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This paper gives the first explicit, two-sided estimates on the cusp area of once-punc-

tured-torus bundles, 4-punctured sphere bundles, and two-bridge link complements.

The input for these estimates is purely combinatorial data coming from the Farey tes-

sellation of the hyperbolic plane. The bounds on cusp area lead to explicit bounds on

the volume of Dehn fillings of these manifolds, for example, sharp bounds on volumes of

hyperbolic closed 3-braids in terms of the Schreier normal form of the associated braid

word. Finally, these results are applied to derive relations between the Jones polynomial

and the volume of hyperbolic knots, and to disprove a related conjecture.

1 Introduction

Around 1980, Thurston proved that 3-manifolds with torus boundary decompose into

pieces that admit locally homogeneous geometric structures [57], and that in an ap-

propriate sense the most common such structure is hyperbolic [56]. By Mostow–Prasad

rigidity, a hyperbolic structure is unique for such a manifold, and thus the geometry of

a hyperbolic manifold ought to give a wealth of information to aid in its classification.
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2 D. Futer et al.

However, in practice it has been very difficult to determine geometric properties of a

hyperbolic manifold from a combinatorial or topological description.

In this paper, we address this problem for a class of 3-manifolds that we call

Farey manifolds: punctured-torus bundles, 4-punctured sphere bundles, and two-bridge

link complements. The combinatorial and geometric structure of these manifolds can be

neatly described in terms of the Farey tessellation of the hyperbolic plane. For each type

of Farey manifold, we use purely combinatorial data coming from this tessellation to

give the first explicit, two-sided estimates on the area of a maximal cusp.

The bounds on cusp areas lead to explicit bounds on the volume of Dehn fill-

ings of Farey manifolds. An example of such a Dehn filling is the complement of a

closed 3-braid. We bound the volumes of such manifolds, and in particular give sharp

bounds on volumes of hyperbolic closed 3-braids in terms of the Schreier normal form

of the associated braid word. These results are applied to derive relations between

the Jones polynomial and the volume of hyperbolic knots and to disprove a related

conjecture.

1.1 Cusp shapes and areas

In a finite-volume hyperbolic 3-manifold M, a horoball neighborhood of a torus bound-

ary component becomes a cusp, homeomorphic to T2 × [0,∞). Mostow–Prasad rigid-

ity implies that each cross-sectional torus T2 is endowed with a flat metric, or cusp

shape, that is determined up to similarity by the topology of M. When M has a sin-

gle torus boundary component, we may expand a horoball neighborhood until it meets

itself. This maximal horoball neighborhood completely determines a flat metric on the

torus, and one can measure lengths of curves and area on the torus using this metric.

We will refer to such a metric as a maximal cusp metric. Similarly, when a 3-manifold

has multiple cusps, a maximal horoball neighborhood is given by expanding a collec-

tion of horoball neighborhoods until none can be expanded further while keeping their

interiors disjoint. In the case of multiple cusps, the choice of horoball neighborhoods

is no longer unique. However, if we are required to expand the cusp neighborhoods in

a fixed order, this expansion recipe once again determines a collection of maximal cusp

metrics.

It is known, due to Nimershiem, that the set of similarity classes of tori that can

be realized as cusps of hyperbolic 3-manifolds is dense in the moduli space of 2-tori

[47]. However, in general it is not known how to determine the cusp shape of a manifold.

For simple manifolds, for example, those built out of a small number of ideal tetrahe-
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Cusp Areas of Farey Manifolds 3

dra, or links with a small number of crossings, Weeks’ computer program SnapPea will

determine shapes of cusps and maximal cusp metrics [58]. For other, larger classes of

3-manifolds, some bounds on cusp shape have been obtained. Aitchison, Lumsden, and

Rubinstein found cusp shapes of certain alternating links, but the metrics they used

were singular [5]. For non-singular hyperbolic metrics, Adams et al. found upper bounds

on the cusp area of knots, in terms of the crossing number of a diagram [3]. Purcell found

that for “highly twisted” knots, the lengths of shortest arcs on a maximal cusp metric are

bounded above and below in terms of the twist number of a diagram [49]. These results

were obtained using cusp estimates on a class of links called fully augmented links,

whose cusp shapes and lengths of slopes on maximal cusp metrics were also worked

out by Purcell [49] and Futer and Purcell [28].

In this paper, we prove explicit, readily applicable bounds on cusp shapes and

maximal cusp metrics of punctured-torus bundles and 4-punctured sphere bundles, as

well as of two-bridge knot complements. These manifolds have a natural ideal triangu-

lation, first discovered for punctured-torus bundles by Floyd and Hatcher [24], and later

studied by many others [6, 7, 30, 38]. One feature that makes these 3-manifolds particu-

larly attractive is that their geometry can be described in terms of the combinatorics of

the Farey tessellation of H2. Hence, we refer to these manifolds as Farey manifolds.

To state an example of our results in this direction, let M be a hyperbolic once-

punctured-torus bundle. The monodromy of M can be thought of as a conjugacy class

in SL2(Z). As such, it has a (unique up to cyclic permutation of factors) presentation of

the form

±
[

1 a1

0 1

][
1 0

b1 1

]
· · ·

[
1 as

0 1

] [
1 0

bs 1

]
,

where ai, bi are positive integers. The integer s is called the length of the monodromy.

Theorem 4.1. Let M be a punctured-torus bundle with monodromy of length s. Let C

be a maximal horoball neighborhood about the cusp of M. Then

16
√

3

147
s ≤ area(∂C ) < 2

√
3

v8

v3
s,

where v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . . is

the volume of a regular ideal octahedron.
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4 D. Futer et al.

Furthermore, if γ is a non-trivial simple closed curve on ∂C (i.e., any simple

closed curve that is transverse to the fibers), then its length �(γ ) satisfies

�(γ ) ≥ 4
√

6

147
s. �

The proof of Theorem 4.1 contains two main steps. First, we derive an estimate

for the size of horoballs in the universal cover of punctured-torus bundles (see Proposi-

tion 3.6). Then, we pack the cusp torus with the shadows of these horoballs.

Our estimate on horoball size should be compared with Jørgensen’s work on

quasifuchsian punctured-torus groups, which appears in a well-known but unfinished

manuscript [34]. A careful exposition of Jørgensen’s work was given by Akiyoshi,

Sakuma, Wada, and Yamashita [8]. Jørgensen’s results can be applied in our setting

to show that the universal cover of a punctured-torus bundle contains a number of

maximal horoballs whose size is bounded from below (see [34, Lemma 4.3] and [8,

Lemma 8.1.1]). Jørgensen conjectured the existence of a much better lower bound for

this horoball size; and indeed, our Proposition 3.6 improves Jørgensen’s lower bound

by a factor of more than 10. This improvement is very important in our setting, since a

ten-fold improvement in horoball size yields a 100-fold improvement in the cusp area

estimate. See the end of Section 3.3 for a more detailed discussion.

1.2 Cusp area and link diagrams

A closely related class of manifolds is complements of two-bridge links. Using similar

techniques, in this paper we are also able to bound the lengths of slopes on maximal

cusps in hyperbolic two-bridge links. Since all two-bridge links can be represented by

an alternating diagram, our results give further evidence for a conjectural picture of the

cusp shapes and maximal cusp metrics of alternating knots.

For general alternating knots and links, there is increasing evidence that the

cusp shape and maximal cusp metric ought to be bounded in terms of the twist num-

ber of a reduced diagram. We say that a link diagram is reduced if it does not con-

tain any crossings that separate the diagram: that is, any crossings in the projection

plane such that there is a simple closed curve meeting the diagram transversely in only

that crossing. Similarly, two crossings are said to be equivalent if there exists a simple

closed curve meeting the knot diagram transversely in those two crossings, disjoint from

the knot diagram elsewhere. The twist number is the number of equivalence classes of

crossings (called twist regions).
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Cusp Areas of Farey Manifolds 5

Conjecture 1.1. The area of a maximal cusp metric on an alternating knot is bounded

above and below by linear functions of the twist number of a reduced, alternating dia-

gram. Similarly, the length of the shortest non-meridional slope of an alternating knot

is bounded above and below by a linear function of the twist number of the diagram. �

We first became aware of this conjecture several years ago by viewing slides of

a talk by Thistlethwaite, in which he showed using SnapPea that the conjecture holds

for many simple alternating knots. Lackenby proved a close variant of the conjecture,

relating the twist number of a diagram to the combinatorial length of slopes [37]. How-

ever, Lackenby’s methods are purely combinatorial and cannot be applied to give the

geometric information of the conjecture.

In this paper, we prove the conjecture for two-bridge link complements. In par-

ticular, we show the following.

Theorem 4.8. Let K be a two-bridge link in S3, whose reduced alternating diagram has

twist number t. Let C be a maximal neighborhood about the cusps of S3
�K, in which

the two cusps have equal volume if K has two components. Then

8
√

3

147
(t − 1) ≤ area(∂C ) < 2

√
3

v8

v3
(t − 1).

Furthermore, if K is a knot, let γ be any non-trivial arc that starts on a meridian and

comes back to the same meridian (e.g., a non-meridional simple closed curve). Then its

length satisfies

�(γ ) ≥ 4
√

6
√

2

147
(t − 1). �

This result should be compared to that of Adams et al. [3], where they prove

upper bounds on cusp area in terms of the crossing number c of a knot. For al-

ternating knots, including two-bridge knots, they show that the cusp area satisfies

area(∂C ) ≤ 9c − 36 + 36/c. For those two-bridge knots whose diagrams have very few

crossings per twist region (in particular, when c/t < 1.39), the bound of Adams et al. is

sharper than the upper bound of Theorem 4.8. For more general two-bridge knots that

have more crossings per twist region, the upper bound of Theorem 4.8 is a significant

improvement. To the best of our knowledge, the lower bound of Theorem 4.8 does not

have any predecessors in the literature.
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6 D. Futer et al.

1.3 Applications to hyperbolic Dehn filling

The shapes of the cusps and their actual metrics give information not just on the

3-manifold itself, but also on the Dehn fillings of that manifold.

For example, modulo the geometrization conjecture, several theorems imply that

Dehn fillings on slopes of sufficient length yield hyperbolic manifolds (these are the 2π-

Theorem, due to Gromov and Thurston [13]; the 6-Theorem, due to Agol [4] and Lackenby

[37]; and the 7.515-Theorem, due to Hodgson and Kerckhoff [32]). When we combine these

theorems with the results on maximal cusp areas and slope lengths above, we find that

Farey manifolds with long monodromy admit no non-trivial Dehn fillings, where “long”

is explicit.

In particular, Bleiler and Hodgson [13] note that the work of Jørgensen [34]

combined with the 2π-Theorem implies that there is a constant N such that every non-

trivial Dehn filling of a punctured-torus bundle with monodromy length s > N gives a

hyperbolic 3-manifold. However, they remark on the lack of an explicit value for the

constant N. Now Theorem 4.1, coupled with the 6-Theorem, allows the estimate N ≤ 90.

More recently, the authors proved a result that bounds the volume of manifolds

obtained by Dehn filling along a slope of length at least 2π , in terms of the length of

that slope [25]. Thus, we may combine Theorem 4.1 with this recent result to estimate

the volumes of the manifolds obtained by Dehn filling. For example, if M is a punctured-

torus bundle with monodromy of length s > 94, then the length of any non-trivial slope

γ on the cusp of M (i.e., any slope transverse to the fibers) will be at least 2π . Then by

[25, Theorem 1.1], the volume of the manifold M(γ ) obtained by Dehn filling M along γ

will be bounded explicitly below. See Corollary 4.6.

One large class of examples obtained by Dehn filling 4-punctured sphere bundles

is the class of closed 3-braids, which has been extensively studied by others (see, e.g.,

Murasugi [45], Birman and Menasco [11]). In this paper, we classify the hyperbolic links

that are closed 3-braids (see Theorem 5.5), and obtain the first estimates on volumes of

these links.

To state these results, let σ1, σ2 denote the generators for B3, the braid group on

three strands, as in Figure 1. Let C = (σ1σ2)3. It is known, by work of Schreier [51], that

most 3-braids are conjugate to words of the form w = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 , where pi, qi

are all positive. In particular, all 3-braids with hyperbolic closures are of this form, as

we shall show in Theorem 5.5. Following Birman and Menasco [11], we call such braids

generic.

 by guest on O
ctober 20, 2010

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Cusp Areas of Farey Manifolds 7

1 σσ 2

Fig. 1. Braid group generators σ1 and σ2.

Theorem 5.6. Let K = ŵ be the closure of a generic 3-braid w = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

where C = (σ1σ2)3, and pi, qi are all positive. Suppose, furthermore, that w is not conju-

gate to σ
p

1 σ
q
2 for arbitrary p, q. Then K is hyperbolic, and

4v3 s − 277 < vol(S3
�K) < 4v8 s,

where v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 = 3.6638 . . . is

the volume of a regular ideal octahedron. Furthermore, the multiplicative constants in

both the upper and lower bounds are sharp. �

1.4 Volume and Jones polynomial invariants

The volume estimate of Theorem 5.6 has a very interesting application to conjectures on

the relationship of the volume to the Jones polynomial invariants of hyperbolic knots.

For a knot K, let

JK (t) = αKtm + βKtm−1 + . . . + β ′
Ktr+1 + α′

Ktr

denote the Jones polynomial of K. We will always denote the second and next-to-last

coefficients of JK (t) by βK and β ′
K , respectively.

The Jones polynomial fits into an infinite family of knot invariants: the colored

Jones polynomials. These are Laurent polynomial knot invariants Jn
K (t), n > 1, where

J2
K (t) = JK (t). The volume conjecture [36, 44] states that for a hyperbolic knot K,

2π lim
n→∞

log
∣∣Jn

K (e2πi/n)
∣∣

n
= vol(S3

�K),

where e2πi/n is a primitive nth root of unity. If the volume conjecture is true, then one

expects correlations between vol(S3
�K) and the coefficients of Jn

K (t), at least for large

values of n. For example, for n 	 0 one would have

vol(S3
�K) < C ||Jn

K ||,
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8 D. Futer et al.

where ||Jn
K || denotes the sum of absolute values of the coefficients of Jn

K (t) and C is a

constant independent of K. At the same time, several recent results and much experi-

mental evidence [18, 22, 25, 26] actually indicate that there may be a correlation between

vol(S3�K) and the coefficients of the Jones polynomial itself. These results prompt the

following question.

Question 1.2. Do there exist constants Ci > 0, i = 1, . . . , 4, and a function BK of the

coefficients of JK (t), such that all hyperbolic knots satisfy

C1 BK − C2 < vol(S3
�K) < C3 BK + C4? (1)

�
Dasbach and Lin [22] showed that for alternating knots, Equation (1) holds

for BK := |βK | + ∣∣β ′
K

∣∣. They also presented experimental evidence suggesting linear

correlations between |βK | + ∣∣β ′
K

∣∣ and the volume of non-alternating knots; their data are

based on knots with a low number of crossings. The authors of the current paper have

shown that the same function works for several large families in the class of adequate

knots, which are a vast generalization of alternating knots [25, 26]. In fact, Dasbach and

Lin [21] and Stoimenow [54] showed that for adequate knots, the second and next-to-last

coefficients of the colored Jones polynomial Jn
K (t) are independent of n, equal to those

of the Jones polynomial JK (t). So these results establish strong versions of relations

between volume and coefficients of the colored Jones polynomials for these knots, as

predicted by the volume conjecture. This led to some hope that not only would Question

1.2 be answered in the affirmative, but also that BK = |βK | + ∣∣β ′
K

∣∣ could always work in

Equation (1).

In this paper, we show that a slightly modified function, involving the first two

and the last two coefficients of the Jones polynomial, satisfies Equation (1) for hyper-

bolic closed 3-braids. Building on Theorem 5.6, we prove the following.

Theorem 6.6. Let K be a hyperbolic closed 3-braid. From the Jones polynomial JK (t),

we define ζK , ζ ′
K as follows. Let

ζK =
{

βK , if |αK | = 1

0, otherwise
and ζ ′

K =
{

β ′
K , if

∣∣α′
K

∣∣ = 1

0, otherwise.

Define ζ = max
{|ζK |, ∣∣ζ ′

K

∣∣}. Then

4v3 · ζ − 281 < vol(S3
�K) < 4v8 (ζ + 1).
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Cusp Areas of Farey Manifolds 9

Furthermore, the multiplicative constants in both the upper and lower bounds

are sharp. �

We remark that the quantity ζ = max
{|ζK |, ∣∣ζ ′

K

∣∣}, as defined in Theorem 6.6, will

also serve to estimate the volumes of alternating links, sums of alternating tangles, and

highly twisted adequate links. In other words, this quantity estimates the volume of

every family of knots and links where the volume is known to be bounded above and

below in terms of the Jones polynomial. The quantity ζ depends only on the first two

and last two coefficients of JK (t), and can be taken as positive evidence for Question

1. On the other hand, we also show that no function of βK and β ′
K alone can satisfy

Equation (1) for all hyperbolic knots.

Theorem 6.8. There does not exist a function f(·, ·) of two variables, together with con-

stants Ci > 0, i = 1, . . . , 4, such that

C1 f(βK , β ′
K ) − C2 < vol(S3

�K) < C3 f(βK , β ′
K ) + C4

for every hyperbolic knot K. In other words, the second and next-to-last coefficients of

the Jones polynomial do not coarsely predict the volume of a knot. �

Theorem 6.8 relies on two families of examples: adequate Montesinos knots and

closed 3-braids. For both of these families, Stoimenow found upper bounds on volume

in terms of outer coefficients of the Jones polynomial [54]. While Theorem 6.8 implies

that Equation (1) cannot hold for any function of βK and β ′
K alone, there might still be

an affirmative answer to Question 1 that uses other coefficients.

1.5 Organization

We begin by discussing Farey manifolds. In Section 2, we describe the canonical tri-

angulations of the three families of Farey manifolds. In Section 3, we show that

the universal cover of one of these manifolds must contain a number of maximal

horospheres whose size is bounded below. This leads to the cusp area estimates of

Section 4.

The later sections give applications of these cusp area estimates. In Section 5,

we apply the results on cusp area to estimate the volumes of closed 3-braids. Finally, in

Section 6, we combine this with a discussion of Jones polynomials.
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10 D. Futer et al.

2 The Canonical Triangulation of a Farey Manifold

In this section, we review the canonical triangulations of Farey manifolds. We begin by

recalling the definition of the Ford domain and the canonical polyhedral decomposition

that is its dual. We then describe the combinatorics of the canonical polyhedral decom-

position for each of the three families of Farey manifolds; for the manifolds in question,

it is always a triangulation. Along the way, we introduce a number of terms and notions

that will be needed in the ensuing arguments.

2.1 The Ford domain and its dual

For a hyperbolic manifold M with a single cusp, expand a horoball neighborhood about

the cusp. In the universal cover H
3, this neighborhood lifts to a disjoint collection

of horoballs. In the upper half-space model for H
3, we may ensure that one of these

horoballs is centered on the point at infinity. Select vertical planes in H
3 that cut out a

fundamental region for the action of the Z × Z subgroup of π1(M) that fixes the point at

infinity. The Ford domain is defined to be the collection of points in such a fundamental

region that are at least as close to the horoball about infinity as to any other lift of the

horoball neighborhood of the cusp.

The Ford domain is canonical, except for the choice of fundamental region of

the action of the subgroup fixing infinity. It is a finite-sided polyhedron, with one ideal

vertex. The faces glue together to form the manifold M.

If the manifold M has several cusps, the above construction still works, but is

less canonical. Once one chooses a horoball neighborhood of each cusp, as well as a

fundamental domain for each cusp torus, the nearest-horoball construction as above

produces a fundamental domain for M. This fundamental domain is a disjoint union of

finite-sided polyhedra, with one polyhedron for each cusp of M and one ideal vertex per

polyhedron. We refer to this fundamental domain as a Ford domain determined by the

choice of horoball neighborhood.

Dual to the Ford domain is a decomposition of M into ideal polyhedra. This

decomposition, first studied by Epstein and Penner [23], is canonically determined by

the relative volumes of the cusp neighborhoods. In particular, if M has only one cusp,

the decomposition dual to the Ford domain is completely canonical. We refer to it as the

canonical polyhedral decomposition.

One of the few infinite families for which the canonical polyhedral decomposi-

tion is completely understood is the family of Farey manifolds. For once-punctured-torus

bundles and 4-punctured sphere bundles, the combinatorial structure of this ideal tri-
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Cusp Areas of Farey Manifolds 11

angulation was first described by Floyd and Hatcher [24]. Akiyoshi [6] and Lackenby [38]

gave distinct and independent proofs that the combinatorial triangulation is geometric-

ally canonical, that is, dual to the Ford domain. Guéritaud used the combinatorics of

the triangulation to determine by direct methods those punctured-torus bundles that

admit a hyperbolic structure [31]; he also reproved that the Floyd–Hatcher triangulation

is canonical [30].

For two-bridge link complements, the analog of the Floyd–Hatcher triangulation

was described by Sakuma and Weeks [50]. Following Guéritaud’s ideas, Futer used this

triangulation to find a hyperbolic metric for all the two-bridge link complements that ad-

mit one [31, Appendix]. Akiyoshi, Sakuma, Wada, and Yamashita [7] and (independently)

Guéritaud [30] showed that the Sakuma–Weeks triangulation is geometrically canonical.

For all of the Farey manifolds, our exposition below follows that of Guéritaud and Futer,

and we refer the reader to reference [31] for more details.

2.2 Once-punctured-torus bundles

Let Vϕ be a hyperbolic punctured-torus bundle with monodromy ϕ. The mapping class

group of the punctured torus is isomorphic to SL2(Z). By a well-known argument that

we recall below, either ϕ or −ϕ is conjugate to an element of the form

� = Ra1 Lb1 · · · Ras Lbs ,

where ai, bi are positive integers, and R and L are the matrices

R :=
[

1 1

0 1

]
, L :=

[
1 0

1 1

]
.

Moreover, � is unique up to cyclic permutation of its letters.

By projecting ϕ down to P SL2(Z) ⊂ I som(H2), we may view the matrix ±ϕ as an

isometry of H
2 in the upper half-plane model, where the boundary at infinity of H

2 is

R ∪ {∞}. Then the slopes of the eigenvectors of ϕ are the fixed points of its action on

H2.

Now, subdivide H
2 into ideal triangles, following the Farey tessellation F . In this

tessellation, every vertex is a rational number (or ∞) in ∂H2. Each such vertex corres-

ponds to a slope on the punctured torus T , that is, an isotopy class of arcs running from

the puncture to itself. Two vertices are connected by an edge in F if and only if the

corresponding arcs can be realized disjointly. Thus, an ideal triangle of F corresponds
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12 D. Futer et al.

Fig. 2. Copies of ideal tetrahedra in the cover (R2
�Z

2) × R of T × R.

to a triple of disjoint arcs, which gives an ideal triangulation of T . The monodromy ϕ

naturally acts on F .

There is an oriented geodesic γϕ running from the repulsive fixed point of ϕ to

its attractive fixed point. This path crosses an infinite sequence of triangles of the Farey

graph (. . . , t−1, t0, t1, t2, . . . ). We can write down a bi-infinite word corresponding to ϕ,

where the kth letter is R (resp. L) if γϕ exits the kth triangle tk to the right (resp. left)

of where it entered. This bi-infinite word will be periodic of period m, where m is some

integer such that t0 is taken by ϕ to tm. Then letting � be any subword of length m, and

substituting the matrices above for R and L, we find that ±� is conjugate to ϕ.

Next, we review the relation between the word � and the triangulation of Vϕ .

The path γϕ through the Farey graph determines a sequence of triangulations of the

punctured torus T . Every time γϕ crosses an edge e ⊂ F , moving from one triangle of

F to an adjacent triangle, we change one ideal triangulation of T (call it τ−(e)) into a

different ideal triangulation τ+(e), replacing a single edge with another. In other words,

we are performing a diagonal exchange in a quadrilateral of T . This diagonal exchange

determines an ideal tetrahedron 
(e) as follows. The boundary of the tetrahedron is

made up of two pleated surfaces homotopic to T , with triangulations corresponding to

τ−(e) and τ+(e). These two pleated surfaces are glued together along the two edges in T

where τ−(e) and τ+(e) agree. The result is an ideal tetrahedron. See Figure 2.

If γϕ crosses the edges ei, ei+1, then we may glue 
(ei) to 
(ei+1) top to bot-

tom, since τ+(ei) = τ−(ei+1). Thus, γϕ determines a bi-infinite stack U of tetrahedra. U is

homeomorphic to T × R, and there is an orientation-preserving homeomorphism � of U ,

taking the ith tetrahedron to the (i + m)th tetrahedron, acting as ϕ on T . The quotient

U/� is homeomorphic to Vϕ , and gives a triangulation of Vϕ into mideal tetrahedra. This

is the Floyd–Hatcher triangulation of Vϕ , also called the monodromy triangulation.
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R

L

R
R
R

R
L
L
L
L

Fig. 3. Zigzags on the boundary torus of a punctured-torus bundle. The pleated surfaces in this

figure correspond to a subword RL4 R4L ⊂ �.

We summarize the discussion above as follows.

(1) The monodromy ϕ of the bundle is conjugate to a word

� = ±Ra1 Lb1 · · · Ras Lbs .

(2) Each letter R or L corresponds to a triangle in the Farey tessellation of H
2.

(3) Each letter R or L corresponds to a pleated surface homotopic to T , pleated

along arcs whose slopes are the vertices of the corresponding triangle of the

Farey graph. This pleated surface forms the boundary between two tetrahe-

dra of the canonical triangulation of Vϕ .

Definition 2.1. Let � = ±Ra1 Lb1 . . . Ras Lbs . A syllable of � is defined to be a subword Rai

or Lbi . That is, a syllable is a maximal string of R’s or L’s in the word �. �

A punctured-torus bundle is a manifold with a single torus boundary component.

It is often convenient to work with the universal cover H
3 of the bundle, seen as the

upper half-space model, with the boundary lifting to the point at infinity in this model.

Each of the pleated surfaces corresponding to the letters R and L will lift to H
3. Their

intersection with the boundary of a maximal cusp gives a triangulation of the boundary

which is well understood. In particular, these intersections give a collection of zigzags

that determine a triangulation of the boundary with combinatorics specified by the word

�. See Figure 3.
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14 D. Futer et al.

Definition 2.2. A zigzag is defined to be the lift of one of the pleated surfaces corres-

ponding to R or L to the universal cover H
3, with the cusp lifting to infinity. �

Note that in pictures of zigzags, as in Figure 3, the vertices of the zigzag corre-

spond to edges in H
3 along which these zigzags meet. To distinguish separate zigzags,

it is conventional to split them apart at the vertices. (In the manifold M, a sequence of

pleated surfaces corresponding to a syllable of � will meet along a single edge. Thus, in

a more topologically accurate but less enlightening picture, one would collapse together

the split-apart vertices in Figure 3. See also [31, Figure 4].)

Akiyoshi [6], Lackenby [38], and Guéritaud [30] have independently proved that

this triangulation is geometrically canonical, that is, dual to the Ford domain. As a re-

sult, each edge of the triangulation runs through the geometric center of a face of the

Ford domain. (More precisely, each face of the Ford domain lifts to a hemisphere in

H
3, and each edge of the triangulation runs through the geometric center of the hemi-

sphere.) Thus, when viewed from infinity, the “corners” of the zigzag lie over centers of

hemispheres projecting to faces of the Ford domain. We will use this extensively below.

See, for example, Figure 8 below.

2.3 4-punctured sphere bundles

Consider the universal abelian cover X := R
2
�Z

2 of the punctured torus, and define the

following transformations of X:

α(x, y) = (x + 1, y), β(x, y) = (x, y + 1), σ (x, y) = (−x,−y).

Then one obtains the punctured torus as T = X/〈α, β〉 and the 4-punctured sphere as

S = X/〈α2, β2, σ 〉. Both S and T are covered by the 4-punctured torus R = X/〈α2, β2〉. Then

the action of SL2(Z) on T lifts to an action on X, and descends to an action on both R

and S. As a result, every hyperbolic punctured-torus bundle M is commensurable with

a hyperbolic 4-punctured sphere bundle N, whose monodromy can be described by the

same word �. The common cover is a 4-punctured-torus bundle P . In Figure 2, we see

lifts of two pleated surfaces to the common cover.

The 4-punctured sphere bundle N can have anywhere from one to four cusps,

depending on the action of its monodromy on the punctures of S. Thus, for the purpose

of discussing Ford domains, it is important to choose the right horoball neighborhood

of the cusps. Unless stated otherwise (e.g., in Theorem 4.7), we shall always choose the
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cusp neighborhood in N that comes from lifting a maximal cusp of the correspond-

ing punctured-torus bundle M to the 4-punctured-torus bundle P , and then projecting

down to N. We call this the equivariant cusp neighborhood of a 4-punctured sphere

bundle.

By lifting the canonical monodromy triangulation of M to P , and projecting down

to N, we obtain the layered monodromy triangulation of a 4-punctured sphere bundle.

Every tetrahedron 
(e) of this triangulation lifts to a layer of four tetrahedra in P , and

projects down to a layer of two tetrahedra in N. (See [31, Figure 16].) This triangulation is

still geometrically canonical: it is dual to the Ford domain determined by the equivariant

cusp neighborhood. We refer to this Ford domain as an equivariant Ford domain. In

particular, it still makes sense to talk about “syllables,” “zigzags,” etc. in relation to 4-

punctured sphere bundles. Note that because of the rotational action of σ , a loop around

a puncture of the fiber will only cross three edges in zigzag of N, instead of six edges as

in a zigzag of the punctured-torus bundle M.

Definition 2.3. In a punctured-torus bundle M or a 4-punctured sphere bundle N, call

the loop about a puncture of the fiber the meridian of the corresponding manifold. We

shall denote the length of a meridian in a maximal cusp of a punctured-torus bundle

M by 2μ. With this convention, the meridian of the corresponding 4-punctured sphere

bundle N will have length μ in a maximal equivariant cusp. �

In the discussion of the geometry below, we will switch between descriptions

of 4-punctured sphere bundles and punctured tori, depending on which leads to the

simplest discussion. Because of the covering property, results on the geometry of the

universal cover will apply immediately to both types of manifolds.

2.4 Two-bridge links

If a 4-punctured sphere bundle N is cut along a pleated fiber S, the result is a manifold

homeomorphic to S × I , equipped with an ideal triangulation. To recover N, we reglue

the top of this product region S × I to the bottom along faces of this triangulation.

Meanwhile, the complement of a two-bridge link K also contains a product region S × I :

namely, the complement of the 4-string braid that runs between the minima and maxima

in a diagram of K. It turns out that the combinatorics of this braid once again defines a

layered triangulation of the product region, and that a particular folding of the top and

bottom faces of S × I yields the canonical triangulation of S3
�K.
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16 D. Futer et al.

(a) (b)

Fig. 4. (a) An alternating braid between two pillowcases, described by the word � = R3L2 R.

(b) The corresponding two-bridge link K(�).

A 4-punctured sphere S can be viewed as a square pillowcase with its corners

removed. Consider two such nested pillowcases, with an alternating 4-string braid run-

ning between them, as in Figure 4(a). The combinatorics of this braid, as well as of the

complementary product region S × I , may be described by a (finite) monodromy word

of the form � = Rp1 Lq1 . . . Rps Lqs , as above, where the pi, qi are all positive, except p1

and qs are non-negative. Each syllable Rpi or Lqi determines a string of crossings in a

vertical or horizontal band, corresponding to a twist region in which two strands of

the braid wrap around each other pi times. To complete this picture to a link diagram,

we connect two pairs of punctures of the outside pillowcase together with a crossing,

and connect two pairs of punctures of the inside pillowcase together with a crossing, as

in Figure 4(b). This creates an alternating diagram of a two-bridge link K(�). It is well

known that any two-bridge link can be created in this manner (see, e.g., Murasugi [46,

Theorems 9.3.1 and 9.3.2]).

Just as in Sections 2.2 and 2.3 above, the monodromy word � describes a layered

ideal triangulation of the product region S × I . To form a 4-punctured sphere bundle,

one would glue the outer pillowcase S1 to the inner pillowcase Sc. To obtain a two-bridge

link complement, we fold the surface S1 on to itself, identifying its four ideal triangles

in pairs. (See [31, Figure 17].) We perform the same folding for the interior pillowcase Sc.

This gives the desired canonical triangulation of S3
�K(�).

Now consider the combinatorics of the cusp triangulation. The pleated surfaces

between S1 and Sc are 4-punctured spheres with combinatorics identical to that of

the 4-punctured sphere bundle with the same monodromy. The universal cover of the

product region looks like a stack of zigzags, as in Figure 3. (Just as with 4-punctured

sphere bundles, a meridian of K crosses three edges of a zigzag—so Figure 3 shows two

meridians.) The folding along S1 and Sc creates “hairpin turns,” as in [31, Figure 19].
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Note that when K is a two-component link, we shall always choose the two cusp

neighborhoods of K to have equal volume, following the same principle as in Section

2.3. This equivariant cusp neighborhood is the one whose Ford domain is dual to the

layered triangulation described above. Also, because the symmetry group of K inter-

changes the two cusps, it does not matter which cusp we look at in the calculations of

Section 3.

Finally, it is worth remarking that every surface Si, lying between two layers of

tetrahedra, is a bridge sphere for the link K, and is thus compressible in S3
�K. Despite

being compressible, Si can nevertheless be realized as a pleated surface in the geometry

of S3
�K. With the exception of the folded surfaces S1 and Sc, every other pleated Si is

embedded, and carries the same geometric information as the incompressible fiber in a

4-punctured sphere bundle.

3 Geometric Estimates for Ford Domains

This section contains a number of geometric estimates on the Ford domains of Farey

manifolds. We begin with a few estimates (Lemmas 3.1–3.3) that apply to all triangulated

cusped hyperbolic manifolds, and are generally known to hyperbolic geometers. We then

restrict our attention to Farey manifolds, and establish several estimates about their

Ford domains. The main result of this section is Proposition 3.6: every zigzag contains

an edge whose length outside a maximal cusp is universally bounded.

3.1 Estimates for triangulated hyperbolic 3-manifolds

Recall from Section 2.1 that the Ford domain of a cusped hyperbolic manifold M is a

union of finite-sided polyhedra, with one ideal vertex for each cusp of M. Consider those

faces of the Ford domain which do not meet an ideal vertex. These consist of points that

are equidistant from two or more lifts of a cusp into H
3. Each such face is the portion of

a geodesic plane in H
3 which can be “seen” from infinity. That is, the geodesic planes are

Euclidean hemispheres centered on points of C (here we are considering the boundary

at infinity of H
3 to be C ∪ {∞}), of some Euclidean radius. These overlap to cover all of

C. Looking down from infinity, one sees portions of these Euclidean spheres. These are

the faces. The intersections of two adjacent faces give edges. The intersections of edges

are vertices.

These faces of the Ford domain glue together in pairs. Each pair of faces consists

of two hemispheres with identical Euclidean radii, which glue together by some isom-

etry of H
3. In fact this isometry can be taken to be a reflection in the face of the Ford
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18 D. Futer et al.

domain, followed by a Euclidean reflection (i.e., reflection in the vertical plane that is

the perpendicular bisector of the geodesic connecting centers of the two hemispheres),

followed by a rotation. See, for example, Maskit’s book [41, Chapter IV, Section G].

We will be interested in the sizes of the radii, as well as distances between

centers of the Euclidean hemispheres that give the faces of the Ford domain. For

our applications, the cell decomposition dual to the Ford domain is always an actual

triangulation, hence we shall talk about triangles and tetrahedra.

Now, suppose S1 and S2 are two adjacent faces, which are Euclidean hemispheres

of radius R1 and R2, respectively, and whose centers are Euclidean distance D apart.

Lemma 3.1. R1, R2, and D as above satisfy the triangle inequality:

R1 + R2 > D, R2 + D > R1, D + R1 > R2. �

Proof. If D ≥ R1 + R2, the two faces S1 and S2 do not meet, contradicting the fact that

they are adjacent.

If R2 + D < R1, then the hemisphere S2 lies completely inside the region bounded

by the complex plane and the hemisphere S1. Thus, S2 cannot be a face of the Ford

domain. This is a contradiction. By a symmetric argument, D + R1 > R2. �

Now consider the geometric dual of the Ford domain, which we will assume is an

actual triangulation. In the universal cover, this dual is given by taking an ideal vertex

at the center of each Euclidean hemisphere face of the Ford domain, and one at infinity.

There is one edge for each hemisphere face of the Ford domain: a geodesic running from

infinity down to the center of the hemisphere. For each intersection of two faces of the

Ford domain, there is a 2-cell. By assumption, when we project to the manifold these

2-cells become ideal triangles. Similarly, the intersection of three adjacent faces is dual

to a 3-cell which projects to an ideal tetrahedron. Finally, note the geometric dual may

not be realized as a combinatorial dual since, for example, the top of a face S of the Ford

domain may be covered by another face of the Ford domain, and thus the geodesic dual

to S will run through this other face in the universal cover before meeting S. However,

this will not affect our arguments below.

As above, let S1 and S2 denote adjacent faces of the Ford domain, which are Eu-

clidean hemispheres of radius R1 and R2, respectively, and whose centers are Euclidean

distance D apart. Let S′
1 and S′

2 denote the faces that glue to S1 and S2, respectively. So

S′
1 and S′

2 are Euclidean hemispheres of radius R1 and R2 in the universal cover.
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Because S1 is adjacent to S2, we may consider the 2-cell which is the geometric

dual of their intersection. By assumption, this is an ideal triangle in the manifold M. One

edge of this triangle is dual to S1 and its paired face S′
1. We take a lift to H3 such that

this edge runs from infinity straight down the vertical geodesic with endpoints infinity

and the center of S1. When it meets S1, it is identified with the corresponding point (at

the center) of S′
1, and then runs up the vertical geodesic from the center of S′

1 to infinity.

Another edge is dual to S2 and S′
2, and can be seen in H

3 similarly.

This triangle will have a third edge, by assumption, dual to a pair of faces S3 and

S′
3. Here S3 will be a sphere adjacent to S′

1, and S′
3 will be a sphere adjacent to S′

2.

Lemma 3.2.

(a) The radius of the spheres S3 and S′
3 is R1 R2/D.

(b) The distance between the center of S3 and the center of S′
1 is R2

1/D.

(c) The distance between the center of S′
3 and the center of S′

2 is R2
2/D. �

Proof. Consider the universal cover. The isometry gluing S1 to S′
1 takes the point on C at

the center of S1 to infinity. It therefore takes the third edge of the triangle, which lifts to

a geodesic in H
3 running from the center of S1 to the center of S2, to a geodesic running

from infinity down to the center of S3.

We may assume without loss of generality that the center of S1 is 0 and the center

of S2 is D. The isometry taking S1 to S′
1 is an inversion in S1, followed by a Euclidean

reflection and rotation [41]. Since Euclidean reflection and rotation do not affect radii of

hemispheres or distance on C, the lengths are given by determining the corresponding

lengths under the inversion in S1.

Note under this inversion, D maps to R2
1/D, proving part (b). A symmetric argu-

ment, reversing the roles of S1 and S2, gives part (c).

Finally, to show that the size of the radius is as claimed, consider the point

of intersection of S1 and S2 which lies over the real line. It has coordinates (x, 0, z),

say. Since this is a point on S1, it will be taken to itself under the inversion. However,

this point is on the edge of the Ford domain where the three faces S1, S2 and S3 meet.

Thus, it will also lie on S3 after the inversion. So to find the radius of S3, we only need

to determine the Euclidean distance between this point of intersection (x, 0, z) and the

center (R2
1/D, 0, 0) of S3.

The square of this distance is x2 − 2xR2
1/D + z2. Using the fact that x2 + z2 = R2

1

(since (x, 0, z) lies on S1), we simplify this formula to R2
1/D2(D2 − 2Dx + R2

1). Now using
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the fact that (x, 0, z) lies on S2, we know x2 − 2Dx + D2 + z2 = R2
2, or R2

1 − 2Dx + D2 = R2
2.

Hence, the square of the radius is R2
1 R2

2/D2. �

Finally, we prove a general estimate about the lengths of edges that are not dual

to the Ford domain.

Lemma 3.3. Let e be a geodesic from cusp to cusp in a hyperbolic manifold M. Fix

a choice of horoball neighborhoods. If e is not an edge of the canonical polyhedral

decomposition (with respect to this horoball neighborhood), then the length of e is at

least ln(2). �

Proof. Suppose not. Suppose there exists a geodesic from cusp to cusp which is not

a canonical edge yet and has length less than ln(2). Lift to H
3. The geodesic lifts to a

geodesic γ . Conjugate such that one endpoint of γ is infinity, and such that the horo-

sphere of height 1 about infinity projects to the cusp. Then the other endpoint of γ runs

through a horosphere H of diameter greater than 1/2.

The set of all points equidistant from H and from the horosphere about infinity

is a hemisphere S of radius at least 1/
√

2. This is not a face of the Ford domain, hence

there must be some face of the Ford domain Fr of radius r, say, which overlaps the

highest point of S. Thus, 1/
√

2 < r ≤ 1, and the distance d between the center of Fr and

the center of S is at most
√

r2 − 1/2.

On the other hand, there must be a horosphere under the hemisphere Fr of diam-

eter r2. The distance d between the center of the horosphere of diameter r2 and that of

diameter 1/2 is at least r/
√

2, with equality when the two horospheres are tangent.

Then we have

r√
2

≤ d ≤
√

r2 − 1

2
.

This is possible only when r = 1 and d = 1/
√

2. However, in that case the highest point

of S will not be overlapped by Fr . �

3.2 Parameterization by radii of Ford domain faces

We now restrict our attention to the case of Farey manifolds. Suppose, for the moment,

that M is a punctured-torus bundle. Consider one zigzag of M; this is a punctured torus

T . From the canonical triangulation on M, T inherits a triangulation. Edges are dual to
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Fa Fb Fab F '
a F '

b F '
ab

a2b21 1 b2 a2

Fig. 5. Euclidean distances in the universal cover of a zigzag. The translation from the left-most

to the right-most edge represents one meridian in a punctured torus, or two meridians in a

4-punctured sphere.

faces of the Ford domain of M. Since T is a punctured torus, there are only three edges

in a triangulation of T , and two triangles. Thus, the zigzag of T meets six hemispheres

of the Ford domain, which are identified in pairs. See Figure 5.

Let Fa be a face of the Ford domain whose radius is largest among the faces dual

to the pleating locus of T . (In other words, Fa is dual to the edge of the pleating that

is shortest outside the maximal cusp.) Conjugate H
3 such that the distance between the

center of Fa and the center of the nearest adjacent face of the Ford domain to the right

(Fb, say) is 1. Let a denote the radius of Fa, b the radius of Fb.

By Lemma 3.2, the other circle of the Ford domain which is met by T has radius

ab. Call this face Fab. By following the triangulation of a once-punctured torus, we see

that the Euclidean lengths between centers of horospheres must be as in Figure 5.

This parameterization for a pleated punctured torus extends easily to

4-punctured spheres. In an ideal triangulation of a 4-punctured sphere S, there

are six edges and four ideal triangles—double the complexity above. However, recall

that we have chosen the cusp neighborhoods and the canonical triangulation equiv-

ariantly. As a result, the zigzag of S will look the same when viewed from each cusp.

When viewed from any puncture of S, the zigzag crosses three faces of the Ford domain,

whose radii will be a, b, and ab.

We are interested in the sizes of horospheres at the bottom of each edge in

Figure 5.

Lemma 3.4. Suppose that when we lift to H3, the maximal cusp of M lifts to a horo-

sphere at height h, while the zigzag has Euclidean distances and radii as above. Then

the distances between horospheres along the edges dual to Fa, Fb, and Fab are 2 log(h/a),

2 log(h/b), and 2 log(h/(ab)), respectively.
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Thus if we conjugate again such that the maximal cusp of M lifts to

a horosphere of height 1, then we see horospheres of diameter a2/h2, b2/h2, and a2b2/h2,

respectively. �

Proof. Recall that the face Fa is equidistant from the horosphere of height h about

infinity and another horosphere which lies under Fa. Thus, the distance between the

face Fa and the horosphere below it must equal the distance between the face of radius a

and the horosphere of height h above it. Thus, the distance between the two horospheres

is 2 log(h/a).

Now, if we conjugate such that the maximal cusp of M lifts to a horosphere of

height 1, we do not change hyperbolic lengths, so the distance between horospheres

is still 2 log(h/a). But now, if the diameter of the horosphere centered on C is d, this

implies log(1) − log(d) = 2 log(h/a), or d = a2/h2.

The argument is the same for horospheres under Fb and Fab. �

By Lemma 3.4, the largest horosphere has diameter the maximum of a2/h2,

b2/h2, and a2b2/h2. But we chose Fa so that a was the maximum of a, b, and ab. So

the largest horosphere has diameter a2/h2.

To improve estimates, we may use the fact that faces of the Ford domain meet

in a certain pattern in the three-dimensional manifold M as well as in the surface S.

We will need the following lemma about angles between faces of the Ford domain. This

lemma was first observed in a slightly different form by Guéritaud [30, Page 29].

Lemma 3.5. Let FA, FB , FC , and FE be faces of the Ford domain corresponding to a

single zigzag, with FA adjacent to FB , FB to FC , and FC to FE . Suppose also that FA, FB ,

and FC are dual to a canonical tetrahedron. Denote by A the Euclidean radius of the

hemisphere FA (which is also the radius of FE ), and denote by C the Euclidean radius of

FC . Denote the distance between the centers of FE and FC by D. Let α denote the angle

between the line segments from the center of FB to the center of FC , and from the center

of FB to the center of FA. Then the angle α satisfies

cos α >
A4 + C 4 + D4 − 2A2 D2 − 2C 2 D2

2A2C 2 . �

Proof. Note that α is the dihedral angle of a tetrahedron in the canonical triangulation.

That tetrahedron is dual to the point of intersection of faces FA, FB , and FC . The key fact

that we will use is that these three faces must overlap.
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(a)

β

FB FA

C(β )

(b)

C(β )

FB FA

β

Fig. 6. (a) The circles of FA, FB , C (β). (b) The value of β for which the faces meet in a single point.

Consider the circles given by the points where the spheres of FA and FB meet

the boundary at infinity. We will abuse notation and call these circles FA and FB .

Consider a third circle C (β) with radius C such that the line between the center of

this circle and the center of FB makes an angle β with the line between the cen-

ter of FB and the center of FA. When β = α, this circle C (β) is the circle of FC . See

Figure 6(a).

However, we want to consider varying β. The angle β can lie anywhere in the in-

terval (0, π). For large β, the circle C (β) may not meet FA. We can decrease β until these

two circles overlap. Since FA, FB , and FC are dual to a tetrahedron of the canonical trian-

gulation, when β = α, C (α) and FA must overlap enough that the interiors of the regions

bounded by these circles and by FB intersect non-trivially. Thus, α must be strictly less

than the value of β for which the three circles meet in a single point. We will find this

value of β. See Figure 6(b).

Now, given the distance D and the radii A and C , we can compute all the other

distances and radii of the zigzag, using Lemma 3.2. In particular, the radius of FB is

AC/D. The distance between centers of FA and FB is A2/D, and the distance between the

centers of FB and FC is C 2/D.

Without loss of generality, suppose FB has center (0, 0), and FA has center

(A2/D, 0). Here we are writing points in C as points in R
2. Then the center of C (β) is

((C 2/D) cos β, (C 2/D) sin β).

The value of β for which the three circles meet in a single point will be deter-

mined as follows. The circles of FA and of FB intersect in two points which lie on a line

�AB between the circles. Similarly, the circles of FB and of C (β) intersect in two points

which lie on a line �BC . Notice that the three circles meet in a single point exactly when

the lines �AB and �BC intersect in a point which lies on the circle of FB . We therefore

compute these lines and their intersection.
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The line �AB is given by the intersection of the circles (x − A2/D)2 + y2 = A2, and

x2 + y2 = (AC/D)2. This has equation:

x = A2 + C 2 − D2

2D
.

Similarly, the line �BC has equation:

(cos β)x + (sin β)y = A2 + C 2 − D2

2D

Their intersection is therefore the point

(
A2 + C 2 − D2

2D
,

A2 + C 2 − D2

2D

(
1 − cos β

sin β

))
. (2)

We want this point to lie on the circle x2 + y2 = (AC/D)2. Plugging the point (2)

into the equation of the circle, we find β satisfies

(
A2 + C 2 − D2

2D

)2 (
1 +

(
1 − cos β

sin β

)2
)

= A2C 2

D2 ,

which simplifies to

2

1 + cos β
=

(
2AC

A2 + C 2 − D2

)2

.

Thus

cos β = (A2 + C 2 − D2)2

2A2C 2 − 1 = A4 + C 4 + D4 − 2A2 D2 − 2C 2 D2

2A2C 2 .

Since α is strictly less than this β, and 0 < α < π , cos α must be strictly greater

than cos β. This completes the proof. �

3.3 Horosphere estimate

We can now show that each zigzag contains a large horosphere.

Proposition 3.6. Let M be a Farey manifold. If M is a 4-punctured sphere bundle or

two-bridge link complement, denote its meridian length by μ; if M is a punctured-torus
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0.2

0.4

0.6

0.8

1.0

b

0.2 0.4 0.6 0.8 1.0 1.2 1.4
a

1.6 1.8 2.0

Fig. 7. The region of allowable values for a and b in Proposition 3.6.

bundle, denote its meridian length by 2μ. (See Definition 2.3.) Then every zigzag in M

contains a horosphere of diameter at least μ2/7. �

Proof. Let S be a zigzag in M. As at the beginning of Section 3.2, let a denote the radius

of the largest face of the Ford domain of S. Call this face Fa. Rescale such that the

distance between the center of Fa and the center of the face directly to its right is 1. Call

the face to its right Fb, and let b denote the radius of the face Fb. The third face, which we

will call Fab, will then have radius ab, and have center distance b2 from Fb, and distance

a2 from Fa, by Lemma 3.2. Then the length μ is equal to d/h, where d is the minimal

distance between centers of faces Fa and h is the height of the maximal cusp in M.

By Lemma 3.1, a, b, and 1 satisfy the triangle inequality. Additionally, because

Fa was chosen to have radius larger than that of Fb and Fab, we have the following

inequalities.

(1) a ≥ b, and a ≥ ab, hence 1 ≥ b.

(2) b > −a + 1 and b > a − 1.

This forces values of a and b to lie within the region shown in Figure 7.

Label the angles of the zigzag as follows. Let θ denote the acute angle between

the edges of the zigzag of length a2 and b2. Let η denote the acute angle between edges

of the zigzag of length 1 and b2. Note this means that the angle between edges of length

1 and a2 is π − θ + η.
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d

η

a2 a2

b2 b2
ζ

11
θθ

η

Fig. 8. A zigzag. Here the dotted circles correspond to faces of the Ford domain. Recall that the

corners of the zigzag are geometric duals of these faces. Reading left to right following the zigzag,

the faces of the Ford domain have radius a, b, ab, a, b, ab, and a. Here η and θ are angles of canonical

tetrahedra. The angle π − θ + η is not an angle of a canonical tetrahedron.

By considering orthogonal projections to the edge of length b2, we find that

d2 = 1 + a4 + b4 − 2a2b2 cos θ − 2b2 cos η − 2a2 cos(π − θ + η). (3)

See Figure 8 for an example. Note in Figure 8, the angles θ and η correspond to angles of

tetrahedra in the canonical decomposition. Because we chose Fa to be the largest face,

this will not necessarily be the case, but two of the three angles θ , η, π − θ + η will be

canonical (or, if 2π − (π − θ + η) happens to be acute rather than π − θ + η, then exactly

two of the three angles θ , η, and 2π − (π − θ + η) will be canonical).

By Lemma 3.4, and because we chose the face Fa to be largest, the largest

horosphere in the zigzag S has diameter a2/h2.

Write:

a2

h2 = a2μ2

d2 = μ2 a2

d2 .

We minimize the quantity a2/d2.

Note that if θ is an angle of a tetrahedron in the canonical polyhedral decompo-

sition of M, then by Lemma 3.5, cos θ satisfies:

cos θ >
1 + a4 + b4 − 2a2 − 2b2

2a2b2 .
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Similarly, Lemma 3.5 implies that if η is an angle of a tetrahedron in the canonical

polyhedral decomposition of M, then cos η satisfies:

cos η >
1 + a4 + b4 − 2a2b2 − 2a2

2b2 ,

and if π − θ + η (or 2π − (π − θ + η)) is an angle of a tetrahedron in the canonical

polyhedral decomposition, then cos(π − θ + η) satisfies:

cos(π − θ + η) >
1 + a4 + b4 − 2a2b2 − 2b2

2a2 .

Two of the three will be canonical. The third will not, since all three angles

cannot be canonical at the same time. However, we know the cosine in that case will be

at least −1. Hence combining the cosine inequalities above with the formula for d2 of

(3), we will have one of the three inequalities:

(1) If θ and η are canonical:

a2

d2 >
a2

6a2 + 2a2b2 + 2b2 − 1 − a4 − b4 =: f1(a, b).

(2) If θ and π − θ + η are canonical:

a2

d2 >
a2

6b2 + 2a2b2 + 2a2 − 1 − a4 − b4 =: f2(a, b).

(3) If η and π − θ + η are canonical:

a2

d2 >
a2

6a2b2 + 2b2 + 2a2 − 1 − a4 − b4 =: f3(a, b).

To complete the proof, we minimize all three of these functions in the region of

Figure 7. This is a calculus problem.

For each fj(a, b), j = 1, 2, 3, we find the only critical point of fj in the region

of Figure 7 is the point a = 1, b = 0. For all positive a, the function fj is decreasing on

the line b = a, increasing on the line b = 1, increasing or constant on b = −a + 1, and

decreasing or constant on b = a − 1. This implies that fj takes its minimum value in the

region at the point a = 1, b = 1.

At this value, fj(1, 1) = 1/7. Hence, a2/h2 ≥ μ2/7. �
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Remark. The proof of Proposition 3.6 does not require the zigzag S to be embedded.

In other words, the proposition applies even to the terminal pleated surfaces S1 and Sc

that are folded in the construction of a two-bridge link. When S is a folded surface S1 or

Sc, one of the angles θ , η, or (π − θ + η) is actually 0, hence its cosine is even larger than

claimed, which only improves the estimate. �

Proposition 3.6 should be compared to previous work of Jørgensen [34, Lemma

4.3], which was carefully written down by Akiyoshi, Sakuma, Wada, and Yamashita [8,

Lemma 8.1.1]. After adjusting for slightly different choices of normalization, Jørgensen’s

Lemma 4.3 can be summarized as saying that, whenever a zigzag of a quasifuchsian

punctured-torus group is dual to six faces of the Ford domain, one of those faces has

radius at least μ/(4 + 2
√

5).

It follows from Minsky’s classification of punctured-torus groups [42], that

given a punctured-torus bundle M, the Kleinian subgroup of π1(M) that corresponds

to the fiber can be obtained as a geometric limit of quasifuchsian groups. As a result,

Jørgensen’s estimate extends to punctured-torus bundles. Because a Ford domain face

of radius r corresponds to a horosphere of diameter r2, Jørgensen’s Lemma 4.3 implies

that every zigzag in a punctured-torus bundle contains a horosphere of diameter at least

μ2

(4 + 2
√

5)2
≈ μ2

71.777
.

Proposition 3.6, which is proved by a direct geometric argument without reference to

quasifuchsian groups, improves this estimate by a factor of about 10.25.

This improvement becomes highly significant in Section 4. In Theorem 4.1, we

estimate the area of a maximal cusp by packing the horospherical torus with disjoint

disks that are shadows of large horospheres. As a result, a ten-fold increase in the esti-

mate for the diameter of a horosphere turns into a 100-fold increase in the estimate for

the area of its shadow. Since our applications in Sections 5 and 6 rely on these explicit

estimates for cusp area, the 100-fold improvement becomes particularly important for

applications.

3.4 The length of a meridian

To make the estimate of Proposition 3.6 independent of μ, we prove a bound on the value

of μ. We note that the following lemma is the only result in this section that does not

apply to all Farey manifolds: it fails for two-bridge links.
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Lemma 3.7. In an equivariant cusp of a 4-punctured sphere bundle M, μ ≥ √
2. �

Proof. Lift the hyperbolic structure on M to H
3. The cusps lift to collections of

horoballs. Conjugate such that the horoball about infinity of height 1 projects to a cusp

neighborhood. Since we took a maximal cusp neighborhood of M, that is, since we ex-

panded cusps until they bumped, there must be some full-sized horoball H projecting to

a cusp of M, tangent to the horoball of height 1 about infinity.

There is an isometry of H3 corresponding to the slope of length μ which is a

covering transformation of M. It takes H to another full-sized horoball H ′. The Euclidean

distance between H and H ′ is the length μ.

Consider the geodesic γ running from the center of H to the center of H ′. This

projects to a geodesic in M running from one puncture of the fiber back to the same

puncture. Note that under the equivariant cusp expansion, any canonical edge runs be-

tween two distinct punctures of the fiber. Hence by Lemma 3.3, the length of the portion

of γ outside H and H ′ is at least ln(2).

Now, recall the following formula for lengths along “right angled hexagons” (see,

e.g., [29, Lemma 3.4]). Let H∞ denote the horosphere about infinity, and let Hp and Hq be

disjoint horospheres not equal to H∞, centered over p and q in C, respectively. Denote by

dp the hyperbolic distance between Hp and H∞, by dq the hyperbolic distance between

Hq and H∞, and by dr the hyperbolic distance between Hp and Hq. Then the Euclidean

distance between p and q is given by

d(p, q) = exp((dr − (dp + dq))/2). (4)

In our case, dp = dq = 0, since the corresponding horospheres (H and H ′) are

tangent to H∞, and dr is at least ln(2). So μ = d(p, q) is at least
√

2. �

By commensurability, the meridian in a punctured-torus bundle has length 2μ ≥
2
√

2. In the setting of two-bridge links, on the other hand, Lemma 3.7 fails because a

meridian of the link is spanned by a single edge of the canonical triangulation. For two-

bridge links, the best available estimate is Adams’ result that μ ≥ 4
√

2, which works for

all links except the figure-8 and 52 knots [1].

4 Cusp Area Estimates

In this section, we apply the results of Section 3 to prove quantitative estimates on the

cusp area of Farey manifolds. For most of the section, we shall focus on punctured-torus
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bundles. At the end of the section, we will generalize these results to 4-punctured sphere

bundles and two-bridge links.

4.1 Punctured-torus bundles

We shall prove the following result:

Theorem 4.1. Let M be a punctured-torus bundle with monodromy � = ±Rp1 Lq1 · · ·
Rps Lqs . Let C be a maximal horoball neighborhood about the cusp of M. Then

0.1885 s ≈ 16
√

3

147
s ≤ area(∂C ) < 2

√
3

v8

v3
s ≈ 12.505 s.

Furthermore, if γ is any simple closed curve on ∂C that is transverse to the fibers,

then its length �(γ ) satisfies

�(γ ) ≥ 4
√

6

147
s. �

Remark. Extensive numerical experiments support the conjecture that area(∂C )/s is

monotonic under the operation of adding more letters to existing syllables of the mo-

nodromy word �. (It is not hard to show using the method of angled triangulations [31]

that the volume of M behaves in a similarly monotonic fashion.) This conjecture would

imply that the quantity area(∂C )/s is lowest when all syllables have length 1 and M is

a cover of the figure-8 knot complement, while area(∂C )/s approaches its upper bound

as the syllable lengths approach ∞ and the geometry of M converges to a cover of the

Borromean rings. The cusp area of the figure-8 knot complement is 2
√

3, and the cusp

area of one component of the Borromean rings is 8. Thus, if the monotonicity conjecture

is correct, it would follow that

2
√

3 s ≤ area(∂C ) < 8 s.

Compared to the values in Theorem 4.1, this represents a modest improvement

of the upper bound but a dramatic improvement of the lower bound. �

The main idea of the proof of Theorem 4.1 is to pack the horospherical torus ∂C

with disjoint disks that are shadows of large horospheres. Recall from Definition 2.3 that

we denote the length of a meridian in the maximal cusp of a punctured-torus bundle by

2μ. By Proposition 3.6, every zigzag on ∂C will contain two horospheres of diameter at

least μ2/7, corresponding to the two endpoints of the same edge of the zigzag. When we

project one of these horospheres to ∂C , we obtain a disk whose radius is at least μ2/14.
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To turn this into an effective estimate on the area of ∂C , we need to employ a

somewhat subtle procedure for choosing which horospheres to count and which ones to

discard. We choose the horospheres in the following manner:

(1) Let E be the set of all edges of M whose length outside the maximal cusp is at

most ln(7/μ2). These are exactly the edges that lead to horospheres of diam-

eter ≥ μ2/7. Thus, by Proposition 3.6, every pleated surface in M contains an

edge in E .

(2) Order the letters of the monodromy word �: α1, . . . , αm. Recall, from Section

2.2, that each αi corresponds to a pleated surface Tαi .

(3) Find the smallest index i such that all three edges in the pleating of Tαi belong

to E . (It is possible that such an i does not exist.) If such a Tαi occurs, remove

the longest of those three edges from E , breaking ties at random.

(4) Repeat Step (3) inductively. In the end, the set E will contain at most two

edges from each pleated surface.

At the end of Step (4), if a pleated surface T contains one edge of E , that edge is

the shortest in T . If T contains two edges of E , they are the two shortest edges in T .

Lemma 4.2. The set E , constructed as above, contains at least 2s/3 distinct edges. �

Proof. By Proposition 3.6, every pleated surface in M contains an edge whose length

is at most ln(7/μ2). Thus, at the end of Step (1) in the selection procedure above, the

set E contained at least one edge from every pleated surface. Now, observe that two

different pleated surfaces Tα and Tβ , corresponding to letters α and β in �, will share

an edge if and only if the corresponding triangles in the Farey graph share a vertex. As

Figure 9 illustrates, this can only happen if the letters α and β come from the same

syllable, neighboring syllables, or syllables that share a neighbor. Therefore, at the end

of Step (1), the set E contained at least one edge for every consecutive string of three

syllables, hence at least 2s/3 distinct edges in total.

Now, consider what happens when we begin removing edges in Step (3). Suppose

that all three edges in a pleated surface Tα belong to E . Then, just as above, for any

pleated surface Tβ that shares an edge with Tα, the letters α and β must come from the

same syllable, neighboring syllables, or syllables that share a neighbor. There are at

most five such syllables altogether (the syllable containing α, plus two on each side).

Thus, after we remove the longest edge of Tα from E , the set E still contains two edges

from a string of five consecutive syllables.
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F L
L

L
L

S

Fig. 9. The only possible words between two triangles that share a vertex are S RR · · · R F and

S LL · · · L F , where S and F (start and finish) can both be either L or R.

At the end of the selection procedure, every pleated surface in M belongs either

to a string of three syllables containing at least one edge of E , or to a string of five

syllables containing at least two edges of E . In either scenario, there are at least 2s/3

edges belonging to E . �

Lemma 4.3. Let M be a punctured-torus bundle with monodromy � = ±Rp1 Lq1 · · ·
Rps Lqs . Then the maximal cusp boundary ∂C contains 4s/3 disjoint disks, each of radius

at least

min

{
1

4
,

√
2 μ2

14

}
.

�

Proof. Consider the edge set E , as above. By Lemma 4.2, E contains at least 2s/3 edges

of length at most ln(7/μ2). Now, lift everything to the universal cover H3, in such a way

that ∂C lifts to the horizontal plane at height 1. In a single fundamental domain for ∂C ,

each edge e ∈ E corresponds to two horospheres: one horosphere for each endpoint of e.

Hence, ∂C contains 4s/3 shadows of disjoint horospheres, each of which has radius at

least μ2/14. If two disjoint horospheres have the same size, then they also have disjoint

projections. Thus, by shrinking each horosphere to radius μ2/14, we conclude that ∂C

contains 4s/3 disjoint disks of radius μ2/14.

Next, we claim that the disks on ∂C can be enlarged considerably while staying

disjoint. Let x and y be the centers of two of these disks. In other words, x ∈ ∂C ∩ ei and

y ∈ ∂C ∩ ej for some ei, ej ∈ E . The two edges ei, ej lead to horospheres Hi and Hj. Let f

be the geodesic that connects Hi directly to Hj. Consider the length of f outside Hi and

Hj. There are two cases:
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Case 1: the length of f is at least ln(2). In this case, the midpoint of f lies at dis-

tance at least ln(2)/2 from both Hi and Hj. If we apply an isometry I that sends ∂ Hi to

the horosphere at Euclidean height 1, the midpoint of I ( f) will lie at height at most

1/
√

2. In other words, the horosphere I (Hi) can be expanded by a factor of
√

2 without

hitting the midpoint of I ( f), and similarly for Hj. Of course, this still holds true before

applying the isometry I : each of Hi and Hj can be expanded by a factor of
√

2 while

staying disjoint from each other. Since each of Hi and Hj has radius at least μ2/14, the

disks of radius
√

2μ2/14 centered at x and y in ∂C are disjoint from each other.

Case 2: f is shorter than ln(2). Then, by Lemma 3.3, f must be an edge of the

canonical triangulation. Since ei and ej are also edges of the canonical triangulation,

these three edges bound an ideal triangle contained in some pleated surface Tα. Now,

recall that at the end of our selection procedure for the set E , if two distinct edges of Tα

belong to E , then they are the shortest edges in Tα. Thus, both ei and ej are shorter than

ln(2). Since the edges ei and ej are already vertical in H
3 and meet the cusp at Euclidean

height 1, the horospheres Hi and Hj must have diameter at least 1/2. Thus, Hi and Hj

project to disjoint disks of radius at least 1/4 centered at x and y on ∂C .

In every case, the points x, y ∈ ∂C are the centers of disjoint disks of radius at

least

min

{
1

4
,

√
2 μ2

14

}
.

There are 4s/3 such disks, completing the proof. �

We may now estimate the area of ∂C .

Lemma 4.4. Let M be a punctured-torus bundle with monodromy � = ±Rp1 Lq1 · · ·
Rps Lqs . Let C be a maximal horoball neighborhood about the cusp of M. Then

16
√

3

147
s ≤ √

3 s min
{

1

6
,

4μ4

147

}
≤ area(∂C ) < 2

√
3

v8

v3
s. �

Proof. There are three inequalities in the statement, and we consider them in turn.

First inequality. This follows immediately from Lemma 3.7, which gives μ ≥ √
2.

Note that with our definition of μ (see Definition 2.3), the conclusion of Lemma 3.7 trans-

fers perfectly from 4-punctured sphere bundles to punctured-torus bundles.
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Second inequality. By Lemma 4.3, ∂C contains 4s/3 disjoint disks of equal radius,

whose total area is at least

4s

3
· π min

{
1

16
,

μ4

98

}
.

Now, a classical result (see, e.g., [14, Theorem 1]) states that a packing of the

plane by circles of equal size has density at most π/(2
√

3). This gives the desired

inequality.

Third inequality. A result of Agol gives that vol(M) < 2v8 s (see [31, Theorem B.1]

for a direct proof). Also, a horosphere packing theorem of Böröczky [14, Theorem 4] states

that a maximal cusp in a hyperbolic 3-manifold contains at most
√

3/(2v3) of the volume

of M. Putting these results together gives

vol(C ) <
√

3
v8

v3
s, hence area(∂C ) < 2

√
3

v8

v3
s. �

Remark. In the proof of Lemma 4.3, we also showed that ∂C contains 4s/3 disjoint

disks of radius μ2/14. Plugging this estimate into the proof of Lemma 4.4 gives

area(∂C ) ≥ 2
√

3 μ4

147
s.

This statement, although apparently weaker than Lemma 4.4, will prove useful

for estimating the lengths of slopes on ∂C . �

Lemma 4.5. Let M be a punctured-torus bundle with monodromy � = ±Rp1 Lq1 · · ·
Rps Lqs . Let C be a maximal horoball neighborhood about the cusp of M. If γ is any simple

closed curve on ∂C that is transverse to the fibers, �(γ ) ≥ 4
√

6 s/147. �

Proof. Define the height of the cusp to be h := area(∂C )/2μ. Then �(γ ) ≥ h. Note that by

Lemma 3.7, μ ≥ √
2. Also, since a maximal horocycle in a punctured torus has length at

most 6, it follows that μ ≤ 3. We consider three possibilities for the values of μ in the

range [√2, 3].
If

√
2 ≤ μ ≤ √

7/23/4, then 4μ4/147 ≤ 1/6. Thus, by Lemma 4.4,

area(∂C ) ≥ 4
√

3 μ4

147
s, hence �(γ ) ≥ 2

√
3 μ3

147
s ≥ 4

√
6 s

147
≈ 0.066652 s.

If
√

7/23/4 ≤ μ ≤ 2, then 1/6 ≤ 4μ4/147. Thus, by Lemma 4.4,

area(∂C ) ≥
√

3 s

6
, hence �(γ ) ≥

√
3 s

12μ
≥

√
3 s

24
≈ 0.072168 s.
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If 2 ≤ μ ≤ 3, then by the remark following Lemma 4.4,

area(∂C ) ≥ 2
√

3 μ4

147
s, hence �(γ ) ≥

√
3 μ3

147
s ≥ 8

√
3 s

147
≈ 0.094261 s.

Therefore, for all possible values of μ, we have �(γ ) ≥ 4
√

6 s/147. �

Lemmas 4.4 and 4.5 complete the proof of Theorem 4.1.

Combining the results of Theorem 4.1 with our work in [25, Theorem 1.1], we

obtain the following immediate corollary for volumes of Dehn fillings of punctured-torus

bundles.

Corollary 4.6. Let M be a punctured-torus bundle with monodromy of length s > 94.

Let C be a maximal horoball neighborhood about the cusp of M. For any simple closed

curve γ on ∂C that is transverse to the fibers, let Mγ denote the 3-manifold obtained

from M by Dehn filling ∂C along γ . Then Mγ is hyperbolic, and

(
1 − 7203 π2

8 s2

)3/2

2v3 s ≤ vol(Mγ ) < 2v8 s,

where v3 = 1.0149 . . . is the volume of a regular ideal tetrahedron and v8 =
3.6638 . . . is the volume of a regular ideal octahedron. �

Proof. By Theorem 4.1, the slope length of γ will be at least 2π when s ≥ 95. For such

slopes, by [25, Theorem 1.1] we know the volume of the manifold obtained by Dehn filling

along the slope of length �(γ ) is at least

vol(Mγ ) ≥
(

1 −
(

2π

�(γ )

)2
)3/2

vol(M).

Hence, using the volume bound for such manifolds given by [31, Theorem B.1], and the

estimate on slope length of Theorem 4.1, we have

vol(Mγ ) ≥
(

1 − 7203 π2

8 s2

)3/2

2v3 s.

For the upper bound, recall that volume only decreases under Dehn filling [56],

and so the result follows immediately from [31, Theorem B.1]. �
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4.2 4-punctured sphere bundles

Theorem 4.7. Let N be a 4-punctured sphere bundle with monodromy � = Rp1 Lq1 · · ·
Rps Lqs , and with the property that the monodromy fixes one preferred boundary circle

of the 4-holed sphere. Let D be the maximal horoball neighborhood of the cusp corres-

ponding to this preferred puncture, and let γ be any simple closed curve on ∂ D that is

transverse to the fibers. Then

area(∂ D) ≥ 16
√

3

147
s and �(γ ) ≥ 8

√
3

147
s. �

Proof. As described in Section 2.3, the 4-punctured sphere bundle N is commensurable

to a punctured-torus bundle M with the same monodromy �. (The common cover is a

4-punctured-torus bundle P .) Let C be the maximal cusp neighborhood in M. Then, by

lifting C to a cusp neighborhood in P and projecting down to N, we obtain a maximal

equivariant neighborhood of the cusps of N.

Let B be the cusp neighborhood of the preferred puncture in the equivariant

expansion of the cusps of N. Because the cusp neighborhood C ⊂ M lifts to 4 distinct

cusps in P , and one of those cusps double covers B, Theorem 4.1 implies that

2 · area(∂ B) = area(∂C ) ≥ 16
√

3

147
s.

Observe that in the canonical triangulation of N, every edge lies in a pleated

fiber, and connects two distinct punctures of the 4-punctured sphere. Thus, no edge of

the canonical triangulation has both endpoints inside B. By Lemma 3.3, this means that

the shortest arc from B to B has length at least ln(2), and we may expand B by a factor

of at least
√

2 before it bumps into itself. Therefore, every linear measurement on ∂ D is

at least a factor of
√

2 greater than on ∂ B, and

area(∂ D) ≥ 2 · area(∂ B) = area(∂C ) ≥ 16
√

3

147
s.

By the same argument, every simple closed curve on ∂ D is at least a factor of√
2 longer than the corresponding loop on ∂ B. Thus, if γ is transverse to the fibers of N,

�(γ ) ≥ 8
√

3 s/147. �

We remark that by Theorem 4.7, an analog of Corollary 4.6 also holds for fillings

of 4-punctured sphere bundles. One important class of manifolds obtained by Dehn fill-

ing (one cusp of) a 4-punctured sphere bundle is the class of closed 3-braids in S3. We

shall focus on these manifolds below, in Section 5.
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4.3 Two-bridge links

Theorem 4.8. Let K be a two-bridge link in S3, whose reduced alternating diagram has

twist number t. Let C be a maximal neighborhood about the cusps of S3
�K, in which

the two cusps have equal volume if K has two components. Then

8
√

3

147
(t − 1) ≤ area(∂C ) < 2

√
3

v8

v3
(t − 1).

Furthermore, if K is a knot, let γ be any non-trivial arc that starts on a meridian

and comes back to the same meridian (e.g., a non-meridional simple closed curve). Then

its length satisfies

�(γ ) ≥ 4
√

6
√

2

147
(t − 1). �

Proof. Let μ denote the length of a meridian of K on ∂C . By Proposition 3.6, every

pleated surface Si in S3�K contains at least one edge of length at most ln(μ2/7). Further-

more, opposite edges in Si have the same length, because the geometry of each pleated

surface is preserved by the full symmetry group of its triangulation. Thus, if Si is embed-

ded in S3
�K, it contains two edges of length at most ln(μ2/7). The only pleated surfaces

that are not embedded are the folded surfaces S1 or Sc at the ends of the product region

of K; each of these surfaces will contain at least one short edge. (See [31, Figure 19] for

a description of how surfaces are folded in the construction of a two-bridge link.)

Now, we retrace the proof of Theorem 4.1. We construct the set of short edges E

exactly as above, except that we are now counting pairs of edges. Thus, if all three pairs

of edges in a pleated surface are initially part of E , we remove the longest pair.

By the same argument as in Lemma 4.2, E contains at least t/3 distinct edge

pairs. The two paired edges on a pleated surface S will be distinct unless S is S1 or Sc.

Thus, if both S1 and Sc contribute edges to E , the minimum possible number of edges

(not pairs) is 2(t − 1)/3.

The proof of Lemma 4.3 goes through without modification. As a result, ∂C con-

tains 4(t − 1)/3 disjoint disks, of radius at least

r ≥ min

{
1

4
,

√
2 μ2

14

}
, hence total area ≥ 4(t − 1)

3
· π min

{
1

16
,

μ4

98

}
.

Dividing by the maximal density π/2
√

3 of a circle packing in the plane gives

area(∂C ) ≥ 8(t − 1)

√
3

3
min

{
1

16
,

μ4

98

}
. (5)
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To complete the proof of the lower bound, we note that for all two-bridge links

except the figure-8 knot and 52 knot, the meridian μ is at least 4
√

2, by work of Adams

[1]. Thus, the area is at least 8
√

3 (t − 1)/147. Meanwhile, the figure-8 and 52 knots have

twist number t = 2, hence the estimate 8
√

3/147 is vastly lower than their true cusp area

(note a standard horosphere packing argument implies that the area of any cusp is at

least
√

3).

For the upper bound, Futer and Guéritaud [31, Theorem B.3] found that the vol-

ume of a hyperbolic two-bridge knot satisfies vol(S3
�K) < 2v8(t − 1). Again, combining

this with the theorem of Böröczky [14, Theorem 4], that a maximal cusp contains at most√
3/(2v3) of the volume of M, we find

vol(C ) <
√

3
v8

v3
(t − 1), hence area(∂C ) < 2

√
3

v8

v3
(t − 1).

Finally, for the result on arc length, note that the shortest non-trivial arc γ that

starts and ends on the same meridian has length equal to area(∂C )/μ. Again using the

estimate of Adams [1, 2], the length of a meridian of K satisfies 4
√

2 ≤ μ ≤ 2, except if K

is the figure-8 or 52 knot. Combining Adams’ estimates with inequality (5) and arguing

as in Lemma 4.5 gives the desired lower bound on �(γ ). (As above, the figure-8 and 52

knots need to be checked separately.) �

5 Volume Estimates for Closed 3-braids

In this section, we give a complete characterization of the closed 3-braids whose com-

plements are hyperbolic. Then, we apply Theorem 4.7 from Section 4 to obtain volume

estimates for closed 3-braids.

5.1 A normal form for 3-braids

We begin with some notation. Let σ1 and σ2 be generators for B3, the braid group on three

strands, as in Figure 1. Thus, a positive word in σ1 and σ−1
2 represents an alternating

braid diagram. Let C = (σ1σ2)3 denote a full twist of all three strands; C generates the

center of B3. For a braid w ∈ B3, let ŵ denote the link obtained as the closure of w. Note

that ŵ only depends on the conjugacy class of w. We denote the conjugacy relation by ∼.

In the 1920s, Schreier developed a normal form for this braid group [51]. In par-

ticular, he showed the following.
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Theorem 5.1 (Schreier). Let w ∈ B3 be a braid on three strands. Then w is conjugate to

a braid in exactly one of the following forms:

(1) C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 , where k ∈ Z and pi, qi, and s are all positive integers,

(2) C kσ
p

1 , for k, p ∈ Z

(3) C kσ1σ2, for k ∈ Z

(4) C kσ1σ2σ1, for k ∈ Z, or

(5) C kσ1σ2σ1σ2, for k ∈ Z.

This form is unique up to cyclic permutation of the word following C k. Braids in form

(1) above are called generic. �

Birman and Menasco have shown that nearly every oriented link obtained as the

closure of a 3-braid can be represented by a unique conjugacy class in B3, with an ex-

plicit list of exceptions [11]. Thus their theorem, combined with Schreier’s normal form,

gives a classification of closed oriented 3-braids. Their paper also contains a modern

exposition of Schreier’s algorithm for placing braids in normal form.

Let K = ŵ be a closed 3-braid defined by the word w, and let A be the braid axis

of K. That is, A is an unknot with the property that the solid torus S3
�A is swept out

by meridian disks, with each disk intersecting K in 3 points. Then Mw := S3
�(K ∪ A) is

a 4-punctured sphere bundle over the circle. It is well known, essentially due to work

of Thurston [55], that the Schreier normal form of w predicts the geometry of Mw. We

include a proof for completeness.

Theorem 5.2. Mw is hyperbolic if and only if w is generic. Moreover, Mw has non-zero

Gromov norm if and only if w is generic. �

Proof. The braid generators σ1 and σ−1
2 act on the 4-punctured sphere as the standard

generators L and R of SL2(Z):

σ1 �→ L :=
[

1 0

1 1

]
, σ−1

2 �→ R :=
[

1 1

0 1

]
, C �→ I =

[
1 0

0 1

]
.

Thus, generic 3-braids with normal form (1) correspond to positive words em-

ploying both letters L and R, hence to pseudo-Anosov monodromies. Thurston showed

that a bundle over S1 with pseudo-Anosov monodromy is hyperbolic [55]. More con-

cretely, Guéritaud showed how to construct the hyperbolic metric from a positive word
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in L and R [31]. (See Sections 2.2 and 2.3 above for a review of the connection between

the monodromy word and the canonical ideal triangulation of Mw.)

The braids with normal form (2) correspond to reducible monodromies of the

form L p. In this case, Mw is a graph manifold obtained by gluing two 3-punctured sphere

bundles along a torus. The braids with normal forms (3–5) correspond to periodic mo-

nodromies, hence Mw is Seifert fibered. Thus, all non-generic normal forms yield non-

hyperbolic manifolds with Gromov norm 0. �

5.2 Hyperbolic 3-braids

Our goal in this subsection is to show that the 3-braids whose closure is a hyperbolic

link can be easily identified from their Schreier normal form. Because a closed braid pre-

sentation of a link K comes with a natural orientation, we need to consider all possible

orientations on components of K that are consistent with K being a 3-braid.

In the lemmas that lead up to Theorem 5.5, we rely on two classical invariants

that are insensitive to orientation changes on a component of K: (the absolute value

of) the linking number between components of K, and the determinant det(K). Recall

that det(K) is the absolute value of the Alexander polynomial of K, evaluated at t =
−1, or equivalently the absolute value of the Jones polynomial of K, also evaluated at

t = −1. It is well known that reversing the orientation on a component of K leaves the

determinant unchanged: from the point of view of the Jones polynomial, this follows

because changing the orientation of some component of K changes the Jones polynomial

JK (t) by a power of t.

Lemma 5.3. Let K = ŵ be the closure of a generic 3-braid

w = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

where pi, qi are all positive. Suppose that K has two or three components and

det(K) ≤ 4. Then one of two possibilities holds:

(a) det(K) = 2, and w = C ka, where k is even and a ∈
{
σ 2

1 σ−1
2 , σ1σ−2

2

}
, or

(b) det(K) = 4, and w = C ka, where k is even and a ∈
{
σ 2

1 σ−2
2 , σ 4

1 σ−1
2 , σ1σ−4

2

}
. �

Proof. The proof uses a result of Murasugi [45, Proposition 5.1]. There, Murasugi shows

that a generic 3-braid must have strictly positive determinant. (In his notation, the class
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of generic 3-braids is denoted �6.) The same proposition states that, if â denotes the

closure of a = σ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 , then

det(K) =
{

det(â), if k is even,

det(â) + 4, if k is odd.

If w is generic, then a is also generic, hence det(â) > 0. Thus, if det(K) ≤ 4, we

must have k even and det(K) = det â. Since â is an alternating link, the minimum crossing

number is bounded above by the determinant (see, e.g., Burde and Zieschang [16]). Thus,

the crossing number of â is at most 4, and we may list the possibilities for a.

Recall that the crossing number of an alternating link is realized by any alter-

nating diagram without nugatory crossings, and the only way an alternating 3-braid can

have nugatory crossings is if the braid word is σ r
1σ−1

2 or σ1σ−r
2 . Thus, alternating closed

3-braids with crossing number at most 4 consist of words of the form σ
p

1 for appropri-

ate p, σ
p

1 σ
−q
2 , for appropriate p, q, and σ1σ−1

2 σ1σ−1
2 . All others will have higher crossing

numbers.

Since σ
p

1 is not generic, we need not consider these. Since the closed braid corres-

ponding to C kσ1σ−1
2 σ1σ−1

2 has just one component, and we are assuming K has at least

two components, we need not consider these words either. Finally, the braids σ
p

1 σ
−q
2

have the appropriate number of crossings for (p, q) = (1, 1), (1, 2), (1, 3), (1, 4), (2, 1),

(2, 2), (3, 1), and (4, 1). Of these, (1, 1), (1, 3), and (3, 1) have only one link component.

The remaining possibilities are

a ∈ {σ 2
1 σ−1

2 , σ1σ−2
2 , σ 2

1 σ−2
2 , σ 4

1 σ−1
2 , σ1σ−4

2 }.

If a = σ 2
1 σ−1

2 or a = σ1σ−2
2 , one easily computes that det(K) = det(â) = 2, and conclusion

(a) holds. If a is one of σ 2
1 σ−2

2 , σ 4
1 σ−1

2 , or σ1σ−4
2 , then det(K) = det(â) = 4, and conclusion

(b) holds. �

We can now restrict the 3-braids that correspond to Seifert fibered links.

Lemma 5.4. Let K = ŵ be the closure of a 3-braid w, and suppose that S3
�K is Seifert

fibered. Then w is either non-generic, or else conjugate to σ
p

1 σ±1
2 , σ±1

1 σ
q
2 , or σ 2

1 σ−2
2 . �

Proof. A theorem of Burde and Murasugi [15] states that if S3
�K is Seifert fibered,

then K consists of finitely many fibers in a (possibly singular) Seifert fibration of S3. In
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case the Seifert fibration of S3 is not singular, the fibration extends to S3. The Seifert

fibrations of S3 were classified by Seifert [53] (see also Orlik [48]). As a consequence, K

must be a generalized torus link: a link that is embedded on an unknotted torus T (this

is called an (m, n) torus link) plus possibly one or both cores of the solid tori in the

complement of T .

The singular fibration does not extend to S3: it is the product fibration on a solid

torus, in which each fiber is a meridian of the complementary unknot. However, note that

in this case the result is again a generalized torus link, with the unknot making up the

core of the (m, 0) torus link. The question of which closed 3-braids represent generalized

torus links has been studied by Murasugi in [45].

In an (m, n) torus link, we may assume without loss of generality that m> 0, and

that either n = 0 or |n| ≥ m. With this normalization, a theorem of Schubert [52] implies

that the bridge number of the (m, n) torus link is m. Since the braid index is greater

than or equal to the bridge number, any choice of orientation on the components of

an (m, n) torus link must yield a braid index of at least m. Thus, if we add c cores of

solid tori and obtain a 3-braid, 1 ≤ m≤ 3 − c. There are three cases, conditioned on the

value of c.

Case 0: c = 0. Then K is an (m, n) torus link, where 1 ≤ m≤ 3. Murasugi classifies

the torus links that can be written as closed 3-braids in [45, Section 12]. However, a

careful reading of his proofs indicates that he is assuming that multiple components

of torus links are always oriented consistently. For our purposes, we will also need to

consider the torus links in which the orientation of some component is reversed. In

fact, the machinery developed by Murasugi in this monograph is sufficient to handle

all choices of orientation. For ease of reading, we will include the arguments for all the

cases not immediately apparent from [45].

If m= 1, then K is the unknot, and Theorem 12.1 in Murasugi’s monograph

shows w ∼ σ±1
1 σ±1

2 . If m= 2, then K is a (2, n) torus link. If the (one or two) compo-

nents of K are oriented consistently, then it is an elementary torus link in Murasugi’s

terminology. Then, Theorem 12.3 of his monograph implies w ∼ σ
p

1 σ±1
2 or w ∼ σ±1

1 σ
q
2 .

Now, suppose that n = 2�, and K is a (2, 2�) torus link whose components have

opposite orientations. Then K is the oriented boundary of a Seifert surface that is an

annulus. Using this annulus, we calculate that the Alexander polynomial of K is 
K (t) =
�(1 − t); thus deg 
K (t) = 1. By Proposition 8.1 of [45], K can be the closure of a 3-braid

only if |�| ≤ (1/2)deg 
K (t) + 2 = 5/2. Since the determinant of the (2, 2�) torus link is

|2�|, and this fact remains true under orientation reversal of components, det(K) = |2�| ≤
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4. Thus, if w is a generic 3-braid that represents K with this orientation, Lemma 5.3

applies.

If det(K) = 2, Lemma 5.3 says that the generic braid w representing K must be

conjugate to C kσ 2
1 σ−1

2 or w ∼ C kσ1σ−2
2 , where k is even. Without loss of generality, say

w ∼ C kσ 2
1 σ−1

2 . Then the two components of ŵ have linking number equal to |2k + 1|. But

since K is the (2,±2) torus link, the linking number of the two components is 1. Thus

k = 0, and w ∼ σ 2
1 σ−1

2 , as desired.

If det(K) = 4, Lemma 5.3 says that the only generic braids representing K must

be conjugate to C kσ 2
1 σ−2

2 , C kσ 4
1 σ−1

2 , or C kσ1σ−4
2 . The closure of C kσ 2

1 σ−2
2 has three compo-

nents, so we don’t need to consider this case. If w ∼ C kσ 4
1 σ−1

2 , then the two components

of ŵ have linking number |2 + 2k|, which is equal to 2 by hypothesis. Thus, k is −2 or 0.

But if k = −2, the closure of C −2σ 4
1 σ−1

2 is a hyperbolic link, a contradiction. Thus k = 0,

and w ∼ σ 4
1 σ−1

2 , as desired. The argument when w ∼ C kσ1σ−4
2 is identical.

Finally, suppose that m= 3, and K is a (3, n) torus link. Then K has either one

or three components. If K is a knot, Proposition 12.3 of [45] shows that K cannot be

represented by a generic 3-braid. In fact, Murasugi’s argument also works for links,

with all orientations, but for completeness we include the argument here.

If K is a three-component torus link (3, 3�), the linking number of any two com-

ponents of K has absolute value |�|. Proposition 3.3 of [45] implies that det(K) is either

0 or 4. By Lemma 5.3, any generic braid w ∼ C ka representing K, must be conjugate to

C kσ 2
1 σ−2

2 , as all the other possibilities in the lemma have two components. Now, consider

the pairwise linking numbers between components in the closure of w ∼ C kσ 2
1 σ−2

2 . These

pairwise linking numbers are equal in absolute value to |k|, |k + 1|, and |k − 1|. But all

these numbers must be equal to |�|, a contradiction.

Case 1: c = 1. Then K = Lt ∪ La, where Lt is a (m, n) torus link with m= 1 or

m= 2, and La is the core of one of the two solid tori. If m= 1, then (depending on the

choice of solid torus) K is either a (2, 2n) torus link and we reduce to case 0, or K is the

Hopf link, which is the (2, 2) torus link, and we again reduce to case 0. Thus, we may

suppose that Lt is a (2, n) torus link. Then, as an unoriented link, K admits a diagram

in one of two possible forms, shown in Figure 10, depending on which solid torus La

came from.

Subcase 1a: Suppose that the link K is depicted in the left panel of Figure 10.

Then we can characterize the linking number lk(Lt, La) as follows. If n is odd and Lt is

a knot, then its linking number with La is ±2; if n is even and Lt has two components,

then each component of Lt has linking number ±1 with La. Note that the absolute value

of the linking number is insensitive to changes of orientation.
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nn

Fig. 10. Case 1 of Lemma 5.4: two ways to add the core of a solid torus to a (2, n) torus link.

If all the strands in Figure 10 are oriented counterclockwise, the link K in the

left panel of the figure can be represented by the braid word v = σn
1 σ2σ 2

1 σ2. Of course, a

priori there may be other braid representatives, possibly corresponding to other choices

of orientation on one or more components of K. Nonetheless, knowing that K can be ob-

tained as the closure v̂ of the braid represented by v allows us to compute link invariants.

Because the normal form of v is C σn−2
1 , Murasugi’s Proposition 3.6 gives that det(K) = 4.

Suppose that, with some choice of orientation, K is represented by the generic braid w.

Since det(K) = 4, Lemma 5.3 implies that the normal form of w must be one of C kσ 2
1 σ−2

2 ,

C kσ 4
1 σ−1

2 , or C kσ1σ−4
2 .

If w ∼ C kσ 2
1 σ−2

2 , then K = ŵ is a three-component link. The two-component links

contained in K have pairwise linking numbers equal in absolute value to |k|, |k + 1|, and

|k − 1|. By hypothesis, two of these linking numbers must be equal to 1. It follows that

the only possibility is k = 0, hence w ∼ σ 2
1 σ−2

2 , as desired.

If w ∼ C kσ 4
1 σ−1

2 , then K = ŵ = Lt ∪ La is a two-component link. In this case, we

compute that |lk(Lt, La)| = |2 + 2k|, which is equal to 2 by hypothesis. Thus, k is −2 or 0.

But if k = −2, the closure of C −2σ 4
1 σ−1

2 is a hyperbolic link, a contradiction. Thus k = 0,

and w ∼ σ 4
1 σ−1

2 , as desired. The case when w ∼ C kσ1σ−4
2 is identical.

Subcase 1b: Suppose that the unoriented link K is depicted in the right panel of

Figure 10. It follows that lk(Lt, La) = ±n, depending on choices of orientations of the

components. If all the strands of K are oriented counterclockwise, K can be represented

by the braid word v = (σ1σ2σ1)n. (Just as in Subcase 1a, there may be other braid repre-

sentatives, but knowing one braid representative v allows us to compute invariants that
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are insensitive to orientation.) Using the braid relation σ1σ2σ1 = σ2σ1σ2, we can rewrite

v as

v =
{

C n/2, if n is even,

C (n−1)/2σ1σ2σ1, if n is odd.

If n is even, then v̂ is a torus link. Thus, the unoriented link K is a torus link,

and we reduce to Case 0. If n is odd, then Murasugi’s Proposition 3.5 gives det(K) = 2.

Thus, by Lemma 5.3, any generic braid w that also represents K must have normal form

C kσ 2
1 σ−1

2 or C kσ1σ−2
2 .

If w ∼ C kσ 2
1 σ−1

2 , then K = ŵ = Lt ∪ La is a two-component link. We may immedi-

ately compute that one component Lt is the (2, 2k − 1) torus knot, the other component

La is the unknot, and |lk(Lt, La)| = |2k + 1|. Because by assumption, Lt is the (2, n) torus

link, this implies |n| = |2k − 1|. Additionally, since by assumption lk(Lt, La) = ±n, we may

conclude that |n| = |2k + 1|. This is possible only if k = 0. So w ∼ σ 2
1 σ−1

2 , as desired. The

case when w ∼ C kσ1σ−2
2 is identical.

Case 2: c = 2. Then K = Lt ∪ La ∪ Lb, where Lt is an unknot on T , and La and Lb

are cores of the two solid tori. Since Lt is a (1, n) curve on the torus T , one of the cores

La or Lb (say, Lb) can be isotoped to lie on T , disjointly from Lt. Thus, as an unoriented

link, Lt ∪ Lb is a torus link on T , and this case reduces to Case 1. �

The next theorem characterizes the 3-braids whose closures represent hyper-

bolic links. The referee informs us that Stoimenow has found an alternative proof of this

theorem.

Theorem 5.5. Let w ∈ B3 be a word in the braid group, and let K ⊂ S3 be the link ob-

tained as the closure of w. Then S3�K is hyperbolic if and only if w is generic and not

conjugate to σ
p

1 σ
q
2 for arbitrary integers p, q. �

Proof. First, we check the “only if” direction. If w is non-generic, then by Theorem 5.2,

Mw = S3
�(K ∪ A) is a graph manifold with Gromov norm 0. Since the Gromov norm of

a manifold cannot increase under Dehn filling [56, Proposition 6.5.2], S3
�K also has

Gromov norm 0, and is not hyperbolic. If w is generic and conjugate to σ
p

1 σ±1
2 , then

K is a (2, p) torus link (similarly for σ±1
1 σ

q
2 ). Finally, if w is conjugate to σ

p
1 σ

q
2 , where

|p|, |q| ≥ 2, then K is the connected sum of (2, p) and (2, q) torus links, hence cannot be

hyperbolic.

For the “if” direction, suppose that S3
�K is not hyperbolic. Then, by Thurston’s

hyperbolization theorem [57], it is reducible, toroidal, or Seifert fibered. If S3
�K is
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Seifert fibered, then Lemma 5.4 implies that w is non-generic or conjugate to σ
p

1 σ
q
2 . Mean-

while, if S3
�K is reducible, then K is a split link. By a theorem of Murasugi [45, Theorem

5.1], this can only happen if w ∼ σ
p

1 : hence, w is not generic.

Finally, suppose that S3�K contains an essential torus T . If w is not generic, then

we are done. If w is generic, a theorem of Lozano and Przytycki’s [40, Corollary 3.3] says

that T always has meridional compression disks, that is, there is some disk D ⊂ S3 such

that D ∩ T = ∂ D and D ∩ K is a point. (Lozano and Przytyckis result is stated for “hy-

perbolic” 3-braids. However, their definition of hyperbolic is the same as our definition

of generic.) After meridionally compressing T , that is, after replacing a neighborhood of

∂ D on T with two parallel copies of the annulus D�K, we obtain an essential, merid-

ional annulus that splits K into connected summands. But by a theorem of Morton [43],

a braid w ∈ B3 represents a composite link if and only if w ∼ σ
p

1 σ
q
2 , where |p|, |q| ≥ 2. See

Birman and Menasco [12, Corollary 1] for another way to identify the toroidal 3-braids.�

5.3 Volume estimates

For sufficiently long generic 3-braids, the methods of the previous sections estimate

hyperbolic volume.

Theorem 5.6. Let K = ŵ be the closure of a generic 3-braid w ∼ C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

where pi, qi are all positive and w � σ
p

1 σ
−q
2 . Then K is hyperbolic, and

4v3 s − 276.6 < vol(S3
�K) < 4v8 s. (6)

Furthermore, the multiplicative constants in both the upper and lower bounds

are sharp. �

Proof. Let A be the braid axis of K. Then Mw = S3
�(K ∪ A) is a 4-punctured sphere

bundle with monodromy

� = L p1 Rq1 · · · L ps Rqs .

Futer and Guéritaud showed [31, Corollary B.2] that the length of � coarsely

determines the volume of M:

4v3 s ≤ vol(Mw) < 4v8 s, (7)
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where both the upper and lower bounds are sharp. That is: there exist 4-punctured

sphere bundles that realize the lower bound, and other bundles that are ε-close to the

upper bound. Since S3�K is obtained by Dehn filling on Mw, the same upper bound ap-

plies to the volume of S3�K. Furthermore, by choosing an extremely long filling slope

(which will happen when |k| → ∞), one can arrange for vol(S3
�K) to be arbitrarily close

to 4v8 s.

For the lower bound on volume, we rely on Theorem 4.7. That theorem states that

the meridian of A (which will be transverse to the fibers) has length at least 8
√

3 s/147.

In particular, when s ≥ 67, the meridian will be longer than 2π . Thus, we may apply

Theorem 1.1 of [25], which estimates the change in volume under Dehn filling along

slopes longer than 2π . For all s ≥ 67, we obtain

vol(S3
�K) ≥

(
1 −

(
2π

8
√

3 s/147

)2
)3/2

vol(Mw), by [25, Theorem 1.1] and Theorem 4.7

≥
(

1 − 7203 π2

16 s2

)3/2

4v3 s, by inequality (7).

Note that by calculus,

(
1 − 7203 π2

16 s2

)3/2

4v3 s − 4v3 s

has a minimum of −276.52 · · · for s ≥ 67. Thus, vol(S3
�K) > 4v3 s − 276.6.

On the other hand, if s ≤ 67, then 4v3 s − 276.6 < 0, hence the volume estimate is

trivially true. Thus, the lower bound on volume holds for all hyperbolic 3-braids.

Finally, to show sharpness of the multiplicative constant in the lower bound,

consider 3-braids of the form w = (σ1σ−1
2 )s. In the proof of Theorem B.1 of [31], it

was shown that for the closures of these braids, vol(Mw) = 4v3s. Since vol(S3
�K) <

vol(Mw) = 4v3s for this sequence of knots, the multiplicative constant 4v3 must be

sharp. �

We close this section with an interesting side comment. Theorem 5.6 compares in an

intriguing way to prior results that estimate the volume of a link complement in terms

of the twist number of a diagram. (See Section 1.2 and the introduction of [27] for defini-

tions and background.) In the braid word w, each term σ
pi

1 or σ
−qi
2 corresponds to a twist

region involving a pair of strands of K. Meanwhile, when k �= 0, the term C k defines a

single generalized twist region, in which we perform k full twists on all three strands of

the braid. Altogether, the braid word w defines a diagram with either 2s or 2s + 1 gener-
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alized twist regions—including 2s ordinary twist regions twisting on two strands of K.

As a result, Theorem 5.6 can be reformulated in the following way.

Corollary 5.7. Let K be a hyperbolic closed 3-braid, and let D(K) be the braid diagram

corresponding to the Schreier normal form for K. If tgen(D) denotes the number of gen-

eralized twist regions in the diagram D, then

2v3 tgen(D) − 279 < vol(S3
�K) < 2v8 tgen(D). �

Proof. By Theorem 5.5, K must be represented by a generic word w =
C kσ

p1
1 σ

−q1
2 · · · σ ps

1 σ
−qs
2 . Substituting 2s ≤ tgen(D) ≤ 2s + 1 into Theorem 5.6 gives the

desired volume estimate. �

Remark. In [27, Corollary 3.2], we show that the twist number alone, as opposed to the

generalized twist number, is not a good measure of the volume of 3-braids. Thus, the

single generalized twist region from the term C k is important in Corollary 5.7.

6 The Jones Polynomial and Volume of Closed 3-braids

In this section, we will apply the previous results to the Jones polynomial of a closed

3-braid. We begin by relating the Jones polynomial of a closed 3-braid to the Schreier

normal form of the braid. By applying Theorem 5.6, we will show in Theorem 6.6 that

certain coefficients of the Jones polynomial are bounded in terms of the volume. At the

end of the section, we will prove Theorem 6.8, which shows that no function of βK and

β ′
K can coarsely predict the volume of all hyperbolic knots.

6.1 The Jones polynomials of generic 3-braids

In the case that K is the closure of a 3-braid, we need to relate the Jones polynomial to

the Schreier normal form of the braid. (See Theorem 5.1.) Here, we will concern ourselves

with 3-braids whose Schreier normal forms are generic. That is, we will consider braids

b ∈ B3 written in the form

b = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

where pi, qi, k ∈ Z, with pi, qi > 0, and C := (σ1σ2σ1)2. We set

p :=
s∑

i=1

pi, and q :=
s∑

i=1

qi.
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B – resolutionA – resolution

Fig. 11. Resolutions of a crossing.

The exponent eb of a braid b is the signed sum of its powers. Thus for an alter-

nating braid a, ea = p − q, and if b = C ka, then eb = 6k + p − q = 6k + ea. The exponent

eb is closely related to the writhe of a diagram, namely the algebraic sum of oriented

crossings. Because both of the generators σ1 and σ2 depicted in Figure 1 are negative

crossings, the writhe of the standard diagram of a closed 3-braid is w(Db) = −eb.

For a braid b ∈ B3, let b̂ denote the closure of b. Let K denote the link type repre-

sented by b̂ and let JK (t) denote the Jones polynomial of K. We write

JK (t) = αKtM(K) + βKtM(K)−1 + . . . + β ′
Ktm(K)+1 + α′

Ktm(K), (8)

so that M(K) is the highest power of t in JK (t) and m(K) is the lowest power of t in JK (t).

Now the second and next-to-last coefficients of JK (t) are βK and β ′
K , respectively.

We will also need the following definitions. Associated to a link diagram D and

a crossing of D are two link diagrams, each with one fewer crossing than D, called the

A-resolution and B-resolution of the crossing. See Figure 11.

Starting with any D, let sA(D) (resp. sB(D)) denote the crossing-free diagram ob-

tained by applying the A-resolution (resp. B-resolution) to all the crossings of D. We

obtain graphs GA(D), GB(D) as follows: the vertices of GA(D) are in one-to-one cor-

respondence with the components of sA(D). For every crossing of D, we add an edge

between the vertices of GA(D) that correspond to the components of sA(D) at that cross-

ing. In a similar manner, construct the B-graph GB by considering components of sB(D).

A link diagram D is called adequate if the graphs GA(D), GB(D) contain no one-edge

loops, that is, if there are no edges with both ends at the same vertex.

Let vA(D), eA(D) (resp. vB(D), eB(D)) denote the number of vertices and edges

of GA(D) (resp. GB(D)). The reduced graph G
′
A(D) is obtained from GA(D) by removing

multiple edges connected to the same pair of vertices; similarly one has the reduced

graph G
′
B(D). Let e′

A(D) (resp. e′
B(D)) denote the number edges of G

′
A(D) (resp. G

′
B(D)).

The following results about Jones polynomials of adequate knots are well

known.
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Lemma 6.1. Let D be an adequate diagram of a link K, whose Jones polynomial is

written as in Equation (8). Then the top and bottom coefficients of JK (t) satisfy

αK = (−1)vB (D)+w(D)−1, βK = (−1)vB (D)+w(D)(e′
B(D) − vB(D) + 1),

α′
K = (−1)vA(D)+w(D)−1, β ′

K = (−1)vA(D)+w(D)(e′
A(D) − vA(D) + 1). �

Proof. Let Z[A, A−1] denote the ring of Laurent polynomials in a variable A, with inte-

ger coefficients. Recall that the Kauffman bracket of the diagram D, denoted by 〈D〉, is

an element in Z[A, A−1] such that

JKa(t) = (−A)−3w(D) 〈D〉
∣∣∣A = t−1/4 , (9)

where w(D) is the writhe of D, or the algebraic sum of crossings. Now, Kauffman showed

that the first and last coefficients of 〈D〉 are (−1)vA(D)−1 and (−1)vB (D)−1, respectively. (See

[20, Theorem 6.1] for a proof.) Meanwhile, Stoimenow [54] showed that the second coef-

ficient is given by (−1)vA(D)(e′
A(D) − vA(D) + 1), and similarly the next-to-last coefficient

is given by (−1)vB (D)(e′
B(D) − vB(D) + 1). See [20, Corollary 6.3] for an alternate proof.

Next, we multiply 〈D〉 by (−A)−3w(D). As a result, all the coefficients are multi-

plied by (−1)−3w(D) = (−1)w(D). Finally, to recover the Jones polynomial, we substitute

A = t−1/4. As a result, the highest powers of A will correspond to the lowest powers of t,

and vice versa. Thus, the top and bottom coefficients of JK (t) are as claimed. �

Given a condition R, let δR be the characteristic function of R: its value is 1 when

R is true, and 0 when R is false. The characteristic functions εp := δp≤2 and εq := δq≤2

will be particularly useful for expressing the Jones polynomials of 3-braids.

Lemma 6.2. Suppose that a link Ka is the closure of an alternating 3-braid

a = σ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

with pi, qi > 0. Suppose as well that p > 1 and q > 1. Then the following hold:

(a) The highest and lowest powers of t in JKa(t) are

M(Ka) = 3q − p

2
and m(Ka) = q − 3p

2
.
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(b) The first two and last two coefficients in JKa(t) are

αKa = (−1)p, βKa = (−1)p+1(s − εq), β ′
Ka

= (−1)q+1(s − εp), α′
Ka

= (−1)q,

where εp equals 1 if p = 2 and 0 if p > 2, and similarly for εq.

(c) The third and third-to-last coefficients in JKa(t) satisfy

1 ≤ (−1)pγKa ≤ s(s + 3)

2
and 1 ≤ (−1)qγ ′

Ka
≤ s(s + 3)

2
.

These upper bounds are attained when s > 1 and pi, qi > 1 for all i. See Equa-

tion (14) for a precise formula for γKa. �

Proof. Consider the link diagram D := â obtained as the closure of a. Note that the

diagram D is alternating and reduced, that is, it contains no nugatory crossings (here, we

are using the hypothesis that if s = 1, then p1 = p > 1 and q1 = q > 1). This implies that

D is an adequate diagram (compare [39, Proposition 5.3]). Thus, we may use Kauffman’s

work to find the highest and lowest powers of A, and Lemma 6.1 to find the coefficients.

Kauffman showed that the highest and lowest powers of A in the bracket poly-

nomial 〈D〉 are c(D) + 2vA(D) − 2 and −c(D) − 2vB(D) + 2, respectively. (See [39] for an

exposition. A proof from the graph theoretic viewpoint can be found in [19, Propo-

sition 7.1].) In our setting, the crossing number is c(D) = p + q, vA(D) = p + 1, and

vB(D) = q + 1. Thus, the highest and lowest powers of A in 〈D〉 are 3p + q and −3q − p,

respectively.

By Equation (9), we multiply 〈D〉 by (−A)−3w(D) = (−A)−3q+3p. (Recall that for a

closed 3-braid, w(D) = −ea = q − p.) Thus, the highest power of A becomes 6p − 2q, and

the lowest becomes 2p − 6q. Then to obtain JKa(t), replace A by t−1/4. Thus, the highest

power of t in JKa(t) corresponds to −1/4 times the lowest power of A, and vice versa:

M(Ka) = −(2p − 6q)

4
= 3q − p

2
and m(Ka) = q − 3p

2
.

Next, we turn our attention to the top and bottom coefficients of JKa. In the

following calculation, we focus on the first three coefficients αKa βKa, and γKa. By Lemma

6.1 and [21, 54], these top coefficients only depend on the B-resolution of D. To find the

last three coefficients, one merely needs to interchange p with q in all the formulas.
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From the B-resolution of the diagram D, one can readily compute that vB(D) =
q + 1. Thus, by Lemma 6.1, αKa = (−1)2q−p = (−1)p. The total number of edges of GB

is eB(D) = p + q, the number of crossings in D. Out of this total number, the p edges

corresponding to the powers of σ1 will become identified to s classes of edges in e′
B

(with one edge for each σ1 twist region). The q edges corresponding to the powers

of σ2 all survive in e′
B , except in the special case when q = 2, when a loop of two

edges running all the way around the braid counts for only a single reduced edge

in e′
B . Putting it together, the number of reduced edges will be e′

B(D) = q − εq + s,

hence

βKa = (−1)2q−p+1(e′
B − vB + 1) = (−1)p+1(s − εq). (10)

To find γKa, we must calculate the third-to-last coefficient of the Kauffman

bracket 〈D〉, and then multiply by (−1)w(D) = (−1)q−p. The third-to-last coefficient of

〈D〉 was computed in closed form by Dasbach and Lin [21, Theorem 4.1] and Stoimenow

[54, Proposition 3.3]. According to their formula,

γKa = (−1)p

(∣∣βKa

∣∣(∣∣βKa

∣∣ + 1)

2
− θ + μ − τ

)
, (11)

where θ , μ, and τ are defined as follows. The quantity θ is always zero for reduced

alternating diagrams; this is because the circles sB do not nest on the projection plane.

The quantity μ is the number of edges in the reduced graph G
′
B whose multiplicity in GB

is greater than one. By the argument preceding Equation (10),

μ = #{i : pi > 1} + εq = s − #{i : pi = 1} + εq. (12)

Finally, the quantity τ is defined to be the number of loops in G
′
B that consist of

exactly 3 edges. In our context, one of these loops (surrounding a region of the diagram

D) typically arises for any i where qi = 1. However, in the special case when s = q = 2,

two of these regions involve the same triple of vertices in GB , and account for the same

loop in G
′
B . Furthermore, a loop of length 3 goes all the way around the braid when q = 3.

All together,

τ = #{i : qi = 1} − δs=q=2 + δq=3. (13)
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Thus, plugging Equations (10), (12), and (13) into Equation (11) gives

(−1)pγKa = (s − εq)(s − εq + 1)

2
+ μ − τ

= s2 + s − 2sεq

2
+ s − #{i : pi = 1} − #{i : qi = 1} + εq + δs=q=2 − δq=3

= s2 + 3s

2
− (s − 1)εq + δs=q=2 − #{i : pi = 1} − #{i : qi = 1} − δq=3

= s2 + 3s

2
− #{i : pi = 1} − #{i : qi = 1} − δq=3. (14)

The last equality holds because both (s − 1)εq and δs=q=2 must be 0 for s �= 2, while on

the other hand δs=q=2 = εq for s = 2. Thus, since all terms of (14) after (s2 + 3s)/2 are

non-positive, (−1)pγKa is always bounded above by (s2 + 3s)/2. This upper bound will

be attained whenever s > 1 and pi, qi > 1 for all i, for then all correction terms must

be 0.

For the lower bound on (−1)pγKa, observe that each of #{i : pi = 1} and #{i : qi = 1}
is at most s. In fact, each of these quantities is 0 when s = 1 (by hypothesis). Furthermore,

#{i : qi = 1} + δq=3 ≤ s when s = 2. Thus

(−1)pγKa ≥ s2 + 3s

2
− 1 ≥ 1 when s = 1,

(−1)pγKa ≥ s2 + 3s

2
− 2s ≥ 1 when s = 2,

(−1)pγKa ≥ s2 + 3s

2
− 2s − 1 ≥ 2 when s ≥ 3. �

Let Z[t, t−1] denote the ring of Laurent polynomials with integer coefficients and

G(2, t) the group of 2 × 2 matrices with entries in Z[t, t−1]. The Burau representation

ψ : B3 → G(2, t) is defined by

ψ(σ−1
1 ) =

[
−t 1

0 1

]
, ψ(σ−1

2 ) =
[

1 0

t −t

]
. (15)

See [9, 33] for more details. (Our definition of the braid generator σi, depicted in Figure

1, corresponds to Jones’ definition of σ−1
i [33]. The literature contains many examples of

both conventions: compare [10, 16] to [35, 46]. Replacing σi with σ−1
i produces the mirror

image of a link, and affects the Jones polynomial by replacing t with t−1.)

For a braid b ∈ B3, let b̂ denote the closure of b and let eb denote the exponent of b.

As calculated in [33] (the formula is also given and used in the papers [10] and [35] where
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properties of the Jones polynomial of 3-braids are discussed), the Jones polynomial of b̂

is given by

Jb̂(t) = (−√
t)−eb · (t + t−1 + trace(ψ(b))). (16)

Lemma 6.3. Suppose that a link Kb is the closure of a generic 3-braid

b = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

with pi, qi > 0. Let Ka denote the alternating link represented by the closure of the alter-

nating braid a := σ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 . If JKa(t) and JKb(t) denote the Jones polynomials of

Ka and Kb, respectively, then

JKb(t) = t−6k JKa(t) + (−√
t)−ea

(
t + t−1) (

t−3k − t−6k
)

,

where ea is the braid exponent of a. �

Proof. An easy calculation, using Equation (15), will show that

ψ(C ) = ψ((σ1σ2σ1)2) =
[

t−3 0

0 t−3

]
,

and thus

trace(ψ(b)) = t−3k trace(ψ(a)). (17)

The braid exponents eb and ea satisfy eb = 6k + ea. Thus, by Equations (16) and

(17),

JKb(t) = t−3k(−√
t)−ea

(
t + t−1 + t−3k trace(ψ(a))

)
, (18)

and

JKa(t) = (−√
t)−ea

(
t + t−1 + trace(ψ(a))

)
. (19)

By eliminating trace(ψ(a)) from Equations (18) and (19), we obtain

JKb(t) = t−6k JKa(t) + (−√
t)−ea

(
t + t−1) (

t−3k − t−6k
)

, (20)

as desired. �
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We are now ready to estimate certain outer coefficients of the Jones polynomial

for any generic closed 3-braid.

Definition 6.4. Let K be a link in S3. From the Jones polynomial JK (t), we define the

following quantities. Let

ζK =
{

βK , if |αK | = 1

0, otherwise
and ζ ′

K =
{

β ′
K , if

∣∣α′
K

∣∣ = 1

0, otherwise.

Note that by Lemma 6.1, adequate links will satisfy ζK = βK and ζ ′
K = β ′

K . This definition

gives a way to generalize approximately the same quantity. �

Proposition 6.5. Let Kb be the closure of a generic 3-braid b = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 ,

with pi, qi > 0. Define ζKb and ζ ′
Kb

as in Definition 6.4. Then

s − 1 ≤ max
{∣∣ζKb

∣∣, ∣∣ζ ′
Kb

∣∣} ≤ s + 1. �

Proof. For the majority of this argument, we will work under the hypothesis that p > 1

and q > 1. At the end of the proof, we will consider the (simpler) case when p = 1 or

q = 1.

So: assume that p > 1 and q > 1, and let a = σ
p1

1 σ
−q1
2 · · · σ ps

1 be the alternating

part of b. Consider JKb(t), as expressed as a sum of two terms in Equation (20). By Lemma

6.2, the first term, t−6k JKa(t), is

t−6k JKa(t) = (−1)p t(3q−p)/2−6k + (−1)p+1(s − εq) t(3q−p)/2−6k−1 + · · · (21)

+(−1)q+1(s − εp) t(q−3p)/2−6k+1 + (−1)q t(q−3p)/2−6k.

Meanwhile, the second term on the right-hand side of Equation (20) expands out to

(−1)ea
(
t−ea/2−3k+1 + t−ea/2−3k−1 − t−ea/2−6k+1 − t−ea/2−6k−1

)
. (22)

If k = 0, then the expression in (22) vanishes, and the link Kb is alternating. Thus,

ζKb = βKb and ζ ′
Kb

= β ′
Kb

, and the desired result is true by Lemma 6.2.

Next, suppose that k �= 0. We claim that no generality is lost by assuming that

k > 0. Otherwise, if k < 0, the mirror image Kd of the link Kb can be represented by the

braid word d = C −kσ
qs
1 σ

−p1
2 σ

q1
1 · · · σ−ps

2 , so the power of C will now be positive. The Jones

polynomial JKd can be obtained from JKb by interchanging t and t−1, so ζKb = ζ ′
Kd

and

ζ ′
Kb

= ζKd, with the maximum of the two values unaffected. Thus, we may assume k > 0.
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If k > 0, the monomials of (22) are listed in order of decreasing powers of t, and

each monomial has a coefficient of ±1. Furthermore, we claim that the degree of any

term in (22) is strictly higher than the degree of the lowest term in (21). This is because

the last monomial of (22) has degree −ea/2 − 6k − 1 = (q − p)/2 − 6k − 1, and

p ≥ 2 is equivalent to
q − p

2
− 6k − 1 ≥ q − 3p

2
− 6k + 1. (23)

Thus, the lowest-degree term of JKb(t) is (−1)q t(q−3p)/2−6k, and α′
Kb

= (−1)q.

From Equation (23), we can also conclude that the last monomial of (22) only

affects the next-to-last monomial of (21) if p = 2. When p is even, the signs of these two

monomials are (−1)q+1 and (−1)ea+1 = (−1)p−q+1 = (−1)q+1: they have the same sign.

Thus when p = 2, the last monomial of (22) will contribute 1 to |β ′
Kb

|; when p > 2, no

monomial of (21) affects |β ′
Kb

| at all. We conclude that when k > 0,

ζ ′
Kb

= β ′
Ka

+ (−1)q+1εp = (−1)q+1(s − εp + εp) = (−1)q+1s.

Next, consider how the top two terms of (21) might interact with the monomials

of (22). If the top degree of (22) is lower than the top degree of (21), we will have αKb =
(−1)p and ζKb = βKb will be off by at most 1 from βKa. In particular, s − 2 ≤ ∣∣ζKb

∣∣ ≤ s + 1.

If the top degree of (22) is higher than the top degree of (21) by 2 or more, we will have

αKb = (−1)ea and ζKb = βKb = 0. If the top degree of (22) is higher by exactly 1, then we

will have αKb = (−1)ea and ζKb = βKb = (−1)p. If the top degree of (22) is exactly equal

to the top degree of (21), then the two monomials either add or cancel. If the top mono-

mials add, αKb = (−1)p · 2 and ζKb = 0 by Definition 6.4. Thus, in all cases when the top

monomials of (21) and (22) do not cancel, we have 0 ≤ ∣∣ζKb

∣∣ ≤ s + 1.

If the top monomials of (21) and (22) cancel (which can occur: see Proposition

6.7), we have

3q − p

2
− 6k = −ea

2
− 3k + 1, which simplifies to q = 3k + 1,

since ea = p − q. In particular, it follows that q ≥ 4. Then αKb = βKa = (−1)p+1s. So, if

s ≥ 2, we have
∣∣αKb

∣∣ ≥ 2, and again ζKb = 0 by Definition 6.4. Thus when s ≥ 2, we get

0 ≤ ∣∣ζKb

∣∣ ≤ s + 1 in all cases. Since |ζ ′
Kb

| is always equal to s if k > 0, we conclude that

s − 1 ≤ max
{∣∣ζKb

∣∣, ∣∣ζ ′
Kb

∣∣} ≤ s + 1 whenever s ≥ 2.

Note that the lower bound of s − 1 is only achieved when k = 0 and s = p = q = 2, that

is, when Kb is the figure-8 knot.
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If s = 1 and the top monomials of (21) and (22) cancel, then αKb = βKa = (−1)p+1

and ζKb = βKb = γKa + (−1)p+1, where γKa is the third coefficient of JKa(t) and (−1)p+1

comes from the second monomial of (22). By Lemma 6.2(c),

∣∣ζKb

∣∣ = ∣∣γKa

∣∣ − 1 ≤ s(s + 3)

2
− 1 = 1.

Since we get 0 ≤ ∣∣ζKb

∣∣ ≤ s + 1 whenever the top monomials do not cancel, and since |ζ ′
Kb

|
is always equal to s if k > 0, we conclude that

s − 1 ≤ max
{∣∣ζKb

∣∣, ∣∣ζ ′
Kb

∣∣} ≤ s + 1 whenever s = 1 and p, q ≥ 2.

To complete the proof, we need to consider the case when p = 1 or q = 1, hence

s = 1. Without loss of generality, we may assume that p ≥ q = 1 (otherwise, take the

mirror image of Kb, as above). Then Ka is the (2, p) torus link. By direct computation

(e.g., using [39, Theorem 14.13] or [17, Proposition 2.1 and Example 3]), it follows that

JKa(t) = (−1)p+1
(
t−(p−1)/2 + t−(p+3)/2 − t−(p+5)/2 + t−(p+7)/2 − . . . + (−1)pt−(3p−1)/2

)
.

In particular, the second coefficient of JKa(t) is 0 and every other coefficient is ±1. If

k �= 0, we may still use Lemma 6.3 to compute the Jones polynomial JKb(t). Thus, after

multiplying JKa(t) by t−6k and adding in the four monomials of (22), it will follow that

every coefficient of JKb(t) is 0, ±1, or ±2. Thus

0 ≤ max
{∣∣ζKb

∣∣, ∣∣ζ ′
Kb

∣∣} ≤ 2 whenever p = 1 or q = 1,

which is exactly what the proposition requires for s = 1. �

6.2 Connections to volume

Proposition 6.5 and Theorem 5.6 immediately imply the following.

Theorem 6.6. Let K be a hyperbolic closed 3-braid. From the Jones polynomial JK (t),

define ζK , ζ ′
K as in Definition 6.4. Let ζ = max

{|ζK |, ∣∣ζ ′
K

∣∣}. Then

4v3 · ζ − 281 < vol(S3
�K) < 4v8 (ζ + 1).

Furthermore, the multiplicative constants in both the upper and lower bounds are

sharp. �
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Table 1 The head and tail of the Jones polynomial for the first few values of s in Proposition 6.7

s Jones polynomial JKs

2 2 t−8 − 4 t−9 + 9 t−10 − 14 t−11+ . . . + 9 t−22 − 5 t−23 + 2 t−24 − t−25

3 3 t−12 − 8 t−13 + 20 t−14 − 39 t−15+ . . . + 20 t−34 − 9 t−35 + 3 t−36 − t−37

4 4 t−16 − 13 t−17 + 37 t−18 − 85 t−19+ . . . + 37 t−46 − 14 t−47 + 4 t−48 − t−49

5 5 t−20 − 19 t−21 + 61 t−22 − 160 t−23+ . . . + 61 t−58 − 20 t−59 + 5 t−60 − t−61

6 6 t−24 − 26 t−25 + 93 t−26 − 273 t−27+ . . . + 93 t−70 − 27 t−71 + 6 t−72 − t−73

7 7 t−28 − 34 t−29 + 134 t−30 − 434 t−31+ . . . + 134 t−82 − 35 t−83 + 7 t−84 − t−85

8 8 t−32 − 43 t−33 + 185 t−34 − 654 t−35+ . . . + 185 t−94 − 44 t−95 + 8 t−96 − t−97

9 9 t−36 − 53 t−37 + 247 t−38 − 945 t−39+ . . . + 247 t−106 − 54 t−107 + 9 t−108 − t−109

10 10 t−40 − 64 t−41 + 321 t−42 − 1320 t−43+ . . . +321 t−118 − 65 t−119 + 10 t−120 − t−121

These values were computed independently by two pieces of software: jpclosed.c by Nathan Broaddus and the Mathematica
package KnotTheory‘ by Dror Bar-Natan.

In contrast with Proposition 6.5, there exist 3-braids for which the second coefficient of

the Jones polynomial is quite different from s.

Proposition 6.7. For every s > 1 there is a knot K = Ks, represented by the 3-braid word

b = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 , with pi, qi > 0,

such that the second and next-to-last coefficients of the Jones polynomial JK (t) satisfy

βK = s(s + 3)

−2
+ 1, β ′

K = s. �

The head and tail of the Jones polynomial for several values of s is computed in Table 1.

Proof. Fix s > 1, and let p1 = . . . = ps−1 = 2, ps = 3, q1 = . . . = qs−1 = 6, qs = 7.

Notice that p = ∑
pi = 2s + 1 and q = ∑

qi = 6s + 1; thus, in particular, they are

both odd. Let k = 2s and let K be the closure of the generic 3-braid

b = C kσ
p1

1 σ
−q1
2 · · · σ ps

1 σ
−qs
2 .

Since C k is a pure braid, and each of σ
p1

1 , . . . , σ
−qs−1
2 is also a pure braid (because their

powers are even), K will have the same number of components as the closure of σ 3
1 σ−7

2 .

Hence, K is a knot.

The Jones polynomial JK (t) will be the sum of Equations (21) and (22). Note that

the leading terms of these equations are

(−1)p t(3q−p)/2−6k = −t(16s+2)/2−12s = −t−4s+1,
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and

(−1)p−q t(q−p)/2−3k+1 = t(4s)/2−6s+1 = t−4s+1,

which will cancel. Thus, continuing along Equations (21) and (22), one can see that the

leading monomial of JKb(t) will be (−1)p+1s t−4s, and the second term will be

(γKa)t
−4s−1 + (−1)(p−q) t−4s−1 = (

γKa + 1
)

t−4s−1.

Since s > 1 and pi, qi > 1 for all i, Lemma 6.2(c) implies that

γKa = (−1)p
(

s(s + 3)

2

)
= s(s + 3)

−2
, hence βK = s(s + 3)

−2
+ 1.

Now we consider the term β ′
K . The two lowest-degree terms of (21) are

(−1)q t(q−3p)/2−6k = −t(−2)/2−12s = −t−12s−1 and (−1)q+1s t−12s = s t−12s.

The remaining terms of (22) are

(−1)p−q+1t(q−p)/2−6k±1 = t(4s)/2−12s±1 = −t−10s±1.

Since −12s < −10s − 1 for all positive s, no term of (22) can affect either of the two

lowest-degree terms of JKb(t). Therefore,

α′
K = (−1)q = −1 and β ′

K = (−1)q+1s = s. �

Theorem 6.8. There does not exist a function f(·, ·) of two variables, together with pos-

itive constants C1, . . . , C4 such that

C1 f(βK , β ′
K ) − C2 < vol(S3

�K) < C3 f(βK , β ′
K ) + C4

for every hyperbolic knot K. In other words, the second and next-to-last coefficients of

the Jones polynomial do not coarsely predict the volume of a knot. �
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Proof. Suppose, for a contradiction, that such a function f(·, ·) does exist. Then it will

follow that for every pair of knots K and L, such that βK = βL and β ′
K = β ′

L ,

vol(S3
�L) <

C3

C1
vol(S3

�K) + C2C3

C1
+ C4. (24)

On the other hand, we shall construct an infinite sequence of such pairs Ks and Ls, such

that the volumes vol(S3
�Ls), vol(S3

�Ks), as well as the ratio vol(S3
�Ls)/vol(S3

�Ks) go

to infinity as s goes to infinity. This will contradict the existence of f .

The sequence Ks is the one given by Proposition 6.7, where we require that s ≡ 3

mod 4 and s > 10. By Proposition 6.7, these knots satisfy

βKs = s(s + 3)

−2
+ 1, and β ′

Ks
= s.

The sequence Ls will consist of (3, . . . , 3,−3, . . . ,−3) pretzel knots, where there

are

n =
(

s(s + 3)

2
− 2

)
positive 3’s and m= (s − 1) negative 3’s.

When s ≡ 3 mod 4, it follows that n is odd, m is even, and thus Ls is indeed a knot.

It is easy to check that the standard pretzel diagram Ds of one these knots is

adequate. Computing the graphs GA(Ds), GB(Ds) gives

vA = n+ 2m, e′
A = n+ 3m, vB = 2n+ m, e′

B = 3n+ m.

Also, we may compute the writhe of Ds to be w(D) = 3m− 3n. Now, Lemma 6.1 gives

βLs = (−1)vB+w(D)(e′
B − vB + 1) = (−1)−n+4m(n+ 1) = (−1)n(n+ 1) = s(s + 3)

−2
+ 1,

since n is odd. Similarly,

β ′
Ls

= (−1)vA+w(D)(e′
A − vA + 1) = (−1)m(m+ 1) = s.

Therefore, βKs = βLs and β ′
Ks

= β ′
Ls

for all s ≡ 3 mod 4.

Now, consider the volumes of these links. By Theorem 5.6,

4v3 s − 277 < vol(S3
�Ks) < 4v8 s.
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On the other hand, the pretzel diagram Ds contains (n+ m) > s2/2 twist regions and is

built by joining together (n+ m) > s2/2 rational tangles. Thus, by [26, Theorem 1.5],

vol(S3
�Ls) ≥ v8

2

(
1 −

(
8π

11.524 + s2 4
√

2/2

)2
)3/2(

s2

2
− 3

)
>

v8 s2

8
for s > 10.

Hence, vol(S3
�Ls)/vol(S3

�Ks) ≥ s/32. Since both volumes are eventually large enough

that the additive constants in Equation (24) do not matter, this contradicts Equation

(24). Thus, the function f cannot exist. �
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