotient

space

HWg1 ð�NÞ; where g1 :¼ g j ðSnAÞ : SnA ! SnB:ð10Þ

Thus we can think of the torus T :¼ AWB as the boundary torus of a tubular neighbor-
hood of L. Let a be an arc that is properly embedded and essential on A such that it inter-
sects L exactly once and let b :¼ gðaÞ. Now m :¼ aW b is the meridian of T and l :¼ L is
the longitude which we will orient so that their algebraic intersection number on T, de-
noted by hl; mi, is one. Since TL is supported in A, it can be considered as a Dehn twist
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on T. We have

T
q
LðmÞ ¼ m� ql ¼ T

q
LðaÞW b:

(Recall that, in general, if a, b are simple closed curves on T, we have TaðbÞ ¼ bþ ha; bia.
Since hl; mi ¼ 1, we have T�1

L ðmÞ ¼ mþ l, which explains the change of sign between the
power T q

L and the coe‰cient of l in T
q
LðmÞ in the equations above.)

Now we have

a 0 W b ¼ m� ql:

Let MLðqÞ denote the 3-manifold obtained from ML by
1

�q
Dehn filling on T. From the

discussion above, in order to obtain MLðqÞ one needs to attach a solid torus to T in such a
way so that the meridian is attached along the curve m. It follows that HWgT

�q

L
ð�NÞ is an

HN-splitting for MLðqÞ. But since by assumption we have MLðqÞ ¼ S3nhðK 0Þ ¼ M 0, it fol-
lows that ðS; gT�q

L Þ is an HN-model for M 0. r

5.4. Understanding the HN-model (S, gTCq
L ). In view of the conventions adapted

earlier, N is thought of as a product S � I and K is embedded on S :¼ qN. The Dehn twist
t�q : N ! N changes K to K 0 and the product structure of N to S 0 � I . By our assump-
tions, each of K , K 0 split S into two bounded surfaces that are incompressible in N. Let A
be an annulus on S supporting the restriction TL :¼ t jS so that the core of A is L and the
intersection AXK consists of two properly embedded, disjoint arcs, say a1, a2, each of
which intersects L exactly once. We set B :¼ gðAÞ, g :¼ gðKÞ, g 0 :¼ gðK 0Þ and z :¼ gðLÞ.
By construction, we have g jK ¼ id. Thus, g�1ðKÞ ¼ K, BX g ¼ a1 W a2. We have

g 0 :¼ gðK 0Þ ¼ g
�
T

�q
L ðKÞ

�
¼ g

�
T

�q
L

�
g�1ðKÞ

��
¼ gT

�q
L g�1ðKÞ ¼ T

�q

gðLÞðKÞ;

where the last equation follows from the fact that in the mapping class group we have
gTLg

�1 ¼ TgðLÞ. Thus g 0 is the result of g :¼ gðKÞ ¼ K under a non-trivial power of a
Dehn twist along z :¼ gðLÞ supported on B. We will think of the HN-splitting of
M 0 ¼ S3nhðK 0Þ corresponding to the model ðS; gT�q

L Þ as the quotient

M 0 ¼ HW ð�NÞ=fy@ igT
�q
L ðyÞ j y A Sg;ð11Þ

and we will identify the corresponding Heegaard splitting of S3 with the quotient

N t ð�NÞ=fy@ igT
�q
L ðyÞ j y A Sg:ð12Þ

Lemma 5.6. Push gðLÞ slightly in the interior of N and let h
�
gðLÞ

�
denote a tubular

neighborhood of it in there. If Nnh
�
gðLÞ

�
is reducible, then ML :¼ S3nhðKÞW hðLÞ is reduc-

ible.

Proof. Since Nnh
�
gðLÞ

�
is reducible, gðLÞ must lie in a 3-ball in N. It follows that

K WLHS3 is a split link, thus ML is reducible. r

In view of Lemma 5.6 and our earlier assumption that ML is irreducible, we may as-
sume that Nnh

�
gðLÞ

�
is irreducible. For i ¼ 0; 1, let Si :¼ S � fig. The boundary qN is the
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union S0 WEWS1, where E ¼ qS � ð0; 1Þ. Let S0, S1 denote the image of S0, S1, respec-
tively, under the Dehn twist T�q

gðLÞ. Then, for i ¼ 0; 1, qSi ¼ g 0 � fig.

Lemma 5.7. The surfaces S0, S1 are incompressible in N.

Proof. Suppose on the contrary that one of S0, S1, say S0, compresses in N. Con-
sider N as a product S � I with gðLÞ a knot in N. By assumption, S0 compresses in N.
Performing the Dehn twist T

�q

gðLÞ is equivalent to doing surgery along gðLÞ. Since q3 0,
this surgery is non-trivial (Proposition 2.3). Now S0 is the result of S0 under this surgery.
Thus there is a non-trivial surgery in S � I such that the surface S0 compresses in the man-
ifold obtained after surgery. By [14], Theorem 1, there is a simple closed homotopically
essential curve L 0 HS0 such that gðLÞ and L 0 cobound an embedded annulus in N ¼ S � I .
Furthermore, this annulus determines the slope of the surgery. This implies that gðLÞ
bounds a disc in N. But then any Dehn twist on qN along gðLÞ extends to a Dehn twist
on N, a homeomorphism of N. Since S0, S1 are incompressible, their images under any
homeomorphism of N are also incompressible in N. This contradicts the assumption
that S0 compresses. r

Lemma 5.8. With the notation and the setting as above, there exists a fibration of M 0

with fiber S 0 and corresponding HN-model ðS; g1Þ, and an orientation preserving homeomor-

phism f : S ! S such that in GðSÞ we have

g 00 :¼ gT
�q
L ¼ fg1 f

�1:ð13Þ

Proof. We recall that the Heegaard splitting in (12) is the result of the splitting of (8)
after the Dehn twist t�q on N. This twist changes the product structure of N from S � I to
S 0 � I . For i ¼ 0; 1, let Si :¼ S � fig. The boundary qN is the union S0 WEWS1, where
E ¼ qS � ð0; 1Þ. We have

g 00ðSiÞ ¼ g
�
T

�q
L ðSiÞ

�
¼ g

�
T

�q
L

�
g�1ðSiÞ

��
¼ gT

�q
L g�1ðSiÞ ¼ T

�q

gðLÞðSiÞ ¼ Si:

By Lemma 5.7, Si is incompressible in N. Now we pass to the corresponding HN-splitting
of (11) and we use Q 0 to denote the corresponding HN-surface. Since the HN-surface of
HWg ð�NÞ is disjoint from a level surface of the fibration S � J=h, Q 0 is disjoint from a
neighborhood of a copy S 0H intðHÞ. By Proposition 3.1, M 0 is fibered with fiber S 0. Let
ðS; g1Þ denote the HN-model of this fibration and let Q denote the corresponding HN-
surface. On the one hand M 0 cut along S 0 is a product S 0 � J. On the other hand
M 0 ¼ S3nhðKÞ is homeomorphic to

H t ð�NÞ=fy@ ig 00ðyÞ j y A Sg:ð14Þ

For i ¼ 0; 1, the surface Si Wg 00 Si HQ 0 gives a properly embedded incompressible surface in
M 0. These two surfaces can be isotopied in M 0, relatively qM 0, so that each becomes par-
allel to the fiber S 0 ([16], Proposition 3.1). In fact, the isotopy brings each of the surfaces
onto a level surface of the fibration (Proposition 3.1). This implies that there is an orienta-
tion preserving homeomorphism F : M 0 ! M 0 with F j qM 0 ¼ id such that FðQÞ ¼ Q 0 and
FðS 0 � xÞ ¼ S 0 � x, for all x A J. Now applying Lemma 4.4 to the models ðS; g1Þ and
ðS; g 00Þ, we get the desired conclusion. r
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5.5. Proof of Theorem 5.2. Let K, K 0 be fibered isotopic knots such that K 0 is ob-
tained from K by a generalized crossing change, of order q3 0, supported on a crossing
circle L. Let D be a crossing disc with L :¼ qD. We will consider the Heegaard splittings
of (8) and (12) so that the crossing circle L is embedded on S and D is a meridian disc of N.
Recall that the crossing change from K to K 0 is now achieved by the Dehn twist t�q of N
along D.

We will assume that L is homotopically essential on S since otherwise the crossing
change from K to K 0 is obviously nugatory.

If ML :¼ S3nhðKÞW hðLÞ is reducible, then we are done by Lemma 5.3. We will

assume that ML :¼ S3nhðKÞW hðLÞ is irreducible. Then, by Lemma 5.6, NNnh
�
gðLÞ

�
is

irreducible. Due to Proposition 5.4, S and S 0 are of minimum genus for K and K 0, re-
spectively. By Lemma 5.8, there is an HN-model ðS; g1Þ that corresponds to a fibra-
tion M 0 ¼ S 0 � J=h1 and f : S ! S so that (13) is satisfied. Equivalently, we have
f �1gT

�q
L f ¼ g1. Since K and K 0 are isotopic knots, there is an orientation preserving ho-

meomorphism, say F, of S3 that brings K to K 0. Now we have two equivalent fibered knot
complements: M 0 ¼ S 0 � J=h1 and M ¼ S � J=h. Via Lemma 4.3, F gives rise to a ho-
meomorphism f : S ! S such that

gT
�q
L ¼ fgf�1 or T

�q
L ¼ g�1fgf�1:ð15Þ

Now (15) realizes T
�q
L as a commutator of length one in G. By Corollary 2.2, L must be

homotopically trivial on S, which contradicts the assumption that ML is irreducible. r

Since Kotschick’s result is not true in the case of twists with mixed signs, the argu-
ment above breaks down in an attempt to generalize the statement of Theorem 5.2 to mul-
tiple crossing changes. But as the following example shows, the result is, in fact, not true!

Example 5.9. Let K denote the figure eight knot as boundary of a genus one Seifert
surface S obtained by Hopf plumbing two once twisted bands BL and BR. Consider D1 and
D2, crossing discs of K , such that D1 XBL (resp. D2 XBR) is an essential arc cutting BL

(resp. BR) into a square. One can perform opposite sign twists of order four along D1, D2

to transform S to S 0, where in S 0 the Hopf band BL becomes the Hopf band BR and vice
versa. The knot K 0 :¼ qS 0 is isotopic to K . Moreover, S and S 0 are clearly minimum genus
Seifert surfaces for K and K 0, respectively. However, neither of L1 :¼ qD1 or L2 :¼ qD2

bounds discs in the complement of K .

6. Adjacency to fibered knots

We begin by recalling from [8] the following definition.

Definition 6.1. Let K, K 0 be knots. We will say that K is n-adjacent to K 0, for some
n A N, if K admits a projection containing n generalized crossings such that changing any
0 < me n of them yields a projection of K 0.

In [8] we showed the following: Given knots K and K 0, there exists a constant
c ¼ cðK ;K 0Þ such that if K is n-adjacent to K 0, then either ne c or K is isotopic to K 0.

162 Kalfagianni, Cosmetic crossing changes of fibered knots

Bereitgestellt von | De Gruyter / TCS
Angemeldet | 212.87.45.97

Heruntergeladen am | 30.11.12 17:19



Here, using Theorem 5.2, we will show that if K 0 is assumed to be fibered, then we can have
a much stronger result.

Theorem 6.2. Suppose that K 0 is a fibered knot and that K is a knot such that K is

n-adjacent to K 0, for some n > 1. Then either K is isotopic to K 0 or we have gðKÞ > gðK 0Þ.

Remark 6.3. It is not hard to see that if K is n-adjacent to K 0, for some n > 1, then K

is m-adjacent to K 0, for all 0 < me n.

Suppose that K is n-adjacent to K 0 and let L be a collection of n crossing circles sup-
porting the set of generalized crossings that exhibit K as n-adjacent to K 0. Since the linking
number of K and every component of L is zero, K bounds a Seifert surface S in the com-
plement of L. Define

gL
n ðKÞ :¼ minfgenusðSÞ jS is a Seifert surface of K as aboveg:

We recall the following.

Theorem 6.4 (Theorem 3.1, [8]). We have

gL
n ðKÞ ¼ maxfgðKÞ; gðK 0Þg;

where gðKÞ and gðK 0Þ denote the genera of K and K 0, respectively.

Proof of Theorem 6.2. Let K 0 be a fibered knot. In view of Remark 6.3, it is enough
to prove that if K is a knot that is 2-adjacent to K 0, then either K is isotopic to K 0 or we
have gðKÞ > gðK 0Þ. To that end, suppose that K is exhibited as 2-adjacent to K 0 by a two
component crossing link L :¼ L1 WL2. Let D1, D2 be crossing discs for L1, L2, respectively.
Suppose, moreover, that gðKÞe gðK 0Þ; otherwise, there is nothing to prove. Let S be a
Seifert surface for K that is of minimal genus among all surfaces bounded by K in the com-
plement of L. As explained earlier in the paper, we can isotope S so that, for i ¼ 1; 2,
SX intðDiÞ is an arc, say ai, that is properly embedded in S. For i ¼ 1; 2, let Ki (resp. Si)
denote the knot (resp. the Seifert surface) obtained from K (resp. S) by changing Ci. Also
let K3 denote the knot obtained by changing C1 and C2 simultaneously and let S3 denote
the corresponding surface. By assumption, for i ¼ 1; 2; 3, Ki is isotopic to K 0 and Si is
a Seifert surface for Ki. Since gðKÞe gðK 0Þ, Theorem 6.4 implies that Si is a minimum
genus surface for Ki. Observe that K3 is obtained from K1 by changing C2 and that they
are fibered isotopic knots. Furthermore, S3 is obtained from S1 by twisting along the
arc a2 HS. By Theorem 5.2, L2 bounds an embedded disc D2 in the complement of K1.
Since S3 is incompressible, after an isotopy, we can assume that DXS3 ¼ j. Now let us
consider the 2-sphere

S2 :¼ DWD2:

By assumption, S2 XS3 consists of the arc a2 HS3. Since a1 and a2 are disjoint, the arc a1 is
disjoint from S2. But since K is obtained from K1 by twisting along a1, the circle L2 still
bounds an embedded disc in the complement of K. Hence, K is isotopic to K 0. r

Remark 6.5. The trefoil knot is 2-adjacent to the unknot. Since the trefoil is a fi-
bered knot, Theorem 6.2 implies that the unknot is not 2-adjacent to the trefoil. Thus
n-adjacency is not an equivalence relation on the set of knots.
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1–284.

[7] D. Gabai, Foliations and the topology of 3-manifolds II, J. Di¤. Geom. 26 (1987), 445–503.

[8] E. Kalfagianni and X.-S. Lin, Knot adjacency, genus and essential tori, Pacific J. Math. 228 (2006), no. 2,

251–276.

[9] E. Kalfagianni and X.-S. Lin, Knot adjacency and fibering, Trans. Amer. Math. Soc. 360 (2008), 3249–3261.

[10] R. Kirby, Problems in low-dimensional topology, in: Geometric Topology (Athens 1993), Proceedings of the

1993 Georgia International Topology Conference, Vol. 2, American Mathematical Society, Providence, RI

(1997), 35–473.

[11] M. Korkmaz and B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math.

Soc. 129 (2001), no. 5, 1545–1549.

[12] D. Kotschick, Quasi-homomorphisms and stable lengths in mapping class groups, Proc. Amer. Math. Soc.

132 (2004), no. 11, 3167–3175.

[13] M. Scharlemann and A. Thompson, Link genus and Conway moves, Comment. Math. Helv. 64 (1989),

527–535.

[14] M. Scharlemann and A. Thompson, Surgery on a knot in (Surface � I ), Algebr. Geom. Topol. 9 (2009),

1825–1835.

[15] I. Torisu, On nugatory crossings for knots, Topology Appl. 92 (1999), no. 2, 119–129.

[16] F. Waldhausen, On irreducible 3-manifolds which are su‰ciently large, Ann. Math. 87 (1968), 56–88.

Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA

e-mail: kalfagia@math.msu.edu

Eingegangen 20. April 2010, in revidierter Fassung 17. Januar 2011

164 Kalfagianni, Cosmetic crossing changes of fibered knots

Bereitgestellt von | De Gruyter / TCS
Angemeldet | 212.87.45.97

Heruntergeladen am | 30.11.12 17:19


