Topology Vol. 38, No. 1, pp. 95115, 1999

© 1998 Elsevier Science Ltd

@ Pergamon All rights reserved. Printed in Great Britain
0040-9383/99 $19.00 + 0.00

PII: S0040-9383(98)00005-6

THE HOMFLY POLYNOMIAL FOR LINKS IN RATIONAL
HOMOLOGY 3-SPHERES'

ErsTRATIA KALFAGIANNI and X1A0-SONG LIN

(Received 8 October 1995; in revised form 20 January 1998)

We use intrinsic 3-manifold topology to construct formal power series invariants for links in a large class of
rational homology 3-spheres, which generalizes the 2-variable Jones polynomial (HOMFLY). As a consequence,
we show that a certain completion of the HOMFLY skein module of a homotopy 3-sphere is isomorphic to that of
the genuine 3-sphere. © 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The theory of quantum groups gives a systematic way of producing families of polynomial
invariants, for knots and links in R3 or S* (see for example [18]). In particular, the Jones
polynomial [8] and its generalizations [4, 9], can be obtained that way. All these Jones-type
invariants are defined as state models on knot diagrams or as traces of braid group
representations, and the proofs of their topological invariance offer little insight into the
underlying topology. The lack of a topological interpretation of these polynomial invariants
always makes it hard, if not impossible, to generalize them for knots and links in other
3-manifolds.

In his study of the topology of the space of knots in S* [19] Vassiliev constructed a vast
family of knot invariants which are now known as Vassiliev invariants or invariants of finite
type. Some of the nice aspects of the theory of invariants of finite type are that they have
a simple combinatorial description and that they provide a unifying way to view various
knot polynomials [2,3, 14]. On the other hand, the fact that the theory of finite type
invariants rests on topological foundations allows the generalization of many of its aspects
to knots in other 3-manifolds [11, 16]. In this paper, using the machinery developed in
[11, 16], we will show the existence and uniqueness of formal power series link invariants
obeying the HOMFLY skein relation in a large class of rational homology 3-spheres.

In order to state our main results we need to introduce some notation: Suppose that
M is an orientable 3-manifold. Let = = n;(M) and let # denote the set of non-trivial
conjugacy classes of m. Notice that # can be identified with the set of non-trivial free
homotopy classes of oriented loops in M. An n-component link is a collection of n unor-
dered oriented circles, tamely and disjointly embedded in M. Hence, n-component links are
in 1-1 correspondence with unordered n-tuples of elements in U {1}. In every homotopy
class of links, we will fix, once and for all, a link CL and call it a trivial link. If CL has
k components which are homotopically trivial, our choice will be such that CL = CL*[] U,
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where U* is the standard unlink with k components in a small ball neighborhood disjoint
from CL*, and U will be abbreviated to U later on. We will denote by €. * the set of all
trivial links with none of their components homotopically trivial. It is obvious that the
elementsin €.£* are in 1-1 correspondence with unordered n-tuples of elements in 7, for all
n>0.

Every link L is homotopic to a certain CL*[[U* for some CL* € €.#*, possibly empty.
But the aim of link theory in the 3-manifold M is to understand how two links can differ up
to a (tame) isotopy if they are homotopic. Let & be the set of isotopy classes of links in
M and let R = C[v*', z*'] be the ring of Laurent polynomials in » and z. A map ¥ — R
will be called a link polynomial.

Now let z = t'/2 — t71/2 and let .# be the ideal of R[t] generated by v — v~ ! and ¢. Let
R be the pro-# completion of R[¢], i.e. the inverse limit of

- > R[/#" > R[> -

THEOREM A. Let M be a rational homology 3-sphere which is either atoroidal or a Seifert
fibered space with orientable orbit space. Then, there is a unique map Jy: & — R satisfying
the HOMFLY skein relation

U_IJM(L+) — vJp(L-) = zJy(Lo)
and with given values Jyy(U) and Jy(CL*) for every CL* € € £*.

Here, the three links L, , L_ and L, appearing in the HOMFLY skein relation differ
only in a small ball neighborhood in M where, as usually, they intersect at a positive
crossing, a negative crossing, and a smoothing of a crossing, respectively.

It seems to be worthwhile to comment on the relationship between Theorem A and the
study of the HOMFLY skein modules of 3-manifolds (see [6] for a survey). With the
notation as above, the HOMFLY skein module &5(M) is defined to be the R-module
spanned by %, and subject to the HOMFLY skein relation

U_1L+ - UL_ = ZL().

Let S(R#) be the symmetric tensor algebra of the free R-module R#, generated by 7.
J. Przytycki proposed the following conjecture.

CONJECTURE. If M is compact and contains no closed non-separating surfaces, then

F3(M) = S(R7)
as R-modules.

In the special case of M = X x [0, 1] where X is a compact surface, it was proved
by Przytycki (see [6] and references therein) that #3(M)= S(R#) as R-algebras.
Many other partial verifications of the conjecture are known. In the presence of non-
separating closed surfaces in M, one can construct examples in which &3;(M) is not
torsion free.

Notice that #.#* U {U} is in one-one correspondence with a basis of S(R#). So Theorem
A provides supporting evidence to (the dual version) of Przytycki’s conjecture. We denote
&% = Hom(¥%5(M), R). In the special case when m,(M) = 1, Theorem A is of particular
interest because of the Poincare conjecture. In this special case, since ¥.#* =0 when
71 (M) = 1, we may rephrase Theorem A in the language of skein modules, as follows:
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THeEOREM B. If M is a homotopy 3-sphere, then
3(M) = #3(S%) =R

as R-modules.

Let us now briefly discuss the main ideas of the paper:

For an Le % let #" denote the space of maps, equipped with the compact-open
topology, from a disjoint union of circles to M, which are homotopic to L. Any two links in
some .# " are related by a sequence of “crossing changes”. When we make a crossing change
from one link to another, we produce a singular link with one transverse double point as an
intermediate step. If we are given a link invariant F: ¥ — %, where % is a ring, we may define
an invariant f of singular links with one double point by

f(Ly)=F(L4) - F(L-), (1

where x stands for a double point and L, are links obtained from resolving the double
point into a positive or negative crossing, respectively.

A natural question is the following: Starting with a singular link invariant f, we want to
find necessary and sufficient conditions that f'has to satisfy so that it is derived from a link
invariant, via (1). This question was shown in [11, 16] to play an important role in
understanding invariants of finite type for links in 3-manifolds. In Section 3 we answer the
question for links in rational homology spheres which are either atoroidal or non-special
Seifert fibered spaces. In Section 4, we use the results in Section 3 to prove Theorem A.
Theorem B is a direct corollary of Theorem A.

The question of whether fis induced by a link invariant turns out to be a question about
the “integrability” and of falong paths in every .#". Let ® be a path in .#" connecting two
links. After perturbation, we may assume that there are only finitely many points on
@ where we see singular links with one double point. Moreover, we can assume that when
the parameter of the path passes through a point where we see a singular link, the nearby
links are changed by a crossing change. The sum of suitably signed values of f/ on these
singular links along the path ®, denoted here by X4, can be thought of as the integral of
falong ®.

In order for f'to be derived from a link invariant, it is necessary and sufficient that X is
independent of @ relative to the end points, or equivalently that X4 = 0, for every loop @ in
L. Tt turns out that the first thing that one has to do is to find a set of finitely many local
integrability conditions which guarantee X4 = 0 for every null-homotopic loop @ in M
Our technical assumptions about M, in the statement of Theorem A, will then imply that
these local integrability conditions guarantee X4 = 0 for every loop @ in .#".

If ® is null-homotopic in .#*, then we achieve our goal by putting the null-homotopy
into almost general position. This is done in [16] (see also 3.2). The treatment for the general
case is based on the machinery developed in [11]. Here we need to change our point of view
and think of ® as a map from a disjoint union of tori into M. This naturally leads to the
study of tori in M and to the use of the results in [7, 17] in order to treat essential ®’s. More
precisely, by employing the homotopy classification of essential tori in Seifert fibered spaces,
we are able to homotope ® into a certain nice position so that the local integrable
conditions imply X¢ = 0 (see 3.3 and 3.4).

We organize the paper as follows: In Section 2 we recall the generic picture of a family of
maps from a compact 1-polyhedron into a 3-manifold, parameterized by a disc, and we give
the preliminaries from the topology of 3-manifolds that we use in subsequent sections. In
Section 3 we answer the integrability question addressed above. The main result of this
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section is Theorem 3.1.2. In Section 4 we use Theorem 3.1.2 to construct formal power series
link invariants which satisfy the same crossing change formulae as the HOMFLY poly-
nomial (Theorem 4.2.1). Theorem A, and subsequently Theorem B, will follow from
Theorem 4.2.1 immediately.

Remark. (a) We do not know whether Jy(U) and Ju(CL*) can be appropriately
chosen in R so that Jy is a link polynomial, i.e. Jy (L) € R for every L € . In [12] the
first named author shows that the obstruction to doing so is a particular class of links
in M. The convergence problem is an important one and we hope to further address it in the
future.

(b) A different approach to power series invariants for links in rational homology
spheres can be found in [14].

2. PRELIMINARIES
2.1. Almost general position for a disjoint union of circles

In this section we summarize from [16] the results about the generic picture of a family
of maps from a disjoint union of circles to a 3-manifold, parameterized by a disc.

Let P be a one-dimensional compact polyhedron. Let M be a 3-manifold and let
D? denote the 2-disc. A map ®: P x D*—»M gives rise to a family of maps {¢,: P>M;
x € D?} where ¢,(*) = ®(, x) for x € D?. Suppose that every ¢, is a piecewise-linear map
and let S, be the closure of the set {x € D?; ¢, is not an embedding}. One can see that Sg is
a sub-polyhedron of F.

Two maps ¢4, ¢,: P—M are called ambient isotopic if there exists an isotopy h,: M- M,
te[0,1] with hy = id and h;¢, = ¢,.

Let us now introduce some terminology about one-dimensional polyhedra in 3-
manifolds.

Let P be a one-dimensional polyhedron. Every point g € P has a neighborhood homeo-
morphic to a bouquet of finitely many arcs such that g is the common endpoint of these
arcs. The number of arcs in the bouquet is called the valence of q. A point g € P with valence
different than 2 is called a vertex of P. A component of the complement of vertices is called
an edge of P.

A double point of a map ¢:P->M is a point pe M such that ¢~ '(p) consists of two
points. A double point of a piecewise linear map ¢: P— M is called a transverse double point
if there exist two 1-simplexes o4, g, contained in the 1-skeleton of P such that

(1) ¢ is linear and non-degenerate on ¢; and o,,

(2) ¢(a1)n d(o5) is the double in question,

(3) ¢(o,) and ¢(o,) intersect transversally in their interiors and they do not lie on the
same plane.

We call a one-dimensional sub-polyhedron § < D? neat if S~0D? consists of finitely
many points and each of them is a valence 1 vertex of S. We call these vertices boundary
vertices of S and we call the vertices of S lying in the interior of D? interior vertices of S.

We suppose now that P is a disjoint union of circles. Then we have

ProposiTioN 2.1.1. (Lin [16]). A map ®: P x D*—>M can be changed by an arbitrary
small perturbation so that Se is a neat one-dimensional sub-polyhedron of F. Moreover,
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we have

(1) If x, x" € D? belong to the same component of D*\Sq, or Se\{interior vertices}, then
¢ and ¢, are ambient isotopic.

(2) The interior vertices of S are of valence either four or one.

(3) If x€ Sq lies on an edge of Sq or is a boundary vertex, then ¢, has exactly one
transverse double point.

(4) If x € So is an interior vertex of valence four, then ¢, has exactly two transverse double
points.

(5) If x € So is an interior vertex of valence one, then ¢, is an embedding ambient isotopic
to the nearby embeddings.

We say that the resulting map in Proposition 2.1.1 is in almost general position. Figure 1
below illustrates S = D? for a map ® in almost general position.

Remark 2.1.2. (a) The proposition above is true for maps ®: P x X - M, where X is
a compact surface with X # 0, as well as for more general types of polyhedra P. It was used
extensively, in [11], to define and study invariants of finite type for knots in 3-manifolds.

(b) If®| P x dD?, is in almost general position already, then the perturbation in Proposi-
tion 2.1.1 can be fixed on D>

2.2. Seifert fibered spaces

In this section we give some terminology from the topology of 3-manifolds and recall
some results from [7, 17] that are used in subsequent sections.

Definition 2.2.1. A surface X # S?, properly embedded in a 3-manifold M (or embedded
in dM), is compressible if there exists a disc D = M such that DnX = 0D and 8D is not
homotopically trivial in X. Otherwise X is called incompressible in M. A compact,
orientable, irreducible 3-manifold is called a Haken (or sufficiently large) manifold, if it
contains a two-sided incompressible surface.

Definition 2.2.2. Let M be a closed 3-manifold and X a surface. A map ¢ : X—M is
called essential if ker {¢,: n,(X) - n,(M)} = 1.

Let (u, v) be a pair of relatively prime integers. Let

D*={(rn0);0<r<1, 0<6<2n}c R

Oi:‘

Fig. 1. So < D2.
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A fibered solid torus of type (g, v), is the quotient of the cylinder D? x I via the identification
((r, 0), 1) = ((r, 0 + 2mv/u), 0). If u > 1 the fibered solid torus is said to be exceptionally
fibered and the core is the exceptional fiber. Otherwise the fibered solid torus is regularly
fibered and each fiber is a regular fiber.

Definition 2.2.3. An orientable 3-manifold is said to be a Seifert fibered space, if it is
a union of pairwise disjoint simple closed curves, called fibers, such that each one has
a closed neighborhood, consisting of a union of fibers, which is homeomorphic to a fibered
solid torus via a fiber preserving isomorphism.

In a Seifert fibered space M, a fiber is called exceptional if it has a neighborhood
homeomorphic to an exceptionally fibered solid torus and the fiber in question corresponds
to the exceptional fiber of the solid torus. The orbit space, B, of M is the quotient obtained
by identifying every fiber of M to a point. Notice that B is a surface.

Definition 2.2.4. Let M be a Seifert fibered space, with a fixed fibrationandletp: M —» B
be the fiber projection. Let X be a surface. A map ® : X — M is called vertical or saturated,
with respect to p, if p~ ! (p®(X)) = ®(X) and ®(X) contains no exceptional fibers.

It is known that if 7; (M) is infinite and M is a Seifert fibered space which is not Haken,
then it has to fiber over the 2-sphere with three exceptional fibers. Moreover, if N is the
subgroup of 7, (S) generated by a regular fiber of S, then the quotient 7, (S)/N is the triangle
group A(p, g, r), where p, g and r are the multiplicities of the exceptional fibers. As shown in
[17], an essential map S* x S' — S, can always be homotoped to a vertical one if A(p, g, 7) is
a hyperbolic triangle group. The remaining cases are the Euclidean Seifert surfaces corres-
ponding to the three triangle groups A(3, 3, 3), A(2, 4, 4) and A(2, 3, 6) . These together with
S! x S' x S1, the orientable $'-bundle fibering over the Klein bottle and RP?(~—1; 2, 2) form
the entire list of irreducible Seifert fibered manifolds that contain essential tori that can not
be homotoped to vertical position with respect to all fibrations. Here RP?(~—1;2,2), is the
Seifert space with orbit space RP? that has two exceptional fibers each with multiplicity 2,
and Euler number — 1. We will call these manifolds special.

Throughout this paper we are dealing with Seifert fibered spaces that are rational
homology 3-spheres (i.e H;(M) is finite). The only special manifold in this class is
RP*(—1;2,2).

PRrOPOSITION 2.2.5. Suppose that M is a non-special Seifert fibered rational homology
3-sphere with a fixed fibration. Let ®: T = [[T,—M be an essential map, where each T; is
a torus. Then there exists a homotopy ®,: T -8, t € [0, 1], such that ®o = @ and @, is
vertical with respect to the given fibration of M.

The proof of the proposition is given in [7] for the case when M is Haken. For the rest of
the cases, see [17].

3. INTEGRATING INVARIANTS OF SINGULAR LINKS

In this section we introduce singular links and study their invariants. Our purpose
is to give conditions under which an invariant of singular links gives rise to a link
invariant.
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3.1. Definitions and the statement of the main result

Let M be an oriented 3-manifold and let P be a disjoint union of oriented circles.

Definition 3.1.1. A singular link of order n is a piecewise-linear map L : P — M that has
exactly n transverse double points. Two singular links L and L’ are equivalent if there is an
isotopy h,: M - M, t € [0, 1] such that hy, = id, L’ = h,(L) and the double points of h,(L) are
transverse for every ¢ € [0, 1].

We will also use L to denote L(P) . A singular link of order 0 is simply a link.

Let p € M be a transverse double point of a singular link L. Then L™ '(p) consists of two
points p,, p, € L. There are disjoint 1-simplexes, g, and ¢,, on P with p; € int(g;), i = 1, 2,
such that for a small ball neighborhood B of pin M

LnB = L(o,)uL(c,).

Moreover, there is a proper 2-disc D in B such that L(g,), L(g,) = D intersect transversally
at p, and the isotopy h, of Definition 3.1.1 carries the ball disc pair (B, D) through for all the
double points of L.

We can resolve a transverse double point of a singular knot of order #n in different ways.
Notice that L{do,)w L(f00,) consists of four points on dD. Also, since g; inherits an
orientation from that of P we can talk about the initial point and terminal point of o;
and L(0)).

Now choose arcs ay, a,, by, b, with disjoint interiors such that

(1) a; and a, go from the initial point of L(o,) to the terminal point of L(c,) and lie in
distinct components of dB\dD; and

(2) b, and b, lie on 4D with §, going from the initial point of L(s,) to the terminal point
of L(a,) and b, from the initial point of L(g;) to the terminal point of L(a,). See
Fig. 2. -

Define
L, =L\L(oy)ua,

L_ = L\L(Uz)uaz
Ly = L\ L(oyv0o,)u(b, Ub,).

Clearly L, L _ are well-defined singular links of order n — 1. We call L. (respectively,
L_) a positive (respectively, a negative) resolution of L.

Fig. 2. Resolving a transverse double point.
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We will denote by #" the set of equivalence classes of singular links of order nin M. Let
2 be a ring. A singular link invariant is a map " —Z. Notice that for n = 0 we have a link
invariant. From a link invariant F : ¥ —% we can always define a singular link invariant
f: ¥ -2 as follows:

Let L, € £! where x stands for the only double point. Then L,,L_ e ¥° = &. We
define f: 1 >2Z by

(L) =F(Ly) = F(L-). @

In this section we will answer the following question: Suppose that we are given
a singular link invariant f: ' —%. Under what conditions can we find a link invariant
F: % -2 so that (2) holds for all L, € #*.

In [2], Bar-Natan thinks of (2) when going from the link invariant F to the singular link
invariant f as the “first derivative” of F. In this spirit the question above concerns the
“integrability” of a singular link invariant.

For the rest of the paper we will assume, unless otherwise stated, that M is a rational
homology 3-sphere such that either (i) it has trivial =, and there are no essential maps
S' x S' »M or (ii) it is a Seifert fibered rational homology 3-sphere which is not special. If
M is as in (i) we will say that it is atoroidal. Notice that if M is as in (ii) then it is irreducible
and hence we have n,(M) = {1} by the sphere theorem (see for example [5]). The orbit
space of a rational homology sphere is either S? or RP2.

We will also assume that £ is a ring which is torsion free as an abelian group. Our main
result in this section is the following theorem, which answers the integrability question for
a large class of rational homology 3-spheres.

TueorEM 3.1.2. Suppose that M and R are as above, and let f: L' >R be a singular
link invariant. Moreover assume that if M is a Seifert fibered space, the orbit space of M is
S2. There exists a link invariant F : & —2 so that (2) holds for all L, € #* if an only if
[ satisfies

f(>)=0 (3)
fLxs) = fLx-) =f(Ls+u) —f(L-). (4)

Notation. Before we proceed with the proof of Theorem 3.1.2, let us explain the notation
above. In (3) the kink stands for a singular link L, € #' where there is an embedded 2-disc
D = M such that L, nD = éD, and the unique double point of L, lies on ¢D. In (4) we start
with an arbitrary singular link L., € %2 The four singular links in #' are obtained by
resolving one double point of L, at a time. We will call conditions (3) and (4) above the
local integrability conditions.

Proof of Theorem 3.1.2. One direction of the theorem is clear. That is if a singular link
invariant f: ' —»2 is derived from a link invariant F : ¥ —2 via (2), then it satisfies (3)
and (4). To see that (3) is satisfied observe that the positive and the negative resolution of the
double point in the kink are equivalent. For (4) observe that, using (2), both sides of (4) can
be expressed as F(Lyy) — F(L_4) — F(L+-)+ F(L_-).

We now turn into the proof of the other direction. Namely, assuming that a singular link
invariant f: £! >4 is given satisfying (3) and (4), we show that it can be derived from a link
invariant F : & —»% via (2), provided that M is as in the statement of Theorem 3.1.2.

Let L € & be a link in M. We also use L to denote a representative L: P—M, of L.
Let .#%(P, M) denote the space of maps P—M homotopic to L, equipped with the
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compact-open topology. For every L’'e.#“(P,M), we choose a homotopy

¢,: Px [0, 1]—M such that ¢, = L' and ¢, = L. After a small perturbation, we can assume

that for only finitely many points 0 <t; <t, < --- <t, <1, ¢, is not an embedding.

Moreover, we can assume that ¢,, for i=1,2, ..., n are singular links of order 1 (ie.

¢, € £V). For different ¢'s in an interval of [0, 1]\ {t,, t5, ..., t,}, the corresponding links

are equivalent. When ¢ passes through t;, ¢, changes from one resolution of ¢,, to another.
We define

FL)=FL)+ ¥ af(6,) ©)

Here ¢; = + 1 is determined as follows: If ¢, for 6 > 0 sufficiently small, is a positive
resolution of ¢,, then ¢; = 1. Otherwise ¢; = — 1.

To prove that F is well defined we have to show that modulo “the integration constant”
F(L), the definition of F(L') by (5)is independent of the choice of the homotopy. For this we
consider a closed homotopy ®: P x S* — M. After a small perturbation, we can assume that
there are only finitely many points x,, x5, ..., x, € S', ordered cyclicly according to the
orientation of S!, so that ¢, € #' and ¢, is equivalent to ¢, for all x; <x,y <x;4,. To
prove that F is well defined we need to show that

Xoi= 3 af($)=0 (©)
where ¢ = + 1 is determined by the same rule as above. We will call (6) the global
integrability condition around .

The proof of (6), which will be broken into many steps, occupies most of the rest of
Section 3. At the end of Section 3 we will briefly discuss Seifert fibered rational homology
spheres fibering over RP2.

3.2. The proof of the global integrability condition in some special cases

Assume that M is an oriented 3-manifold, with 7n,(M) = {1}, and that f: ¥’ >2 is
a singular link invariant. Let L: P—»M be a link, and recall that ME(P, M) denotes the
space of maps P—M homotopic to L, equipped with the compact-open topology. A closed
homotopy @ : P x S' - M from L to itself, can be viewed as a loop in ME(P, M).

LemMa 3.2.1. Let M, P, and ® be as above. Moreover, suppose that ® can be extended to
amap ®: P x D> > M, where D? is a 2-disc with dD* = {*} x S*. Then, @ satisfies the global
integrability condition, i.e. Xg = 0.

Proof. We perturb ® to an almost general position map as in Proposition 2.1.1. Then
each edge of the set of singularities S3, corresponds to a singular link of order 1. So by using
the invariant f we can assign an element of Z to every edge of S3. We can reduce the global
integrability condition around ®, to local integrability conditions around each interior
vertex in Sg.

More precisely, for every interior vertex of S3 draw a small circle C around it, so that the
number of points in C S is equal to the valence of the vertex. For a picture see Fig. 3. It
suffices to show that

Y +f($)=0 (™

xeCnSg

for every interior vertex of S¢. Here ¢,(S*) = O(P x {x}).
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J

Fig. 3. From global to local integrability conditions.

A

Case 1. The valence of the interior vertex is one: in this case it is easy to see that for
x € 8, near that vertex, the unique double point of &, is at a kink. So (7) is implied by the
local integrability condition (3)

Case 2. The valence of the interior vertex is four: in this case the four points in Cn Sg
correspond to the four singular knots appearing in the local integrability condition (4) and
one can show that (7) is guaranteed by it. O

LeEMMA 3.2.2. Let f: ' >R be a singular link invariant and let ® : S' —.#*(P, M) be
a loop. Then X only depends on the free homotopy class of ® in M"(P, M).

Proof. Let @ be another closed homotopy in almost general position such that @,
@ : S' > #"(P, M) are freely homotopic loops in .#*(P, M). Then there exists a homotopy
®,: P> .#L(P, M) with t € [0, 1], such that ®, = ® and ®, = D"

Let y be the path in .# (P, M) defined by y(t) = ®,(L). After putting y in almost general
position we have

Xyd)y" = Xy + Xof - Xy = X@'.

Hence, we can assume that both X and X4 are based at L and the homotopy @, is taken
relatively L. The homotopy ®, gives rise to a map 3 : P x ' x I »M. We cut the annulus
S' x I into a disc D along a proper arc « = S’ x I. Then, we have

Xo'D ==+ (XO - X@' - Xa + Xa)-

By Lemma 3.2.1 we obtain X;p = 0, and hence X = Xo-. O

To continue, we first need to introduce some notation. Suppose that P has m compo-
nents; that is

P=L[P,
i=1

where each P, is an oriented circle. Let L : P —»M be a link. Pick a base point p; € P; and let
a; denote the homotopy class of L(P) in n;(M, L(p;)). Finally, we denote by Z(a;) the
centralizer of a; in n{(M, L(p;)).
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LeMMA 3.2.3. Assume that M, P, and f are as in the statement of Lemma 3.2.2. Let
L:P—M be a link such that the abelianization of Z(a;) is finite, for every i = 1, ..., m. Then
Xo =0, for every closed homotopy ® : P x S' —M from L to itself.

Proof. We denote by .# = .#"(P, M) the space of maps P— M, which are homotopic to
L, equipped with the compact-open topology.
Let
n=n, (4P, M), L).

Since 7,(M) = {1} one can see that = is isomorphic to the direct product of the centralizers
{Z(ai)}i= 1,..,m:

By Proposition 3.3 of [16], the assignment ®—y(®) is a group homomorphism
X TR

Since # is abelian, y must factor through the abelianization of 7 which is finite by
assumption. Now, since Z is torsion free, we must have y = 0 and thus

1(®@)=Xo =0

which is the desired conclusion. O

CoROLLARY 3.2.4. Assume that M is a rational homology sphere. Let L : P—»M be a link
and let @ : P x S* > M be a closed homotopy from L to itself.

(1) If all components of L are homotopically trivial in M, then X = 0.

(2) If my (M) is finite, then Xo = 0.

(3) Assume that M is a Seifert fibered space, and that each component of L is either
homotopic to a regular fiber of the fibration, or it is homotopically trivial. Then X ¢ = 0.

Proof. (1) and (2) follow immediately from Lemma 3.2.3.
(3). By Lemma 32.8 of [7], we know that the centralizer of a regular fiber is 7, (M).
Hence the result follows from Lemma 3.2.3. O

LemMMA 3.2.5. Let L: P—M be a link and let ®: P xS' —M be a closed homotopy from
L to itself. Assume that for some i =1, ..., m the abelianization of Z(a) is finite. Let
P' = P\P;, and let ®' = ®|(P' xSY). If Xo =0, then X¢ = 0.

Proof. Without loss of generality we may assume that the abelianization of Z(a,) is
finite. Let L, denote the restriction of L on P; and let ®; denote the restriction of ® on
P, x S'. We denote by #, = .#"(P,, M) the space of maps P; —»M, which are homotopic
to L,, equipped with the compact-open topology. Let

n= 7.[1(‘/llld(Pl, M)> LI)~

We have that n = Z(a,). Clearly, @, represents an element in 7.
Let ¥: P, xS'—M be a loop in .#, based at L,. We define ¥: P xS >M by

PP, xS'=¥
P(P' xS =®(P xS

where P’ = P\P;. Then ¥ is the closed homotopy from L to itself.
Define
()= Xy
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CraM. The assignment ¥ — x(\¥) is a group homomorphism y : x —R.

Proof. 1t is enough to show that y(¥) is independent of the choice of the representative
of [¥]en. Let ¥,:P;xS'—>M be another loop in almost general position, which is
homotopic to ¥. Then clearly ¥ and ¥, are homotopic loops in .#%(P, M), and the claim
follows from Lemma 3.2.2.

Since £ is abelian, ¥ must factor through a finite abelian group. Thus, we must have
¥ = 0 since £ is torsion free. In particular,

x(@) = Xo=0
as desired. O

3.3. Closed homotopies of links and essential tori

The purpose of this paragraph is to study closed homotopies of links thought of as
singular tori in 3-manifolds. Since we are mainly interested in the global integrability
condition, and in view of Corollary 3.2.4, we may (and will) consider only 3-manifolds with
infinite 7.

Assume that M is a Seifert fibered space with orbit surface B and fiber projection
p:M > B. Let ®: T = S'xS'>M be a closed homotopy of the knot K = ®(S* x {*}),
such that ®(T) is vertical with respect to the given fibration. Let Q = S' x {x}, let
H = {*} x S! denote the parameter space of the homotopy and let « = p(®(T)). Then o is an
orientation preserving, immersed closed curve on B (without triple points). Let B, = B
denote a regular neighborhood of «. Then a regular neighborhood, §, of ®(T) in M, is an
orientable S! bundle over B,. Now, let

MM
be the covering space corresponding to the cyclic normal subgroup generated by a regular
fiber. We say that K = ®(S* x {*}) does not wrap around the fibers of M if the following are

true: (i) ®| H lifts to M and (ii) Q is a section of the S* bundle obtained as the pull-back of the
S! bundle over B, to S!, via the map S' - B, defined by «. In particular, p(K) = «.

LemMma 3.3.1. Let M, B and @ be as above. Moreover assume that ®(S* x {*}) does not
wrap around the fibers of M and the curve o = p(®(T)) does not contain any orientation
reversing sub-loops. Then the closed homotopy ® is homotopic to another closed homotopy @'
with the following property: For every x,, x, € S, there is a homeomorphism h** : M —M such
that

(1) h'? = id outside of a regular neighborhood of ®'(T) in M,
(2) h'23(¢s,) = ¢x,, where ¢ = @'|S* x {x},
(3) h'? is isotopic to the identity map id : M — M.

See Lemma 3.12 in [11].

LeMMA 3.3.2. Let M be a non-special Seifert fibered rational homology sphere, with fiber
projection p: M—B. Let ® : T = S' x S' M be an essential map. Then, there exists a map
®, : T—M which is homotopic to ®, and a finite covering t: S' x S »S* x § such that the
map @, >1:S' x S M can be extended to a map ®: S' x X —»M. Here X is a surface with
80X = {*} xS".
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Proof. By Proposition 2.2.5, ®@ is homotopic to a map @, : T —M which is vertical with
respect to the fibration of M. Then, there exists a decomposition T = S* x ' such that

(a) @,(S* x {*}) covers a regular fiber h, of M.
(b) We have p(®, ({*} x §")) = p(T).

Let H (respectively, Q) denote the curve S* x {*} (respectively, {*} x S* on T), and let
N be the cyclic normal subgroup 7n,(M) generated by the regular fiber h. Since M is
a rational homology 3-sphere, the abelianization of the Fuchsian group A = n;(M)/N, is
finite. Let d be its order, and consider the d-fold covering t: T :—T = H x Q, corresponding
to the subgroup Z @ dZ of n)(T) =Z @ Z. Let H and Q denote the liftings, on T, of H and
0 respectively. Then, the map Q— B induced by @ o extends to a map X — B for some
compact surface X with boundary Q This gives us a map 7, (X)—A, which in turn lifts to
a map ®:S'xX—>M (recall that =;(M) is an extension of A by Z = N), with
®|S!x0X = ®,01. O

Let P be a disjoint union of oriented circles and let ® : P x S —M be a closed homotopy
from a link L : P—M to itself. Let f: ¥ -2 be a singular link invariant and let X be the
quantity defined in (6). Suppose that P has m components, that is

P=

P;

s

1

LeEMMA 3.3.3. Assume that M is a Seifert fibered rational homology 3-sphere with orbit
space S2, and let P, ® be as above. Moreover, assume that ®|P;x S 'is an essential map, for
every i = 1, ..., m. Then there exists a map ¥ : P x D*>M such that

Xo9 = aXe (®)

for some a€ Z. Here, ?¥ = ¥| P x 3D* and D? is a 2-disc. In particular, we have X ¢ = 0.

Proof. Let T, = P;x S' andlet ®; = ®| T, fori = 1, ..., m. Denote by [; (respectively, m;)
the simple closed curve P; x {*} (respectively, {*} x S') on T..

By Lemma 3.3.2, and after a homotopy to vertical position, there exist a finite covering
t;: T, T, such that ®; © 7; extends to a map ®;: S' x Y; > M. Here Y; is a compact surface
and S! x 3Y; = T;. Moreover all the 1;’s can be taken to be of the same degree d.

Case 1. d = 1 so that T; = T;. Notice that this is always the case if H,(M) = 0.

Recall that the quantity Xo does not change under homotopy (Lemma 3.2.2.), and let
H; (respectively, Q;) denote S x {*} (respectively, {*} x 0Y;). Suppose that l; = a;H; + b,Q;,
for some a;, b; € Z. We distinguish two sub-cases:

Sub-case 1. Suppose that a; # Oforeveryi=1,...,m. Letg;: T:— T be the covering of
T, corresponding to the subgroup a,Z @ Z of n,(T)) = Z ® Z. Let I;, 0;, H; and ; denote
the liftings of I, Q:, H; and m;, respectively. We have [; = H; + b;0;.
Each map g; extends to an | a;|-fold covering,
Gi:ix ¥»S'x Y,

where ¥, is a compact surface with oF; = §;, and ;x §; = T..
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Let ®; = ®;°§; and let

N
I
=
[y

I
-

CLAaIM. We have that
X5 =aXe

where |a| = max{|a;|, ..., |anl}-

Proof. Let g, denote the map induced by ¢; on the fundamental groups. One can easily
see that gq;,(m;) = a;m; and

0 =cli+m 9)

for some c; € Z. We identify the curves J; by a common parameterization, and call the result
0. The parameterization should be such that corresponding points on the 3;’s map, under
the g;’s, to the same point on the parameter space of ®. By (9) this induces a common
parameterization of the curves . Identify them and call the result . Now, @ induces
a map [ x it—M, where

=117
i=1
We continue to denote this map by @. Clearly, we have
(T {x}) = [] ®:(Pi x {g:x)})
i=1

for every x on 1. Notice that each point on the parameter space of ®, for which ®(P) is not
an embedding, corresponds to |a| points x € m for which O(Tx {x}) is not an embedding.
Now, the claim follows easily. Let us finally observe that, because of (9), the quantity
X3 does not change if we replace the parameter space i, by Q.

To continue with the proof of the lemma, we choose a collection of proper arcs

{al}fe, = ¥,

such that: (a) each ¥; if cut along the {cx{ }’§ becomes a disc (as each ¥; can be chosen to be
connected), and (b) the end points of the {a;}’s avoid the points for which ®(Tx {*})is not an
embedding. Let I'; denote the space obtained by cutting I; x ¥; along the collection of annuli

{A{}'}‘él
where A} = T x ac{. Let us denote by ¥, the map induced on I3, by Cf)i o g;. Finally, let

r=1Ir

=1

and let

—~

‘P:

Y.

=

it

i=1

The map induced on I' by ¥, is the desired map.

Sub-case 2. Suppose that a; =0 for some i =1, ..., m.
Suppose for example that a; = 0. Then ®(/,;) does not wrap around the fibers of M.
Since B = §2, by Lemma 3.3.1, we may assume that ®; (P, x {x,}) and ®(P; x {x,}) are
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isotopic for every x, and x, € §*. Let

P, = H Pj
i#1
and let
(I), = ]_[ (I)j.
j#1
Observe that ®(P x {*}) is not an embedding if either ®'(P’ x {*}) is not an embedding,
or @, (P, x {*}) intersects with some @ {P; x {*}). We may change @ by composing it with
the inverse of the isotopy of @ (P, x {*}). Hence, X does not change if we assume that

Dy(Py x {x}) = ®,(Py x {x0})

where x, is fixed and x runs on {*} x S'. Hence, ®, extends to a map ®,: $* x D, »M,
where D, is a disc. Then we proceed as in Sub-case 1 above.

Case 2. Now assume that d > 1, where d is the common degree of the coverings
T 7",-—» T;.

In this case we apply Lemma 3.3.2 to a suitable covering of T'; rather that T; itself. More
precisely suppose that T is in vertical position, and that I; = a;H; + b;Q;, for some a;, b; € Z.

Ifa #0foreveryi=1, ...,m, let

gi: T T,
be the covering of T; corresponding to the subgroup a,Z @ Z of n(T;) = Z ® Z. Let I, §,,

H, and ; denote the liftings of ;, Q;, H; and m;, respectively. We have I; = H; + b;J; and we
may choose L; and §; as a system of generators of 7,(T). Let

&) = H q)ioqi.
i=1

In view of the claim inside the proof of Case 1, it is enough to prove the assertion in the
statement of the lemma for ®. Now let 7;:T} — T, be coverings as in the proof of Lemma
3.3.2, and let d be their common degree. Let ®F = ®;0q;°7; and let

m

One can see that
X@n = dX(j

and proceed as in Case 1 above to prove the desired assertion for ®*.

If ; = 0 for some i = 1, ..., m, then we proceed as in Sub-case 2 above. |

LemMma 3.3.4. Assume that M is an oriented rational homology 3-sphere with m,(M) = {1}.
Let L be a link that does not have any homotopically trivial components. Let @ be a closed
homotopy from L to itself, such that

®|P, x S*

is an inessential map, for every i =1, ..., m. Then Xo = 0.

Proof. As before, we denote T; = P;x S*, @, = ®| T}, |; = P, x {*}, and m; = {*} x S for
i=1,..,m
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We have assumed that n; (M) is infinite. So it is torsion free (Theorem 9.8 of [5]). Hence,
®; extends to a map @, : S* x D;~ M, where D; is a 2-disc and S* x aD; = T;. Let H, (respec-
tively, Q) denote S x {*} (respectively, {*} x éD;). Suppose that I; = a;H; + b,Q;, for some
a;, b;e 7.

By our assumption we have that a; # 0 for every i = 1, ..., m, We proceed as in Case 1
of the proof of Lemma 3.3.3 to obtain a map ¥ : P x D* > M such that

Xy =aXoe (10)

for some a € Z. The desired conclusion then follows immediately. O

3.4. Completing the proof of Theorem 3.1.2

Recall that M is a rational homology 3-sphere which is either atoroidal or a Seifert
fibered space as described in the statement of Theorem 3.1.2. Also, n,(M) is infinite. As
before, P is a disjoint union of oriented circles and

®:PxS'>M

is a closed homotopy from some link L: P—M to itself. Let f: #!—>2 be a singular link
invariant as in the statement of Theorem 3.1.2. We have to show that

Xo=0 (11)

where X i1s the signed sum of values of f around ® defined in (6).

First suppose that M is a Seifert fibered space. Let E (resp. I) denote the set of
components of P x §* on which ® is essential (resp. inessential).

(a) Suppose that the link to begin with contains no homotopically trivial components. If
E or I is empty the claim follows from Lemma 3.3.3 or 3.3.4. In general we have the
following:

CramM. There exists a map ¥ : P x D*—>M such that
Xy =aXo

for some a € Z. In particular, we have X¢ = 0.

Proof. The proof is very similar to the proofs of Lemmas 3.3.3 and 3.3.4. The only
difference is that, for example, when cutting each surface Y; to discs (see the proof of
Lemma 3.3.3), we have to make sure that the end points of the cutting arcs also avoid
singular links where the double points are other than intersections between components of
L in E. The details are left to the reader.

(b) Suppose that the link L to begin with, contains homotopically trivial components.
Let @' denote the restriction of @, on the tori corresponding to the non-trivial components
of L. By (a) we have that X = 0. Thus, by Lemma 3.2.5 we obtain X = 0.

If M is atoroidal, the conclusion follows from Lemmas 3.3.4 and 3.2.5.

This finishes the proof of Theorem 3.1.2. O

The reader might have noticed that the only place that the orientability of the orbit
space B is needed is in Lemmas 3.3.1 and 3.3.3 to avoid closed homotopies
@ : (][S!)x S'— M such that (i) the restriction of ® on some component T = §* x S* does
not wrap around the fibers of M; and (ii) the curve & < B contains some orientation
reversing sub-loops. We will call such a homotopy inadmissible.
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Since « = p(®(S' x {*})) = B is an orientation preserving closed curve whose only
singularities are transverse double points, the only way for (ii) above to happen is if
a = p(®(S* x {*})) contains double points whose two “lobes” are orientation reversing
loops on B. Let M be a Seifert fibered space with non-orientable base space, and let
@:T =S"xS8'>M be an inadmissible closed homotopy of the knot ®|S* x {*}. Then the
homotopy @ :T = §' x S’ M may not be a self- isotopy of the knot ®|S* x {x}. That is
®|S' x {t} may be a singular knot for some values of the parameter t. See Remark 3.13 of
[11]. Moreover, in some cases, the local integrability conditions may not imply that
Xo = 0. For examples see [13].

THEOREM 3.4.1. Suppose that M is a non-special rational homology sphere fibering over
RP? and let f : #' — R be a singular link invariant. There exists a link invariant F : & — R so
that (2) holds for all L € £ if and only if f satisfies

f)=0 (12)
f(Lx+) _f(Lx—) =f(L+x) —f(L—x) (13)
Xopum =0 (14)

Sor all inadmissible closed homotopies @;aam-

4. AN INTRINSIC DEFINITION OF THE HOMFLY POWER SERIES
4.1. Preliminaries

It is known [10] that the 2-variable Jones (or HOMFLY) polynomial [4, 9] for links in
R> or S* is equivalent to sequence {J, = J,(t)},cz of 1-variable Laurent polynomials. They
are completely determined by the following skein relations:

J(U) =1 (15)
(UL L) — DR (L ) = (V2 — £V ) (L) (16)

where L, , L_, L, are the resolutions of a singular link L, € £ described in 3.1. In this
context, the original Jones polynomial is J_3.

Notice that the initial value J,(U) = 1 is not essential. Any choice of the initial value
together with (16) will determine a unique J,. Let

(12 _ =t 1)2

un(t) = (12 412

By (16) one obtains
J(LITU) = u,(t) Ju(L) (17)

where the link L]JU is obtained from L by adding an unknotted and unlinked com-
ponent U.

The coefficients of the power series J,(x), obtained from J,(¢) by substituting t = €*, are
invariants of finite type [2, 3]. In the theorem below we reverse this procedure, and guided
by (16) we will construct inductively power series invariants for links in 3-manifolds
generalizing the J,(x)’s.
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4.2. The construction of the invariants

Assume that M is an orientable, rational homology 3-sphere which is either atoroidal or
Seifert fibered space as in the statement of Theorem 3.1.2. For every n € Z, we will construct
a sequence of knot invariants

(V] 1 m
Upy Upy «oesUps -..

such that the formal power series

<)

Joumy (L) = ), R (L)x"
m=0
satisfies (16), under the change of variable t = ¢*, for every L € .

We will construct our invariants inductively (induction on m) by using Theorem 3.1.2.
More precisely, each o] is going to be obtained by integrating a suitable singular link
invariant determined by the v)’s with j < m.

Recall that a link invariant obtained by integrating a singular link invariant is well
defined up to a collection of “integral constants” (see the beginning of the proof of Theorem
3.1.2). This means that in order to define 02,0, ..., vT ... uniquely, we need to make
a choice of “initial links”.

Let L be an S-component link and recall from Section 3 that .#* denotes the space of
maps [[S'—M which are homotopic L. The spaces .# L corresponding to links with
S components are in one to one correspondence with the unordered S-tuples of conjugacy
classes in 7 = 7, (M). In every such space we will fix, once and for all, a link CL and call it
a trivial link. If CL has k components which are homotopically trivial, our choice will be
such that CL = CL*[[U*, where U* is the standard unlink with k components in a small
ball neighborhood disjoint from CL*. Let €. be the set of trivial links and €.2* be the set
of trivial links with homotopically non-trivial components.

Notice that when M is simply connected there is a natural choice of trivial links.
Namely, one chooses each CL to be the unlink U*. Thus ¢.* = § in this case.

THEOREM 4.2.1. Let M, & and €%* be as above. There exists a unique sequence of
complex valued link invariants vl v}, ., o™, ..., with given values on the links in
€L* U{U}, such that if we define a formal power series

Jou.m(L) = Y, vp(L)x™
m=0
for Le & then
(V2 (L) = 70 D gy (L) = (12 = £ )y (Lo) (18)

wheret=e*=1+x+x*2+ -

Notation. To simplify our notation, and throughout this proof, we will write J, instead
of J{M. n}-

Proof. By our assumption, the values v3(CL¥), v,(CL*), ..., vj'(CL*), ... are given for
every CL* € €.%*. Hence, we can form the power series J,(CL*). Also, we may form J(U)
using the given values v} (U)’s.



THE HOMFLY POLYNOMIAL FOR LINKS 113
Guided by (17) we define

J,,(CL]_[ U) = u,(t)J,(CL) (19)
where
t(n+1)/2 _ t—(n+1)/2

un(t) = $1Z _(-1/2 (20)

Thus, J, has been defined on all trivial links. We define the link invariant vy by
vn(L) = v (CL),

where CL is the trivial link homotopic to L. Inductively, suppose that the invariants
v, v}, ..., o™ ! have been defined such that if we let

I () =S DX
i=1
then
J,,(LU U) = u,(t)J,(L) mod x™, (21)

(D2 gm0,y T DR (L) = (12 — 7V D (Lo) mod x™. (22)
From (22) we obtain
JET (L) = L) = (T = DI L)
4 TR D212 pm U2y gt D(L0) mod X™
which leads us to define
JI(L, )= ("D — 1)Jm DL ) 4 ¢~V U2 g D(Le) mod XM (23)

This is a polynomial of degree m, with trivial constant coefficient. The coefficients of x!,
i=1,2,...,m—1, in this polynomial are singular link invariants derived from v,
i=1,2,...,m — 1. However, the coefficient of x™ is a new singular link invariant. We
are going to prove that it is derived from a knot invariant by using Theorem 3.1.2. For that
we need to check that the local integrability conditions (3) and (4) are satisfied. It is enough

to check them modulo x™* 1. In what follows the symbol = will denote calculation modulo
xm + 1.

To check (3), suppose we start with a singular link L' € &#* that contains a kink =.
Let L be the link obtained by resolving the double point of L' and let U be unknot in M.
Then we have

JMLY = ("D — 1Jr L) 4+ @22 — 2 g YL )
=LY — )+ IR — 2, (0] (L)
=0.
To check (4), we calculate
JPUL ) = T™(Lx-)
= ("D — )IPTOL) + R — BT D (Lo )

=+l _ (m—1) e+ 1)j2(,1/2 = 1/2) y(m—1)
(t DI P -) -t (t t AT Lo-)
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= (D~ OLE — I
4 t_(n+1)/2(t1/2 _ t_l/Z)Jslm—l)(L—o) + O(XM)]
+ t—(n+ 1)/2(t1/2 _ t—l/Z)[(t~(n+ 1) _ I)Jslm—l)(LO_)
+ t—(n+1)/2(t1/2 _ t—1/2)J£lm—l)(Loo) + o(xm)]
= (t—(n+1) _ I)ZJ;m—-l)(L—_) + [t—(n+1)/2(t1/2 _ t—1/2)]2J;m—1)(L00)
+ (t—(n+ 1) _ l)t—(n+ 1)/2(1,1/2 _ t-l/Z)[JElm—l)(LO_) + anm_l)(L—o)]-
Since the result is symmetric with respect to the two double points we deduce that
ToLs) = IPLy ) =0 (Lay) — J(L_y)

Thus, the singular link invariant defined in (23) is induced by a link invariant. Using the
given values {t/(CL): CL € ¥.#}, we can define a link invariant v}, such that if we let
JPL) = Y v(L)x’
i=1

we have
JI(Ly) —JI(L ) = JM(L,)

for Le & and L, € #!. Therefore the invariant J™ defined in this way satisfies the
inductive hypothesis (22).
Now, a straightforward calculation shows that

J(LL LIU) = ue) Ji” (L)

which together with (19) shows that J¢™ satisfies the inductive hypothesis (21).
To finish our proof we need to show uniqueness. Inductively, we assume that

m—1

v, v}, ...,0"" ! are uniquely determined by (18) and their values on 4., for every n e Z.
Then, the conclusion for v} follows from the fact that

vi(L) = 0p(CL) + Y, +vj(Ly)
i=1
where L,, ..., L, are singular links in #*, and CL is the representative of L in .. [

To illustrate how the power series J,, = Jyu, » depend on the choice of €., let us restrict
ourselves to the case of knots. Let € denote the set of homotopy classes of loops in M. Then
% will contain exactly one knot, say K¢ from every C € ¥. Moreover, we suppose that the
initial values of J, are all equal to 1. To stress the dependence on K, let

Jxe(K) 1= J (K)
for every K € .#%(S*, M). Let {K(}ce« be a different choice of trivial knots. Then one can
see that J,(K) is well defined up to a multiplicative constant in the ring of formal power
series with complex coefficients. More precisely,
ProposiTION 4.2.2. We have
JRe(K) = J{(K ) IKe(K)
for every K € #*(S*, M) and c€ §.

Proof. Follows immediately from the definition. O
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Remark 4.2.3. Recall that an invariant f, is called of finite type if there exists an integer
m, such that the singular link invariant derived from fis zero on all singular links with more
than m double points. One can see that the invariants v, v}, ... o7, ... constructed above
are of finite type. It would be interesting to find a direct relation of the invariants
constructed here with these coming from the SU(N)-perturbative Chern—Simons theory
[1, 20].

Acknowledgments— We would like to thank Joan Birman for many helpful conversations during the early stages of
this work. We thank Peter Scott for helpful correspondence on the topology of 3-manifolds and for his help with
the proof of Lemma 3.3.2. We also thank Thang Le who pointed out an error in an earlier version of this paper.
Finally, this work was initiated and completed during the second and the first authors’ visits (1993-94 and
199495, respectively) to the Institute for Advanced Study. We would like to thank IAS for its hospitality.

REFERENCES

1. Bar-Natan, D., Perturbative aspects of the Chern—Simons topological quantum field theory. Ph.D. thesis,
Princeton University, Princeton, 1991.
2. Bar-Natan, D., On the Vassiliev knot invariants. Topology, 1995, 34, 423-472.
3. Birman, J. S. and Lin, X. S., Knot polynomials and Vassiliev invariants. Inventiones Mathematicae, 1993, 111,
225-270.
4, Freyd, P., Hoste, J., Lickorish, W. B. R, Millett, K., Ocneanu, A. and Yetter, D., A new polynomial invariant of
knots and links. Bulletin AMS 1985, 12, 239-246.
5. Hempel, J., 3-manifolds, Annals of Mathematics Studies, Vol. 86, Princeton University Press, Princeton, 1976.
6. Hoste, J. and Przytycki, J., A survey of skein modules of 3-manifolds. in Knots 90 (Osaka, 1990), de Gruyter,
1992.
7. Johannson, K., Homotopy Equivalences of 3-Manifolds with Boundaries. LNM, Vol. 761, Springer Berlin 1979.
8. Jones, V. F. R., A polynomial invariant for knots via von Neumann algebras. Bulletin AM S, 1985,12, 103-111.
9. Jones, V. F. R., Hecke algebra representations of braid groups and link polynomials. Annals of Mathematics,
1987, 126, 335-338.
10. Jones, V. F. R., On knot invariants related to some statistical mechanical models. Pacific Journal of
Mathematics, 1989, 137, 311-334.
11. Kalfagianni, E., Finite type invariants for knots in 3-manifolds. Topology, 1998, 37, 673-707.
12. Kalfagianni, E., Power series link invariants and the Thurston norm. To appear in Topology and Its Applications.
13. Kirk, P. and Livingston, Ch., Knot invariants in 3-manifolds, essential tori, and first cohomology of the free
loop space on M. University of Indiana preprint, 1997.
14. Kontsevich, M., Vassiliev’s knot invariants, Advances in Soviet Mathematics. 1993, 16, 137-150.
15. Le, T. Q. T., Murakami, J. and Ohtsuki, T, On a universal invariant of 3-manifolds. Topology, 1998, 37,
539-557.
16. Lin, X.-S., Finite type link invariants of 3-manifolds. Topology, 1994, 33, 45-71.
17. Scott, P., There are no fake Seifert fibre spaces with infinite n;. Annals of Mathematics 1983, 117, 35-70.
18. Turaev, V. G., The Yang-Baxter equation and invariants of links. Inventiones Mathematicae, 1988, 92,
527-553.
19. Vassiliev, V. A., Cohomology of Knot spaces. in Theory of Singularities and its Applications, ed. V. Arnold,
AMS, 1990.
20. Witten, E., Quantum field theory and Jones polynomial. Communications in Mathematical Physics, 1989, 121,
359-389.

Department of Mathematics
Hill Center

Rutgers University
Piscataway, NJ 08854-8019
USA.

Department of Mathematics
University of California
Riverside, CA 92521

USA.



